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Abstract

Erd6s-Rényi limit laws give the length scale of a time-window over which time-averages in
Birkhoff sums have a non-trivial almost-sure limit. We establish Erdés-Rényi type limit laws
for Holder observables on dynamical systems modeled by Young Towers with exponential
and polynomial tails. This extends earlier results on Erdés-Rényi limit laws to a broad class
of dynamical systems with some degree of hyperbolicity.

1 Introduction

The Erdés-Rényi fluctuation law gives the length scale of a time-window over which time-
averages in Birkhoff sums have a non-trivial almost-sure limit. It was first proved in the inde-
pendent and identically distributed (i.i.d.) case [11] in the following form:

Proposition 1.1. Let (X,,)n>1 be an i.i.d. sequence of non-degenerate random variables, E[X;] =
0, and let S, = X1 + -+ + X,,. Assume that the moment generating function ¢(t) = E(eX1)
exists in some open interval U C R containing t = 0. For each a > 0, define 1, (t) = ¢(t)e L.
For those a for which 1 attains its minimum at a point t, € U, let co, = atq —In@(ty). Then

nlg& max{ (S fnn/c.] —5j)/[Mn/ca] : 1< j<n—[lnn/c,]} =«

In the theorem above the Gauss bracket [-] denotes the integer part of a number. The
existence of 1,(t) for all ¢ € U implies exponential large deviations with a rate function (in
fact ¢, = I(«) where I is the rate function, defined later) and this implies that sampling over a
window length k(n) of larger than logarithmic length scale (in the sense that k(n)/Ilnn — o0),
allows the ergodic theorem to kick in and

lim max{(Sj+k(n) —S8j)/k(n):1<j<n—k(n)}=0

n—oo

while sampling over too small a window, for example k(n) = 1, gives similarly a trivial limit

Jim max{(Sj k() —5)/k(n) 1 1< j <n—kn)} =X
Define the function

0(n, k(n)) := O<jI<nna—Xk(n) Sj+k(n) B Sja
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which may be interpreted as the maximal average gain over a time window of length k(n) up
to time n. In the setting of coin tosses the Erdés-Rényi law gives precise information on the
maximal average %aln of a player in a fair game in the case where the length of the time window

. n,k(n
ensures lim,, o () has a non- degenerate almost sure limit.

In 1986 Deheuvels Devroye and Lynch [7] in the i.i.d. setting of Proposition 1.1 gave a
precise rate of convergence and showed that if k(n) = [Inn/cy] then P a.s:

[0(n, k(n)) — ak(n)] 1

lim sup =

Ink(n) 2t
and
o [0 () — ak(m)] 1
Ink(n) 2tq

In this paper we establish Erd6s-Rényi limit laws for Holder observables on dynamical sys-
tems modeled by Young Towers [23, 24] with exponential and polynomial tails (see section 2).
Tails refer to the measure (R > n) of the return time R function to the base of the tower. Our
exposition is based upon [15, Section 2.3] and [17] who present a framework more general than
that of the original Tower construction of Young [23] in that uniform contraction of local stable
manifolds is not assumed for polynomially mixing systems in dimensions greater than 1. We
will give more details on Young Towers below but here note that Hoélder observables on Young
Towers with exponential (polynomial) tails have exponential (polynomial) decay of correlations,
the precise rate is encoded in the return time function.

Our results extend the work of [18] from the class of non-uniformly expanding maps with
exponential decay of correlations to all systems modeled by a Young Tower, including Sinai
dispersing billiard maps; diffeomorphisms of Henén type; polynomially mixing billards as in [4]
(as long as the correlation decay rate is greater than n~?, f > 1); smooth unimodal and
multimodal maps satisfying the Collet-Eckmann conditions [15, Example 4.10]; certain Viana
maps [15, Example 4.11]; and Lorenz-like maps. Other examples to which our results apply are
listed in [17].

In the setting of hyperbolic dynamical systems there are many earlier results. Grigull [12]
established the Erdés-Rényi law for hyperbolic rational maps, Chazottes and Collet [5] proved
FErdés-Rényi theorems with rates for uniformly expanding maps of the interval, while Denker
and Kabluchko [8] proved Erdds-Rényi results for Gibbs-Markov dynamics. In [9] Erdés-Rényi
limit laws for Lipschitz observations on a class of non-uniformly expanding dynamical systems,
including logistic-like maps, were given as well as related results on maximal averages of a
time series arising from Hoélder observations on intermittent-type maps over a time window of
polynomial length. Kifer [13, 14] has established Erdds-Rényi laws for non-conventional ergodic
sums and in the setting of averaging or homogenization of chaotic dynamical systems. We
mention also recent related work of [2, 3] on applications of Erd6-Rényi limit laws to multifractal
analysis.

The main novelty of our technique is the use of the symbolic metric on the axiomatic Young
Tower construction of [17, 15] to control the norm of the indicator function of sets of the form
(Sy, > na) on the quotiented tower. This eliminates many difficulties involved with considering
the Lipschitz norm of such sets with respect to the Riemannian metric on the phase space of
the system. The structure allows us to consider, with small error, averaged Birkhoff sums as
being constant on stable manifolds, and thence use the decay of correlations for observables on
the quotiented tower in terms of their Lipschitz and L norms.

Our results in the case of Young Towers with exponential decay of correlations, Theorem 5.1,
are optimal and replicate the i.i.d case, while in the case of Young Towers with polynomial
tails we investigate windows of polynomial length and notice that there is still a gap between



upper and lower bounds, Theorem 7.1 and Theorem 7.2 which however can be quite small as
Example 7.3 shows.

2  Young Towers.

We now describe more precisely what we mean by a non-uniformly hyperbolic dynamical system
modeled by a Young Tower. Our exposition is based upon [15, Section 2.3] and [17] who present
a framework more general than that of the original Young Tower [23] in that uniform contraction
of local stable manifolds is not assumed for polynomially mixing systems in dimensions greater
than 1. This set-up is very useful for the study of almost sure fluctuations of Birkhoff sums of
bounded variables.

We suppose T is a diffeomorphism of a Riemannian manifold (M, d), possibly with singular-
ities. Fix a subset A C M with a ‘product structure’. Product structure means there exists a
family of disjoint stable disks (local stable manifolds) {W*} that cover A as well as a family of
disjoint unstable disks (local unstable manifolds) {WW*} that cover A. The stable and unstable
disks containing x € A are denoted W#(x) and W"(z). Each stable disk intersects each unstable
disk in precisely one point.

Suppose there is a partition {A;} of A such that each stable disk W*(x) lies in A; if x € A;.
Suppose there exists a ‘return time’ integer-valued function R : A — N, constant with value
R(j) on each partition element A;, such that TRU) (W (z)) ¢ W*(TH0)z) for all z € A;. We
assume that the greatest common denominator of the integers {R(j)} is 1, which ensures that
the Tower is mixing. We define the induced return map f: A — A by f(z) = TE®) (z).

For z,y € A let s(x,y) be the least integer n > 0 such that f™(z) and f"(y) lie in different
partition elements of A. We call s the separation time with respect to the map f: A — A.
Assumptions: there exist constants K > 1 and 0 < 81 < 1 such that

(a) if z € W#(z) then d(f"z, f"z) < K7,
(b) if z € W(x) then d(f"z, frz) < KB=9™",
(c) if z,2 € A then d(T7z,T7z) < K(d(z,x) + d(fz, fz)) for all 0 < j < min{R(z), R(z)}.

Define an equivalence relation on A by z ~ z if z € W¥(x) and form the quotient space
A = A/ ~ with corresponding partition {A;}. The return time function R : A — N is well-
defined as each stable disk W*(z) lies in A; if z € A; and TRO(W*(z)) ¢ W*(TEU)z) for all
x € A;. This defines the induced map f : A — A. Suppose that f and the partition {A;}
separates points in A. Define dg, (z,2) = f(z’x), then dg, is a metric on A.

Let m be a reference probability measure on A (in most applications this will be normalized
Lebesgue measure). Assume [Rdm < oo and that f : A — A is Gibbs-Markov uniformly
expanding on (A, dg,). By this we mean that f is a measure-theoretic bijection from each /T]
onto A.

We assume that f : A — A has an invariant probability measure 7 and 0 < a < 571771 < b for
some constants a,b. Then R is T-integrable and there is an f invariant probability v measure
on A such that 7 = ¥ where 7 is the quotient map taking A onto A/ ~.

Now we define the Young Tower

A={(z,7) e AxN:0<j<R(z)—1}
and the tower map F' by

W (mj+1) ifj<R(@) -1
F(x"])_{(fx,()) if j = R(z) — 1.



We extend the definition of the return time function R to A by defining R(x,j) = R(z) — j.
We lift v in a standard way to an invariant probability measure va for F' : A — A. In fact
va = v X counting measure. The separation function s can be extended to the full Young Tower
A by

s(z,y) ifl=1;

S(($’l)7 (y’ l/)) = { 1 if [ 75 ll-

Define the semi-conjugacy 7 : A — M, w(x,j) = T?(z) for 0 < j < R(z). The measure
= m*v is a T-invariant mixing probability measure on M. Given an observable ¢ : M — R,
we may lift to an observable ¢ : A — R by defining ¢(x, j) = ¢(T7z) (we keep the same notation
for the observable). The semi-conjugacy 7* allows us to transfer statistical properties from lifted
observables ¢ on (A, F,va) to the original observables ¢ on (T, M, u) [23].

We now define the metric dg, on A by dg, (p,q) = Bf(p D Here we write, for convenience,

p=(z,1) €A, q=(y,) € A We define the |- [|s,-norm by |95, := [ ¢lloc+supygen GG,

Functions ¢ and 1 which are constant on stable manifolds in A naturally project to functions
¢ and 1) (we use the same notation) on A with the same dg, Lipschitz constant and L> norm.

If ¢ : A — R is constant on stable manifolds we define the || - ||g,-norm by ||¢[/g, := [|¢|loc +

|9(p)—¢(a)]
SUPp.geA “dg (pg) -

In the proof of Theorem 5.1 the following result will be useful.

Proposition 2.1. [15, Corollary 2.9] Suppose that ¢, ¥ : A — R are constant on stable
manifolds and ||¢||g, < oo and ||1)|s < 0.
Then there exist constants C, B3 € (0,1) so that

| /A o( 0 F9) dup — /A $dva /A Ydval < Cléla 16 llooB

forall 3 >0.

This result is also implied by [23].Since we assume that the function v is constant on loccal
stable leaves, we only need it to be bounded and not Lipschitz continuous since this does not
require the approximation argument of section 4.

3 Large deviations and rate functions.

Before stating precisely our main result we recall the definition of rate function and some other
notions of large deviations theory. Suppose (T, M, 1) is a probability preserving transformation
and ¢ : M — R is a mean-zero integrable function i.e. [ v # dp = 0. Throughout this paper we
will write S, (@) := @+ @oT +...+¢@oT" ! for the nth ergodic sum of . Sometimes we will
write S, instead of S, () for simplicity of notation or when ¢ is clear from context. The subject
of large deviations is concerned with the probability of deviation of %Sn(go) from its asymptotic
limit of zero, in particular for a > 0

ple € M2 5,()(@) > o}

and if « <0 )
ple € M: —5,(p)(x) < a}
If these quantities tend to zero at an exponential rate then sometimes the rate is determined by

a rate function I(a) (see [10, Chapter 2 Section 2.6] for a discussion of rate functions in the iid
case and [18, 21] in the deterministic case).



Definition 3.1. A mean-zero integrable function ¢ : M — R is said to satisfy a large deviation
principle with rate function I(«), if there exists a non-empty neighborhood U of 0 and a strictly
convex function I : U — R, non-negative and vanishing only at oo = 0, such that

.1
Jim —log u(Su(p) 2 na) = —I(a) (1)
foralla >0 in U and
.1
lim = log u(Su(p) <na) = ~I(a) (2)

foralla <0 inU.

In the literature this is referred to as a first level or local (near the average) large deviations
principle.

For Holder observables on Young Towers with exponential tails (which are not L' cobound-
aries in the sense that ¢ # 1 o T — 1) for any ¢ € L'(u)) such an exponential large deviations
result holds with rate function I,(«) [18, 21, 16, 20]. A formula for the width of U is given in
[21] following a standard approach but it is not useful in concrete estimates.

4 Erdos-Rényi laws: background.

Proposition 4.1 given below is found in the form we use in [9], where a proof is also given. It
is due to Erdés and Rényi [11] (for variants see also [6, Theorem 2], Grigull [12], or Denker
and Kabluchko [8]). Recall that the Gauss bracket [-] denotes the integer part of a number.
Throughout the proofs of this paper we will concentrate on the case a > 0 as the case a < 0 is
identical with the obvious modifications of statements.

Proposition 4.1. [9] Let (T, M, pu) be an ergodic dynamical system and ¢ : M — R an
observable.

(a) Suppose that ¢ satisfies a large deviation principle with rate function I defined on the
open set U and assume j(p) =0. Let « >0, o € U and set

Ly = Ly(e) = [}r(l:)] neN.

Then the upper Erdds-Rényi law holds, that is, for p a.e. x € X

. 1
limsup max —

S Ti(x) < a.
n—oo 0<j<n—Lyn Ly Ln(¢) o T (@) < a

(b) If for some constant C > 0 and integer k > 0 for each interval A

n—~Ln
M( () {Se.(p)eT™ € A}) < Clu(St, € A" (3)
m=0
then the lower Erdds-Rényi law holds as well, that is, for p a.e. x € X

.. 1
liminf max —
n—00 0<j<n—Ly Ly

Sy (p)oT7 > a.
Remark 4.2. If both Assumptions (a) and (b) of Proposition 4.1 hold then

. Sg, odI™
lim max ———— =q.
n—00 0<m<n—Ly, L,
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Remark 4.3. The proof of Proposition 4.1 shows that the upper Erdds-Rényi law follows from
the existence of exponential large deviations given by a rate function, while for the lower Erdds-
Rényi law it suffices to show that for every e > 0 the series ) o u(Bn(€)), where By(e) =
{maxo<m<n—r, Sr, oT™ < Lp(ax—€)} is summable. This is usually the harder part to prove in
the deterministic case.

5 Erdos-Rényi limit laws for Young Towers with exponential
tails.

We now state our main theorem in the case of exponential tails.

Theorem 5.1. Suppose (T',M,p) is a dynamical system modeled by a Young Tower with
vA(R > j) < C2f85 for some Bo € (0,1) and some constant Co. Let ¢ : M — R be Holder with
[ dp=0. Assume p # poT —1p for any i € L' (). Let I(«) denote the rate function defined
on an open set U C R containing 0.

Let a >0, o € U and define

Inn
L,=1L, =|— N.
@= |7 e
Then .
. Sp, oT?(x)
lim max ——— =aq,
n—000<j<n—Ly L,

for p a.e. x € Q, where as before Sy, (x) = Z;-n:_ol o(T7x).

6 Proof of Theorem 5.1.

We will prove that we have an upper bound as in Assumption (a) of Proposition 4.1 and a lower
bound as in Assumption (b) of Proposition 4.1. If we obtain the upper and lower bound then
by Remark 4.2 we obtain the limit we wish.

6.1 Upper bound.

The upper bound is straightforward. In the case that ¢ is not an L' coboundary i.e. there exists
no v such that ¢ =1 o T — 1, 1 € L*(m) it has been shown [18, 21] under the assumptions of
Theorem 5.1 that ¢ has exponential large deviations with a rate function I(«). Thus assumption
(a) of Proposition 4.1 holds and we automatically have an upper bound.

6.2 Lower bound.

In order to obtain the lower bound, by Remark 4.3, we only need to prove pu({maxo<m<n—r, SL,°
T™ < Ly(a — €)}) is summable. This direction is the more difficult part of the proof and uses
differential and dynamical information on the system.

Throughout this proof we will assume that ¢ is Lipschitz, as the modification for Holder ¢
is straightforward.

The next lemma is not optimal but is useful in allowing us to go from uniform contraction
along stable manifolds upon returns to the base of the Young Tower (Property (P3) of [23]) to
estimates of the contraction along stable leaves in the whole manifold.



Lemma 6.1. Let 31 be defined as in Section (2.1) Assumption (a) and B2 as in Theorem 5.1.
Let D(m) = {(x,j) € A : |TFW*(x,5)| < 2KﬁI/E for all k > m}. Then for any 6 > 0 there
exists N(§) > 0 such that for all m > N(0), va(D(m)€) < (B2 + 5)\/72.

Proof. Let 7.(x,j) = #{k : 1 < k < r: FF(x,j) € A} denote the number of times k € [1,7]
that F¥(z,7) lies in the base A of the Young Tower. Let B, = {(z,j) € A : 7.(x,§) < /r}. If
(z,4) € B, then 7.(x,j) < 1/r and there is at least one k € [0, 7], such that R(F*(x,j)) > /r.
Hence B, C Jj_; F~*(R > y/r) and thus by assumption of exponential tails: va(B,) < rv(R >
V) < CrByVT.

Suppose now that (z,j) € BE. Then [T"W?*((z,j))| < 2Kﬁf/F by assumptions (a) and (c).
Now vA(U,sm Br) < D vom CrByVT < (By + 6)V™ for all m large enough. The lemma now
follows as D(m)® C |22, B, and so va(D(m)¢) < (B2 + 8§)V™ O

Corollary 6.2. Lift o : M — R to ¢ : A — R by defining o(z,j) = o(T7z). Let By be
defined as in Section (2.1) Assumption (a). Suppose p € D(m) = {(z,j) € A : |T*W*(x, j)| <
2K6Y¥ for all k = m} and let Ly = (5], Then if € W*(p), |S1,, 0 F™ (p) =i, 00 F"(q)| <

I()
CligllinLnbr™.
Proof. By Lemma 6.1
Ln—1
|SL, 0 F™(p) = Sp,p0 F™(q)] < Z Il Lip TV (p) — TV (q)
T Ln—1
< el Y 287"
§=0
< 2KigllipLaBY™
which proves the corollary with C' = 2K. 0

Proof of Theorem 5.1. The main idea of the proof of Theorem 5.1 is to approximate functions
on A by functions constant on stable manifolds, so that correlation decay estimates on the
quotiented tower from Proposition 2.1 can be used.

We lift ¢ from M to A by defining ¢(z,j) = ¢(T7x). We will use the same notation for ¢
on A as we use for ¢ on M.

To simplify notation we will sometimes write p = (x,j) € A for points in A. For 0 < € < «
put

Ap(e) :=={(z,5) €e A: S, < Lp(a—€)},

where
n—1
Sn(@,5) =Y o F¥(z, j)
k=0

is the nth ergodic sum of ¢. Define

n—_Lnp

By (e) = m F™A,(e) = {(:L‘,j) €A: max S, 0oF" < L,(a-— e)} .
m=0

0<m<n—Lp

The theorem follows by the Borel-Cantelli lemma once we show that Y > | va(By(€)) < co.
To do this we will use a blocking argument to take advantage of decay of correlations and
intercalate by blocks of length x,, := In" n for some x > 2 (which turns out to be sufficient).



For 1 <j <ryp:=[] put

El(e) := ﬁ FmlEnl A, (€)

m=0

which for every n is a nested sequence of sets, that is E4™" ¢ EJ. Then B,(¢) C E™(¢) and
UA(Bn(€)) < va(Elm(e)). We also have the recursion

Ei(e) = Ap(e) N F " ES 71 (e)
j=1,...,r,, which implies
va(B(€)) = va(An(e) N F~ B (e))

Let D(m) = {(x,j) € A : |[T*W3(z)| < 2K6¥E for all kK > m} as in Lemma 6.1. Hence,
given § > 0 such that B} := B3 + & < 1 then by Lemma 6.1 va(D(k,)°) < 5V for sufficiently
large n.

Furthermore, if m > &, then D(k,) C D(m) and if p € D(m) and ¢ € W#(p) then by
Corollary 6.2

St 0 F™(9) = S1., 0 ()| < Cllllnip L™

Since m > In%(n), C||g0HLian/BI/E — 0 asn — oco. Thus |Sy, o F™(p) — Sp, o F™(q)| < €/2 for
all n large enough.

Accordingly for large n if m > ky,, p = (x,5) € D(m) N F~™A,(¢) and ¢ € W?*(p) then
Frg € Ay(S).

Approximation by functions constant on local stable leaves.

We now approximate 1p—rn 4, (e)nD(x,) PY @ function g;, which is constant on stable manifolds
by requiring that if p € F~"" A, (e) N D(k,) then g5 (p) = 1 on W*(p) and g = 0 otherwise.
Thus {g;, = 1} C A,(5) and

€
valdh = 1) < va(An(5))
Furthermore
F7r A, (e) C{g;, =1} UD(kn)¢

and hence
va(An(e)) <valgy = 1) +va(D(kn)°).

Forj=1,...,r, let
J
Gi(e) = [[ g5 0 F!

=0

and note va (B} (€)) < va(Gh(€)) + jva(D(kn)°).

Smoothing the approximation functions constant on local stable leaves.

We will approximate g¢ (considered as a function on A) by a dg, Lipschitz function kS, which
extends to a function on A and is also constant on stable leaves.

First define

he,(p) := max{0,1 — dg, (p, supp(g5))5; V™" }



on A and then extend so that it is constant on local stable manifolds and hence is a function on
A. In particular h{, has support in points such that dg, (p, supp(gy,)) < ﬁl‘/a and ||hS )5 < Bi/a
by [22, Section 2.1].

By Section 2 Assumptions (b) and (c) if z € W*(p) and dg, (p, z) < ﬂf/"?" then d(FVp, Fiz) <
QKBﬁfL” for all j < L,, provided L, < \/ky.

Hence if dg, (z,supp(gy5,)) < B{/a then there exists p € supp(gS) such that d(Fip, F7z) <
QKBf/HfL" for all j < L,, and hence

L, Ln

. . . . Fn—DLn €

Y leo F(2) — o P < llglli . d(F7p, Fiq) < CL 8™ ™ < 2
j=0 j=0

for all sufficiently large n. This implies that va(gy,) < va(hy,) < va(An(5)).
As h§, Lipschitz in the dg, metric we obtain by Proposition 6.3 with 5] € (f2,1)

va(El(e) < /A (G(e)) dva + jua(D(sn)")
< / (g5 - GI~V o ) dua + Y™
A

< / K dua / GI~1() dva + 3B |5 |1 [ GI1 (€)oo + CBLY™

< va(An()IralGl () + ey B + CigyY™.

Iterating the estimate for [ A(Gf{(e)) dva yields

Va7 (€)) < va(An()™) + nesfin oy V" 4 n2ogy™.

The terms ncsf5" 6, VEn and n?C Bé\/ﬁ are summable since k > 2.
Using the properties of the rate function.

In order to verify summability of the principal terms va (An(g))[n/ fn] term we proceed as in
the proof of Proposition 4.1 using the existence of a large deviations rate function. By the strict

convexity of the rate function on a neighborhood U of zero and the fact that 1(0) = 0 we obtain

vA((An(5))°) > e~ LnI(@=3)+01) for some 0 < &, and hence 1 — vA(An(5)) > e~ Ln(a=3)+01) fop
some 0 < 1. Hence va(A,(5)) <1 —n"" where p = Ia=3) + 071 is less than 1 for 7 > 0 small

I(«)
enough. The principal term can be bounded by
,,A(An(g))[n/ﬂn] < (1 — pp)n/mnl

which is also summable over n. Hence by the Borel-Cantelli lemma we conclude that the set
{By(€) i.0.} has measure zero. This concludes the proof. O

7 Erdos-Rényi laws for Young Towers with polynomial tails.

We now consider Young Towers with polynomial tails in the sense that va(R > n) < Cn=F,
B > 1. It is shown in [18, Theorem 3.1, Theorem 4.2] that this implies that if ¢ is a Holder
observable on (7', M, 1) modeled by such a tower then for all 6 > 0

M(‘isn(@ - w' > 6> < C(en ™.
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These results are extended in [16] to the setting § > 0. Lower bounds are also given in [18,
Proposition 3.3, Theorem 3.5] and [16, Proposition A.1, Corollary A.2] which show that this
large deviation rate is close to optimal.

7.1 Upper bounds.

We first prove a general result. We suppose that (7', M, p1) is an ergodic dynamical system and
@ : M — R is a bounded observable. We assume also that there exists 8 > 1 such that for all
€ > 0 and for all n > 0 there exists a constant C'(¢) such that

{

Theorem 7.1. Assume that ¢ = u(p) =0, ¢ is bounded, and that there exists B > 1 such that
for every € > 0 there ezists a constant C(e) > 0 so that

{

Then if T € (%,1) for p a.e. x € M,

L8 - w' > ) < clan .

n

15,00 > ¢) < Clon .

n

lim max n 7SyroT™(x) =0.
n—o0 0<m<n—nT

Proof. Choose T € (%, 1) and put L, = n". Let € > 0 and define

A, = {xEM: max |Sg, oT™| ZLne}.
0<m<n—Ly,
Then u(A,) < nu(Sg, > €L,) < C(e)n*~™ = C(e)n~?, where § = 74 — 1.
Let p > % (i.e. dp > 1) and consider the subsequence n = kP. Since ), p(Apr) <
C(€) 32, k7P < 0o, we obtain via the Borel-Cantelli lemma that for y a.e. z € M

lim su max LS., o T™| <e.
k—>oop 0<m<kP—Lyp kP ’ kP ‘ =

To fill the gaps use that kP — (k — 1)? = O(kP~!) and we obtain (as ¢ is bounded) that

SLkP o™ _ SL(kfl)p o™ + O<1>

Lk;p Lkp %

where the implied constant is uniform in z € M as ¢ is bounded. As limy_ o ﬁ =1 we

conclude

m
. |SLkp o Tm‘ T ‘SL(kpr A ‘
lim sup max ———— = limsup max _
k—soo 0<m<kP—Lyp Ly koo 0<m<(k—1)P—Lj_1p Ly

Since any n € N satisfies (kK — 1) < n < kP for some k and ¢ is bounded, it follows that

limsup max |Sg, oT™|/L, <e.
n—00 <m<n—Ly,

As e was arbitrary this gives the upper bound. O
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7.2 Lower bounds.

Now suppose there exists v > [, an observable ¢ and a positive function C'(a) of « on a
neighborhood U of 0 (so C(a) > 0 if o € U/{0}) such that for all n, u(|2S,(p) — | > @) >
C(a)n™. Our results in this section still assume the structure of a Young Tower and rely in
part on the return time estimate va(R > n) < Cn~? in order to truncate the tower at certain
levels. As a consequence the parameter 5 appears in our expression for 7. We show if we take a
window of length n”, 7 < % then the time-averaged fluctuation persists almost surely. In
the case that ~ limits to 8 then we require 7 < ﬁ Comparing Theorem 7.1 and Theorem 7.2
there is a gap ﬁ <T < % for which we don’t know the almost sure limits or fluctuations of
windows of length n”.

Theorem 7.2. Suppose that (T, M, ) is modeled by a Young Tower and va(R > n) < Cn~™?
for some B > 1. Suppose that v > B and there exists a function C' on a neighborhood U of a = 0
such that C(a) > 0 if o € U/{0} and for all n > 0 and Lipschitz continuous function ¢ one has

(|15 o] > lal) = Clagn™

Ifancmd0<T<,m%thenfor,u,a,.e. reM

limsup  max _[n" 7Sy o T™(z) — ¢| > |af

n—oo 0Sm<n—-n7

Proof. We consider the case a > 0 as the case a < 0 is the same with obvious modifications.
Let 0 < € € o and put

Aur(€) = {(m) €AY poF () < n(a— e>}

r=1
If (2/,0) € W*((z,0)) then d(F7(x,0),F’(z',0)) < Kd(z,2') by Section 2 Assumptions (a)
and (c), which implies that |S,-p(x,0) — Spr(2/,0)| < n"Kd(z,2')||¢|| Lip- Hd(z,z") < W
we obtain |S,rp(z,0) — Sy (2/,0)] < €/4. Consequently if y = (z,7) € Aur(€) and d(z,2') <

KTl then Yy’ = (slvﬂj) € Ay (3¢/4).
We define py, = [ IH(W)] + 1, with this definition 81" < m‘
Let =
6> —
B
and define

By () = {(a:,()) eA:30<j<n® with (fPrz,7) € Anr (e)c} — P (LA (€)°),

where IT : A — A is the projection given by II((x,j)) = (2,0) (j < R(x)). By the assumption
of the theorem that
{

and the fact that 4 = 7*v we have

1

~Su(p) = 4,0‘ > a) > Cla)n™

UA(Ap-(€)€) > Cla—e)n 7.

We have also assumed that
va(R>0) <Ct™P
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and hence
va(R > n?) < Cn= = o(n™%)

as > 1. Since va = v X (counting measure) we get for D C A

va(D) — va(R > nd)
nd

v(II(D)) =

Consequently
V(A () N (R < n%) = (Cla = yn™™ = o(n™)) n~?

and since 65 > 7 the first term dominates and we obtain
v(I(Apr (€)M (R <)) = Cla—e)n 7"
Since ff» preserves v,
v(f 7P I A (€)° N (R < n®)) > Clar — e)n™ ™79,

Note that if fPn(x,0) € TI(A,r(€)° N (R < n%)) then there exists j < n® with (f*»(x),j) €
Ay~ (€)¢. Hence
V(B (€)) > Cla — €)n 770,

Note that
Bpr(€)* ={(2,0) € A:V 0 < j<nd, (frz,j) € Anr(€)}

and define
Bur()= |J W)

z€B,,7 (€)

which by choice of n% implies that
B (€) C By (3¢/4).

We will approximate 13 ()¢ by a function h,r(€) which has Lipschitz constant 3, " for

nT

7' > 6, in the dg,-norm. For that purpose let 7 > § and define

e (€)(p) = max(0,1 — d((p, 0), Bur ()°)5;™" )

Assume hy,r (€)(p,0) > 0, then there exists (¢,0) € By, (€) so that d((p, 0), (¢,0)) < B{ZT/ which in
particular implies that s((p,0), (¢,0)) > n” and allows us to conclude that d(f* (p, 0), f*(¢,0)) <

B P as p, < n” <n”. Thus
d(F? ™ (p, 0), 7 ™ (g,0) < KA~ 7 < kg
by Section 2 Assumption (c). Consequently

7'/_ _ )
|Snr 0 (P, 0) = Snrp(q, 0)| < [lpllipn™ KBy~ 7" <

o

for all n large enough. Thus (p,0) € B,r(¢/2)¢ which implies that the support of h,r(e) is
contained in By,-(€/2)°.

12



Now we let 1 > 7 > 7/ > 7 and consider

[n/n71]
Gn(e)= () f ™" Bur(e)°

m=0

We will show that

Z v(Gp(e)) < oo

n

Now

n1—7‘1

v(Gnle)) < v H hnr(€) o fmnT1
m=0

< V(B ()W (Gr1(€)) + callhar ()]l | Gr1 (€) 085
< [ ()™ + nCaBy" BT

The term anﬂgm By ™" is summable in n as 71 > 7/ > 7. Using the fact that the support of
hyr(€) is contained in Byr(e/2)¢ the principal term is estimated by

1—

W(har ()" < (1 ~Cla - %)n*”*‘;)n U exp(—C(a _ 6/2)n1,T1,W,5) ,

as v(hpr(€)) < v(By-(€/2)). Since 11 can be chosen arbitrarily close to 7 and ¢ arbitrarily close
to %T we may ensure that the power 1 — 7 — 77y — ¢ is positive for any chosen 7 < W%’ which
implies summability of v(G,,(¢)).

Hence for v a.e. (x,0) there exists an N(z) such that for all n > N(x) there exists an
i <n—nT with fi(x,0) € By () and hence (fP2 'z, j) € Anr(€)¢ for some j < n’. Furthermore
it+j+pp<n—n"+n’4+Clon.

Now we need to relate this conclusion, which holds for the map f, to the corresponding
conclusion for the map F' : A — A. The maps f and F have different time clocks. Let
Ry = Zf:ol Ro f'(x,0) denote the /-th ergodic sum of R. Then f¢(z,0) = FF¢(x, 0). We extend
the definition of Ry to the whole of A by defining Ry(x, j) = [R(z,0) — j| + Re—1f(z,0).

By Birkhoff’s ergodic theorem

lim Rn(xuy) :R: 1
n—00 n va(A)

for va a.e. (z,7) € A. We have shown that for va a.e. (z,7)

., NT

= ]Jr? ‘

limsup max — poFl(x,0) >a—¢
1<j<N-37 N7 z_: (#:0)
i=j
which implies that for p a.e. p € M, for any 7 < 7 < W%
J+NT ‘
limsup max Z poT’(p) >a—ce

1<j<N-N7 NT 4£—
1=

. ~ . . 6 .
and since 7,7 were arbitrarily close to P this concludes the proof.
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Example 7.3. The condition 7 < is close to optimal in that, taking v = B, we require

B
v+vB+8
T < ﬁ We may construct a Young Tower and observable ¢, fA wdva =0 and o > 0 such

that va(R >n) < Cn™", yet for all T > i,

lim max n "SproT™ =0
n—o00 0<m<n—nT
We sketch the main idea of the tower and observable and make a couple of technical ad-
justments to ensure the tower is mizing and that the observable is not a coboundary. The
construction is based on that of [1]. The base partition consists of disjoint intervals A; of length
i7P=2. Above the base element A; the levels of the tower consist of {(x,j):0 < j < 2i —1}.
Note that va(R > n) < Zﬁn/2(2j)j_2_ﬁ < Cn~P. We define o on the Tower by, if x € A;,

=1 fo<j<i;
‘p("”)_{1 ifi<j<2i

Clearly va(p) = 0.

Let 0 < a < 1. Note that Sy, o(z,j) > n"« only if (z,j) € {R>n"}.

However if 7 > ﬁ then 37071 > s, P(A) < 3007 n~TB+H) < 0o. Hence by the Borel-
Cantelli lemma f"(x,0) € U5~ Aj only finitely many times for v a.e. (x,0). This implies that
for v a.e. (z,0) there exists an N(zx) such that for all n > N(x)

n”

forallj<n: Z(p(fjJrrx,O) <an’.
r=0

As a > 0 was arbitrary for p a.e. x € M

limsup max n "SproT™ =0
n—oo 0Sm<n—-n7
The heights of the levels in the tower above are all multiples of 2 so the tower is not mizing.
Furthermore the observable ¢ is a coboundary and in fact if we define

. J ifre N, 05 <k
¥(z,j) = o : :
2k—j ifr el k<ji<2k-1

then one can check that

p=yYoF -9
But it is easy to adjust the tower so that the tower is mizing and ¢ is not a coboundary, yet the
pertinent features of the example remain.

We will modify the tower and the observable so that the greatest common denominator of the
return time function R is 1 (to ensure the tower is mizing) and that the new observable is not a
coboundary. We change As to have height 3. This entails that the tower is mizing. On the levels
above A3 we modify ¢ to p1 so that 1(x,j) =k >0, j =0,1,2, x € A3 where k > 0 is small but
p1 = @ elsewhere . This entails r1 := va(p1) = kva(Ag) > 0. We subtract r1/(va(A2)) from
the value of ©1 on Ao to form a new observable @9 such that va(p2) = 0. Since F? has a fized
point p on Ag and since Z?’:o wa(x,j) # 0 we conclude o is not a coboundary (by the Livsic
theorem [19]). The new tower with observable w2 we defined has the properties of the former
pertinent to our example.
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