
Published as a conference paper at ICLR 2023

HUNGRY HUNGRY HIPPOS: TOWARDS LANGUAGE
MODELING WITH STATE SPACE MODELS

Daniel Y. Fu∗†, Tri Dao∗†, Khaled K. Saab†, Armin W. Thomas†, Atri Rudra‡, Christopher Ré†
† Stanford University, ‡ University at Buffalo, SUNY
{danfu,tridao}@cs.stanford.edu, {ksaab,athms}@stanford.edu,
atri@buffalo.edu, chrismre@cs.stanford.edu

ABSTRACT

State space models (SSMs) have demonstrated state-of-the-art sequence modeling
performance in some modalities, but underperform attention in language modeling.
Moreover, despite scaling nearly linearly in sequence length instead of quadratically,
SSMs are still slower than Transformers due to poor hardware utilization. In this
paper, we make progress on understanding the expressivity gap between SSMs and
attention in language modeling, and on reducing the hardware barrier between SSMs
and attention. First, we use synthetic language modeling tasks to understand the gap
between SSMs and attention. We find that existing SSMs struggle with two capabilities:
recalling earlier tokens in the sequence and comparing tokens across the sequence.
To understand the impact on language modeling, we propose a new SSM layer, H3,
that is explicitly designed for these abilities. H3 matches attention on the synthetic
languages and comes within 0.4 PPL of Transformers on OpenWebText. Furthermore,
a hybrid 125M-parameter H3-attention model that retains two attention layers
surprisingly outperforms Transformers on OpenWebText by 1.0 PPL. Next, to improve
the efficiency of training SSMs on modern hardware, we propose FLASHCONV.
FLASHCONV uses a fused block FFT algorithm to improve efficiency on sequences
up to 8K, and introduces a novel state passing algorithm that exploits the recurrent
properties of SSMs to scale to longer sequences. FLASHCONV yields 2× speedup
on the long-range arena benchmark and allows hybrid language models to generate
text 2.4× faster than Transformers. Using FLASHCONV, we scale hybrid H3-attention
language models up to 2.7B parameters on the Pile and find promising initial results,
achieving lower perplexity than Transformers and outperforming Transformers in zero-
and few-shot learning on a majority of tasks in the SuperGLUE benchmark.

1 INTRODUCTION

State space models (SSMs) have achieved state-of-the-art sequence modeling performance in domains
ranging from time series analysis (Gu et al., 2022a) to audio generation (Goel et al., 2022). However,
they have yet to match the performance of Transformers on language modeling, often underperforming
Transformers by multiple points in perplexity (Gu et al., 2022a). An natural question is whether this
gap in performance is due to inherent inductive biases and capabilities in attention (Edelman et al., 2022;
Olsson et al., 2022), or whether it is a function of the significant organizational resources that have been
spent training and tuning large attention-based language models (Chowdhery et al., 2022; Hoffmann
et al., 2022; Zhang et al., 2022), as well as specialized hardware support for attention, ranging from tensor
cores (NVIDIA, 2017) to transformer chips (NVIDIA, 2022b; Kao et al., 2021).

We take first steps towards answering these questions in this paper. First, we use synthetic language
modeling tasks to show that there is an expressivity gap between SSMs and attention. Using our
insights, we design a new SSM layer that nearly matches attention in language modeling. Second,
we propose better hardware-aware algorithms for SSMs that allow them to take advantage of modern
accelerators—and run faster than attention.

Understanding the Expressivity Gap. To understand the gap between SSMs and attention, we draw on
synthetic language modeling tasks that have been proposed as a mechanistic basis for in-context learning
in Transformers (Olsson et al., 2022) These synthetic languages focus on the ability to manipulate
text—recalling tokens from earlier time steps, or comparing tokens from different points in a sequence.
We find that existing SSMs struggle to model these synthetic languages. To probe how important these

∗Equal Contribution. Order determined by coin flip.

1

Published as a conference paper at ICLR 2023

Shift
SSM

Diag
SSM

X

KQ V

Y

H3 Layer H3 for Associative Recall

null

null

Diag

I(xt-1=a)

I(xt+1=a)

I(x
t+

1=a
)

I(xN-1=a)

null

I(x
t=a

)
a

Shift

I(xN=a) a

nullyt nullyt+1

ShiftShift

a

I(xt=a)

3xt xt+1

Diag

3

I(xt=a)

3

3

axN

Diag

I(x
N
=a

)

3

3yN

Store key Store val Recall val

Input

Out

8K Chunk

Fused
Block

FFTConv

SSM
State

Fused
Block

FFTConv

SSM
State

FlashConv
Figure 1: Left: H3 stacks two discrete SSMs with shift and diagonal matrices and uses multiplicative interactions
between input projections and their outputs to model comparisons between points in a sequence. Middle: H3 can
perform associative recall—which is easy for attention, but not existing SSMs. Right: FLASHCONV uses a new
state-passing algorithm over fused block FFTConv to increase hardware efficiency of SSMs, allowing H3 to scale
to billion-parameter models.

skills are for language modeling, we propose H3 (Hungry Hungry Hippo), a new SSM-based layer
designed to solve these language modeling tasks. H3 stacks two SSMs, with multiplicative interactions
between their outputs and input projections. The SSMs allow H3 to keep a log of tokens (to recall them
later), while the multiplicative interactions allow for comparisons across the sequence.

H3 matches attention on the synthetic languages and almost closes the gap with Transformers on language
modeling—coming within 0.4 perplexity of Transformers on OpenWebText (compared to 3.4 ppl for ex-
isting SSMs—even those explicitly designed for language modeling (Mehta et al., 2022)). Furthermore, a
simple hybrid H3-attention model that retains two attention layers surprisingly outperforms Transformers
on OpenWebText by 1.0 perplexity. To further evaluate H3 on language modeling, we train 125M-, 355M-,
1.3B-, and 2.7B-parameter hybrid H3-attention language models on the Pile (Gao et al., 2020), using
hyperparameters from GPT-3 (Brown et al., 2020). These hybrid models outperform Transformer-based
language models of the same size in perplexity, and match or outperform them on a majority of tasks in
the SuperGLUE benchmark in zero- and few-shot learning. Since the SSM layers in these hybrid models
admit a recurrent view, they can also perform 2.4× faster inference than Transformers.

Scaling SSMs. Next, we improve the efficiency of SSMs on modern hardware, to reduce the hardware
barrier between attention and SSMs. SSMs scale nearly linearly in sequence length instead of
quadratically like attention, but still run slower on modern hardware due to poor hardware utilization.
To close this gap, we propose FLASHCONV, a hierarchical algorithm for computing SSMs, inspired
by IO-Aware attention (Dao et al., 2022b). The technical challenge is that SSMs require a FFT-based
convolution over the input sequence, which requires an FFT, pointwise multiply, and inverse FFT. When
implemented in cuFFT (NVIDIA, 2022a), this operation incurs expensive GPU memory reads/writes, and
cannot utilize the specialized matrix multiply units available on modern hardware1. To use specialized
matrix multiply units, we appeal to classical techniques that split the FFT into blocks and compute it using
a series of matrix multiplications. Combined with kernel fusion, this “block” FFT solution increases
hardware efficiency, but only as long as the sequence length can fit into GPU SRAM (on-chip memory,
analogous to L1 cache on the CPU)—up to sequence length 8K on modern A100.

To scale to sequences longer than 8K, we propose a state passing algorithm (Figure 1 right), specialized
to SSMs. The key insight is that we can use the recurrent properties of SSMs to process the input in
chunks—as long as we keep track of an additional state vector. The state passing algorithm splits the
input into the largest chunks that can fit into GPU SRAM, efficiently computes the FFT-based convolution
using block FFT, and updates an intermediate state to start the next chunk. Using this state-passing
algorithm, FLASHCONV can scale SSMs to any sequence length—even longer than can fit on GPU
SRAM at once—while maintaining a near linear compute complexity. FLASHCONV sets state-of-the-art
speed on long range arena using S4 (Gu et al., 2022a), outperforming Transformers by 5.8× and previous
S4 models by 2×. FLASHCONV trains H3 4-8× times faster than attention for long sequences, and is
a critical component for scaling to billion-parameter models2.

1An A100 GPU has a maximum of 312 TFLOPs/s of FP16 with tensor cores, but only 20 TFLOPs/s of FP32
(and 40 TFLOPs/s of FP16) without tensor cores (NVIDIA, 2020). This trend started with the V100 GPUs (NVIDIA,
2017) and has continued with the H100 GPUs (NVIDIA, 2022b).

2Code for H3 is available at https://github.com/HazyResearch/H3.

2

https://github.com/HazyResearch/H3

Published as a conference paper at ICLR 2023

2 BACKGROUND

We present some background on state space models and linear attention, which inspired our H3 layer.

2.1 STATE SPACE MODELS

A continuous-time state-space representation (Brogan, 1974) defines a linear mapping from an input
signal u(t)∈R (as a function of time t) to an output signal y(t)∈R through a state-variable x(t)∈Rm,
with the following differential equation, for some matrices A ∈ Rm×m, B ∈ Rm×1, C ∈ R1×m,
D∈R1×1: ẋ(t)=Ax(t)+Bu(t), y(t)=Cx(t)+Du(t).

Similarly, a discrete-time state-space representation defines a linear mapping from a discrete input signal
ui (for i=1,2,...) to a discrete output signal yi though a state-variable xi∈Rm:

xi=Axi−1+Bui

yi=Cxi+Dui.

A state-space model (SSM) uses these representations as a layer in a deep learning pipeline, where the
matrices A,B,C,D are learned from data (e.g., with gradient-based optimization). One often has d of
these SSMs in parallel, each corresponding to one hidden dimension. To preserve the sequence history,
HiPPO (Gu et al., 2020) projects the history on a basis of orthogonal polynomials, which translates to
having SSMs whose A,B matrices are initialized to some special matrices.

This recurrent form of SSMs allows efficient inference (i.e., generation): to generate the output of the
next time-step, one only needs the state of the current time-step, not the entire input history. Furthermore,
SSMs can freely extrapolate to sequences longer than seen during training.

SSMs as Convolution. For efficient training, given the entire sequence of the input u1,...,uN , the output
sequence y1,...,yN can also be written as the convolution of the input with the filter (Gu et al., 2021):

f=[CB,CAB,CA2B,...,CAN−1B].

That is, from an initial condition x0, we have yi =CAiBx0+(f ∗u)i+Dui, where (f ∗u) denotes a
linear convolution between f and u. If we set the initial condition x0 to be zero, then y is exactly a linear
convolution of u, with a residual connection Du. More generally, any linear time-invariant system (of
which SSMs are a special case) can be written as a convolution.

Given a 1D input sequence u∈RN of length N , we denote the 1D output sequence y∈RN of an SSM
parameterized by matrices A,B,C,D as

y=SSMA,B,C,D(u).

To simplify notation, we omit the reference to A,B,C,D and write y=SSM(u) if they are clear from
context. When u is multidimensional of dimension d, we stack d of these SSMs together that defines
a mapping from u∈RN×d to y∈RN×d, using the same notation y=SSM(u).

To construct the filter f from A,B,C efficiently, A is often constrained to be diagonal (Gupta et al., 2022;
Gu et al., 2022b), or diagonal plus low-rank (Gu et al., 2022a).

SSM through FFTs. Computing the convolution naively through conventional matrix operations is
expensive for long kernels, scaling asO(N2). Instead, we can use FFTs: take the FFT of f and u, multiply
them together pointwise, and then take the inverse FFT. This yields an O(N logN) algorithm.

2.2 LINEAR ATTENTION

We describe linear attention (Katharopoulos et al., 2020) and its connection to RNNs, which inspired
our model design (Section 3).

In standard attention (Vaswani et al., 2017), we have N query/key/value tokens Qi,Ki,Vi ∈ Rd for
i= 1,...,N , where N is the sequence length and d is the head dimension. For some similarity metric
Sim: Rd×Rd→R, we want to compute the output:

Oi=

∑︁i
j=1Sim(Qi,Kj)Vj∑︁i
j=1Sim(Qi,Kj)

∈Rd.

For standard softmax attention, Sim(q,k)=eq
⊤k (often the dot product is scaled by 1/

√
d). Linear atten-

tion makes the assumption that Sim has the form Sim(q,k)=ϕ(q)⊤ϕ(k), for some (nonlinear) function ϕ.

The output is then Oi=
ϕ(Qi)

⊤∑︁i
j=1ϕ(Kj)V

⊤
j

ϕ(Qi)⊤
∑︁i

j=1ϕ(Kj)
. Let Si=

∑︁i
j=1ϕ(Kj)V

⊤
j ∈Rd×d, zi=

∑︁i
j=1ϕ(Kj)∈Rd,

di = ϕ(Qi)
⊤zi ∈R. Then Oi =

ϕ(Qi)
⊤Si

di
. This connects linear attention to RNNs: the output Oi is a

function of Si and zi, both of which are incrementally updated (as cumulative sums).

3

Published as a conference paper at ICLR 2023

3 HUNGRY HUNGRY HIPPOS LAYER TO MODEL DISCRETE SEQUENCES

To understand the gap between SSMs and attention on language modeling, we examine two synthetic
language modeling tasks. These tasks motivate our H3 layer to add a discrete SSM (based on shift matrix)
and multiplicative interaction to effectively model discrete sequences. We then show that the H3 layer is
expressive enough to solve these synthetic tasks, and that this understanding leads to better performance
on a real language modeling benchmark.

3.1 MOTIVATION: SYNTHETIC LANGUAGE MODELING TASKS

We describe two closely-related synthetic tasks, summarized in Table 1. Olsson et al. (Olsson et al., 2022)
argue that the ability to solve (variants of) these tasks accounts for the majority of the in-context learning
capability of Transformers, and more intuition is given in Appendix E.

Table 1: Synthetic language modeling tasks.
Task Input Output Sequence Length Vocab Size
Induction Head a b c d e ⊢ f g h i ... x y z ⊢ f 30 20
Associative Recall a 2 c 4 b 3 d 1 a 2 20 10

The Induction Head task tests how well a model can recall content after a special token (e.g.,⊢ in Table 1).
At the end of the sequence, the model must recall the token that appeared immediately after the special
token earlier in the sequence. Associative Recall (Ba et al., 2016) is similar to the induction head task,
but requires the model to remember multiple key-value pairs. At the end of the sequence, the model must
recall a specific value belonging to a specific key.

Table 2: Evaluation of 2-layer models on synthetic language tasks.
Task Random S4D Gated State Spaces H3 Attention

Induction Head 5.0 35.6 6.8 100.0 100.0
Associative Recall 25.0 86.0 78.0 99.8 100.0

Table 2 (for two-layer models) shows that S4D (Gu et al., 2022b) and Gated State Spaces (Mehta et al.,
2022) both fail to model these synthetic languages, which suggests they may not have the expressivity for
general language. We argue that these failures suggest two missing capabilities: (i) to remember tokens
that appear after a particular event (e.g., the special token in the induction head task), and (ii) to compare
tokens across the sequence (e.g., comparing keys to decide which value to recall). Attention has both these
capabilities: it can compare tokens by constructing the quadratic attention matrix QK⊤, and it can recall
tokens by direct copying (multiplying softmax(QK⊤) with V). In Section 3.2, we design our new layer
H3 to enable these capabilities in SSMs, narrowing the expressivity gap between SSMs and attention.

3.2 H3 LAYER

H3 uses SSMs with shift and diagonal matrices, along with multiplicative operations against projections
of the input to capture the missing capabilities identified by the synthetics.

High-level Intuition. (i) To remember tokens from the past, we want the state xi to copy from the input
ui, and then pass that information to the next state xi+1. As xi+1 relates to xiby Axi, we use a discrete
SSM with a shift matrix A (described formally below) that shifts the elements of a state vector (e.g.,
mapping [a,b,c]→ [0,a,b]). (ii) To compare tokens across the sequence, we use multiplicative interaction:
the output of an SSM, containing information from previous time steps, is multiplied with the input at
the current time steps, thus measuring similarity between tokens.

H3 is loosely inspired by linear attention (Section 2): we project the input u to get three signals Q,K,V.
Then we replace the non-linearity ϕ(K) with an SSM where A is a shift matrix (SSMshift), and we
replace the summation Si with a SSM with diagonal A (SSMdiag). The output, for the case of head
dimension dh=1, is:

Q⊙SSMdiag(SSMshift(K)⊙V),
where ⊙ denotes pointwise multiplication. We can view this form as stacking two SSMs with
multiplicative interaction (each is a “hungry hippo”, hence the name of our layer). A more formal
connection between linear attention, time-varying systems, and H3 can be found in Appendix B.

Remembering Key Tokens: Shift and Diagonal SSMs. The shift and diagonal SSMs are designed to
address the capability to log tokens after particular events. In the shift SSM, we constrainA∈Rm×m to be

a shift matrixAi,j=

{︃
1 for i−1=j

0 otherwise
. The action of this matrix on the hidden statexi is to shift each coor-

dinate down by one—thereby creating a “memory” of the previous states. For example, if B=e1, the first

4

Published as a conference paper at ICLR 2023

basis vector, then xi=[ui,ui−1,...,ui−m+1] contains the inputs from the previous m time steps. We learn
B andC (B can also be fixed to e1 for simplicity, in which case the output is a 1D conv. with kernel sizem).

The diagonal SSM constrains A to be diagonal and initializes it from the diagonal version of HiPPO
(S4D (Gu et al., 2022b)). This parameterization allows the model to remember state over the entire
sequence. The shift SSM can detect when a particular event occurs, and the diagonal SSM can remember
a token afterwards for the rest of the sequence.

Multiplicative Interaction for Comparison. We take the multiplicative interactions from linear
attention, but they provide another missing capability when combined with a shift matrix: comparing
tokens across the sequence. The multiplicative interactions between the output of the shift SSM and
the V projection mimics local multiplicative interactions in linear attention (depending on the size of the
hidden state). Similarly, multiplicative interactions with the Q projection and the output of the diagonal
SSM allows comparisons between tokens over the entire sequence.

H3 Layer. The overall layer is given in Algorithm 1 and shown schematically in Figure 1 (left). We use the
H3 layer to construct a model in the same style as Transformers by interleaving it with MLPs, connected
by residual connection and layer norm (i.e., pre-norm architecture (Baevski & Auli, 2018)). We will also
consider a hybrid H3-attention model (two attention layers while the rest are H3, Sections 3.3 and 5).

Algorithm 1 H3 Layer

Require: Input sequence u∈RN×d from the previous layer, weight matrices WQ,WK ,WV ,WO∈Rd×d, a shift
SSM SSMshift, a diagonal SSM SSMdiag, head dimension dh.

1: Compute Q=uWQ,K=uWK ,V=uWV ∈RN×d.
2: Pass K through the shift SSM: K=SSMshift(K)∈RN×d.
3: SplitQ,K,V intoH “heads” (Q(h),K

(h)
,V(h) forh=1,...,H), each a sequence ofN vectors of sizedh=d/H .

4: for 1≤h≤H do
5: Take the batched outer product K

(h)
(V(h))⊤∈RN×dh×dh (batched in the N -dimension) and pass it through

a diagonal SSM: KV(h)=SSMdiag(K
(h)

(V(h))⊤)∈RN×dh×dh .
6: Batch-multiply by Q: O(h)=[Q

(h)
1 KV

(h)
1 ,...,Q

(h)
N KV

(h)
N]∈RN×dh (batched in the N -dimension).

7: end for
8: Concatenate the output O(h) of each head, and multiply by the output projection matrix WO∈Rd×d.

Efficiency We show that H3 scales as O(N logN) with sequence length N—asymptotically more
efficient than attention, which typically requiresO(N2d) time andO(N2) space3 (proof in Appendix D.3).
Proposition 1. LetN be the sequence length, d be the hidden dimension, and assume that the head dimen-
sion dh is of order O(1). Then the H3 layer takes O(d2N+dN logN) time and O(dN) space to compute.

3.3 EXPRESSIVITY

We show that H3 can model our synthetic languages, as well as natural language on OpenWeb-
Text (Gokaslan et al., 2019). We also present a hybrid H3-attention extension that outperforms
Transformers on OpenWebText.

Mechanism for Solving Associative Recall with H3. H3 is expressive enough to solve our synthetic
language modeling tasks, as shown in Table 2. Figure 1 (middle) shows a mechanism for a single
H3 layer to solve the associative recall task for a particular key-value pair (a,3). The shift SSM and
following multiplicative interaction act as a gate on whether to let a value through to the diagonal SSM,
based on whether the previous token was key a. The diagonal SSM stores the value 3 in memory, and
continually outputs it. The final multiplicative interaction gates whether to let the diagonal SSM’s output
through—based on whether the current input token is the key a. We formally construct the weights of
an H3 layer to solve this task in Appendix D.1.

Table 3: Perplexity of SSM variants compared to Transformers on OpenWebText. All models have 12 layers, with
size around 125M, and are trained with the same hyperpameters, for 50B tokens.

H3 H3 Hybrid (2 Attn) S4D GSS GSS Hybrid (2 Attn) Transformer
21.0 19.6 24.9 24.0 19.8 20.6

Better Synthetic Language Modeling Translates to Better Natural Language Modeling. We validate
that when H3 can solve these synthetic tasks, it also improves the modeling capability on natural language

3There are several memory-efficient algorithms for attention (Rabe & Staats, 2021; Dao et al., 2022b), though
their time complexity is still quadratic in N , which is a lower-bound for attention (Keles et al., 2022).

5

Published as a conference paper at ICLR 2023

(e.g., on the OpenWebText dataset). As shown in Table 3, H3 comes within 0.4 perplexity points of
Transformers when trained for 50B tokens on OpenWebText, and performs much better than existing
SSM variants (S4D, GSS), by 3−3.9 points.

Extension: H3-attention Hybrid Model. A simple hybrid H3-attention language model surprisingly
outperforms Transformers on OpenWebText by 1.0 point. Our hybrid model simply retains two
self-attention layers: one in the second layer, and one in the middle (layer 2+N/2 for an N -layer model,
N even). The H3-attention hybrid also outperforms the GSS-attention hybrid (Mehta et al., 2022).

4 FLASHCONV: EFFICIENTLY TRAINING SSMS

To improve the efficiency of SSMs on modern hardware, we propose FLASHCONV. FLASHCONV fuses
the FFT, pointwise multiply, and inverse FFT to reduce memory reads/writes. It also uses a block FFT
algorithm to make use of specialized matrix multiply units (e.g., tensor cores on A100) for sequence
lengths up to 8K. For sequences longer than 8K, the computation no longer fits in GPU SRAM4, so
we propose a novel state-passing algorithm that splits the sequence into chunks to compute the FFT
convolution one chunk at a time. FLASHCONV can speed up any SSMs (not just H3).

4.1 FUSED BLOCK FFTCONV

We deploy two techniques to speed up the FFT-based convolution for sequences shorter than 8K: kernel
fusion and block FFT. Kernel fusion addresses IO bottlenecks due to reading and writing of intermediate
results, while block FFT allows the FFT-based convolution to utilize specialized matrix multiplication
units. These techniques allow us to speed up FFTConv by 2× (Section 6) for sequences shorter than 8k.

Kernel Fusion. Naive implementations of FFTConv using standard libraries such as cuFFT are IO-bound
due to repeated reading and writing of intermediate results. The FFT convolution in an SSM with input
u and filter f has the form iFFT (FFT (u)⊙FFT (f)) (where ⊙ denotes pointwise multiplication).
It requires reading and writing intermediate results to GPU memory—which can dominate the runtime.
Following FLASHATTENTION (Dao et al., 2022b), we first fuse the entire FFTConv into a single kernel
and compute it in SRAM to avoid this overhead.

Block FFT. To further speed up the computation of FFT-based convolution, we exploit specialized matrix
multiplication hardware on modern GPUs (e.g., Tensor Cores on Nvidia GPUs perform fast 16× 16
matrix multiplication). We appeal to classical results that show that the FFT can be written as a series
of block-diagonal matrix multiplications interleaved with permutation. We note that such algorithms
are not new, but our setting (fused FFTConv on GPU) introduces new bottlenecks—by removing the
IO bottlenecks, compute becomes the bottleneck (note that a single FFT on GPU is usually IO bound).

Suppose that we want to perform an N -point FFT, which is equivalent to multiply by the DFT matrix
FN . Suppose that N =N1N2 for some integers N1,N2. By the Cooley-Tukey decomposition of the
DFT (Cooley & Tukey, 1965; Bailey, 1990) (also known as the four-step FFT algorithm), we can write
FN =P(IN2

⊗FN1
)P⊤D(IN1

⊗FN2
)P, where P denotes a fixed permutation that reshapes the input

as a N1×N2 array and then transpose it, ⊗ denotes Kroneker product, D is a N×N diagonal matrix
(called the twiddle factors) (Dao et al., 2022a), and INi

and FNi
are the identity and DFT matrix of size

Ni×Ni. As IN2
⊗FN1

and IN1
⊗FN2

are just block-diagonal matrices, we can make use of specialized
matmul units to perform these multiplications. Similarly, if N=N1N2N3 then we can decompose the
N -point FFT into a series of (block) FFT of size N1, N2, and N3, interleaved by permutation.

The block FFT algorithm incurs O(NrlogN/logr) FLOPs for a sequence length N , if N can be written
as rp for two integers r,p. This incurs more FLOPs than standard FFT (O(N logN)), but can run faster
when we using specialized matrix multiplication hardware.

4.2 STATE-PASSING

However, the fused kernel cannot run if the sequence is too long to fit into GPU SRAM (longer than 8K on
A100). We show how to exploit the particular form of the FFT in SSM to speed it up for long sequences.

The recurrent nature of SSMs allows us to split the FFTConv of a length-N sequence into chunks of
size N ′ each (N ′ is the longest FFT we can fit into SRAM), assuming N is a multiple of N ′). We use
FFTConv to compute each chunk and use a recurrence to connect the chunks. In particular, we split the
inputs u into C=N/N ′ chunks u(c)∈RN ′

for c=1,...,C. Similarly, split the states x into x(c)∈RN ′×m

and the output y into y(c)∈RN ′
for i=1,...,C. We will only need the end-state x(c)

N ′ of each chunk c.

4SRAM, or on-chip memory, is much faster than off-chip GPU memory, but usually much smaller, on the order
of around 100KB for each streaming processor.

6

Published as a conference paper at ICLR 2023

Table 4: Perplexity (lower is better) of models on the Pile, OpenWebText and WikiText-103. GPT-Neo and hybrid
H3 are trained on the Pile, while GPT2 is trained on WebText. All models use the same GPT2 tokenizer. We report
the perplexity of GPT-2 models on the Pile (∗) for context, though the performance is not directly comparable since
they were trained on different data.

Model Pile OpenWebText WikiText103
GPT-2 small (125M) 19.0* 22.6 29.9

GPT-Neo-125M 9.4 22.6 26.3
Hybrid H3-125M 8.8 20.9 23.7

GPT-2 medium (355M) 13.9* 17.0 21.8
Hybrid H3-355M 7.1 15.9 16.9
GPT-2 XL (1.5B) 12.4* 12.9 17.0
GPT-Neo-1.3B 6.2 13.1 13.3

Hybrid H3-1.3B 6.0 12.4 12.5
GPT-Neo-2.7B 5.7 11.7 11.5

Hybrid H3-2.7B 5.4 11.0 10.6

Let f=[CB,CAB,CA2B,...,CAN ′−1B] be the SSM filter. Recall from Section 2 that for each chunk
c, y(c)i =CAiBx

(c−1)
N ′ +(f ∗u(c))i+Du

(c)
i , since x

(c−1)
N ′ , the end-state of the previous chunk (c−1)

is the initial condition for the current chunk c. In vector notation, y(c)=Mxyx
(c−1)
N ′ +f ∗u(c)+Du(c)

for some matrix Mxy ∈ RN ′×m. Additionally we need to update the end-state of each chunk with
xc
N ′ =AN ′

x
(c−1)
N ′ +Muxu

(c) for some matrix Mm×N ′

ux (derivation in Appendix C.2). In essence, we can
compute the output for each chunk with FFT-based convolution as long as we remember the end-state of
the previous chunk, and the end-state of each chunk can be updated recurrently. This yields a state-passing
algorithm for long sequences, where we only compute FFT of length N ′, and update some hidden state
each iteration.

Let BLOCKFFTCONV refer to our fused block FFTConv kernel. Then, the state-passing algorithm
for 1D input is given by Algorithm 2. For inputs of dimension d where we stack d SSMs, we simply
batch Algorithm 2 along the d-dimension.

Algorithm 2 State Passing Algorithm

Require: Input u∈RN , SSM parameterized by matrices A∈Rm×m, B∈Rm×1, C∈R1×m, D∈R1×1, chunk
size N ′ where N is a multiple of N ′.

1: Precompute AN′
∈Rm×m, Mux=[AN′−1B,...,B]∈Rm×N′

, Mxy=[C,CA,...,CAN′−1]∈RN′×m.
2: Split the inputs u1:N into C=N/N ′ chunks u(c)

1:N′ for c=1,...,C.
3: Let the initial state be x(0)

N′ =0∈Rm.
4: for 1≤c≤C do
5: Compute y(c)=Mxyx

(c−1)

N′ + BLOCKFFTCONV(f , uj) +Du(c)∈RN′
.

6: Update state: x(c)

N′ =AN′
x
(c−1)

N′ +Muxu
(c).

7: end for
8: Return y=[y(1)...y(C)].

We prove that Algorithm 2 yields the same output as if one has computed the SSM using a large FFT
of size N (proof in Appendix D.4):
Proposition 2. For input u∈RN and matrices A,B,C,D, the output y∈RN returned by Algorithm 2
is the same as the output defined by the SSM parameterized by A,B,C,D.

5 H3 EVALUATION

To understand how well capturing the synthetics in Section 3.1 translates to language modeling, we train
two hybrid hybrid H3-attention language models at sizes 125M, 355M, 1.3B, and 2.7B, and we evaluate
their performance against Transformers. The hybrid models match or exceed the quality of Transformers
in perplexity and zero/few-shot learning. We also validate that H3 models retain strong performance
on non-text sequence modeling. Appendix F contains additional experiments on more datasets, length
extrapolation, and scaling with data.

5.1 LANGUAGE MODELING

We compare hybrid H3-attention language models against Transformer-based language models. We
evaluate language modeling performance using perplexity, zero-shot learning, and few-shot learning
performance. Hybrid H3 models outperform Transformers, which suggests that closing the gap between

7

Published as a conference paper at ICLR 2023

Table 5: Zero-shot acc. on SuperGLUE with logit scoring. Best results in bold, second best underline.
Model WSC WIC RTE CB MultiRC ReCoRD BoolQ COPA Average

OPT-125M 39.4 52.0 48.7 37.4 58.9 44.9 59.6 60.0 50.1
GPT-Neo-125M 36.5 53.6 53.1 41.1 59.9 39.6 62.2 60.0 50.8

Hybrid H3-125M 39.4 51.4 59.2 48.2 51.4 55.0 59.6 67.0 53.9
GPT-2 medium (355M) 50.0 52.0 51.3 28.6 59.5 53.3 61.0 65.0 52.6

OPT-350M 53.5 50.8 53.4 35.7 58.9 51.4 60.9 60.0 53.1
Hybrid H3-355M 37.5 51.7 55.2 41.1 59.5 62.3 61.5 69.0 54.7

OPT-1.3B 36.5 49.5 53.4 39.3 58.3 61.8 55.0 69.0 52.9
GPT-Neo-1.3B 41.3 50.0 52.3 33.9 57.9 55.5 59.9 66.0 52.1

Hybrid H3-1.3B 52.9 50.3 53.4 33.9 58.2 67.8 61.7 74.0 56.5
OPT-2.7B 51.0 50.8 50.5 41.1 57.4 65.9 60.9 66.0 55.5

GPT-Neo-2.7B 37.5 50.0 52.3 50.0 59.1 60.0 61.1 67.0 54.6
Hybrid H3-2.7B 36.5 51.3 57.0 37.5 58.7 71.3 61.1 81.0 56.8

Table 6: 3-shot acc. on SuperGLUE with logit scoring. Best results in bold, second best underline.
Model WSC WIC RTE CB MultiRC ReCoRD BoolQ COPA Average

OPT-125M 36.5 50.2 47.3 44.6 57.9 44.9 41.9 60.0 47.9
GPT-Neo-125M 38.5 50.0 53.1 17.9 56.3 39.6 62.1 60.0 47.2

Hybrid H3-125M 43.3 49.1 58.1 51.8 48.9 55.0 56.1 67.0 53.7
GPT-2 medium (355M) 36.5 50.5 48.0 8.9 43.5 53.3 58.8 65.0 45.6

OPT-350M 37.5 50.0 45.8 44.6 49.8 51.4 61.7 60.0 50.1
Hybrid H3-355M 42.3 47.5 50.5 28.6 59.7 62.3 60.5 69.0 52.6

OPT-1.3B 44.2 51.1 53.4 16.1 59.9 62.1 38.3 70.0 49.4
GPT-Neo-1.3B 35.6 50.6 47.3 32.1 59.9 55.7 61.2 67.0 51.2

Hybrid H3-1.3B 36.5 49.2 55.2 23.2 59.3 67.6 56.9 76.0 53.0
OPT-2.7B 44.2 50.5 53.4 17.9 59.2 66.0 62.0 71.0 53.0

GPT-Neo-2.7B 49.0 51.9 51.6 21.4 57.0 60.0 56.0 68.0 51.9
Hybrid H3-2.7B 36.5 45.6 47.3 46.4 59.4 71.1 60.6 77.0 55.5

Table 7: Inference throughput on A100 80GB, 1.3B models. Batch size 64, prompt length 512, 1024, or 1536, and
generating 128 tokens per sequence in the batch (i.e., 64 × 128 tokens in a batch). Hybrid H3 is up to 2.4× faster
than a Transformer of similar size in inference. The difference is larger for longer sequences.

Tokens/s Prompt length 512 Prompt length 1024 Prompt length 1536
Transformer-1.3B 1340 770 520
Hybrid H3-1.3B 1980 1580 1240

SSMs and attention on the synthetic languages translates to real language modeling capabilities. We also
report the generation speed of hybrid H3 models compared to Transformers; since SSMs are recurrent
models, they can generate tokens 2.4× faster than Transformers. Appendix F shows performance of
pure H3 language models on these same evaluation metrics.

Setup We train hybrid models at sizes 125M, 355M, 1.3B, and 2.7B on the Pile (Gao et al., 2020) for
400B tokens. We compare against checkpoints of equivalent sizes from Open-AI (Radford et al., 2019)
and GPT-Neo5 (Black et al., 2021), from HuggingFace (Wolf et al., 2020).

Perplexity Table 4 shows perplexity on the Pile (Gao et al., 2020), OpenWebText (Gokaslan et al.,
2019), and WikiText-103 (Merity et al., 2016). On the Pile, our 125M hybrid model outperforms GPT-Neo,
which was also trained on the Pile. Our hybrid models also outperform GPT-Neo models and GPT-2
models on zero-shot transfer to OpenWebText and WikiText103. We report the PPL of GPT-2 models
for context, though the performance is not directly comparable since they were trained on different data.

Zero- and Few-shot Performance We compare the zero- and few-shot performance of hybrid
H3 language models against OPT (Zhang et al., 2022), GPT-Neo, and GPT-2 models, where public
checkpoints are available. We report performance with rank classification on the logits of the possible
choices (see Appendix F.7 for raw generation). Table 5 reports zero-shot performance on the SuperGLUE
benchmark, and Table 6 reports the 3-shot performance. Following the perplexity results, the hybrid
language models outperform or match the best the Transformer baseline on more than half the tasks.

Language Modeling Inference Finally, since SSMs are recurrent models, they admit faster text
generation than Transformers. Table 7 shows inference throughput of a 1.3B-parameter hybrid model
compared to a Transformer. The hybrid model has up to 2.4× higher throughput.

6 FLASHCONV EVALUATION

We evaluate how well FLASHCONV speeds up SSMs. FLASHCONV sets state-of-the-art performance
on the long range arena benchmark (Tay et al., 2020) using S4 (Gu et al., 2022a). We report performance

5There is no pretrained GPT-Neo at the 350M size.

8

Published as a conference paper at ICLR 2023

Table 8: Speedup on the LRA benchmark.
Models Speedup

Transformer 1×
FlashAttention (Dao et al., 2022b) 2.4×

Block-sparse FlashAttention (Dao et al., 2022b) 2.8×
S4 (Gu et al., 2022c) 2.9×

S4 with FLASHCONV 5.8×

1K 4K 16K
Sequence Length

10

20

30

Ti
m

e
(m

s)

Benchmarking FlashConv Inset (256-4K)

2x

35x

FlashAttention
FlashConv

cuFFT Conv

Fused Conv

Fused Block FFT Conv

1K 2K 4K
Sequence Length

1

3

5

Ti
m

e
(m

s)

Figure 2: We compare the speed of different algorithms to perform FFT-based convolution, along with FlashAtten-
tion (Dao et al., 2022b) (the fastest attention implementation we know of). We use batch size 8, hidden dimension 1024,
and varying sequence length from 256 to 32k, and measure on an A100-SMX4-40GB GPU. We see that kernel fusion
gives up to 3.4× speedup over naive FFTConv for short sequences (up to 512), block FFT gives up to 2× speedup for
medium length sequences (1k - 8k), and state-passing allows 2.3× faster FFTConv for long sequences (16k and above).

of training H3 module with FLASHCONV compared to attention at various sequence lengths, from 256
to 32K and demonstrate nearly linear scaling.

Long Range Arena The Long Range Arena (LRA) benchmark (Tay et al., 2020) is a benchmark for
long-range sequence modeling. The state-of-the-art approach, S4 (Gu et al., 2022c), is an SSM. Table 8
shows that FLASHCONV accelerates S4 by 2×, outperforming Transformers by 5.8×.

Benchmark H3 Against Attention We benchmark the time to run the forward and backward pass of
H3 with FLASHCONV against attention. FLASHCONV maintains nearly linear scaling, even to very long
sequence lengths. Fig. 2 shows overall 2-3× speedup over FFTConv with cuFFT using our techniques
(block FFT, state-passing). Simple kernel fusion (even without block FFT) can yield speedup over cuFFT
for short sequences, since memory reads/writes are the bottleneck for short sequences. For long sequences,
SSMs using state passing can be dozens of times faster than even the fastest attention implementation.

7 CONCLUSION

Our main goal is to understand and narrow the gap between attention and SSMs in language modeling
in terms of modeling capabilities and hardware efficiency. Our exploration based on synthetic language
tasks motivated us to design the H3 layer, which is surprisingly competitive with attention. Our
BLOCKFFTCONV algorithm exploits matrix multiplication units and the dual recurrent–convolution
view of SSMs to substantially speed up SSMs, reducing the hardware barrier between attention and SSMs.
We are excited about several future directions. Our H3 layer is a simple combination of two SSMs, and
more sophisticated designs could be more expressive. Our encouraging results on language models up
to 1.3B parameters suggests that scaling SSMs to larger sizes is a promising avenue. Since simply adding
two attention layers to H3 models already outperforms both the pure H3 model and Transformers, we
are optimistic about combining the complementary strengths of SSMs and attention in the future.

Reproducibility Statement. To facilitate the reproducibility of our algorithms and results, (i) we
include a link to downloadable source code in supplementary materials, (ii) for our theoretical statements
and results, we include clear explanations of any assumptions and a complete proof of the claims
in Appendix D; for any datasets used in the experiments, a complete description of the data processing
steps is in Appendix E. We will also release model checkpoints for all our models.

Ethics Statement. Our work seeks to understand the fundamental capabilities and limitations of
newly-emerging model architectures. As the amount of data and model size grows, we also week to
understand how to make training these models more efficient—and run inference more efficiently. This
potentially connects to energy savings during model development and deployment. We also note that

9

Published as a conference paper at ICLR 2023

the relative underutilization of tensor cores in the FFT convolutions of state space models (even with
our block FFT) suggests that consumer GPUs may be able to train models at a cheaper price point.

However, as with any language model training, developing new techniques may impact a wide range
of applications, each with potential benefits and harms. For example, making language model training
cheaper and making inference more efficient make it cheaper to spread disinformation. Similarly,
improving the efficiency of model training may not reduce the overall environmental footprint of training,
since the same resources may be used to train more models, or train the same models for longer. While
our work makes partial progress on the fronts of efficiency and understanding, it does not explicitly
address the issues of fairness and bias in language models.

ACKNOWLEDGMENTS

We thank Albert Gu for helpful discussion regarding the model architecture, and more importantly for
sending us daily hippo videos. We thank Together Computer for providing portions of the compute used
to train models in this paper. We gratefully acknowledge the support of NIH under No. U54EB020405
(Mobilize), NSF under Nos. CCF1763315 (Beyond Sparsity), CCF1563078 (Volume to Velocity),
and 1937301 (RTML); US DEVCOM ARL under No. W911NF-21-2-0251 (Interactive Human-AI
Teaming); ONR under No. N000141712266 (Unifying Weak Supervision); ONR N00014-20-1-2480:
Understanding and Applying Non-Euclidean Geometry in Machine Learning; N000142012275
(NEPTUNE); NXP, Xilinx, LETI-CEA, Intel, IBM, Microsoft, NEC, Toshiba, TSMC, ARM, Hitachi,
BASF, Accenture, Ericsson, Qualcomm, Analog Devices, Google Cloud, Salesforce, Total, the HAI-GCP
Cloud Credits for Research program, the Stanford Data Science Initiative (SDSI), Department of Defense
(DoD) through the National Defense Science and Engineering Graduate Fellowship (NDSEG) Program,
Wu Tsai Neuroscience Stanford Interdisciplinary Graduate Fellowship, and members of the Stanford
DAWN project: Facebook, Google, and VMWare. The U.S. Government is authorized to reproduce
and distribute reprints for Governmental purposes notwithstanding any copyright notation thereon. Any
opinions, findings, and conclusions or recommendations expressed in this material are those of the authors
and do not necessarily reflect the views, policies, or endorsements, either expressed or implied, of DARPA,
NIH, ONR, or the U.S. Government. Atri Rudra’s research is supported by NSF grant CCF-1763481.

REFERENCES

Jimmy Ba, Geoffrey E Hinton, Volodymyr Mnih, Joel Z Leibo, and Catalin Ionescu. Using fast weights
to attend to the recent past. Advances in neural information processing systems, 29, 2016.

Alexei Baevski and Michael Auli. Adaptive input representations for neural language modeling. In
International Conference on Learning Representations, 2018.

David H Bailey. FFTs in external or hierarchical memory. The journal of Supercomputing, 4(1):23–35,
1990.

Sid Black, Leo Gao, Phil Wang, Connor Leahy, and Stella Biderman. GPT-Neo: Large Scale
Autoregressive Language Modeling with Mesh-Tensorflow, March 2021. URL https://doi.
org/10.5281/zenodo.5297715. If you use this software, please cite it using these metadata.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportunities
and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.

Willian L Brogan. Modern control theory, 1974.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot
learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio. On the properties of
neural machine translation: Encoder-decoder approaches. arXiv preprint arXiv:1409.1259, 2014.

Krzysztof Marcin Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane,
Tamas Sarlos, Peter Hawkins, Jared Quincy Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. Rethinking
attention with performers. In International Conference on Learning Representations (ICLR), 2020.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm: Scaling language
modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

10

https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715

Published as a conference paper at ICLR 2023

James W. Cooley and John W. Tukey. An algorithm for the machine calculation of complex fourier
series. Mathematics of Computation, 19(90):297–301, 1965. ISSN 00255718, 10886842. URL
http://www.jstor.org/stable/2003354.

Kamalaker Dadi, Gaël Varoquaux, Antonia Machlouzarides-Shalit, Krzysztof J Gorgolewski, Demian
Wassermann, Bertrand Thirion, and Arthur Mensch. Fine-grain atlases of functional modes for fmri
analysis. NeuroImage, 221:117126, 2020.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G Carbonell, Quoc Le, and Ruslan Salakhutdinov.
Transformer-xl: Attentive language models beyond a fixed-length context. In Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics, pp. 2978–2988, 2019.

Tri Dao, Beidi Chen, Nimit Sohoni, Arjun Desai, Michael Poli, Jessica Grogan, Alexander Liu, Aniruddh
Rao, Atri Rudra, and Christopher Ré. Monarch: Expressive structured matrices for efficient and
accurate training. In International Conference on Machine Learning (ICML), 2022a.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and
memory-efficient exact attention with io-awareness. In Advances in Neural Information Processing
Systems, 2022b.

Giannis Daras, Nikita Kitaev, Augustus Odena, and Alexandros G Dimakis. Smyrf-efficient attention using
asymmetric clustering. Advances in Neural Information Processing Systems, 33:6476–6489, 2020.

Benjamin L Edelman, Surbhi Goel, Sham Kakade, and Cyril Zhang. Inductive biases and variable creation
in self-attention mechanisms. In International Conference on Machine Learning, pp. 5793–5831.
PMLR, 2022.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann, Amanda
Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep Ganguli,
Zac Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt, Kamal
Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and Chris
Olah. A mathematical framework for transformer circuits. Transformer Circuits Thread, 2021.
https://transformer-circuits.pub/2021/framework/index.html.

Bruce Fischl. Freesurfer. Neuroimage, 62(2):774–781, 2012.

Robert S Fisher, Carlos Acevedo, Alexis Arzimanoglou, Alicia Bogacz, J Helen Cross, Christian E Elger,
Jerome Engel Jr, Lars Forsgren, Jacqueline A French, Mike Glynn, et al. Ilae official report: a practical
clinical definition of epilepsy. Epilepsia, 55(4):475–482, 2014.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of diverse text for language
modeling. arXiv preprint arXiv:2101.00027, 2020.

Karan Goel, Albert Gu, Chris Donahue, and Christopher Ré. It’s raw! audio generation with state-space
models. arXiv preprint arXiv:2202.09729, 2022.

Aaron Gokaslan, Vanya Cohen, Ellie Pavlick, and Stefanie Tellex. Openwebtext corpus, 2019.

Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher Ré. Hippo: Recurrent memory with opti-
mal polynomial projections. Advances in Neural Information Processing Systems, 33:1474–1487, 2020.

Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri Rudra, and Christopher Ré. Combining
recurrent, convolutional, and continuous-time models with linear state-space layers. Advances in
neural information processing systems, 34, 2021.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured state
spaces. In The International Conference on Learning Representations (ICLR), 2022a.

Albert Gu, Ankit Gupta, Karan Goel, and Christopher Ré. On the parameterization and initialization
of diagonal state space models. In Advances in Neural Information Processing Systems, 2022b.

Albert Gu, Isys Johnson, Aman Timalsina, Atri Rudra, and Christopher Ré. How to train your hippo: State
space models with generalized orthogonal basis projections. arXiv preprint arXiv:2206.12037, 2022c.

11

http://www.jstor.org/stable/2003354

Published as a conference paper at ICLR 2023

Ankit Gupta, Albert Gu, and Jonathan Berant. Diagonal state spaces are as effective as structured state
spaces. In Advances in Neural Information Processing Systems, 2022.

Curtis Hawthorne, Andrew Jaegle, Cătălina Cangea, Sebastian Borgeaud, Charlie Nash, Mateusz
Malinowski, Sander Dieleman, Oriol Vinyals, Matthew Botvinick, Ian Simon, et al. General-purpose,
long-context autoregressive modeling with perceiver ar. arXiv preprint arXiv:2202.07765, 2022.

Sepp Hochreiter and Jürgen Schmidhuber. Lstm can solve hard long time lag problems. Advances in
neural information processing systems, 9, 1996.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Training
compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Sara Hooker. The hardware lottery. Communications of the ACM, 64(12):58–65, 2021.

Sheng-Chun Kao, Suvinay Subramanian, Gaurav Agrawal, and Tushar Krishna. An optimized dataflow
for mitigating attention performance bottlenecks. arXiv preprint arXiv:2107.06419, 2021.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are RNNs:
Fast autoregressive transformers with linear attention. In International Conference on Machine
Learning, pp. 5156–5165. PMLR, 2020.

Feyza Duman Keles, Pruthuvi Mahesakya Wijewardena, and Chinmay Hegde. On the computational
complexity of self-attention. arXiv preprint arXiv:2209.04881, 2022.

Michael Patrick Kerr. The impact of epilepsy on patients’ lives. Acta Neurologica Scandinavica, 126:
1–9, 2012.

Maedbh King, Carlos R Hernandez-Castillo, Russell A Poldrack, Richard B Ivry, and Jörn Diedrichsen.
Functional boundaries in the human cerebellum revealed by a multi-domain task battery. Nature
neuroscience, 22(8):1371–1378, 2019.

Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In The
International Conference on Machine Learning (ICML), 2020.

Shengjie Luo, Shanda Li, Tianle Cai, Di He, Dinglan Peng, Shuxin Zheng, Guolin Ke, Liwei Wang,
and Tie-Yan Liu. Stable, fast and accurate: Kernelized attention with relative positional encoding.
Advances in Neural Information Processing Systems, 34:22795–22807, 2021.

Christopher J Markiewicz, Krzysztof J Gorgolewski, Franklin Feingold, Ross Blair, Yaroslav O
Halchenko, Eric Miller, Nell Hardcastle, Joe Wexler, Oscar Esteban, Mathias Goncavles, et al. The
openneuro resource for sharing of neuroscience data. Elife, 10:e71774, 2021.

Harsh Mehta, Ankit Gupta, Ashok Cutkosky, and Behnam Neyshabur. Long range language modeling
via gated state spaces. arXiv preprint arXiv:2206.13947, 2022.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture models,
2016.

Eric Nguyen, Karan Goel, Albert Gu, Gordon Downs, Preey Shah, Tri Dao, Stephen Baccus, and
Christopher Ré. S4nd: Modeling images and videos as multidimensional signals with state spaces.
In Advances in Neural Information Processing Systems, 2022.

NVIDIA. Nvidia Tesla V100 GPU architecture, 2017.

NVIDIA. Nvidia A100 tensor core GPU architecture, 2020.

NVIDIA. cufft v11.7.1 documentation, 2022a. https://docs.nvidia.com/cuda/cufft/index.html.

NVIDIA. Nvidia H100 tensor core GPU architecture, 2022b.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep Ganguli,
Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson Kernion, Liane
Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish,
and Chris Olah. In-context learning and induction heads. Transformer Circuits Thread, 2022.
https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html.

12

Published as a conference paper at ICLR 2023

Alan V Oppenheim. Applications of digital signal processing. Englewood Cliffs, 1978.

Alan V Oppenheim, John R Buck, and Ronald W Schafer. Discrete-time signal processing. Vol. 2. Upper
Saddle River, NJ: Prentice Hall, 2001.

Markus N Rabe and Charles Staats. Self-attention does not need O(n2) memory. arXiv preprint
arXiv:2112.05682, 2021.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Jack W Rae, Anna Potapenko, Siddhant M Jayakumar, Chloe Hillier, and Timothy P Lillicrap.
Compressive transformers for long-range sequence modelling. In International Conference on
Learning Representations, 2019.

Khaled Saab, Jared Dunnmon, Christopher Ré, Daniel Rubin, and Christopher Lee-Messer. Weak
supervision as an efficient approach for automated seizure detection in electroencephalography. NPJ
digital medicine, 3(1):1–12, 2020.

Vinit Shah, Eva Von Weltin, Silvia Lopez, James Riley McHugh, Lillian Veloso, Meysam Golmohammadi,
Iyad Obeid, and Joseph Picone. The temple university hospital seizure detection corpus. Frontiers
in neuroinformatics, 12:83, 2018.

Mohammad Khubeb Siddiqui, Ruben Morales-Menendez, Xiaodi Huang, and Nasir Hussain. A review
of epileptic seizure detection using machine learning classifiers. Brain informatics, 7(1):1–18, 2020.

Siyi Tang, Jared Dunnmon, Khaled Kamal Saab, Xuan Zhang, Qianying Huang, Florian Dubost, Daniel
Rubin, and Christopher Lee-Messer. Self-supervised graph neural networks for improved electroen-
cephalographic seizure analysis. In International Conference on Learning Representations, 2021.

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao, Liu Yang,
Sebastian Ruder, and Donald Metzler. Long range arena: A benchmark for efficient transformers.
In International Conference on Learning Representations, 2020.

Armin W Thomas, Christopher Ré, and Russell A Poldrack. Self-supervised learning of brain dynamics
from broad neuroimaging data. arXiv preprint arXiv:2206.11417, 2022.

David C Van Essen, Stephen M Smith, Deanna M Barch, Timothy EJ Behrens, Essa Yacoub, Kamil
Ugurbil, Wu-Minn HCP Consortium, et al. The wu-minn human connectome project: an overview.
Neuroimage, 80:62–79, 2013.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention with
linear complexity. arXiv preprint arXiv:2006.04768, 2020.

Pete Warden. Speech commands: A dataset for limited-vocabulary speech recognition. arXiv preprint
arXiv:1804.03209, 2018.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric
Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing:
System Demonstrations, pp. 38–45, Online, October 2020. Association for Computational Linguistics.
URL https://www.aclweb.org/anthology/2020.emnlp-demos.6.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. OPT: Open pre-trained transformer language
models. arXiv preprint arXiv:2205.01068, 2022.

13

https://www.aclweb.org/anthology/2020.emnlp-demos.6

Published as a conference paper at ICLR 2023

A RELATED WORK

State space models have shown promise in modeling sequential data, including time series data (Gu
et al., 2022a), audio (Goel et al., 2022), and visual data (Nguyen et al., 2022). Our model builds off work
on simplifying and parameterizing diagonal versions of S4 (Gu et al., 2022b; Gupta et al., 2022; Gu et al.,
2022c). Gated state spaces (Mehta et al., 2022) also aim to adapt SSMs to language modeling, but our
results suggest that the GSS model does not perform as well as H3 (or even as well as earlier SSMs like
S4D). The idea to combine SSMs with attention in hybrid models is not new; Mehta et al. (Mehta et al.,
2022) also showed that interleaving attention with their GSS layer can improve performance, which we
also validate on our OpenWebText experiments. These positive results suggest that attention and SSMs
are complementary, and that hybrid models may be a promising direction for future work.

Large language foundation models (Bommasani et al., 2021) have demonstrated the power of scaling
attention-based networks to billions of parameters and training them on trillions of tokens (Hoffmann
et al., 2022). Understanding the mechanistic basis (Elhage et al., 2021) behind these models may yield
insights into better design choices for future models. These and similar explorations have informed the
design of H3 and our selection of synthetic languages. A number of recent works have also explored
how to address the shortcomings of attention by approximating the attention computation (Wang et al.,
2020; Katharopoulos et al., 2020; Choromanski et al., 2020; Tay et al., 2020; Kitaev et al., 2020; Daras
et al., 2020). We believe these efforts are complementary to SSMs, and we are excited to see how they
can be combined in future work.

Linear attention (Katharopoulos et al., 2020) and classical sequence models like RNNs serve as
inspiration for H3. Appendix B draws a direct connection between linear attention and LTI systems.
Luo et al. (Luo et al., 2021) also propose a variant of linear attention that can achieve O(nlogn) scaling
in sequence length. Appendix F evaluates linear attention on language modeling, and finds that it
underperforms exact attention, whereas H3 outperforms attention. The multiplicative interactions in
H3 are reminiscent of gating mechanisms in LSTMs (Hochreiter & Schmidhuber, 1996) and GRUs (Cho
et al., 2014), which suggests that architectural lessons from these sequence models may be useful for
adapting SSMs to language modeling. A number of algorithms for scaling attention to longer sequences
have also been proposed, such as Transformer-XL (Dai et al., 2019), Reformer (Kitaev et al., 2020),
Performer (Choromanski et al., 2020), and Perceiver AR (Hawthorne et al., 2022). Some of these
approaches underperform exact attention on language modeling, and may be slower in wall-clock
speed (Dao et al., 2022b). A thorough comparison of these alternatives to exact attention and how well
they scale in model size and amount of training data is fruitful future work.

FFT algorithms are used in a wide variety of applications, including signal processing (Oppenheim,
1978), control theory (Brogan, 1974), and more. Various algorithms for computing the FFT have existed
for decades (Oppenheim et al., 2001). We hope our work on appealing to these classic algorithms to
accelerate new applications such as learned SSMs will inspire future algorithmic exploration, even if
hardware is not designed for them (Hooker, 2021).

B LINEAR ATTENTION AND TIME-VARYING SYSTEMS

We draw some connections from linear attention to LTI systems and SSMs.

We first present linear attention as a linear time-varying system, and show how converting it to a linear
time-invariant system matches H3.

Linear time-varying system and linear attention In general, a layer in a sequence model takes in
a sequence and outputs a sequence. Many of these take the form of a linear time-varying system (thanks
to the Picard-Lindelof theorem, nonlinear systems can be approximated by a series of linear system):

xi=Aixi−1+Biui,

yi=Cixi+Diui.

This has the same form as SSMs (Section 2), except that the matrices can depend on the timestep.

Recall the form of linear attention from Section 2. For the purpose of approximation, we ignore the denomi-
nator in linear attention Section 2 (i.e., assuming di=1). We see thatSi is just a cumulative sum, satisfying
the recurrence Si+1=Si+ϕ(Ki+1)V

T
i+1. Similarly, Oi satisfies the recurrence Oi+1=ϕ(Qi+1)

TSi+1.
This is a linear time-varying system of the form xi+1=Axi+Bui+1 and yi+1=Ci+1xi+1 (with A=I ,
B=I , ui=ϕ(Ki)V

T
i , Ci=ϕ(Qi)

T). That is, A and B are constant, but C is time-variant.

14

Published as a conference paper at ICLR 2023

To convert this into a linear time-invariant version, we treat the time-variant Ci as a post-processing step.
We instead of a fixed C for the LTI. This yields an LTI:

xi+1=Axi+Bϕ(Ki)V
T
i ,

yi+1=Cxi,

for some matrices A,B,C that are learned. We then apply post-processing by multiply yi+1 with ϕ(Qi)
T .

Replacing ϕ(Ki) with a shift SSM yields an analogue to H3.

C METHOD DETAILS

Since we have described the forward pass in Section 3, we describe here the backward pass in details.

C.1 BACKWARD PASS

We show how to compute the backward pass in a fused kernel.

Let y=f ∗u+Du. In our case, we have f and u have the same length, so they are symmetric as far as
the convolution is concerned.

Suppose we are given dy = ∂l
∂y (where l is some loss function). We wish to compute du, df , and dD

(which are ∂l
∂u , ∂l

∂f , and ∂l
∂D , respectively).

The most challenging part is computing the gradient through the convolution operator - but we’ll see that we
can re-use our FFT infrastructure for it. The rest of the operations are straightforward; we have dD=dyuT .

Gradient of the Convolution Here, we’ll discuss how to compute df by integrating w.r.t. the
convolution operator ∗. As an immediate consequence, we’ll be able to compute du as well.

Since f and u are the same length L, f ∗u and u∗f have the same result. Thus, we’ll start from u∗f here.

For some notation, let O=u∗f . Then, dO=dy. Recall that O[i]=
∑︁i−1

j=0u[i−j]f [j].

We’ll start by extending u and f with zeros, to give them length 2L. Let u′=[u[0],u[1],...,u[L−1],0,...,0],
and f ′ extended similarly. Let O′=u′∗f ′, and O=O′[:N]. Assume that we have all the values of dO′

(we only have them for the first half, but we’ll see that it doesn’t matter in the end).

Let’s construct a Toeplitz matrix Hu′ such that u′∗f ′=Hu′f ′:

Hu′ =

⎡⎢⎢⎣
u′[0] 0 ... 0
u′[1] u′[0] ... 0

...
...

. . .
...

u′[2L−1] u′[2L−2] ... u′[0]

⎤⎥⎥⎦
Since, we have u′[i]=f ′[i]=0 for i≥L, we can actually fill in the zeros of the above matrix as well:

Hu′ =

⎡⎢⎢⎣
u′[0] u′[2L−1] ... u′[1]
u′[1] u′[0] ... u′[2]

...
...

. . .
...

u′[2L−1] u′[2L−2] ... u′[0]

⎤⎥⎥⎦
Then, we can use the matrix multiplication chain rule to find that:

df ′=HT
u′dO′=

⎡⎢⎢⎣
u′[0] u′[1] ... u′[2L−1]

u′[2L−1] u′[0] ... u′[2L−2]
...

...
. . .

...
u′[1] u′[2] ... u′[0]

⎤⎥⎥⎦

=

⎡⎢⎢⎣
u′[0] u′[−(2L−1)] ... u′[−1]
u′[−1] u′[0] ... u′[−2]

...
...

. . .
...

u′[−(2L−1)] u′[−(2L−2)] ... u′[0]

⎤⎥⎥⎦,
where we use u′[−i] to mean u′[2L− i]. Notice that this matrix has the same format as Hu′! Let
u′
∗=[u′[0],u′[−1],...,u′[−(2N−1)]]. Then:

df ′=(u′
∗∗dO′).

So how do we compute u′
∗ efficiently? Naively, we might incur some nasty memory access issues. But

a nice property about the DFT saves us!

Let U [i] be the i-th element of the DFT of a signal u. Note that U [i] is complex. We have:
U∗[i]=U [−i],

15

Published as a conference paper at ICLR 2023

where here the ∗ represents the complex conjugate. We can use this property to compute df ′ efficiently:
df ′=u′

∗∗dO′= iFFT (FFT ∗(u′)FFT (dO′))⇒df=df ′[:N]= iFFT (FFT ∗(u′)FFT (dy′))[:N],
where FFT ∗ denotes taking the complex conjugate of the FFT, and dy′ denotes dy, padded with zeros.

Computing du We can use this same trick to compute du, except we need to add in the contribution
from the original Du term. We end up with:

du=du′[:N]+Ddy= iFFT (FFT ∗(f ′)FFT (dy′))[:N]+Ddy.

C.2 STATE-PASSING MATRICES

We show how to derive Mux for the state update in our state-passing algorithm.

We wish to construct a matrix vMux ∈ Rm×N ′
such that Muxu =

∑︁N ′

i=1 A
N ′−1Bui. Note that

AiB ∈ Rd×1 is a column vector. We can simply stack these column vectors to form a matrix:
Mux=[AN ′−1B,AN ′−2B,...,B].

D PROOFS

We show parameterizations of H3 and attention that solves the associative recall task. We prove Propo-
sition 1 and Proposition 2.

D.1 H3 EXPRESSIVITY

This section formally describes a parameterization of H3 that solves the associative recall task.

D.1.1 EXAMPLE LANGUAGE Λ

Consider a simple language with 4 keys and 4 values. For concreteness, we will use the keys
{k1,k2,k3,k4} = LK and the values {v1,v2,v3,v4} = LV , i.e. our language L = LK ∪LV . Given a
sequence of key-value pairs with one key at the end, we want a model to generate the value associated
with the key at the end. Assume that the key at the end appeared in the sequence.

More formally, let N+1 be the length of the sequence, N even. The language Λ consists of sequences
x ∈ LN+1. Each sequence has an associated mapping fx : LK → LV . For each sequence, the odd
indices are randomly sampled from LK , for x1, x3, ... , xN−1. The even indices are defined by fx:
x2∗i = fx(x2∗i−1), for 1≤ i≤N/2. The last item in the sequence xN+1, is randomly drawn from the
keys that have appeared in x already, i.e. xN+1∈∪{x1,x3,...,xN−1}. The goal of this language modeling
task is to produce fx(xN+1) at the end of the sequence.

D.1.2 H3 MODEL TO SOLVE Λ

We describe a toy H3 model that can solve Λ.

Consider a model consisting of an embedding layer, an H3 model, and an output projection with softmax.
Recall that d is the dimension of the H3 model, m is the dimension of its hidden states, and H is the
number of heads. Let d=8,m=2,H=4. Let the embedding layer map each key ki to the ei basis vector,
and map each value vi to the e4+i basis vector.

Let Bshift and Cshift denote the parameters of the shift SSM, and Adiag, Bdiag, and Cdiag denote the
parameters of the diagonal SSM (let D be zero for both). Let Bshift=Bdiag=Cdiag=e1. Let Cshift

= [01]. Let Adiag be a diagonal matrix with 1s along its diagonal for each H3.

Remark. The action of a diagonal SSM parameterized by Adiag, Bdiag, and Cdiag is to act as a
cumulative sum over all its input. The action of shift SSM parameterized by Bshift and Cshift is to shift
its input by one time step.

Recall that the H3 layer maps its input to Q, K, and V by applying uWQ, uWK , and uWV . Let WQ

and WK be the following:

WQ=WK=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
16

Published as a conference paper at ICLR 2023

Recall that Q and K are split into H heads (Q(i),K(i) for i ∈ {1,2,3,4}), each of which is sent to an
independent H3.

Remark. The action of WQ and WK are to “assign” each key to a different H3 head, i.e., Q(i)
t is only

non-zero when xt = ki. Similarly, K
(i)

t is only non-zero when xt−1 = ki (since Kt =Kt−1 due to the
time delay of the shift SSM).

Let WV be the following:

WV =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
Remark. The action of this matrix is to encode the input value (as “binary”), and send it to all H3 heads.
E.g., V(1)

t =V
(2)
t =V

(3)
t =V

(4)
t for all i, and V

(i)
t =[0,0]⇔xt=v1, V(i)

t =[0,1]⇔xt=v2, etc.

We claim that for xN+1=ki, O
(i)
N+1 will be a multiple of the binary encoding of fx(ki), and all the other

heads of the output O(j)
N+1,1≤j≤4,j ̸= i, will be zero. Let the output projection WO be such that, with

a non-linearity afterwards, it inverts the binary encoding to produce the embedding of the desired output
fx(ki). We will assume such a projection exists, proof left to the reader.
Proposition 3. The model described above solves the associative recall problem for the language Λ.

Proof. Proof sketch. WLOG, let xN+1 = ki. Then Q(i) = [1,1], but Q(j) = [0,0] for j ̸= i. Thus,
O(j)=[0,0] for j ̸= i due to the multiplicative interaction.

Since Q(i)=[1,1], O(i) is the output of the diag SSMs in the H3 head corresponding to ki (recall that
each head has two independent shift SSMs and two independent diag SSMs). The output of the diag
SSMs are the cumulative sum of all the inputs they have seen in the sequence.

For one of the diag SSMs to see a non-zero input, its preceding shift SSM must have a non-zero output.
The only times t this can happen in the sequence are when xt−1=ki. But then xt= fx(ki). Thus, the
input to the diag SSMs are precisely the binary encoding of fx(ki). Then the output O(i) is a multiple
of the binary encoding of fx(ki), WO decodes this output to the embedding of fx(ki).

D.2 ATTENTION EXPRESSIVITY

We provide an informal sketch of a two-layer attention model that can solve the associative recall task,
inspired by the construction of (Olsson et al., 2022). The first layer of the attention model outputs the
embedding of the previous token in the sequence, and concatenates it with the current token in the
sequence. The second layer compares the current token to the previous token embeddings, and outputs
the paired embedding when there is a match—which is exactly the key-value lookup.

The construction proceeds as follows:

• In the first layer, let Qi be mapped to the positional embedding of token xi−1 (e.g., pi−1 if pi
denotes the positional embedding of token xi), and Ki be mapped to the positional embedding
of token xi.

• The attention matrix A is computed as QKT , with a causal mask (i.e., Ai,j=0 if j>i).
• Then, softmax(A) approximates the shift matrix (see Section 3).
• Let Vi be an encoding of token xi, constrained to the first half of the hidden dimension.
• Then, for output O=softmax(QKT)V , the first half of the vector Oi is the encoding of token
xi−1.

• In the second layer, assume that you have a skip connection, that maps the encoding of the input
token xi to the second half of the vector Oi.

• Then, the input to the second layer encodes both xi−1 and xi.
• In the second layer, let Qi extract the encoding of xi, and let Ki extract the encoding of xi−1.

17

Published as a conference paper at ICLR 2023

• Apply a causal mask on QKT . Then, the value of softmax(QKT)i,j is large if xi=xj−1, and
i>j−1.

• Let Vi extract the encoding of xi.

• Then, output Oi is the sum of values xj such as xj−1=xi. But then Oi is exactly a lookup of
the token that came after xi when it appeared previously in the sequence—which exactly solves
associative recall.

We note that the above construction requires the ability for the positional encodings to select the previous to-
ken based on the dot product and softmax, and for token comparisons through the dot product and softmax.

D.3 H3 COMPLEXITY

We prove Proposition 1, which states that the H3 layer takes O(d2N+dN logN) time and O(dN) space
for sequence length N and hidden dimension d.

Proof. We first analyze the time complexity. Consider the matrix multiplies in H3, where the input
u∈RN×d is multiplied by three weight matrices of size d×d. These take time O(d2N). The output O is
also multiplied with an output projection weight matrix of size d×d, also taking time O(d2N). Therefore
the matrix multiplies take time O(d2N).

Now consider the two SSMs in H3. The first SSM involves a convolution of K ∈ RN×d (in the
N -dimension) with a kernel of size N×d. This reduces to an FFT, a pointwise multiply, and an inverse
FFT (in the N -dimension). This takes time O(dN logN). The second SSM involves H convolutions,
inputs of size N×dh×dh, along the N -dimension. This takes time:

O(Hd2hN logN)=O(ddhN logN)=O(dN logN),

where we use the fact that dh = d/H and that dh = O(1). Therefore the two SSMs take total time
O(dN logN). As a result, the H3 layer takes time:

O(d2N+dN logN).

Now we analyze the space complexity. The matrix multiplies all take space O(dN). The FFTs, pointwise
multiplies, and inverse FFTs of the two SSMs takes O(dN) space and O(Hd2hN)=O(ddhN)=O(dN)
space. Therefore the overall space complexity is O(dN).

D.4 STATE PASSING CORRECTNESS

We prove Proposition 2. We assume that the BLOCKFFTCONV algorithm is correct, i.e., the output
y=BLOCKFFTCONV(f,u) is equal to the output of an SSM with convolution kernel f and input u.

Proof. Proof by induction on C.

Base case: C=1. WTS y=[y(1)], Mxxx
(0)
N ′ +Muxu

(1)=xN .

In this case, note thatN=N ′. Theny(1)=Mxyx
(0)
N ′+BLOCKFFTCONV(f,u1)=BLOCKFFTCONV(f,u1).

But u=u1, so y=y(1)=[y(1)].

Additionally, by the recursive definition of a state space,

xN =AN−1x0+

N∑︂
i=1

AN−iBui

=AN ′−1x0+

N ′∑︂
i=1

AN ′−iBu
(1)
i

=Mxyx
(0)
N ′ +[AN ′−1B,AN ′−2B,...,B]u(1).

=Mxyx
(0)
N ′ +Muxu

(1).

18

Published as a conference paper at ICLR 2023

Inductive step: C>1. Assume that [y(1),...,y(C−1)]=y[:N ′(C−1)], and x
(C−1)
N ′ =x(C−1)N ′ . WTS

that y(C)=y[N ′(C−1) :N ′C], and Mxxx
(C−1)
N ′ +Muxu

(C)=xN . Let t denote N ′(C−1).

For i>(C−1)N ′, we have:
yi=CAi−tBxt+(f ∗[ut,ut+1,...,ut+N ′−1])i−t+Dui

=CAi−tBxt+(f ∗u(C))i−t+Dui

=CAi−tBxt+BLOCKFFTCONV(f,u(C))i−N ′

=(Mxyxt+BLOCKFFTCONV(f,u(C)))i−N ′

=(Mxyx
(C−1)
N ′ +BLOCKFFTCONV(f,u(C)))i−N ′

=y
(C)
i−N ′ .

Thus, y(C)=y[N ′(C−1) :N ′C].

Similarly,

xN =AN ′−1x(C−1)N ′+

N ′∑︂
i=1

AN ′−iBui+t

=AN ′−1x
(C−1)
N ′ +

N ′∑︂
i=1

AN ′−iBu
(C)
i

=Mxxx
(C−1)
N ′ +[AN ′−1B,AN ′−2B,...,B]u(C)

=Mxxx
(C−1)
N ′ +Muxu

(C).

E EXPERIMENTAL DETAILS

E.1 SYNTHETICS

Our synthetic tasks, inspired by (Olsson et al., 2022), are designed to mimic the in-context learning
capability of large language models—the ability to learn from examples in the input sequence, and use
information from the input to generate the right answer for the output. For example, the induction head
task requires memorizing the token that appears after the special ⊢ token in the input sequence, and the
associative recall task requires learning the mapping from keys to tokens from the input sequence.

We evaluate synthetics by training two-layer versions of our GPT models, with different modules
replacing attention. We train models with inner dimension 32, and MLP dimension 128. For all the
synthetics, we use a learning rate of 5e-4 and a weight decay of 0.1. We sample 5000 training examples
and 500 test examples from the same distribution, and we train for 200 epochs. Again, we use embedding
dropout of 0.1 and residual dropout of 0.0.

E.2 MODEL ARCHITECTURE

For our 125M models, we use 12 layers, with hidden dimension 1024, and MLP dimension 4096. For
our 355M models, we use 24 layers, with the same hidden dimension and MLP dimension. The 1.3B
models have 24 layers, with hidden dimension 2048, and MLP dimension 8192. The 2.7B models have
32 layers, hidden dimension 2560, and MLP dimension 10240. The hybrid models have 12, 16, 16, and
20 heads for the 125M, 355M, 1.3B, and 2.7B models, respectively. The 125M hybrid model has an
attention layers at layers 1 and 7, the 355M and 1.3B hybrid models have attention layers at layers 1 and
13, and the 2.7B hybrid model has attention layers at layers 10 and 21. For both our hybrid models and
our H3 models, we use SSM state size 64. Our hybrid model uses head dimension 1 for H3, while our
pure H3 model uses head dimension 8. We run models with mixed-precision training, with bf16 for the
MLP’s and attention. When training language models, we use fp32 for the FFTConv.

E.3 OPENWEBTEXT TRAINING

For the 125M models trained on OpenWebText, we follow the training recipe of the Megatron-LM repo.

We use an effective batch size of 512, and use gradient accumulation to fit into available GPU memory.
We use the AdamW optimizer, with learning rate 6e-4 for GPT-2 small and 1.5e-4 for GPT-2 medium, and
weight decay of 0.1. All models are trained with the same hyperparameters for 100K steps. We run all im-
plementations with mixed-precision training (PyTorch AMP). We train models with sequence length 1024.

19

Published as a conference paper at ICLR 2023

We use the Openwebtext dataset, with the GPT-2 BPE tokenizer. We randomly select 0.5% of the dataset
as the validation set, with the rest being used as training set. This random selection of validation set is
done once, and all models are evaluated on the same validation set.

E.4 THE PILE TRAINING

For the 125M and 355M models trained on the Pile, we follow the training recipe of GPT-3. We use batch
size 256, with sequence length 2048. We train our models for 800K steps. We use residual dropout 0.0
and embedding dropout 0.1. We use the AdamW optimizer, with learning rate 6e-4 for the 125M model
and 3e-4 for the 355M model, and a weight decay of 0.1. We use a cosine schedule with 8000 steps for
linear warmup, and decay the learning rate to 10% by 300B tokens, then continue training at 10% learning
rate for another 100B tokens. We suspect that there exist better hyperparameters for H3 language models,
but we did not have the resources to tune them.

For the 1.3B models, we double the batch size to 512 (with sequence length 2048), again following the train-
ing recipe of GPT-3. The number of training steps are halved so that we train on the same number of tokens.

For the Pile dataset, we again use the GPT-2 BPE tokenizer, similar to GPT-3 and GPT-Neo.

E.5 SUPERGLUE

We follow the prompts used in the GPT-3 paper (Brown et al., 2020). For rank classification on the binary
classification tasks, we use yes/no for WSC, WIC, MultiRC, and BoolQ, and we use true/false for RTE.
For CB, we use true/false/neither as the three choices. For COPA and ReCoRD, we use the continuations
provided by the task.

E.6 HARDWARE

All models were trained on either a single 16xA100-40GB node or a cluster of 8xA100-80GB nodes.

F ADDITIONAL EXPERIMENTS

F.1 LRA ACCURACY

We evaluate the accuracy of H3 on LRA. We compare accuracy to S4D (Gu et al., 2022b), since H3 uses
an S4D kernel as a component in its layer. We use the same hyperparameters as S4D, and make the layer
bidirectional by making two copies and running them in opposite directions.

Table 9: LRA performance of H3 compared to S4D.
Model ListOps Text Retrieval Image Pathfinder Path-X Avg

S4D (Gu et al., 2022b) 58.3 87.3 90.7 87.5 93.6 92.3 85.0
H3 57.5 88.2 91.0 87.3 93.0 91.8 84.8

Table 9 shows that H3 performs well on the LRA benchmark, even thought it was designed for
autoregressive language modeling. H3 outperforms S4D on two of the LRA tasks, and comes within
1 point on the others.

F.2 WIKITEXT103

We train 125M-sized models on WikiText103 (Merity et al., 2016) and compare their test PPL to transform-
ers, as well as other variants of efficient or long-range attention. We use the same hyperparameters and
setup as training on OpenWebText. We also provide results from Transformer-XL and Perceiver AR for
context, though the results may not be directly comparable due to differences in model size and tokenizer.

Table 10: Test PPL on WikiText103.
Models PPL

Transformer (125M) 18.6
Hybrid H3 (125M) 18.5

Performer (125M) (Choromanski et al., 2020) 26.8
Reformer (125M) (Kitaev et al., 2020) 26.0

Linear Attention (125M) (Katharopoulos et al., 2020) 25.6
Perceiver AR (358M) (Hawthorne et al., 2022) 18.4

Transformer-XL (285M) (Dai et al., 2019) 18.4

Table 10 shows that the Hybrid H3 model is competitive with Transformers of the same size, as well
as larger models such as the 358M Perceiver AR and 285M Transformer-XL. The hybrid H3 model also
significantly outperforms transformers with performer, reformer, and linear attention.

We note that the Transformer-XL and Perceiver AR PPl numbers are from the original papers, and may
not be directly comparable to our results. In particular, they use a tokenizer with a different vocab size,

20

Published as a conference paper at ICLR 2023

which means that the PPLs are not directly comparable. In addition, the larger vocab size necessitates
a change in the model (adaptive softmax) that may affect performance. The top five numbers in Table 10
are trained with the same setup and are directly comparable to each other.

F.3 PG-19

We evaluate models trained on the PG-19 dataset (Rae et al., 2019), a natural language dataset comprised
of texts from books. We compare the performance of Hybrid H3 compared against Transformers and
linear attention. We use the same setup as evaluating on OpenWebText.

Table 11: Test PPL on PG-19.
Models PPL

Transformer (125M) 17.0
Hybrid H3 (125M) 16.2

Linear Attention (125M) (Katharopoulos et al., 2020) 19.1

Table 11 shows that Hybrid H3 outperforms transformers and linear attention.

F.4 LENGTH EXTRAPOLATION

One property of SSMs is that they can naturally extrapolate to sequence lengths longer than those seen dur-
ing training. We use the synthetic associative recall task to demonstrate that H3 maintains this capability.
To do so, we train a two-layer H3 model on sequences of length 20 drawn from the associative recall syn-
thetic language. Then, we evaluate accuracy of the last token prediction on sequences of length 20 and 40.

Table 12: Accuracy of an H3 model trained for associative recall on sequences of length 20, evaluated on sequences
of length 20 and 40.

Models Acc, seqlen 20 Acc, seqlen 40
H3 99.8 98.4

Table 12 shows that H3 maintains accuracy on sequences of length 40, which is twice the length of the
training sequences.

F.5 SCALING IN NUMBER OF TOKENS

We evaluate how well a Hybrid H3 model scales with the number of tokens seen during training, compared
to a Transformer. For these experiments, we train a 125M Hybrid H3 model and a 125M Transformer on
the Pile for 5B, 10B, and 15B tokens. We use a learning rate of 6e-4, adjusting the warmup to be 1% of the
total training time, and adjusting the decay rate to decay the learning rate to 6e-5 by the end of training.

Table 13: Test PPL on the Pile for models trained with fewer tokens.
Train Tokens Hybrid H3 (125M) Transformer (125M)

5B 11.8 12.7
10B 10.7 11.3
15B 10.2 10.7

Table 13 shows the results. Both the Hybrid H3 model and Transformer model improve as the number
of training tokens increases.

F.6 H3 LANGUAGE MODEL

Table 14: Zero-shot performance on SuperGLUE with rank classification. Best results for each model size in bold.
Model WSC WIC RTE CB MultiRC ReCoRD BoolQ COPA Average

OPT-125M 39.4 52.0 48.7 37.4 58.9 44.9 59.6 60.0 50.1
GPT-Neo-125M 36.5 53.6 53.1 41.1 59.9 39.6 62.2 60.0 50.8

H3-125M 61.5 50.0 53.1 41.1 4.6 15.8 46.4 51.0 40.4
Hybrid H3-125M 39.4 51.4 59.2 48.2 51.4 55.0 59.6 67.0 53.9

Table 15: 3-shot performance on SuperGLUE with rank classification. Best results for each size in bold, second
best underline.

Model WSC WIC RTE CB MultiRC ReCoRD BoolQ COPA Average
OPT-125M 36.5 50.2 47.3 44.6 57.9 44.9 41.9 60.0 47.9

GPT-Neo-125M 38.5 50.0 53.1 17.9 56.3 39.6 62.1 60.0 47.2
H3-125M 63.5 50.0 52.3 48.2 32.6 15.8 37.8 51.0 43.9

Hybrid H3-125M 43.3 49.1 58.1 51.8 48.9 55.0 56.1 67.0 53.7

We report the results of a pure H3 language model on NLP evaluations. We train a 125M model on the Pile
for 400B tokens. Tables 14 and 15 show zero-shot and few-shot performance on SuperGLUE, respectively.

21

Published as a conference paper at ICLR 2023

F.7 GENERATION PERFORMANCE

Table 16: Zero-shot performance on SuperGLUE with generation. Best results for each size in bold, second best
underline.

Model WSC WIC RTE CB MultiRC ReCoRD BoolQ COPA Average
OPT-125M 36.5 48.4 49.8 8.9 39.1 44.9 45.9 60.0 41.7

GPT-Neo-125M 27.9 11.3 45.8 8.9 19.1 39.6 56.4 60.0 33.6
Hybrid H3-125M 0.0 0.0 47.3 8.9 4.4 55.0 47.6 67.0 28.8

GPT-2 medium (355M) 50.0 50.2 16.2 21.4 10.5 53.3 38.4 65.0 38.1
OPT-350M 41.3 34.8 49.5 16.1 23.6 51.4 39.7 60.0 39.6

Hybrid H3-355M 22.1 21.5 47.3 8.9 17.1 62.3 44.4 69.0 36.6

Table 17: 3-shot performance on SuperGLUE with generation. Best results for each size in bold, second best underline.
Model WSC WIC RTE CB MultiRC ReCoRD BoolQ COPA Average

OPT-125M 36.5 49.1 47.3 33.9 35.5 44.8 38.5 60.0 43.2
GPT-Neo-125M 38.5 50.0 53.1 42.9 22.5 39.7 61.2 68.0 47.0

H3-125M 0.0 0.0 47.3 8.9 0.0 15.4 37.8 53.0 20.3
Hybrid H3-125M 43.3 49.1 58.1 41.1 40.3 55.2 49.5 67.0 50.5

GPT-2 medium (355M) 36.5 50.5 47.3 28.6 35.3 53.1 37.8 63.0 44.0
OPT-350M 37.5 50.0 46.2 41.1 40.6 51.3 39.4 59.0 45.6

Hybrid H3-355M 42.3 47.5 50.5 37.5 57.5 61.4 45.4 73.0 51.9

We report results on SuperGLUE for generation. Instead of taking rank classification, we instead let the
model generate a response, and we search for the gold label (i.e., “yes” or “no” for the yes/no questions)
in the output. Tables 16 and 17 report the results. The trends for few-shot learning match with the logit
results, but the hybrid and H3 models perform very poorly in zero-shot performance on some tasks.
In these cases, the models tend to generate long text responses that are not relevant to the answer. The
few-shot learning examples help the models generate answers in a parsable format.

F.8 NON-TEXT SEQUENCE MODELING

We show that H3 outperforms Transformers on two non-text sequence modeling tasks: raw speech
classification and seizure classification over raw EEG signals. H3 sets state-of-the-art performance on
seizure classification and matches S4 on speech classification—which suggests that H3, or one of its
hybrids, may be a strong candidate for a multimodal foundation model. Appendix E gives experimental
details, and Appendix F gives an additional experiment on brain fMRI data.

Seizure Classification from EEG Seizures, which are characterized by uncontrolled brain activity,
are some of the most common neurological disorders (Fisher et al., 2014). Chronic seizures, or epilepsy,
cause a range of psychiatric and psycho-social disorders and impact the lives of roughly one percent
of the global population (Kerr, 2012). The first step to treating epilepsy is manual analysis of scalp EEG
by board-certified neurologists. However, the vast amount of EEG data produced by each patient (which
can be up to days of data) makes manual EEG analysis a costly and time-consuming process.

To mitigate the costs associated with EEG monitoring, recent deep learning techniques have began to
show promise in flagging abnormal EEG segments for potential seizure events (Siddiqui et al., 2020).
A challenge with classifying EEG data is the trade-off between increasing input sequence length, where
more context has been shown to improve seizure classification performance Saab et al. (2020), with the
increased difficulty of training deep learning models on long sequences (e.g., an EEG signal sampled at
200Hz produces 12,000 time steps per minute). As a result, many techniques involve domain-specialized
models and pre-processing steps, such as FFT transforms and graphical representations Tang et al. (2021).

We use the largest publicly available EEG corpus, TUSZ v1.5.2 (Shah et al., 2018), which includes 5,612
EEG signals from 636 patients, with 3,050 annotated seizures. Signals are segmented into 60-second
clips, and split into train/val/test by patient. The train set contains 39765 clips, the val set contains 4351
clips, and the test set contains 10001 clips.

Table 18: Performance (AUROC) on 60s seizure classification from raw EEG (sequence length 12000).
H3 Transformer Dense-CNN CNN-LSTM LSTM 1D-CNN

83.2 x 78.0 68.6 69.3 69.7

We evaluate binary seizure classification of 60-sec EEG clips, sampled at 200Hz, with 19 electrodes:
x ∈ R12,000×19 and y ∈ {0,1} on the TUSZ v1.5.2 (Shah et al., 2018) corpus. Transformers cannot
process the long sequence length of EEG signals without running out of GPU memory, whereas H3
can—and sets state-of-the-art performance.

Raw Speech Classification The SC10 speech commands task (Warden, 2018) contains raw audio
signals one second in length, sampled at 16kHz. Similarly to EEG signals, Transformers cannot process the
long sequence length. Table 19 shows that H3 comes within half a point of S4, the state-of-the-art method.

22

Published as a conference paper at ICLR 2023

Table 19: SC 10-class classification on raw audio (sequence length 16000).
H3 S4 WaveGan-D Transformer Performer CKConv

97.04 97.50 96.25 x 30.77 71.66

Functional Magnetic Resonance Imaging Data Functional Magnetic Resonance Imaging (fMRI)
data are typically represented in four dimensions, indicating the measured blood-oxygen-level-dependent
(BOLD) signal in temporal sequences S = {V1,...,Vt} of 3-dimensional volumes V ∈ Rx×y×z , each
indicating the BOLD signal for all spatial locations of the brain (as defined by three spatial dimensions
x, y, and z). A key challenge for the analysis of fMRI data is the high dimensionality and low sample
size of its datasets, which typically contain many hundred thousand dimensions (i.e., voxels) for each of
several hundred volumes V in each of tens to hundreds of sequences S. In this setting, where the number
of features exceed the number of samples, standard machine learning approaches are prone to overfitting.

In spite of the low sample size of individual datasets, neuroimaging research can be considered as
recently entering a big data era because researchers more frequently share their collected datasets
publicly (Markiewicz et al., 2021). The availability of these data open up the opportunity for pre-training
in neuroimaging at scale, as recently demonstrated by (Thomas et al., 2022), enabling models to utilize
the knowledge that can be learned from public functional neuroimaging data for the analysis of individual
datasets. Specifically, (Thomas et al., 2022) evaluate the performance of several self-supervised learning
frameworks for functional neuroimaging data by first pre-training models on a broad fMRI dataset
spanning 11,980 fMRI runs from 1,726 individuals across 34 datasets and subsequently adapting the
pre-trained models to two downstream mental state decoding datasets (namely, the HCP (Van Essen et al.,
2013) and MDTB (King et al., 2019) datasets). In mental state decoding, predictive models are tasked
with identifying (i.e., decoding) some set of mental states (e.g., answering questions about a prose story
or math problem) from measured brain activity. The authors find that a GPT-based model, pre-trained
in a causal learning framework, performs best in decoding the 20 (HCP) and 26 (MDTB) mental states
of the two downstream datasets.

To evaluate the performance of H3 on fMRI data, we replicate this analysis, using the up- and downstream
fMRI datasets that were published by (Thomas et al., 2022), treating H3 as a drop-in replacement for
the GPT model. To alleviate the high dimensionality challenge of fMRI data, and due to the generally
high spatial correlation of brain activity, the original authors have reduced the volumetric time series S to
a set Θ∈θ1,...,θn of n=1,024 functionally-independent brain networks θ (as defined by the dictionaries
of functional modes (DiFuMo) brain atlas (Dadi et al., 2020)), each describing the BOLD signal for some
subset of voxels vx,y,z∈V , such that the resulting sequences X∈Rt×n describe the activity pattern of
each brain network n for time points t.

In line with (Thomas et al., 2022), we first pre-train models f(·) to predict the distribution of brain activity
for the next time point j of an input sequence X , using a mean absolute error (Lrec) training objective
given the model’s output X̂ ∈ Rt×n: Lrec =

1
n

∑︁n
i=1 |Xj,i − X̂j,i|; X̂t,n = bn +

∑︁
nf(E

X)t,ewe,n;
EX

t,e=ETR+Epos+be+
∑︁

nXt,nwn,e. Here,ETR∈Re andEpos∈Re represent learnable embeddings
for each possible time point and position of an input sequence (for details, see (Thomas et al., 2022)).
As the sampling frequency of fMRI is variable, the same position of an input sequence can correspond to
different time points. Note that f(·) processes the input in a lower-dimensional embedding representation
EX ∈Rt×e (with e=768 dimensions).

We evaluate two model architectures for f(·), namely, the GPT variant used in (Thomas et al., 2022),
with 4 hidden layers and 12 attention heads, and a corresponding H3 variant with 4 hidden layers (with
H =64 and m=1; see section 3). For both models, the sequence of hidden-states outputs of the last
model layer are used to determine X̂ .

Just as (Thomas et al., 2022), we randomly divide the upstream data into distinct training and validation
datasets by randomly designating 5% of the fMRI runs of each of the 34 upstream datasets as validation
data (at a minimum of 2 runs per dataset) and using the rest of the runs for training. During upstream
learning, we then randomly sample sequences of 10 to 100 time points from the fMRI runs and train
models with the ADAM optimizer (with β1 = 0.9, β2 = 0.999, and ϵ = 1e−8) for 5,000 steps at a
mini-batch size of 512, and a learning rate of 5e−4. We apply a linear learning rate decay schedule
(with a warm-up phase of 1% of the total number of training steps), gradient norm clipping at 1.0, and
L2-regularisation (weighted by 0.1). We also apply dropout at a rate of 0.1 for the GPT-based model
(based on (Thomas et al., 2022)) and evaluate three dropout rates for H3: 0.1, 0.2, and 0.3.

We find that the H3 variant trained with 0.2 dropout performs on par with the GPT model, in terms of mean
absolute error (Fig. 3), and therefore continue all further analyses with this model variant. We also find that

23

Published as a conference paper at ICLR 2023

Figure 3: Upstream mean absolute error (Lrec) in training and evaluation datasets over the course of model training.

both models exhibit almost identify Lrec error distributions throughout the brain, with relatively higher
errors in the posterior parietal, occipital, and cingulate cortices as well parts of the limbic system (Fig. 4).

Figure 4: Mean absolute error (Lrec) of the final pre-trained models for each voxel of the brain projected onto the
inflated cortical surface of the FsAverage template (Fischl, 2012).

To adapt the pre-trained models to mental state decoding, we add a learnable classification embedding
Ecls ∈Rn to the end of input sequences X and forward the model’s prediction f(EX) to a decoding
head p(·), composed of a dense hidden layer with e model units (one for each embedding dimension,
with tanh activation) as well as a softmax output layer with one model unit i for each considered mental
state in the data. Accordingly, we adapt models by optimizing a standard cross entropy loss objective:
Lcls=−

∑︁
iyilog p(f(E

X))i, where yi indicates a binary variable that is 1 if i is the correct mental state
and 0 otherwise.

During downstream adaptation, we begin training with the respective pre-trained model parameters and
then allow all parameters to change freely. Similar to (Thomas et al., 2022), we randomly split each of the
two downstream datasets into distinct training and test datasets, each comprising 40 (HCP) or 10 (MDTB)
distinct individuals. We adapt models for 750 steps at a mini-batch size of 256 and a learning rate of 5e−5

24

Published as a conference paper at ICLR 2023

(otherwise using the same learning parameters as for upstream training). Importantly, we repeat each down-
stream training run 20 times using different random seeds, leading to different random splits of the data and
variability in other non-deterministic training factors (such as random initialization and data shuffling).

As for the upstream data, the H3 and GPT-based models generally perform on par in their mental state
decoding performances in the two left-out test datasets (Table 20).

Table 20: Downstream adaptation performance of models pre-trained on fMRI data, averaged over 20 training runs
with varying random seeds. F1-scores are macro-averaged.

Dataset Model Acc. (±95%CI) F1 (±95%CI)
HCP GPT 88.44 (±0.39) 87.24 (±0.39)

H3 88.75 (±0.33) 87.16 (±0.37)
MDTB GPT 89.47 (±0.44) 88.74 (±0.54)

H3 88.25 (±0.45) 85.76 (±0.61)

25

	Introduction
	Background
	State Space Models
	Linear attention

	Hungry Hungry Hippos Layer to Model Discrete Sequences
	Motivation: Synthetic Language Modeling Tasks
	H3 Layer
	Expressivity

	FlashConv: Efficiently Training SSMs
	Fused Block FFTConv
	State-Passing

	H3 Evaluation
	Language Modeling

	FlashConv Evaluation
	Conclusion
	Related Work
	Linear Attention and Time-Varying Systems
	Method details
	Backward Pass
	State-Passing Matrices

	Proofs
	H3 Expressivity
	Example Language Λ
	H3 Model to Solve Λ

	Attention Expressivity
	H3 Complexity
	State Passing Correctness

	Experimental Details
	Synthetics
	Model Architecture
	OpenWebText Training
	The Pile Training
	SuperGLUE
	Hardware

	Additional Experiments
	LRA Accuracy
	WikiText103
	PG-19
	Length Extrapolation
	Scaling in Number of Tokens
	H3 Language Model
	Generation Performance
	Non-Text Sequence Modeling

