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Abstract

Erdős-Rényi limit laws give the length scale of a time-window over which time-averages in
Birkhoff sums have a non-trivial almost-sure limit. We establish Erdős-Rényi type limit laws
for Hölder observables on dynamical systems modeled by Young Towers with exponential
and polynomial tails. This extends earlier results on Erdős-Rényi limit laws to a broad class
of dynamical systems with some degree of hyperbolicity.

1 Introduction

The Erdős-Rényi fluctuation law gives the length scale of a time-window over which time-
averages in Birkhoff sums have a non-trivial almost-sure limit. It was first proved in the inde-
pendent and identically distributed (i.i.d.) case [11] in the following form:

Proposition 1.1. Let (Xn)n≥1 be an i.i.d. sequence of non-degenerate random variables, E[X1] =
0, and let Sn = X1 + · · · + Xn. Assume that the moment generating function φ(t) = E(etX1)
exists in some open interval U ⊂ R containing t = 0. For each α > 0, define ψα(t) = φ(t)e−αt.
For those α for which ψα attains its minimum at a point tα ∈ U , let cα = αtα − lnφ(tα). Then

lim
n→∞

max{(Sj+[lnn/cα ]− Sj)/[lnn/cα] : 1 ≤ j ≤ n− [lnn/cα]} = α

In the theorem above the Gauss bracket [·] denotes the integer part of a number. The
existence of ψα(t) for all t ∈ U implies exponential large deviations with a rate function (in
fact cα = I(α) where I is the rate function, defined later) and this implies that sampling over a
window length k(n) of larger than logarithmic length scale (in the sense that k(n)/ lnn → ∞),
allows the ergodic theorem to kick in and

lim
n→∞

max{(Sj+k(n) − Sj)/k(n) : 1 ≤ j ≤ n− k(n)} = 0

while sampling over too small a window, for example k(n) = 1, gives similarly a trivial limit

lim
n→∞

max{(Sj+k(n) − Sj)/k(n) : 1 ≤ j ≤ n− k(n)} = ‖X1‖∞

Define the function
θ(n, k(n)) := max

0≤j≤n−k(n)
Sj+k(n) − Sj ,
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which may be interpreted as the maximal average gain over a time window of length k(n) up
to time n. In the setting of coin tosses the Erdős-Rényi law gives precise information on the
maximal average gain of a player in a fair game in the case where the length of the time window
ensures limn→∞

θ(n,k(n))
k(n) has a non-degenerate almost sure limit.

In 1986 Deheuvels, Devroye and Lynch [7] in the i.i.d. setting of Proposition 1.1 gave a
precise rate of convergence and showed that if k(n) = [lnn/cα] then P a.s:

lim sup
[θ(n, k(n))− αk(n)]

ln k(n)
=

1

2tα

and

lim inf
[θ(n, k(n))− αk(n)]

ln k(n)
= − 1

2tα

In this paper we establish Erdős-Rényi limit laws for Hölder observables on dynamical sys-
tems modeled by Young Towers [23, 24] with exponential and polynomial tails (see section 2).
Tails refer to the measure µ(R > n) of the return time R function to the base of the tower. Our
exposition is based upon [15, Section 2.3] and [17] who present a framework more general than
that of the original Tower construction of Young [23] in that uniform contraction of local stable
manifolds is not assumed for polynomially mixing systems in dimensions greater than 1. We
will give more details on Young Towers below but here note that Hölder observables on Young
Towers with exponential (polynomial) tails have exponential (polynomial) decay of correlations,
the precise rate is encoded in the return time function.

Our results extend the work of [18] from the class of non-uniformly expanding maps with
exponential decay of correlations to all systems modeled by a Young Tower, including Sinai
dispersing billiard maps; diffeomorphisms of Henón type; polynomially mixing billards as in [4]
(as long as the correlation decay rate is greater than n−β , β > 1); smooth unimodal and
multimodal maps satisfying the Collet-Eckmann conditions [15, Example 4.10]; certain Viana
maps [15, Example 4.11]; and Lorenz-like maps. Other examples to which our results apply are
listed in [17].

In the setting of hyperbolic dynamical systems there are many earlier results. Grigull [12]
established the Erdős-Rényi law for hyperbolic rational maps, Chazottes and Collet [5] proved
Erdős-Rényi theorems with rates for uniformly expanding maps of the interval, while Denker
and Kabluchko [8] proved Erdős-Rényi results for Gibbs-Markov dynamics. In [9] Erdős-Rényi
limit laws for Lipschitz observations on a class of non-uniformly expanding dynamical systems,
including logistic-like maps, were given as well as related results on maximal averages of a
time series arising from Hölder observations on intermittent-type maps over a time window of
polynomial length. Kifer [13, 14] has established Erdős-Rényi laws for non-conventional ergodic
sums and in the setting of averaging or homogenization of chaotic dynamical systems. We
mention also recent related work of [2, 3] on applications of Erdő-Rényi limit laws to multifractal
analysis.

The main novelty of our technique is the use of the symbolic metric on the axiomatic Young
Tower construction of [17, 15] to control the norm of the indicator function of sets of the form
(Sn > nα) on the quotiented tower. This eliminates many difficulties involved with considering
the Lipschitz norm of such sets with respect to the Riemannian metric on the phase space of
the system. The structure allows us to consider, with small error, averaged Birkhoff sums as
being constant on stable manifolds, and thence use the decay of correlations for observables on
the quotiented tower in terms of their Lipschitz and L∞ norms.

Our results in the case of Young Towers with exponential decay of correlations, Theorem 5.1,
are optimal and replicate the i.i.d case, while in the case of Young Towers with polynomial
tails we investigate windows of polynomial length and notice that there is still a gap between
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upper and lower bounds, Theorem 7.1 and Theorem 7.2 which however can be quite small as
Example 7.3 shows.

2 Young Towers.

We now describe more precisely what we mean by a non-uniformly hyperbolic dynamical system
modeled by a Young Tower. Our exposition is based upon [15, Section 2.3] and [17] who present
a framework more general than that of the original Young Tower [23] in that uniform contraction
of local stable manifolds is not assumed for polynomially mixing systems in dimensions greater
than 1. This set-up is very useful for the study of almost sure fluctuations of Birkhoff sums of
bounded variables.

We suppose T is a diffeomorphism of a Riemannian manifold (M,d), possibly with singular-
ities. Fix a subset Λ ⊂ M with a ‘product structure’. Product structure means there exists a
family of disjoint stable disks (local stable manifolds) {W s} that cover Λ as well as a family of
disjoint unstable disks (local unstable manifolds) {W u} that cover Λ. The stable and unstable
disks containing x ∈ Λ are denoted W s(x) andW u(x). Each stable disk intersects each unstable
disk in precisely one point.

Suppose there is a partition {Λj} of Λ such that each stable disk W s(x) lies in Λj if x ∈ Λj .
Suppose there exists a ‘return time’ integer-valued function R : Λ → N, constant with value
R(j) on each partition element Λj , such that TR(j)(W s(x)) ⊂ W s(TR(j)x) for all x ∈ Λj . We
assume that the greatest common denominator of the integers {R(j)} is 1, which ensures that
the Tower is mixing. We define the induced return map f : Λ → Λ by f(x) = TR(x)(x).

For x, y ∈ Λ let s(x, y) be the least integer n ≥ 0 such that fn(x) and fn(y) lie in different
partition elements of Λ. We call s the separation time with respect to the map f : Λ → Λ.
Assumptions: there exist constants K ≥ 1 and 0 < β1 < 1 such that

(a) if z ∈W s(x) then d(fnz, fnx) ≤ Kβn1 ;

(b) if z ∈W u(x) then d(fnz, fnx) ≤ Kβ
s(x,z)−n
1 ;

(c) if z, x ∈ Λ then d(T jz, T jx) ≤ K(d(z, x) + d(fz, fx)) for all 0 ≤ j ≤ min{R(z), R(x)}.
Define an equivalence relation on Λ by z ∼ x if z ∈ W s(x) and form the quotient space

Λ = Λ/ ∼ with corresponding partition {Λj}. The return time function R : Λ → N is well-
defined as each stable disk W s(x) lies in Λj if x ∈ Λj and TR(j)(W s(x)) ⊂ W s(TR(j)x) for all
x ∈ Λj . This defines the induced map f̄ : Λ → Λ. Suppose that f̄ and the partition {Λj}
separates points in Λ. Define dβ1(z, x) = β

s(z,x)
1 , then dβ1 is a metric on Λ.

Let m be a reference probability measure on Λ (in most applications this will be normalized
Lebesgue measure). Assume

∫

Rdm < ∞ and that f̄ : Λ → Λ is Gibbs-Markov uniformly
expanding on (Λ, dβ1). By this we mean that f̄ is a measure-theoretic bijection from each Λj

onto Λ.
We assume that f̄ : Λ → Λ has an invariant probability measure ν and 0 < a < dν̄

dm < b for
some constants a, b. Then R is ν-integrable and there is an f invariant probability ν measure
on Λ such that π∗ν = ν where π is the quotient map taking Λ onto Λ/ ∼.

Now we define the Young Tower

∆ = {(x, j) ∈ Λ× N : 0 ≤ j ≤ R(x)− 1}

and the tower map F by

F (x, j) =

{

(x, j + 1) if j < R(x)− 1;
(fx, 0) if j = R(x)− 1.
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We extend the definition of the return time function R to ∆ by defining R(x, j) = R(x) − j.
We lift ν in a standard way to an invariant probability measure ν∆ for F : ∆ → ∆. In fact
ν∆ = ν× counting measure. The separation function s can be extended to the full Young Tower
∆ by

s((x, l), (y, l
′

)) =

{

s(x, y) if l = l
′

;

1 if l 6= l
′

.

Define the semi-conjugacy π : ∆ → M , π(x, j) = T j(x) for 0 ≤ j < R(x). The measure
µ = π∗ν∆ is a T -invariant mixing probability measure on M . Given an observable ϕ : M → R,
we may lift to an observable ϕ : ∆ → R by defining ϕ(x, j) = ϕ(T jx) (we keep the same notation
for the observable). The semi-conjugacy π∗ allows us to transfer statistical properties from lifted
observables ϕ on (∆, F, ν∆) to the original observables ϕ on (T,M, µ) [23].

We now define the metric dβ1 on ∆ by dβ1(p, q) = β
s(p,q)
1 . Here we write, for convenience,

p = (x, l) ∈ ∆, q = (y, l′) ∈ ∆. We define the ‖·‖β1-norm by ‖φ‖β1 := ‖φ‖∞+supp,q∈∆
|φ(p)−φ(q)|
dβ1 (p,q)

.

Functions φ and ψ which are constant on stable manifolds in ∆ naturally project to functions
φ and ψ (we use the same notation) on ∆ with the same dβ1 Lipschitz constant and L∞ norm.
If φ : ∆ → R is constant on stable manifolds we define the ‖ · ‖β1-norm by ‖φ‖β1 := ‖φ‖∞ +

supp,q∈∆
|φ(p)−φ(q)|
dβ1 (p,q)

.

In the proof of Theorem 5.1 the following result will be useful.

Proposition 2.1. [15, Corollary 2.9] Suppose that φ, ψ : ∆ → R are constant on stable
manifolds and ‖φ‖β1 <∞ and ‖ψ‖∞ <∞.

Then there exist constants C, β3 ∈ (0, 1) so that

|
∫

∆
φ(ψ ◦ F j) dν∆ −

∫

∆
φ dν∆

∫

∆
ψ dν∆| ≤ C‖φ‖β1‖ψ‖∞β

j
3

for all j ≥ 0 .

This result is also implied by [23].Since we assume that the function ψ is constant on loccal
stable leaves, we only need it to be bounded and not Lipschitz continuous since this does not
require the approximation argument of section 4.

3 Large deviations and rate functions.

Before stating precisely our main result we recall the definition of rate function and some other
notions of large deviations theory. Suppose (T,M, µ) is a probability preserving transformation
and ϕ :M → R is a mean-zero integrable function i.e.

∫

M ϕ dµ = 0. Throughout this paper we
will write Sn(ϕ) := ϕ+ ϕ ◦ T + . . .+ ϕ ◦ Tn−1 for the nth ergodic sum of ϕ. Sometimes we will
write Sn instead of Sn(ϕ) for simplicity of notation or when ϕ is clear from context. The subject
of large deviations is concerned with the probability of deviation of 1

nSn(ϕ) from its asymptotic
limit of zero, in particular for α > 0

µ{x ∈M :
1

n
Sn(ϕ)(x) ≥ α}

and if α < 0

µ{x ∈M :
1

n
Sn(ϕ)(x) ≤ α}

If these quantities tend to zero at an exponential rate then sometimes the rate is determined by
a rate function I(α) (see [10, Chapter 2 Section 2.6] for a discussion of rate functions in the iid
case and [18, 21] in the deterministic case).
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Definition 3.1. A mean-zero integrable function ϕ :M → R is said to satisfy a large deviation
principle with rate function I(α), if there exists a non-empty neighborhood U of 0 and a strictly
convex function I : U → R, non-negative and vanishing only at α = 0, such that

lim
n→∞

1

n
logµ(Sn(ϕ) ≥ nα) = −I(α) (1)

for all α > 0 in U and

lim
n→∞

1

n
logµ(Sn(ϕ) ≤ nα) = −I(α) (2)

for all α < 0 in U .

In the literature this is referred to as a first level or local (near the average) large deviations
principle.

For Hölder observables on Young Towers with exponential tails (which are not L1 cobound-
aries in the sense that ϕ 6= ψ ◦ T − ψ for any ψ ∈ L1(µ)) such an exponential large deviations
result holds with rate function Iϕ(α) [18, 21, 16, 20]. A formula for the width of U is given in
[21] following a standard approach but it is not useful in concrete estimates.

4 Erdős-Rényi laws: background.

Proposition 4.1 given below is found in the form we use in [9], where a proof is also given. It
is due to Erdős and Rényi [11] (for variants see also [6, Theorem 2], Grigull [12], or Denker
and Kabluchko [8]). Recall that the Gauss bracket [·] denotes the integer part of a number.
Throughout the proofs of this paper we will concentrate on the case α > 0 as the case α < 0 is
identical with the obvious modifications of statements.

Proposition 4.1. [9] Let (T,M, µ) be an ergodic dynamical system and ϕ : M → R an
observable.

(a) Suppose that ϕ satisfies a large deviation principle with rate function I defined on the
open set U and assume µ(ϕ) = 0. Let α > 0, α ∈ U and set

Ln = Ln(α) =

[

lnn

I(α)

]

n ∈ N.

Then the upper Erdős-Rényi law holds, that is, for µ a.e. x ∈ X

lim sup
n→∞

max
0≤j≤n−Ln

1

Ln
SLn(ϕ) ◦ T j(x) ≤ α.

(b) If for some constant C > 0 and integer κ ≥ 0 for each interval A

µ

(

n−Ln
⋂

m=0

{SLn(ϕ) ◦ Tm ∈ A}
)

≤ C[µ(SLn ∈ A)]n/(Ln)κ (3)

then the lower Erdős-Rényi law holds as well, that is, for µ a.e. x ∈ X

lim inf
n→∞

max
0≤j≤n−Ln

1

Ln
SLn(ϕ) ◦ T j ≥ α.

Remark 4.2. If both Assumptions (a) and (b) of Proposition 4.1 hold then

lim
n→∞

max
0≤m≤n−Ln

SLn ◦ Tm

Ln
= α.
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Remark 4.3. The proof of Proposition 4.1 shows that the upper Erdős-Rényi law follows from
the existence of exponential large deviations given by a rate function, while for the lower Erdős-
Rényi law it suffices to show that for every ǫ > 0 the series

∑

n>0 µ(Bn(ǫ)), where Bn(ǫ) =
{max0≤m≤n−Ln SLn ◦ Tm ≤ Ln(α− ǫ)} is summable. This is usually the harder part to prove in
the deterministic case.

5 Erdős-Rényi limit laws for Young Towers with exponential

tails.

We now state our main theorem in the case of exponential tails.

Theorem 5.1. Suppose (T,M, µ) is a dynamical system modeled by a Young Tower with
ν∆(R > j) ≤ C2β

j
2 for some β2 ∈ (0, 1) and some constant C2. Let ϕ : M → R be Hölder with

∫

ϕ dµ = 0. Assume ϕ 6= ψ ◦T −ψ for any ψ ∈ L1(µ). Let I(α) denote the rate function defined
on an open set U ⊂ R containing 0.

Let α > 0, α ∈ U and define

Ln = Ln(α) =

[

lnn

I(α)

]

n ∈ N.

Then

lim
n→∞

max
0≤j≤n−Ln

SLn ◦ T j(x)

Ln
= α,

for µ a.e. x ∈ Ω, where as before Sm(x) =
∑m−1

j=0 ϕ(T jx).

6 Proof of Theorem 5.1.

We will prove that we have an upper bound as in Assumption (a) of Proposition 4.1 and a lower
bound as in Assumption (b) of Proposition 4.1. If we obtain the upper and lower bound then
by Remark 4.2 we obtain the limit we wish.

6.1 Upper bound.

The upper bound is straightforward. In the case that ϕ is not an L1 coboundary i.e. there exists
no ψ such that ϕ = ψ ◦ T − ψ, ψ ∈ L1(m) it has been shown [18, 21] under the assumptions of
Theorem 5.1 that ϕ has exponential large deviations with a rate function I(α). Thus assumption
(a) of Proposition 4.1 holds and we automatically have an upper bound.

6.2 Lower bound.

In order to obtain the lower bound, by Remark 4.3, we only need to prove µ({max0≤m≤n−Ln SLn◦
Tm ≤ Ln(α − ǫ)}) is summable. This direction is the more difficult part of the proof and uses
differential and dynamical information on the system.

Throughout this proof we will assume that ϕ is Lipschitz, as the modification for Hölder ϕ
is straightforward.

The next lemma is not optimal but is useful in allowing us to go from uniform contraction
along stable manifolds upon returns to the base of the Young Tower (Property (P3) of [23]) to
estimates of the contraction along stable leaves in the whole manifold.
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Lemma 6.1. Let β1 be defined as in Section (2.1) Assumption (a) and β2 as in Theorem 5.1.

Let D(m) = {(x, j) ∈ ∆ : |T kW s(x, j)| < 2Kβ
√
k

1 for all k ≥ m}. Then for any δ > 0 there

exists N(δ) > 0 such that for all m ≥ N(δ), ν∆(D(m)c) ≤ (β2 + δ)
√
m.

Proof. Let τr(x, j) := #{k : 1 < k ≤ r : F k(x, j) ∈ Λ} denote the number of times k ∈ [1, r]
that F k(x, j) lies in the base Λ of the Young Tower. Let Br = {(x, j) ∈ ∆ : τr(x, j) ≤

√
r}. If

(x, j) ∈ Br then τr(x, j) ≤
√
r and there is at least one k ∈ [0, r], such that R(F k(x, j)) >

√
r.

Hence Br ⊂
⋃r

k=1 F
−k(R >

√
r) and thus by assumption of exponential tails: ν∆(Br) ≤ rν(R >√

r) < Crβ2
√
r.

Suppose now that (x, j) ∈ Bc
r. Then |T rW s((x, j))| ≤ 2Kβ

√
r

1 by assumptions (a) and (c).

Now ν∆(
⋃

r≥mBr) ≤ ∑

r≥mCrβ2
√
r ≤ (β2 + δ)

√
m for all m large enough. The lemma now

follows as D(m)c ⊂
⋃∞

r=mBr and so ν∆(D(m)c) ≤ (β2 + δ)
√
m

Corollary 6.2. Lift ϕ : M → R to ϕ : ∆ → R by defining ϕ(x, j) = ϕ(T jx). Let β1 be
defined as in Section (2.1) Assumption (a). Suppose p ∈ D(m) = {(x, j) ∈ ∆ : |T kW s(x, j)| <
2Kβ

√
k

1 for all k ≥ m} and let Ln = [ lnn
I(α) ]. Then if q ∈W s(p), |SLnϕ◦Fm(p)−SLnϕ◦Fm(q)| ≤

C‖ϕ‖LipLnβ1
√
m.

Proof. By Lemma 6.1

|SLnϕ ◦ Fm(p)− SLnϕ ◦ Fm(q)| ≤
Ln−1
∑

j=0

‖ϕ‖Lip|T j+m(p)− T j+m(q)|

≤ ‖ϕ‖Lip
Ln−1
∑

j=0

2Kβ
√
j+m

1

≤ 2K‖ϕ‖LipLnβ
√
m

1

which proves the corollary with C = 2K.

Proof of Theorem 5.1. The main idea of the proof of Theorem 5.1 is to approximate functions
on ∆ by functions constant on stable manifolds, so that correlation decay estimates on the
quotiented tower from Proposition 2.1 can be used.

We lift ϕ from M to ∆ by defining ϕ(x, j) = ϕ(T jx). We will use the same notation for ϕ
on ∆ as we use for ϕ on M .

To simplify notation we will sometimes write p = (x, j) ∈ ∆ for points in ∆. For 0 < ǫ≪ α
put

An(ǫ) := {(x, j) ∈ ∆ : SLn ≤ Ln(α− ǫ)},
where

Sn(x, j) =
n−1
∑

k=0

ϕ ◦ F k(x, j)

is the nth ergodic sum of ϕ. Define

Bn(ǫ) =

n−Ln
⋂

m=0

F−mAn(ǫ) =

{

(x, j) ∈ ∆ : max
0≤m≤n−Ln

Sln ◦ Fm ≤ Ln(α− ǫ)

}

.

The theorem follows by the Borel-Cantelli lemma once we show that
∑∞

n=1 ν∆(Bn(ǫ)) <∞.
To do this we will use a blocking argument to take advantage of decay of correlations and
intercalate by blocks of length κn := lnκ n for some κ > 2 (which turns out to be sufficient).
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For 1 ≤ j < rn := [ n
κn

] put

Ej
n(ǫ) :=

j
⋂

m=0

F−m[κn]An(ǫ)

which for every n is a nested sequence of sets, that is Ej+1
n ⊂ Ej

n. Then Bn(ǫ) ⊂ Ern
n (ǫ) and

ν∆(Bn(ǫ)) ≤ ν∆(E
rn
n (ǫ)). We also have the recursion

Ej
n(ǫ) = An(ǫ) ∩ F−κnEj−1

n (ǫ)

j = 1, . . . , rn, which implies

ν∆(E
j
n(ǫ)) = ν∆(An(ǫ) ∩ F−κnEj−1

n (ǫ))

Let D(m) = {(x, j) ∈ ∆ : |T kW s(x)| < 2Kβ
√
k

1 for all k ≥ m} as in Lemma 6.1. Hence,

given δ > 0 such that β′2 := β2 + δ < 1 then by Lemma 6.1 ν∆(D(κn)
c) ≤ β′2

√
κn for sufficiently

large n.
Furthermore, if m ≥ κn then D(κn) ⊂ D(m) and if p ∈ D(m) and q ∈ W s(p) then by

Corollary 6.2

|SLn ◦ Fm(p)− SLn ◦ Fm(q)| ≤ C‖ϕ‖LipLnβ
√
m

1

Since m > ln2(n), C‖ϕ‖LipLnβ
√
m

1 → 0 as n→ ∞. Thus |SLn ◦ Fm(p)− SLn ◦ Fm(q)| < ǫ/2 for
all n large enough.

Accordingly for large n if m ≥ κn, p = (x, j) ∈ D(m) ∩ F−mAn(ǫ) and q ∈ W s(p) then
Fmq ∈ An(

ǫ
2).

Approximation by functions constant on local stable leaves.
We now approximate 1F−κnAn(ǫ)∩D(κn) by a function gǫn which is constant on stable manifolds

by requiring that if p ∈ F−κnAn(ǫ) ∩ D(κn) then gǫn(p) = 1 on W s(p) and gǫn = 0 otherwise.
Thus {gǫn = 1} ⊂ An(

ǫ
2) and

ν∆(g
ǫ
n = 1) ≤ ν∆(An(

ǫ

2
))

Furthermore
F−κnAn(ǫ) ⊂ {gǫn = 1} ∪D(κn)

c

and hence
ν∆(An(ǫ)) ≤ ν∆(g

ǫ
n = 1) + ν∆(D(κn)

c).

For j = 1, . . . , rn let

Gj
n(ǫ) =:

j
∏

i=0

gǫn ◦ F i[κn]

and note ν∆(E
j
n(ǫ)) ≤ ν∆(G

j
n(ǫ)) + jν∆(D(κn)

c).

Smoothing the approximation functions constant on local stable leaves.
We will approximate gǫn (considered as a function on ∆) by a dβ1 Lipschitz function hǫn which

extends to a function on ∆ and is also constant on stable leaves.
First define

hǫn(p̄) := max{0, 1− dβ1(p̄, supp(g
ǫ
n))β

−√
κn

1 }
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on ∆ and then extend so that it is constant on local stable manifolds and hence is a function on
∆. In particular hǫn has support in points such that dβ1(p, supp(g

ǫ
n)) ≤ β

√
κn

1 and ‖hǫn‖β1 ≤ β
√
κn

1

by [22, Section 2.1].

By Section 2 Assumptions (b) and (c) if z ∈W u(p) and dβ1(p, z) < β
√
κn

1 then d(F jp, F jz) ≤
2Kβ

√
κn−Ln

1 for all j ≤ Ln provided Ln ≤ √
κn.

Hence if dβ1(z, supp(g
ǫ
n)) ≤ β

√
κn

1 then there exists p ∈ supp(gǫn) such that d(F jp, F jz) ≤
2Kβ

√
κn−Ln

1 for all j ≤ Ln and hence

|
Ln
∑

j=0

[ϕ ◦ F j(z)− ϕ ◦ F j(p)]| ≤ ‖ϕ‖Lip
Ln
∑

j=0

d(F jp, F jq) ≤ CLnβ
√
κn−Ln

1 ≤ ǫ

2

for all sufficiently large n. This implies that ν∆(g
ǫ
n) ≤ ν∆(h

ǫ
n) ≤ ν∆(An(

ǫ
2)).

As hǫn Lipschitz in the dβ1 metric we obtain by Proposition 6.3 with β′1 ∈ (β2, 1)

ν∆(E
j
n(ǫ)) ≤

∫

∆
(Gj

n(ǫ)) dν∆ + jν∆(D(κn)
c)

≤
∫

∆
(gǫn ·Gj−1

n ◦ F κn) dν∆ + Cjβ′2
√
κn

≤
∫

hǫn dν∆

∫

Gj−1
n (ǫ) dν∆ + c3β

κn

3 ‖hǫn‖β1‖Gj−1
n (ǫ)‖∞ + Cjβ′2

√
κn

≤ ν∆(An(
ǫ

2
))ν∆(G

j−1
n (ǫ)) + c3β

κn

3 β
−√

κn

1 + Cjβ′2
√
κn .

Iterating the estimate for
∫

∆(G
j
n(ǫ)) dν∆ yields

ν∆(E
rn
n (ǫ)) ≤ ν∆(An(

ǫ

2
))[n/κn] + nc3β

κn

3 β
−√

κn

1 + n2Cβ′
√
κn

2 .

The terms nc3β
κn

3 β
−√

κn

1 and n2Cβ′2
√
κn are summable since κ > 2.

Using the properties of the rate function.
In order to verify summability of the principal terms ν∆(An(

ǫ
2))

[n/κn] term we proceed as in
the proof of Proposition 4.1 using the existence of a large deviations rate function. By the strict
convexity of the rate function on a neighborhood U of zero and the fact that I(0) = 0 we obtain
ν∆((An(

ǫ
2))

c) ≥ e−Ln(I(α− ǫ
2
)+δ1) for some 0 < δ1 and hence 1− ν∆(An(

ǫ
2)) ≥ e−Ln(I(α− ǫ

2
)+δ1) for

some 0 < δ1. Hence ν∆(An(
ǫ
2)) ≤ 1− n−ρ where ρ =

I(α− ǫ
2
)

I(α) + δ1 is less than 1 for δ1 > 0 small
enough. The principal term can be bounded by

ν∆(An(
ǫ

2
))[n/κn] ≤ (1− n−ρ)[n/κn]

which is also summable over n. Hence by the Borel-Cantelli lemma we conclude that the set
{Bn(ǫ) i.o.} has measure zero. This concludes the proof.

7 Erdös-Rényi laws for Young Towers with polynomial tails.

We now consider Young Towers with polynomial tails in the sense that ν∆(R > n) ≤ Cn−β ,
β > 1. It is shown in [18, Theorem 3.1, Theorem 4.2] that this implies that if ϕ is a Hölder
observable on (T,M, µ) modeled by such a tower then for all δ > 0

µ

(∣

∣

∣

∣

1

n
Sn(ϕ)− ϕ̄

∣

∣

∣

∣

> ǫ

)

≤ C(ǫ)n−β−δ.
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These results are extended in [16] to the setting β > 0. Lower bounds are also given in [18,
Proposition 3.3, Theorem 3.5] and [16, Proposition A.1, Corollary A.2] which show that this
large deviation rate is close to optimal.

7.1 Upper bounds.

We first prove a general result. We suppose that (T,M, µ) is an ergodic dynamical system and
ϕ : M → R is a bounded observable. We assume also that there exists β > 1 such that for all
ǫ > 0 and for all n ≥ 0 there exists a constant C(ǫ) such that

µ

(∣

∣

∣

∣

1

n
Sn(ϕ)− ϕ̄

∣

∣

∣

∣

> ǫ

)

≤ C(ǫ)n−β .

Theorem 7.1. Assume that ϕ̄ = µ(ϕ) = 0, ϕ is bounded, and that there exists β > 1 such that
for every ǫ > 0 there exists a constant C(ǫ) > 0 so that

µ

(∣

∣

∣

∣

1

n
Sn(ϕ)

∣

∣

∣

∣

> ǫ

)

≤ C(ǫ)n−β .

Then if τ ∈ ( 1β , 1) for µ a.e. x ∈M ,

lim
n→∞

max
0≤m≤n−nτ

n−τSnτ ◦ Tm(x) = 0.

Proof. Choose τ ∈ ( 1β , 1) and put Ln = nτ . Let ǫ > 0 and define

An :=

{

x ∈M : max
0≤m≤n−Ln

|SLn ◦ Tm| ≥ Lnǫ

}

.

Then µ(An) ≤ nµ(SLn ≥ ǫLn) ≤ C(ǫ)n1−τβ = C(ǫ)n−δ, where δ = τβ − 1.
Let p > 1

δ (i.e. δp > 1) and consider the subsequence n = kp. Since
∑

k µ(Akp) ≤
C(ǫ)

∑

k k
−pδ <∞, we obtain via the Borel-Cantelli lemma that for µ a.e. x ∈M

lim sup
k→∞

max
0≤m≤kp−Lkp

L−1
kp |SLkp

◦ Tm| ≤ ǫ.

To fill the gaps use that kp − (k − 1)p = O(kp−1) and we obtain (as ϕ is bounded) that

SLkp
◦ Tm

Lkp
=
SL(k−1)p

◦ Tm

Lkp
+O

(

1

k

)

where the implied constant is uniform in x ∈ M as ϕ is bounded. As limk→∞
kp

(k−1)p = 1 we
conclude

lim sup
k→∞

max
0≤m≤kp−Lkp

|SLkp
◦ Tm|

Lkp
= lim sup

k→∞
max

0≤m≤(k−1)p−L(k−1)p

|SL(k−1)p
◦ Tm|

Lkp
.

Since any n ∈ N satisfies (k − 1)p ≤ n ≤ kp for some k and ϕ is bounded, it follows that

lim sup
n→∞

max
0≤m≤n−Ln

|SLn ◦ Tm|/Ln ≤ ǫ.

As ǫ was arbitrary this gives the upper bound.
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7.2 Lower bounds.

Now suppose there exists γ ≥ β, an observable ϕ and a positive function C(α) of α on a
neighborhood U of 0 (so C(α) > 0 if α ∈ U/{0}) such that for all n, µ

(∣

∣

1
nSn(ϕ)− ϕ̄

∣

∣ > α
)

≥
C(α)n−γ . Our results in this section still assume the structure of a Young Tower and rely in
part on the return time estimate ν∆(R > n) ≤ Cn−β in order to truncate the tower at certain
levels. As a consequence the parameter β appears in our expression for τ . We show if we take a
window of length nτ , τ < β

γ+βγ+β then the time-averaged fluctuation persists almost surely. In

the case that γ limits to β then we require τ < 1
2+β . Comparing Theorem 7.1 and Theorem 7.2

there is a gap 1
2+β < τ < 1

β for which we don’t know the almost sure limits or fluctuations of
windows of length nτ .

Theorem 7.2. Suppose that (T,M, µ) is modeled by a Young Tower and ν∆(R > n) ≤ Cn−β

for some β > 1. Suppose that γ ≥ β and there exists a function C on a neighborhood U of α = 0
such that C(α) > 0 if α ∈ U/{0} and for all n > 0 and Lipschitz continuous function φ one has

µ

(∣

∣

∣

∣

1

n
Sn(ϕ)− ϕ̄

∣

∣

∣

∣

> |α|
)

≥ C(α)n−γ

If α ∈ U and 0 < τ < β
γ+γβ+β then for µ a.e. x ∈M

lim sup
n→∞

max
0≤m≤n−nτ

∣

∣n−τSnτ ◦ Tm(x)− φ̄
∣

∣ ≥ |α|

Proof. We consider the case α > 0 as the case α < 0 is the same with obvious modifications.
Let 0 < ǫ≪ α and put

Anτ (ǫ) =

{

(x, j) ∈ ∆ :
nτ
∑

r=1

ϕ ◦ F r(x, j) ≤ nτ (α− ǫ)

}

If (x′, 0) ∈ W s((x, 0)) then d(F j(x, 0), F j(x′, 0)) ≤ Kd(x, x′) by Section 2 Assumptions (a)
and (c), which implies that |Snτϕ(x, 0)− Snτ (x′, 0)| ≤ nτKd(x, x′)‖ϕ‖Lip. If d(x, x′) < ǫ

4K‖ϕ‖Lipnτ

we obtain |Snτϕ(x, 0)− Snτ (x′, 0)| ≤ ǫ/4. Consequently if y = (x, j) ∈ Anτ (ǫ) and d(x, x′) <
ǫ

4K‖ϕ‖Lipnτ then y′ = (x′, j) ∈ Anτ (3ǫ/4).

We define ρn := [ 1
lnβ1

ln( ǫ
4K‖ϕ‖Lipnτ )] + 1, with this definition βρn1 < ǫ

4K‖ϕ‖Lipnτ .

Let
δ >

τγ

β

and define

Bnτ (ǫ) =
{

(x, 0) ∈ Λ : ∃ 0 ≤ j < nδ with (fρnx, j) ∈ Anτ (ǫ)c
}

= f−ρn(ΠAnτ (ǫ)c),

where Π : ∆ → Λ is the projection given by Π((x, j)) = (x, 0) (j < R(x)). By the assumption
of the theorem that

µ

(∣

∣

∣

∣

1

n
Sn(ϕ)− ϕ̄

∣

∣

∣

∣

> α

)

≥ C(α)n−γ

and the fact that µ = π∗ν we have

ν∆(Anτ (ǫ)c) ≥ C(α− ǫ)n−γτ .

We have also assumed that
ν∆(R > ℓ) ≤ Cℓ−β

11



and hence
ν∆(R > nδ) ≤ Cn−βδ = o(n−δ)

as β > 1. Since ν∆ = ν × (counting measure) we get for D ⊂ ∆

ν(Π(D)) ≥ ν∆(D)− ν∆(R > nδ)

nδ
.

Consequently

ν(Π(Anτ (ǫ)c) ∩ (R < nδ)) ≥
(

C(α− ǫ)n−τγ − o(n−δβ)
)

n−δ

and since δβ > τγ the first term dominates and we obtain

ν(Π(Anτ (ǫ)c ∩ (R < nδ))) ≥ C(α− ǫ)n−τγ−δ

Since fρn preserves ν,

ν(f−ρnΠ(Anτ (ǫ)c ∩ (R < nδ)) ≥ C(α− ǫ)n−τγ−δ.

Note that if fρn(x, 0) ∈ Π(Anτ (ǫ)c ∩ (R < nδ)) then there exists j < nδ with (fρn(x), j) ∈
Anτ (ǫ)c. Hence

ν(Bnτ (ǫ)) ≥ C(α− ǫ)n−τγ−δ.

Note that
Bnτ (ǫ)c = {(x, 0) ∈ Λ : ∀ 0 ≤ j < nδ, (fρnx, j) ∈ Anτ (ǫ)}

and define
B̃nτ (ǫ) =

⋃

x∈Bnτ (ǫ)

W s(x)

which by choice of nδ implies that

B̃nτ (ǫ) ⊂ Bnτ (3ǫ/4).

We will approximate 1B̃nτ (ǫ)c by a function hnτ (ǫ) which has Lipschitz constant β−nτ ′

1 , for

τ
′

> δ, in the dβ1-norm. For that purpose let τ ′ > δ and define

hnτ (ǫ)(p) = max(0, 1− d((p, 0), B̃nτ (ǫ)c)β−nτ ′

1 )

Assume hnτ (ǫ)(p, 0) > 0, then there exists (q, 0) ∈ B̃nτ (ǫ)c so that d((p, 0), (q, 0)) ≤ βn
τ ′

1 which in
particular implies that s((p, 0), (q, 0)) ≥ nτ

′

and allows us to conclude that d(fρn(p, 0), fρn(q, 0)) ≤
βn

τ ′−ρn
1 as ρn < nτ < nτ

′

. Thus

d(F jfn1(p, 0), F jfn1(q, 0)) ≤ Kβn
τ ′−ρn−j

1 ≤ Kβn
τ ′−ρn−nδ

1

by Section 2 Assumption (c). Consequently

|Snτϕ(p, 0)− Snτϕ(q, 0)| ≤ ‖ϕ‖LipnτKβn
τ ′−ρn−nδ

1 ≤ ǫ

4

for all n large enough. Thus (p, 0) ∈ Bnτ (ǫ/2)c which implies that the support of hnτ (ǫ) is
contained in Bnτ (ǫ/2)c.
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Now we let 1 > τ1 > τ ′ > τ and consider

Gn(ǫ) =

[n/nτ1 ]
⋂

m=0

f−mnτ1
Bnτ (ǫ)c

We will show that
∑

n

ν(Gn(ǫ)) <∞

Now

ν(Gn(ǫ)) ≤ ν





n1−τ1
∏

m=0

hnτ (ǫ) ◦ fmnτ1





≤ ν(hnτ (ǫ))ν(Gn−1(ǫ)) + c3‖hnτ (ǫ)‖β1 |Gn−1(ǫ)|∞βn
τ1

3

≤ [ν(hnτ (ǫ))]n
1−τ1

+ nC3β
nτ1

3 β−nτ ′

1

The term nC3β
nτ1

3 β−nτ ′

1 is summable in n as τ1 > τ ′ > τ . Using the fact that the support of
hnτ (ǫ) is contained in Bnτ (ǫ/2)c the principal term is estimated by

[ν(hnτ (ǫ))]n
1−τ1 ≤

(

1− C(α− ǫ

2
)n−γτ−δ

)n1−τ1

≤ exp
(

−C(α− ǫ/2)n1−τ1−γτ−δ
)

,

as ν(hnτ (ǫ)) ≤ ν(Bnτ (ǫ/2)). Since τ1 can be chosen arbitrarily close to τ and δ arbitrarily close
to γτ

β we may ensure that the power 1− τ1− τγ−δ is positive for any chosen τ < β
γ+γβ+β , which

implies summability of ν(Gn(ǫ)).
Hence for ν a.e. (x, 0) there exists an N(x) such that for all n > N(x) there exists an

i < n−nτ with f i(x, 0) ∈ Bnτ (ǫ) and hence (fρn+ix, j) ∈ Anτ (ǫ)c for some j < nδ. Furthermore
i+ j + ρn ≤ n− nτ1 + nδ + C lnn.

Now we need to relate this conclusion, which holds for the map f , to the corresponding
conclusion for the map F : ∆ → ∆. The maps f and F have different time clocks. Let
Rℓ =

∑ℓ−1
i=0 R ◦ f i(x, 0) denote the ℓ-th ergodic sum of R. Then f ℓ(x, 0) = FRℓ(x, 0). We extend

the definition of Rℓ to the whole of ∆ by defining Rℓ(x, j) = [R(x, 0)− j] +Rℓ−1f(x, 0).
By Birkhoff’s ergodic theorem

lim
n→∞

Rn(x, j)

n
= R̄ =

1

ν∆(Λ)

for ν∆ a.e. (x, j) ∈ ∆. We have shown that for ν∆ a.e. (x, j)

lim sup max
1≤j≤N−Nτ

R̄τ

R̄τ

N τ

j+Nτ

R̄τ
∑

i=j

ϕ ◦ F j(x, 0) ≥ α− ǫ

which implies that for µ a.e. p ∈M , for any τ̃ < τ < β
γ+γβ+β

lim sup max
1≤j≤N−N τ̃

1

N τ̃

j+N τ̃
∑

i=j

ϕ ◦ T j(p) ≥ α− ǫ

and since τ̃ , τ were arbitrarily close to β
γ+γβ+β this concludes the proof.
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Example 7.3. The condition τ < β
γ+γβ+β is close to optimal in that, taking γ = β, we require

τ < 1
2+β . We may construct a Young Tower and observable ϕ,

∫

∆ ϕdν∆ = 0 and α > 0 such

that ν∆(R > n) ≤ Cn−β, yet for all τ > 1
β+1 ,

lim
n→∞

max
0≤m≤n−nτ

n−τSnτ ◦ Tm = 0

We sketch the main idea of the tower and observable and make a couple of technical ad-
justments to ensure the tower is mixing and that the observable is not a coboundary. The
construction is based on that of [1]. The base partition consists of disjoint intervals Λi of length
i−β−2. Above the base element Λi the levels of the tower consist of {(x, j) : 0 ≤ j ≤ 2i− 1}.

Note that ν∆(R > n) ≤∑∞
j=n/2(2j)j

−2−β ≤ Cn−β. We define ϕ on the Tower by, if x ∈ Λi,

ϕ(x, j) =

{

−1 if 0 ≤ j < i;
1 if i ≤ j < 2i.

Clearly ν∆(ϕ) = 0.
Let 0 < α < 1. Note that Snτϕ(x, j) ≥ nτα only if (x, j) ∈ {R > nτ}.
However if τ > 1

β+1 then
∑∞

n=1

∑

j≥nτ ν̄(Λj) ≤
∑∞

n=1 n
−τ(β+1) < ∞. Hence by the Borel-

Cantelli lemma fn(x, 0) ∈ ⋃j>nτ Λj only finitely many times for ν̄ a.e. (x, 0). This implies that
for ν̄ a.e. (x, 0) there exists an N(x) such that for all n ≥ N(x)

for all j < n :
nτ
∑

r=0

ϕ(f j+rx, 0) < αnτ .

As α > 0 was arbitrary for µ a.e. x ∈M

lim sup
n→∞

max
0≤m≤n−nτ

n−τSnτ ◦ Tm = 0

The heights of the levels in the tower above are all multiples of 2 so the tower is not mixing.
Furthermore the observable ϕ is a coboundary and in fact if we define

ψ(x, j) =

{

j if x ∈ Λk, 0 ≤ j ≤ k

2k − j if x ∈ Λk, k < j ≤ 2k − 1
.

then one can check that
ϕ = ψ ◦ F − ψ

But it is easy to adjust the tower so that the tower is mixing and ϕ is not a coboundary, yet the
pertinent features of the example remain.

We will modify the tower and the observable so that the greatest common denominator of the
return time function R is 1 (to ensure the tower is mixing) and that the new observable is not a
coboundary. We change Λ3 to have height 3. This entails that the tower is mixing. On the levels
above Λ3 we modify ϕ to ϕ1 so that ϕ1(x, j) = κ > 0, j = 0, 1, 2, x ∈ Λ3 where κ > 0 is small but
ϕ1 = ϕ elsewhere . This entails r1 := ν∆(ϕ1) = κν∆(Λ3) > 0. We subtract r1/(ν∆(Λ2)) from
the value of ϕ1 on Λ2 to form a new observable ϕ2 such that ν∆(ϕ2) = 0. Since F 3 has a fixed
point p on Λ3 and since

∑2
j=0 ϕ2(x, j) 6= 0 we conclude ϕ2 is not a coboundary (by the Liv̌sic

theorem [19]). The new tower with observable ϕ2 we defined has the properties of the former
pertinent to our example.
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