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Abstract

We consider 1-dimensional location estimation, where we estimate a parameter
A from n samples A + 7;, with each 7; drawn i.i.d. from a known distribution f.
For fixed f the maximum-likelihood estimate (MLE) is well-known to be optimal
in the limit as n — oo: it is asymptotically normal with variance matching the
Cramér-Rao lower bound of %, where Z is the Fisher information of f. However,
this bound does not hold for finite n, or when f varies with n. We show for arbitrary
f and n that one can recover a similar theory based on the Fisher information of a

smoothed version of f, where the smoothing radius decays with n.

1 Introduction

We revisit a fundamental problem in statistics: consider a translation-invariant parametric model
{f?}oer of distributions, where f?(z) = f(x — ). Suppose there is an arbitrarily chosen unknown
true parameter )\, and we get i.i.d. samples from f*. The task is to accurately estimate A from the
samples. This problem is known as location parameter estimation in the statistics literature.

Location estimation is a well-studied and general model, including as a special case the important
setting of Gaussian mean estimation. In contrast to general mean estimation (where we want to
estimate the mean of a distribution given minimal assumptions such as moment conditions), in
location estimation we are given the shape of the distribution up to shift. This advantage lets us
handle some distributions where mean estimation is impossible (e.g., the mean may not exist), and
lets us aim for higher accuracy than is possible without knowing the distribution.

The classic theory of location estimation is asymptotic, see [ ] for a detailed background. On
the algorithmic side, it is well-known that the maximum likelihood estimator (MLE) is asymptotically
normal. Specifically, as the number of samples n tends to infinity, the distribution of the MLE
converges to a Gaussian centered at the true parameter with variance 1/(nZ), where Z is the Fisher
information of the distribution f:

(f'(x))? { 9 2}
ZT:= | —=—dez= E |(=—logf(z . 1
[ G- B | Gres ) n
Conversely, the celebrated Cramér-Rao bound states that the variance of any unbiased estimator must

be at least 1/(nZ), meaning that the MLE has mean-squared error that is asymptotically at least as
good as any unbiased estimator.

In the last few decades, motivated by an increasing dependence on data for high-stakes applications,
the statistics and computer science communities have shifted focus towards finite-sample and high
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probability theories: 1) asymptotic theories assume access to an infinite amount of data, and can in
certain cases fail to predict the performance of an algorithm with only a finite number of samples—see
the next section for bad examples for the MLE— 2) in high-stakes applications where failure can
be catastrophic, it is crucial for predictions to hold except with exponentially small probability. Yet,
classic results bounding the variance or mean-squared error of estimators, such as the Cramér-Rao
bound, do not readily translate to (tight) high probability bounds.

The goal of this paper is to establish a finite-sample and high probability theory for the location estima-
tion problem, in both the algorithmic bound and the estimation lower bound. Our algorithmic theory
includes a simple yet crucial modification of perturbing samples by Gaussian noise—corresponding
to drawing samples from a Gaussian-smoothed version of the underlying distribution—before per-
forming MLE. We show that this smoothed MLE has finite-n high-probability performance analogous
to the Gaussian tail in the classic asymptotic theory, but replacing the usual Fisher information with a
smoothed Fisher information. The amount of smoothing required decreases with n.

Complementing our upper bound result, we prove a high probability version of the Cramér-Rao
bound for Gaussian-smoothed distributions, showing that for these distributions our sub-Gaussian
accuracy bound, with variance determined by the Fisher information, is optimal to within a 1 4 o(1)
factor.

1.1 Obstacles to a Finite Sample Theory

Before discussing our results in detail, we examine two simple distributions where the asymptotic
theory predictions for the MLE do not hold in finite samples. The first example highlights an
information-theoretic barrier, that no algorithm can attain the performance predicted by the Gaussian
with variance 1/Z. The second example, on the other hand, demonstrates how the MLE can be
“tricked" by the distribution, and how an algorithmic remedy is needed to improve its accuracy.

Gaussian with sawtooth noise Our first example takes a standard Gaussian, and adds a fine-
grained sawtooth perturbation to it over a bounded region at the center of the Gaussian, as shown in
Figure 1a. The fine-grained sawtooth has slope either +A or —A, alternating over “teeth” of width
w, for A > 1 and w < 1/A. This sawtooth perturbation barely changes the pdf, but significantly
changes its derivatives, so the Fisher information [(f)?/f grows from 1 to ©(A?).

Essentially, the sawtooth perturbation makes the distribution easier to align within a tooth, but
not across teeth. The asymptotic analysis reflects that: for n > 1/w? where we can align the
teeth correctly, the MLE is much more accurate on the perturbed distribution. But for n < 1/w?,
no algorithm can do better on the perturbed distribution than on a regular Gaussian.! Thus, the
normalized estimation accuracy depends on n: for large enough n, it has variance (2(2113, but for
smaller n it has variance % Our finite sample theory should reflect this.

Gaussian with a Dirac § spike Our next example adds an even simpler noise to the standard
Gaussian: a Dirac 0 spike with minimal mass ¢, placed sufficiently far away from the Gaussian mean
0 (Figure 1b). This distribution has infinite Fisher information, reflecting that for n > 1/¢, we will

'This can be shown by the KL divergence from shifting an integer number of teeth of distance about 1/+/7.



probably see the spike multiple times, identify it, and get zero estimation error. But for n < 1/e, we
probably will not see the spike, so our error bound will not reflect the overall Fisher information.

Moreover, the MLE performs remarkably badly when n < 1/e. Most likely the Dirac ¢ is not
sampled, yet the Dirac § has infinite density, and so the MLE will match a Gaussian sample to the
spike to get a maximium likelihood solution. As the spike is placed far from the true mean, this leads
to much higher error than (say) the empirical mean.

Fortunately, there is a simple modification to the MLE that solves this issue almost completely: we
add a small amount of Gaussian noise to the distribution. This means we convolve the PDF with a
small Gaussian, and add independent Gaussian noise to each individual sample to effectively draw
from the convolved PDF. The crucial effect of this Gaussian smoothing is that the density of the Dirac
0 will be reduced from infinity down to some constant, and hence MLE will no longer “fit it at any
cost”. On the other hand, the smoothing increases the variance of the distribution and decreases the
Fisher information. This raises the question of determining the best amount of smoothing, which we
address in this paper.

1.2 Our Results and Approach

Based on the discussion of the spiked Gaussian model in the previous section, we propose a finite
sample theory for MLE that uses Gaussian smoothing. As we described, the algorithmic approach is
simple: we perturb all the samples by independent Gaussian noise of variance 72, and convolve the
known model f by the same Gaussian to yield the model f,., before performing MLE.

We state below the basic MLE algorithm (Algorithm 1) in this paper, which adopts the above approach.
Algorithm 1 is a local algorithm, in that it assumes as input an initial uncertainty region guaranteed
to contain the true parameter ), and performs MLE only over this domain. Furthermore, Algorithm 1
attempts only to find a local optimum in the likelihood: it computes the derivative of the log likelihood
function, also known as the score function, and returns any root of the score function.

Algorithm 1 Local MLE for known parametric model

. o . id.d.
Input Parameters: Description of distribution f, smoothing parameter r, samples z1, . .., , '~

f?, uncertainty region [¢, u] containing the unknown \

1. Let s, () be the score function of f;, the r-smoothed version of f.

2. For each sample z;, compute a perturbed sample z; = z; +N(0,72) where all the Gaussian
noise are drawn independently across all the samples.

3. Compute ) that is a root of the empirical score function §(\) = St sp(zh — ) inside the
domain [, u]. A root should exist and picking any root is sufficient.

4. Return \.

Theorem 1.1 states our guarantees on Algorithm 1. Locally around the true parameter—that is, within
r/2 for the r-smoothed distribution—any root of the score function (i.e., local optimum of likelihood)
must be very close to the true parameter A with high probability over the n samples. In particular, the
estimation error is within a 1 4+ o(1) factor of the Gaussian deviation with variance IIT and failure

probability J, where Z,. is the Fisher information of f;..

Theorem 1.1 (Local Convergence). Suppose we have a known model f, that is the result of r-
smoothing, with Fisher information T, and a given width parameter € ,,x and failure probability 6.
Further suppose that r satisfies r > 2emax and there is a sufficiently large parameter ~y such that 1)
VI, > Yemax 2) (log 1)/n < 712 and 3)log 1/(rv/Z,) < %log 1 /loglog 3.

Then, with probability at least 1 — §, for all € € <(1 + O(%)) Qiozgr% ) smax} , §(A —¢) is strictly

negative and §(\ + ) is strictly positive.
In the scenario where we do have an initial uncertainty region for the true parameter A, we would use

Theorem 1.1 to compute the minimal smoothing amount 7 satisfying the assumptions in the theorem,
then use Algorithm 1 with this parameter r, to obtain an accurate estimate of \.



In general, however, we may not have an initial uncertainty region for A. In Section 5, we present
Algorithm 2, a global two-stage MLE algorithm, which first infers an initial uncertainty region by
using quantile information from the distribution f before invoking Algorithm 1, the local MLE
algorithm. The guarantees of Algorithm 2 are summarized here.

Theorem 1.2 (Global MLE guarantees, informal version of Theorem 5.1). Given a model f, let the
r-smoothed Fisher information of a distribution f be I,., and let IQR be the interquartile range of f.
When n > log% > 1, there exists an r* = o(IQR) such that, with probability at least 1 — §, the

output A of Algorithm 2 satisfies

2log 5

A=A (4o =7

In addition to the theoretical framework, Section 7 gives experimental evidence demonstrating that
r-smoothed Fisher information does capture the empirical performance of (smoothed) MLE.

We also prove new estimation lower bounds for the location estimation problem for r-smoothed
distributions. The lower bound statement below (Theorem 1.3) shows that the estimation error

1
(1+0(1))4/ 2:53 is optimal to within a 1 + o(1) factor.

Theorem 1.3. Suppose f, is an r-smoothed distribution with Fisher information L. Given failure
probability § and sample size n, no algorithm can distinguish f, and f*¢ with probability 1 — 6,

where e = (1 — o(1))y/2log % /(nZ,). Here, the o(1) term tends to 0 as § — 0 and log } /n — 0,
for a fixed r*I,.

This lower bound is the standard “two-point" statement that, with n samples, it is statistically
impossible to distinguish between the distributions f and f shifted by a small error (in the z-axis)
with probability 1 — §. Even though there are known standard inequalities on distribution distances
and divergences for proving lower bounds of this form, the technical challenge is that they generally
yield estimation lower bounds that are only tight to within constant factors, instead of the 1 + o(1)
tightness we desire. This paper presents new analysis to derive a 1 4 o(1)-tight lower bound, which
may be of independent interest.

1.3 Notations

We denote the shift-invariant model we consider by the distribution f, and the distribution with
parameter \ by f*(x) = f(x — )\). Denote by Z, the Gaussian with mean 0 and variance 2. The
r-smoothed model for f is denoted by f,. (and similarly, for parameter )\, f;\) which is distributed as
Y = Z, + X where X < f independently from the Gaussian perturbation Z,.

The log-likelihood function of f is denoted by [ = log f. The score function is the derivative of [,
denoted by s = I’ = f’/ f. We use the notation s, to denote the score function of f,.. The Fisher Infor-
mation of f is denoted by I = E,._¢[s?(x)]. Similarly, the Fisher Information of f,. is denoted by I,.

2 Related Work

Location estimation and MLE in general has been extensively studied under the lens of asymptotic
statistics. See [ ] for an in-depth treatment. The MLE has also been studied under the finite-
sample setting [ s s ], but these prior works impose restrictive regularity conditions
and also loses (at least) multiplicative constants in the estimation accuracy. In contrast, our work
modifies the MLE to include smoothing, and we give analyses that are tight to within 1 + o(1) factors.

There has also been a flurry of recent interest in the related mean estimation problem, in the finite-
sample and high-probability setting. Recall that mean estimation does not assume knowledge of the
shape of the distribution, but instead imposes mild moment conditions, for example the finiteness of
the variance. Catoni [ ] initiated a line of work studying the statistical limits of univariate mean
estimation to within a 14 o(1) factor, ending recently with the work of Lee and Valiant [ ], which
proposed and analyzed an estimator with accuracy optimal to within a 1 + o(1) factor for all distri-
butions with finite variance. See also the recent work of Minsker [ ] for an alternative solution.



Beyond the differences in assumptions, the main distinction between location and mean estimation
lies in their statistical limits. In mean estimation, the optimal accuracy is captured by the variance
of the underlying distribution, scaling linearly with the standard deviation. On the other hand, the
classic asymptotic theory suggests that the Fisher information captures the optimal accuracy for
location estimation, scaling with the reciprocal of the square root of the Fisher information. It is
a well-known fact that the Fisher information is always lower bounded by the reciprocal of the
variance [ ], which shows that location estimation is always easier than mean estimation in the
infinite-sample regime. In this work, we refine this understanding, showing that in finite samples, the
optimal accuracy for location estimation is instead given by the r-smoothed Fisher information in
place of the unsmoothed Fisher information.

3 Tails and boundedness of r-smoothed score and Fisher information

Recall that given a distribution f, its r-smoothed version f,. is distributed as Y = X + Z,. where
X ~ fand Z,. ~ N(0,7?) and X, Z, are independent.

Both our algorithmic and lower bound theories are centered around r-smoothed distributions. There-
fore, we state here basic concentration and boundedness properties of r-smoothed score function and
Fisher information, which we use in the rest of the paper. We prove all these lemmas in Appendix A.

First, we show that the r-smoothed Fisher information Z,. is upper bounded by 1/r2 and can be lower
bounded using the interquartile range of f.

Lemma 3.1. Let T, be the Fisher information of an r-smoothed distribution f,. Then, T, < 1/r.

Lemma 3.2. Let 1, be the Fisher information for f,, the r-smoothed version of distribution f. Let
IQR be the interquartile range of f. Then, I, > 1/(IQR + r)2. Here, the hidden constant is a

~

universal one independent of the distribution f and independent of r.

Next, we show that, fixing a point close to the true parameter A, the empirical score function evaluated
at that point will concentrate around its expectation for smoothed distributions.

Corollary 3.3. Let f be an arbitrary distribution and let f, be the r-smoothed version of f. That is,
(@=y)?
T |. Consider the parametric family of distributions f})(z) = f.(x — \).

— 1 -
fr(@) = Ezﬂ—f[ﬁe
Suppose we take n i.i.d. samples vy, . ..,y, < f, and consider the empirical score function 3

mapping a candidate parameter Ao % > Sr(yi — A), where s, is the score function of f,.

Then, for any |e|< r/2,

2 E,[s2(zx —¢)],Z,)log2 15log 2
Pr |3\ +e)— E [8(30—5)]|2\/ max(Bolsp(z — ) I)log 5 | 15185 ) _
i T fr n nr

yi ~

4 A Finite Sample Analysis of r-smoothed Local MLE

In this section, we analyze Algorithm 1, which is our version of local MLE with r-smoothing applied.
Algorithm 1 takes an initial uncertainty region that the true parameter is guaranteed to lie in, and uses
the model and the initial interval to refine the estimate to high accuracy. We first present a simpler
and easier-to-interpret version of our result, Theorem 1.1, which we stated in Section 1.2.

Recall that Algorithm 1 computes the empirical score function, and returns any of its roots. The
theorem thus states that, with high probability, for any point A + & with |¢] too large, the empirical
score function must be non-zero and thus A\ + ¢ will not returned as the estimate. More precisely,
given an initial interval of length €,y as well as the failure probability J, the theorem assumes that
the smoothing parameter r is sufficiently large (conditions 1 and 3 in the theorem) and that the sample
size n is sufficiently large, and guarantees an estimation error that is within a 1 4+ o(1) factor of the
error predicted by the Gaussian with variance 1/Z,., where Z, is the Fisher information of f,..

Theorem 1.1 (Local Convergence). Suppose we have a known model f,. that is the result of r-
smoothing, with Fisher information I, and a given width parameter .5 and failure probability 9.



Further suppose that r satisfies r > 2emax and there is a sufficiently large parameter ~y such that 1)
VI, > Yemax 2) (log ) /n < 7—12 and 3)log1/(rv/Z,) < L log 1 /loglog %.

Then, with probability at least 1 — §, for all € € <(1 + O(%)) Qilozgﬁ , smax}, $(\ — ¢) is strictly

negative and §(\ + €) is strictly positive.

The above theorem follows from the following theorem, which makes the “o(1)" term (the O(1/~)
term) in the theorem explicit. Assumptions 2 and 3 in the theorem statement essentially bounds
various multiplicative terms in the estimation error and makes sure that they are “1 + o(1)" terms.

Theorem 4.1. Suppose we have a known model f,. that is the result of r-smoothing, and a given
parameter €yax. Let B and 1) be the hidden multiplicative constants in Lemmas B.2 and B.3. Further
suppose that v satisfies v > 2&max and 12v/I;. > Yemax for some parameter vy > .

Now define the notation p, by

ENG

4log
715 [2l8mraoms
1+pr=,/1+-+
ol Q\ﬁ n

Then, for sufficiently small 6 > 0, with probability at least 1 — 6, for all ¢ €

410g%
O,
(14 )8\ /1 + SSEE IR FIETE Y §(A—¢e) < 0and 3(A+¢e) >0
log % 172 log L nZ, &max|> .

To prove Theorem 4.1, it suffices to show the following lemma. The theorem follows directly by
reparameterizing 0 and choosing £ to be 1/log %.

Lemma 4.2. Suppose we have a known model f, that is the result of r-smoothing with Fisher
information I,., and a given parameter €. Let B and 7 be the hidden multiplicative constants in
Lemmas B.2 and B.3. Further suppose that r satisfies v > 2ey.x and 2/, > YEmax for some
parameter y > (. Also define the notation p (a “o(1)" term) by

1

~ 15 [(2log:i\*

1+p1/1+n+( g5>
T2V n

Then, for every & < 1, with probability at least 1 — § -

2
er2Z,(1-2)(1-5)’

5 T
((1 +¢) fjf’i . 2711055 ,€max], §(X\ — ¢€) is strictly negative and 5(\ + €) is strictly positive.
£

for all € €

We prove Lemma 4.2 in Appendix B, and here we give a proof sketch.

Proof sketch for Lemma 4.2. First, recall that Corollary 3.3 from Section 3 shows that fixing a
candidate input value A 4 ¢ for some small ¢, the value of the empirical score function at \ + ¢
is well-concentrated around its expectation. In Lemmas B.2 and B.3, we calculate and bound the
expectation and second moment of the empirical score function at A + ¢ for all sufficiently small .
This allows us to derive tail bounds for the empirical score function at each point A + ¢, to show that
it is bounded away from 0. Next, we need to show that with high probability, the empirical score
function is simultaneously bounded away from O for all ¢ with magnitude greater than the desired
estimation accuracy. We achieve this via a straightforward net argument, crucially utilizing the fact
that the expectation of the empirical score function is bounded away from 0O by an essentially linear
function in ¢, and that the variance is essentially constant in €. This means that the probability for
the empirical score function at A + ¢ to hit O is decreasing exponentially in e, which allows us to
complete the net argument. O

S Global Two-Stage MLE Algorithm

Algorithm 1, which we stated in the introduction and analyzed in Section 4, is a local algorithm that
assumes we have knowledge of a non-trivially small uncertainty region containing the true parameter



A. The smoothing parameter r can then be computed from the assumptions of Theorems 4.1 or 1.1,
and we run Algorithm 1 to obtain an accurate estimate of the true parameter A, with accuracy predicted
by the r-smoothed Fisher information Z,..

However, in general, we might not have a-priori knowledge of where the true parameter A lies. In
this section, we propose a global maximum likelihood algorithm (Algorithm 2) which first estimates
a preliminary interval containing A, before choosing the smoothing parameter r* using an easily
calculable expression that is o(1) times smaller than the interquartile range of the distribution, and
finally applies the local MLE algorithm (Algorithm 1) to obtain a final estimate. Theorem 5.1 states
that the accuracy of Algorithm 2 is always within a 1 4 o(1) times the accuracy predicted by the
r*-smoothed Fisher information Z,.«.

Algorithm 2 Global MLE for known parametric model

Input Parameters: Failure probability d, description of distribution f, n i.i.d. samples drawn from
f* for some unknown \

1. Compute an a € [\/ 2log 3/n,1 — \/ 2log 4 /n] such that the interval defined by the

a—4/2log %/n and . + /2 log %/n quantiles of f is the smallest.

2. By standard Chernoff bounds, with probability at least 1 — g, the sample a-quantile z,,
will be such that 2, — A is within the & — {/2log %/n and o + {/2log %/n quantiles of f.

Based on this, compute an initial confidence interval [¢, u] for A.

3. Letr* = Q(max((%)l/g, 2-0(/log 5)))IQR.

4. Run Algorithm 1 on the interval [¢, u], using r*-smoothing and failure probability §,/2,
returning the final estimate .

Theorem 5.1 (Global MLE Theorem). Given a model f, let the r-smoothed Fisher information of a
distribution f be L., and let IQR be the interquartile range of f. Fix the failure probability be 6.

Choose r* = Q(max((%)l/g, 2-O0W108 5)))IQR. Then, with probability at least 1 —§, the output
A of Algorithm 2 satisfies

1
. log+\* 1 2log +
A< [1+0(228) 40 %85
n /logl nL,«
4

Proof. The total failure probability of the steps is at most 4. Thus, in this proof we condition on the
success of Algorithm 1 in all probabilistic steps.

By the minimality condition in the definition of «, the length &, of the interval [¢, u] from Step 2 is

at most O(4/log % /n)IQR.

Further, recall by Lemma 3.2 that Z, > Q(1/IQR + r)?). Picking r* =
Q(max((%)l/s,27O(V1°g%)))IQR and v1 = O(:21)"* and 7o = O(y/log 1), we check

log %

that the following conditions are satisfied:

1 ()3T > (r)2/(IQR + %) > Q(2EE)V/AIQR = v12 0.

2. log 3/n < O(y/log 5 /n) < 1/+.

3. log1/(r*VZ) < O(log 2°0V1°e 5)) = O(L log 1).

Further note that loglog % /log + < 1/4/log 3+ = O(1/72).



Thus, using Theorem 1.1, Step 4 returns an estimate A satisfying

. 2log &
A= A< (1+0(1> +0<1>) Y Rk
Y1 Y2 nI’r*

which is equivalent to the theorem statement. O

6 High Probability Cramér-Rao Bound

Complementing our algorithmic results, we also give new results on lower bounding the estimation
error in the location parameter model. The celebrated Cramér-Rao bound lower bounds the variance
of estimators, which does not readily translate to (tight) lower bounds on the distribution tail of
the estimation error. In this section, we show that it is possible to derive a high probability version
of the Cramér-Rao lower bound for r-smoothed distributions, where, given a failure probability
d, we lower bound the estimation error to within a 1 + o(1)-factor of the error predicted by the
asymptotic normality of the standard maximum likelihood algorithm, namely the Gaussian with the
true parameter as the mean, and variance 1/(nZ,.) for estimation using n samples.

Theorem 1.3. Suppose f, is an r-smoothed distribution with Fisher information L. Given failure
probability § and sample size n, no algorithm can distinguish f,. and f* with probability 1 — 6,

where ¢ = (1 — 0(1))4/2log +/(nZ,). Here, the o(1) term tends to 0 as § — 0 and log & /n — 0,
for a fixed r*I,.

We prove Theorem 1.3 in Appendix C. The high-level technique we use is a standard one, showing
that, it is statistically impossible to distinguish two slightly shifted copies of f, with probability 1 — 6,
using n samples. The shift corresponds to (twice) the estimation accuracy lower bound. The difficulty
lies in getting the right constant.

Standard inequalities for showing indistinguishability results rely on calculating either the squared
Hellinger distance [ ] or the KL-divergence [ ] between the two distributions. While
these inequalities are straightforward to apply, given the calculated bounds on these statistical
distances/divergences, the inequalities only yield constant-factor tightness in the estimation accuracy
lower bound. On the other hand, in this work, we aim to give accuracy upper and lower bounds that
are matching strongly, to within 1 + o(1) factors. As such, our proof of Theorem 1.3 involves delicate
and non-standard bounding techniques which may be of independent interest. The proof techniques
are currently slightly ad-hoc, and for future work, we hope to improve on these techniques to make
them more general and more usable.

7 Experimental Results

In this section, we give experimental evidence supporting our proposed algorithmic theory. Our goals
are to demonstrate that 1) r-smoothing is a beneficial pre-processing to the MLE, that r-smoothed
Fisher information does capture the algorithmic performance in location estimation and 2) r-smoothed
MLE can outperform the standard MLE, as well as standard mean estimation algorithms which do
not leverage information about the distribution shape.

The version of smoothed MLE we use for experimentation is even simpler than Algorithm 1: use
Gaussian smoothing before performing actual maximum likelihood finding over the entire real line,
instead of returning a root of the empirical score function. This is closest to what statisticians would
do in practice, and further does not require any initial uncertainty region on the true parameter \.

We use the Gaussian-spiked Laplace model for experiments, with a Laplace distribution of density
proportional to e~ 1#/, and a Gaussian of mass 0.001 and width roughly 0.002 (the discretization
granularity) added at x = 4. The reason we choose the Laplace over the Gaussian as the “body"
of the distribution is because, fixing the variance of the distribution, the Laplace has twice the Fisher
information as the Gaussian. Given that standard mean estimation algorithms only aim to achieve
sub-Gaussian concentration, choosing the Laplace as the core distribution lets us demonstrate that the
smoothed MLE can outperform mean estimation algorithms even in finite samples. We also note that
this example is crucially different from the Dirac §-spiked example in Section 1.1. The Dirac § spike
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Figure 2: Experimental results - Spiked Laplace model

has infinity density, whereas the narrow Gaussian spike only has somewhat large, but finite density.
Given the finite and not too large density in the spike, in our experiments, the basic MLE algorithm
will not “fit it at any cost", and instead has a smoother error distribution whenever we do not observe
samples from the Gaussian spike. Nonetheless, even in this milder setting, we demonstrate that our
smoothed MLE algorithm performs better than the original MLE.

Figure 2a is a heat map of the mean squared error of the smoothed MLE. The z-axis varies the
number of samples n from 50 to 5000, and the y-axis varies the smoothing parameter r from 0.001 to
1 in log scale. Lighter color indicates a smaller mean squared error. The line overlaid on the heat map
indicates, for each value of n, the value of r with the smallest mean squared error. As n increases,
the optimal value of r decreases, as predicted by our theory.

For small values of n—below about 1000—the mean squared error first decreases then increases
again as we increase the smoothing parameter 7. This confirms the theory in the paper: for small
n, it is unlikely that we see any samples from the spike, in which case too small values for 7 cause
MLE to overfit. On the other hand, too large values of r simply add too much noise, and also yields a
sub-optimal mean squared error. The optimal value of r is thus somewhere in between.

The situation changes when n >> 1000, which is 1 over the mass of the spike. In this case, we expect
to typically see samples from the spike, which allows us to estimate the mean highly accurately. Any
smoothing just adds noise, and hence the optimal value of r is close to 0.

Figure 2b picks n = 500 and compares the distribution of estimation errors across different algorithms:
unsmoothed MLE (blue), 0.05-smoothed MLE (orange), empirical mean (yellow), Lee-Valiant (LV)
estimator (purple) using § = e~°. With only 500 samples, the unsmoothed MLE occasionally sees a
sample from the spike, and attains high accuracy, but otherwise has large variance in error, compared
with the empirical and LV estimators (which have essentially identical performance, so yellow is
overlapped by purple on the plot). With just 0.05-smoothing, MLE outperforms all other estimators.

Figure 2c picks n = 3000 and compares the same algorithms. The unsmoothed MLE sees samples
from the spike most of the time, and attains high accuracy, vastly outperforming the empirical and LV
estimators (again, yellow is overlapped by purple). The 0.05-smoothed MLE performs worse than the
unsmoothed MLE in the typical case, but has better tail behavior. This plot suggests that the optimal
smoothing parameter r in the high probability regime depends on the desired failure probability .

8 Future Directions

One natural goal is to extend these techniques to estimate the mean of unknown distributions by
means of a kernel density estimate (KDE), with accuracy dependent on the true distribution’s Fisher
information. In general this cannot work, a bias independent of the Fisher information is unavoidable,
but for symmetric distributions the bias is zero and one can hope for good results. An asymptotic
version of this was shown by Stone [Sto75], and we believe our techniques could get a finite-sample
guarantee here.



A second direction is to investigate ways to generalize and simplify our lower bound analysis
techniques. Recall that, while standard “indistinguishability” bounds based on squared Hellinger
distance and KL-divergence are relatively straightforward to apply, they generally lose constant
factors. Our analysis is tight to within a 1 + o(1)-factor, but it requires analyzing several different
parameters of the distribution. One can hope to extend and generalize these techniques to yield a
new easy-to-apply bound, similar to those based on Hellinger distance and KL-divergence, that gives
1 + o(1)-factor tightness.
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A Proofs from Section 3

We first prove a utility lemma, Lemma A.1, which we use throughout the rest of the paper.

Lemma A.1. Let f be an arbitrary distribution and let f, be the r-smoothed version of f. That
(@—y)?

is, fr = Eyey [\/2;76_ 202 } Let s, be the score function of f,. Let (X,Y, Z,) be the joint

distribution such that Y ~ f, Z, ~ N(0,72) are independent, and X =Y + Z, ~ f,. We have, for

every e > 0,

fr(z+e)

2cZp—e2 Ly
@) = ZITE‘.'L' {e 2,2 } and in particular s, (x) = ZITE‘w { }

r2

Proof. For simplicity of exposition, we only show the case where f has a density. The general case
can be proven by, for example, a limit argument. Let w,. be the pdf of A'(0,72). First, we show that
for any x, ¢ we have

fr(i) Zy|z wr(Zr)
Denote the density of (x, z, Z) by p(-). Note that
p(x,2) _ flz = 2)w(2)
p z xTr) = =
=N T
and hence
o0 o0
fr(x—l—s):/ wr(z)f(m—&—s—z)dz:/ wr(z+e)f(x—2)dz
— 0 —o0
o wy(z+¢€)
= z|lx)fr(r) ————=dz
|1
wp(Zy + 5)}
= Jr €T —_—
f ( )Z|1‘ [ w,.(Z,.)
proving (2).
22
Since w,.(z) = \/;Tefﬁ, this gives
fr(x+e) _E [625222_52] '
fr(li) Z\|x
Taking the derivative with respect to € and evaluating at € = 0,
fi(@) Zy
z =E —.
fr(x)  Z]2 72
O

We now prove Lemmas 3.1 and 3.2, which upper and lower bound the r-smoothed Fisher information
T, respectively.

Lemma 3.1. Let T, be the Fisher information of an r-smoothed distribution f,. Then, T, < 1/ r2.
Proof. Using Lemma A.1 and Jensen’s inequality,
I = Els(@)] = E[(E_Z./r*V] <ELE Z2/r'] = 1/7° O
T T Z.|x T Z,|x

Lemma 3.2. Let T, be the Fisher information for f,, the r-smoothed version of distribution f. Let
IQR be the interquartile range of f. Then, I, > 1/(IQR + r)2. Here, the hidden constant is a

~

universal one independent of the distribution f and independent of r.

11



Proof. First, observe that f,. is a smooth distribution in the sense that it is differentiable, and
furthermore, its derivative is continuous. Thus, letting R be the 30""-70"™ percentile range of f,.. Then,

by a known result [ ] (Section 3.1), I, > 1/R2.
Furthermore, it is easy to see via a coupling argument that R = IQR + O(r). The lemma statement
follows. &

Next, we prove another utility lemma, which states that the derivative of the score function cannot be
too small for an r-smoothed distribution. Phrased differently, the score function of an r-smoothed
distribution cannot decrease fast.

Lemma A.2. s.(z) > —1/r? for all x, where s, is the score function of f,, the r-smoothed version
of distribution f.

Proof. By taking the derivative of Lemma A.l in €,
Bt o { zr—s]

252

fr(m) Zlx 72
Hence
262022 Z,—c
PR {CE W {CE o W A Bt [ }
’ I O N

Fore > 0, since e” 22  and Z =5~ are monotonically increasing in Z,., and the former is nonnega-

tive, they are positively correlated:

2:2,.-¢2 /. — € 2cZ, —c2 7. —¢
E |e 22 r > E |e 22 E -
Zy|x 72 Zy|x Zy|x 72

Hence

sp(x4¢) > ZITEIx [Z,. - 8} = sp(x) — <

or (taking € — 0), s,.(z) > — 5. O
Lastly, we prove the concentration of empirical score function. The way we do so is to show
(Lemma A.6) that the k™ absolute moment of the score function is upper bounded according to the

standard moment bounds for sub-Gamma distributions. As a corollary (Corollary 3.3), we get that
the scores have sub-Gamma concentration.

As a utility lemma, we bound the moments of the score function when the score function is aligned
with the distribution, instead of being misaligned by some ¢ distance.

Lemma A.3. Let s, be the score function of an r-smoothed distribution f, with Fisher information
L. Then, for k > 3,
Ells. (@)[] < (1.6/r)52k421,

Proof. For any z, e, by Lemma A.1 and Jensen’s inequality,

Jola+e) > fr(@)e @5,
Setting ¢ = +r with sign matching s,.(z), we have that
folo + rsign(s, () = fo(@)e"1or @1/,
We also have, from Lemma A.2, that
sp(x—71) < sp.(x)+1/r

and
sp(x +7r) > s.(x) —1/r.

12



In other words,
[sr(x + rsign(s, ()= [sr (x)[=1/r.
Therefore, for any k > 2, and |s,(z)|> a/r for o := 2 + 1.2k,

Joa + rsign(s, ())) s, (x + rsign(s, ()))[F > %mme”&-(w”<|sr<x>|—1/r>’“

N0 )

= fo(@)|s,(x)F- (

> fr(@)lse ()] ( a_u:)
> fr(2)|sp(x)]F-4

S

Therefore
fr(@)se (@) < < (fr(@ = 1)|sp(@ = )|+ fr(@ + )]s, (z +7)[F) 3)

whenever k > 2 and |s,(z)|> «/r. Integrating this,

»lk\’—‘

Blsi(ol] = [ Sl @l de=2 [ fialls @l == nlso(o - -4 s a4l da
<2 / f?" ‘37( )| 1\5,(w \<a/rdx

< 2/ fr ‘Sr | (a/r)k_Ql\sT(z)Ka/r dz

Finally, we observe for any k > 2 that
2(1.2VEk +2)F72 < kM2 1.6+ 2

giving the lemma.
O

The proof of Lemma A.6 has the same logical structure as the proof of Lemma A.3, but has further
subtleties. The following two lemmas generalize the first step in the proof of Lemma A.3.

Lemma A.4. Let s, be the score function of an r-smoothed distribution f, with Fisher information
T,. Foranyz, k > 3and 0 < e < 1/2, if s,(x + ¢) > max(2Vk + 2,9.5) /7, then

fr(@)ls(z + )" < émax (fr(@ = e)lsr(@ = )|, fr(z + e +7)lsp(x + e +1)I")

Proof. Let a := ff('r(+)s) By Lemma A.1, we have

—2eZp—e2
a= E {ezrz} 4)
Zy|xte

‘We will consider two cases.

When log a < %rsr(;v +¢&) — 2. First, by Lemma A.1 and Jensen’s inequality, we have

fr(LL‘+€+T) > ersr(m+€)71/2
frlx+e) —

We also have, by Lemma A.2,
sr(x+e+r)>s(r+e)—1/r

13



So,
1 k
Frla+e+m)lse@+e+1)E = folw+ o)l (@+ o) Fersr (172 (1 B <x+)>

> fr(@ 4 €)|sp(a + &) Fer > T T =T 1/

Since s,.(x +¢) > (2Vk + 2)/r,

fr@+e+n)s(@+e+nr)> fr(a+e)|se(a +e)|Feirs@te)
So, since
_ fr(l') < 6%rsr(m+s)72
frlx+e) —
we have

F@)lse(a+ )= afule+ Olsn(e + S £t r)lsyla+e+ )t

When loga > 2rs,(z +¢) —2 Evaluating (4) at = — € gives

fr(x — E) _E |:e —2522:2—52:|
fr (JJ) Zy|x
Taking derivative with respect to €, we have

= 2

f’r‘ (I) B Zrlx r
and so by evaluating at x + € (to “shift back")
By [Getate) smes
fr(z + E) Zy|xte r?
72527-7252 i
Definey =e™ 22 ,sothatEy .4 [y] = ae2?, and
2
Zy+€) —2e2,-c> e2r2
(”“72)6 22 = — 6 ylogy
is concave, so by Jensen’s inequality
2 2
' (z) es /) 2 _ <2 aloga  ace
_ o 1 2 —— -
fare = 7 leralelea) = T

So,

fl(x) log a €
= < —_ —_—
sr(@) frlz) — € 272
Finally, we move to consider the point x — €. By Lemma A.2, we have

loga 3¢
_a < 2 < _ =
sp(x—e) < sp(x) +e/r° < 5 5,3
By Lemma A.1,

— cZyp—4e? e2
floce) g %22 B 2> E pl-ated
flea+e)  z|ote Zy|ote Z,|z+e

Since log o > %sr(x +e)—2,
3
rsp(x+e)—2 3¢ _ 3 4.75
—sp(x—¢) > % ~ 92 > §5T(aj+5) i > s(x)

where the second inequality comes from the fact that %rsr(:r + &) — 2 > 0 and so the function is
decreasing in €, with minimum evaluated at ¢ = r/2.

Thus, we have
2 2
frlw =o)lsp(m —e)["> ae™ /7 fo(@)]s, (x + €)[*
Since our assumptions give e~ /" > ¢5:125¢=1/4 > 5 we get the result. O
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Lemma A.5. Let s, be the score function of an r-smoothed distribution f,. with Fisher information
T

Foranyxz, k> 3and —r/2 <e <0, ifs,(x+¢) > a/rfora =2+ 1.2vk, then we have

1
Fr@)lse(@ 4 )" < 4 (frlw = r)lsr(@+ e =) +folw + 1) [se(z + e +1)[f)
As an immediate corollary, the statement is true also when € € [0,17/2) and s,(x) < —a/r.

Proof. For any z, k, by Lemma A.1 and Jensen’s inequality,

N?
fr(x+ k) > fr(x)e“sT(”j)_ﬁ.
So, setting x = r, we have

frla 1) > fr(z)em @/ /e

By Lemma A.2, we have that
sr(@+e+r)>s(xr+e)—1/r
Since our right hand side is positive by assumption, this is equivalently stated as
|sr(z+e+71)|>|sr(x+e)|—1/r

When ¢ < 0, we have, by Lemma A.2, and since |¢|< 7, s,.(x) > s.(z +¢) — 1/r. So,

iefr(x)em(””)(lsr(x+6)|—1/7’)’“

fr@+r)|se(z+e+r)F >

v

S5

Frla)erCrETO=n (|5, (@ + )| =1 /r)*

> fr(x)|s (x+s)|k LBT‘ST(ZE+6)‘71 (1 _ 1>k
Z Jr r \/é T|ST($+E>|
> fr(2)]se(x + €)[F- (6*3/260471.416/&)

> fr(z)|sq(xz +¢)|F-4 since k >3

O

We are now ready to prove Lemma A.6, which states that the distribution of the score function
sr(x + €) where © ~ f, is a sub-Gamma distribution. Corollary 3.3 then states that the average of
many score function samples is well-concentrated, following sub-Gamma concentration.

Lemma A.6. Let s, be the score function of an r-smoothed distribution f, with Fisher information
Z,. Then, for k > 3 and |e|< r/2,
k!
Ells-(z +)|*] < 5 (15/r)* " max(E[s](x + £)], Z,)
Equivalently, s.(x + €) is a sub-Gamma random variable.

s.(z 4 ¢) € T(max(E[s?(z + ¢)],Z,), 15/7).

T

Proof. Without loss of generality we only show the € > 0 case.

Using Lemma A.4 and Lemma A.3, we have

> k
/_Oo f’f(x - 5)|S7‘(q")| ]ls,,.(w)>max(2\/g+2,9‘5)/r dz

<3 [ Rle- 2l =2+ o D da
2o

— 2 Bfls (@)

< %(1.6/r)k—2kk/21,

15



We can start bounding the £ moment quantity in the lemma:
Ells(z +¢€)|"]
o0
~ [ A=l @l de
— 0o

:2[mf7-($—5)‘3r(x)|k_ifr($—8—T‘)|Sr(ﬂf—r)|k_ifr(x_€+T)|Sr(x+r)|kdx

< 2/ fr(z — 5)‘37’(x)|k]]‘sr(z)2—max(2\/E+2,9.5)/7’ dz

where the last inequality follows from (a slight weakening of) Lemma A.5. Now, by the previous
claim, we get that

Ellsy(z +¢)|*]

4 _
< 2/ fr r—e |5T( )‘ |sr(z)|<max(2vk+2,9.5)/r dr + 3(1'6/T)k Qkk/QIT
< 2/ fr(x —€)]s,(@)]* (max(2Vk + 279'5)/7")]672]]'\sr|§max(2\/g+2,9.5)/r dz + - (1 6/r)* k"1,
4
< 2(max(2Vk 4 2,9.5)/r)* "2 E|s,(z + ¢)[?] + 5(1.6/r)k_2kk/2L

4
< 2RI/ Bl + <)Y + S (L6/r) 2T,
< Skk/2(2.5/7’)k72 maX(EHST’(x + €)|2]al—r)

< B 15/r) = max(Eljs, (@ + )P} 7.)

O

Corollary 3.3. Let f be an arbitrary distribution and let f, be the r-smoothed version of f. That is,
(@—y)?

fr(z) = yef[ﬁe 22 |. Consider the parametric family of distributions f}(x) = f,.(z — ).
Suppose we take n i.i.d. samples yl, ey Un fr, and consider the empirical score function s

mapping a candidate parameter Ao L Z sr(yi — A), where s,. is the score function of f,.

Then, for any |e|< r/2,

Pr |S(A+¢e)— E [s(z—¢)]|>

ivi.d. 2
yi ~fR fr

2max(E,[s2(z — €)],Z,) log 2 N 15log 2
n nr

Proof. Since (A +¢) = 37" s (yi — A —¢€) = =37 s (v — ¢€), we know that by
Lemma A.6 and the standard algebra of sub-Gamma dlstrlbutlons that $(A+¢) € I'(2 max(E,[s2(z+

€)],Z),15/r). The corollary then follows from the standard Bernstein 1nequahty for sub-Gamma
distributions [ ]. O

B Proofs omitted in Section 4
We first give the proof of Theorem 1.1, assuming Theorem 4.1.

Proof of Theorem 1.1. 1t suffices to show that conditions 2) and 3) in the corollary statement implies
that each of the following terms from Theorem 4.1 is 1 + O(1/7):

* 1+ 1/log }: Note that Z, < = by Lemma 3.1 and so condition 3) implies that 1/log <
(loglog §)/log 5 < &
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4log 1 1
21lo 3
& T2IT(1—%)5

* 14+ p: /14 0(1/y) =1+ O(1/7). It suffices to check that [ ——— =

n

O(1//7). The fact that log 10%;% = O(log %) together with condition 3) imply that the

NG

quantity is bounded by O (%) . which in turn is bounded by O(1/,/7) by
condition 2).

* 1/(1=5/v) <14 O(1/7) since 3 is a constant

log 4 log % lOg 4log3%
T2I7‘(1_g) . 1—% log log .
* \/ 1+ ——, 7 Note that = O( +2) = O(1/~) as before. Also, condi-
og 5 log 5 log 5

tion 3) implies that (log %)/ (log 5) < (log ;z%-)(loglog 5)/(log 5) < 1/7.

O

The rest of this appendix is on proving Lemma 4.2, which via reparameterization gives Theorem 4.1.

We first show a utility lemma (Lemma B.1), before using it to prove Lemmas B.2 and B.3, which
bound the expectation and variance of the empirical score function. After that, we prove Lemma 4.2.

Lemma B.1. Let w, be a Gaussian with standard deviation v, f be an arbitrary probability distribu-
tion, and f, be the r-smoothed version of f. Define

A(z) = frx+e) = fr(z) _gfl,/_(x).

fr(z)
Then for any |e|< 1/2,
4
9 €
xilj:fr Ae(x) ] S 771
Proof. By Lemma A.1, we have
_ —ef! cZy—c2 Zy
AE(I) — fr(x+€) fr(aj) Efr(z) — ]E (62 sz —1 - € )
fo(@) Zole =
Define
2ez—¢ EZ
ac(z):=e 22 —1-— 2

‘We want to bound

~5 B, la(2P]

< E |(@:(2.))]

X, Z,

= E (a:c(20)%. (5)

Z,~N(0,r?)
Finally, we bound this term (5).

When |e2|< r2, we have by a Taylor expansion that

2es_c2 ez g2 %2z — 2\
R (Ao (it
€ + r2 22 + (( 272 ) >

and so



or

(as(Zr)2 : ]]-|5Z |<7-2)2 S é (6)
Z,~N(0,r2) = ~ ot
On the other hand, for |ez|> 72,
e (2)| < el
)
B (O‘e(ZT)Q ‘ez, > 2)2 < 2/00 L e%e_g dz
Zp~N(0,72) T T e Vo
o 1 (z=2]c)?
— 927/ / e 22 dz
Ir2/e| V2mr?
< 2/ePrlz > r?/|e|-2l¢]
T2 E|— 3 2
< - Qriel2lel
_ 2 et
<e w7 g -
Which combines with (5) and (6) to give the result. O]

We are now ready to prove Lemma B.2, which bounds the expectation of the empirical score function.

Lemma B.2. Suppose f, is an r-smoothed distribution with Fisher information L. Then, for any
le|< r/2, the expected score By g, [, (x + €)] satisfies

E [s.(v+e)]=-Te+0O (ﬁfj)

x~ fr

Proof. By definition of s,.,

LE, [sr(z+2)] :[ de
o < " fr(z—¢) — fr(x) "
- [ i
Since by definition of Z,., )
_ [T fi=)
SRR AN e
= fi=)

E ol 4oL = [ S =) = fola) + < fi(a))

=E[sr(2) - A_c(2)]

where A (z) 1= L@t =fr@)=efi(@) ppyq

fr(x)

(E [sr(x+€)]+5l}> <E[s(@)?] E [A.(2)?]

=T, E[A_.(z)?]
By Lemma B.1, we have that

2 et
and so )
E [si(z+¢)] +eZ.| < \/IT%
as desired. O
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Lemma B.3. Suppose f, is an r-smoothed distribution with Fisher information L. Then, for any
le|< 1/2, the second moment of the score satisfies

1
E [s2 <T.+0 (27 /log —
o, [se(e +o)] < I+ <7" \/ %8 2T,

Proof. We have that

E, [are)= [ fi (H

z~ fr — 00

s 5 o

L+ [ (e - - o) (jﬁgg) da

By Lemma A.1, we have

fT(l‘—S) - f,(l‘) _ eZ,/r2—e?/2r?
R A T ).

‘We have that

so that we need to bound

E [SE(I+€)] *Ir :IE:

z~ fr

)

2
E (ele/r""752/2r2 - 1) E &
Zy|x Z,|x 72

We can get bound this as follows. The standard rearrangement inequality states that, if g, h are

monotonically non-decreasing functions, E.[g(z)] E.[h(z)] < E[g(z)h(2)]. Therefore, for any z
and parameter o < 7 /e,

2 2
EZ,,~/T2—82/27‘2 _ é < EZ'r/T2 _ &

(ZIFI;L'(G 1)> (ZIPL 7‘2) - O(Ea/r) + ZIE;U ]]-ZT>QT(€ 1) ZIE;U r2

Z:\* Z, 2

< O(ea/r) < ]F:r 7‘2> + <Z]F| HZT>QT7(65ZT/ 1)) (

Z\ 2 72

Thus
72,
xf;f [s2(x+¢)] = I, < O(ea/r)T, + E []leMTZ(es /2 1)} .
The contribution to the second term from |Z,.|< 72 /¢ is
Eag —a2/2

3
€ ;E;‘[le»mrfg} N
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The contribution from |Z,.|> r2 /e is negligible (as in the proof of Lemma B.1) because the chance
of such Z,. is exponentially small:

Z2 2 o0 1 22 = 22
E |1, > ma(r? /e am —(e5%7/7 — 1 ] g/ ——— " erte 22 dz
Zr 72 (r?/e,om) 4 ( ) Q(r2/e+ar) W ré

V2mr2 T

K /°° 1 22 _<z—e>2d
= e2r? — e 22 z
4
Q(r?/e+ar)

/OO ]. 22 22
< — e 22dz sincee <r/2
Q(r2/etar) V2mr2 T4
1 ° 1 22
= — 22e" T dz

r? Q(r/e+a) V2

1o (e—ﬂ<r2/ez+a2>) < L& a0
r2 ~or2y

A

Thus, we have established that

cx o? 1
E [s2(z+¢e)]-T, S — (L n ﬁe_QQ/Q I 26—Q(a2))

z~fr T

Set & = O(,/log ) and recall from Lemma 3.1 that Z, < 1/r%. Therefore, the first term
dominates the right hand side, and the lemma follows.

O

With the above lemmas, we are now ready to prove Lemma 4.2, which we also restate here for the
reader’s convenience.

Lemma 4.2. Suppose we have a known model f, that is the result of r-smoothing with Fisher
information Z,., and a given parameter p,,x. Let 3 and 1 be the hidden multiplicative constants in

Lemmas B.2 and B.3. Further suppose that v satisfies v > 2€may and r2+/I, > YEmax fOr some
parameter v > (. Also define the notation p (a “o(1)" term) by

1

. 15 [2logi\*

1+p=,/1+”+( g5>
Y2 n

Then, for every & < 1, with probability at least 1 — § -

2

m, f()r all € €

5 T
((1 + f)ll_ig\/ 271? g ,5max], §(X\ — €) is strictly negative and §(\ + €) is strictly positive.
Y

Proof. Without loss of generality, we only show the A — ¢ case, and the X + ¢ case follows by
doubling the failure probability.
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Combining Corollary 3.3, Lemmas B.2 and B.3 as well as the assumption that r2v/Z, > vy&max, We
have that, for all 0 < ¢ < min(|r|, €max ), With probability at most J, we have

2lo, 1 1510
B —¢e) - ( ~Te+ BT, 2 </ g5z\/1+n,/log ot g5
2log & Emax 1 15log &
< ST All4+n log —— + 5
n r r2L, nr
2log & € 1 15log §
< 6Ir 1 max 5
- \/ n \/ 0 r \/7TIT+ nr
7 |2log} 151log §
<, /14— T+
~y n nr
/ 1 INT | 1
/1+ﬂ QIOggIT+ 15 (210g6>4 210ggz_r
¥ n 2/ n n
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where the last inequality is due to the assumption that r2I, > YEmax = YA/ ZIO%IT.

IN

QIOg%
n

1
For the rest of the proof, we denote the multiplicative term , /1 + + f < ) ! simply by

1 + p, as defined in the theorem statement.

We note also that, since r2/Z, > ~ve, we have —Z,.¢ + 34/ Ti—z < (—1 + g) TI,e. Therefore, for
any 0 < &€ < min(|7], £max ), we have that with probability at least 1 — 4,

QIOg%

sA—e) < (—1+5> e+ (14 py) 7,

By Lemma A.2, we also have that for any x
1

Al
§'(r) < o}

Let £ < 1 be a parameter that we choose at the end of the proof. We will show that with probability
. [2logi A
atleast1 — ¢ - ng)u_a)’ we have for all ¢ € ((1 + f)lltip%\/ noi" ,emax} ,8(A—¢) <.

Consider a net N of spacing £72(1 + p,.)\/ Qlcf %IT over the interval ((1 + f) 1+p’ \/ 271101%% ,smax]

in the theorem statement. We can check that, if for all points € € N, we have

1
B —e) < —£(1 4 py)y| 2B

Z. ®)

then, because §’ < 1/r2, we have §(x) < O forall z € \ + ((1 + f)m T ;7€max . This

is done by cons1der1ng two consecutive net points 0 < £ < €2, and observmg that §(\ — ¢) <
5(A —e1) — 255 for € € (g1, €2, which is in turn strictly negative. (For the essentially symmetric

case of A 4 &, we would instead use the inequality that (A + ) > 5(A +¢1) + =55 > 0.)

Thus, it suffices to bound the probability that the above inequality holds for all points in N. For a

T
natural number ¢ > 1, consider the subset N; of IV that intersects with ([i,i + 1] + £) 5 s QLC)Ig z,
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where here we interpret addition and multiplication as scalar operations on every point in the interval.
. .1 i2 .
For each ¢ € N;, Equation 8 holds except for probability 6* . Furthermore, each N; consists of

14p, [2logt .. . 2log £ . .
ﬁ—p% % divided by &r%(1 + p,)4/ (;g 7. many points, which equals to m many

. . .1 . 1 i2
points. Therefore, the total failure probability is at most AT, dis1 0" <6

1
€r2Z,(1-5)(1-6)"
An extra factor of 2 in the failure probability in the theorem statement accounts for the symmetric
case of §(A +¢) > 0. O

C Proof of Theorem 1.3 in Section 6

The goal of this appendix is to prove Theorem 1.3, which we restate here for the reader’s convenience.

Theorem 1.3. Suppose f, is an r-smoothed distribution with Fisher information L. Given failure
probability § and sample size n, no algorithm can distinguish f, and f*¢ with probability 1 — 6,

where e = (1 — o(1))1/2log % /(nZ,). Here, the o(1) term tends to 0 as § — 0 and log 5 /n — 0,
for a fixed r*Z,.

We use the standard proof technique of reducing distinguishing two “close" distributions to estimation.
In particular, we show that it is statistically impossible to distinguish between f, and f2¢ with
probability 1 — § using n samples. In order to show such an indistinguishability result, we need the
following standard fact (essentially the Neyman-Pearson lemma):

Fact C.1. Consider a game, where an adversary picks arbitrarily either distribution p or distribution
q, and we want an algorithm which, on input n independent samples from the chosen distribution,
decide whether the samples came from p or q, succeeding with probability at least 1 — §. Then, there
is no algorithm A such that:

®n’ ®n)

P(A returns p | adversary picked p) — P(A returns p | adversary picked q) > drv(p®", ¢q

where p®™ denotes the n-fold product distribution of p. In particular, this implies that there is no
algorithm A such that both of the following hold:

o P(A returns p | adversary picked p) > 1 + Ldpv (p®", ¢®")
o P(A returns q | adversary picked q) > % + $drv(p®™, ¢®*™)

So if drv (p®™, ¢®™) < 1 — 26, there is no algorithm that will succeed in distinguishing between two
distributions with probability > 1 — § using only n samples.

Thus, we need to upper bound the n-sample total variation distance between f,. and f2°. Standard
inequalities for doing so involve calculating and plugging-in the single-sample KL-divergence
Dxw(fr || £2¢) or squared Hellinger distance d (£, f>°), however, they yield only constant factor
tightness in the exponent of 1 — dpv (p®™, ¢®™), and hence only constant factor tightness in sample
complexity or estimation error lower bounds. As such, in this paper, we prove a new lemma
(Lemma C.2) that involves both the KL-divergence and squared Hellinger distance, as well as
assumptions on the concentration of the log-likelihood ratio between f, and f2¢ (which will be
satisfied by r-smoothed distributions), which allows us to bound the n-sample total variation distance
tightly. After that, we calculate the KL divergence and squared Hellinger distance of f,. and ¢ as
well as show the concentration of their log likelihood ratio (Appendix C.1), which when applied to
the lemma yields the lower bound result (Appendix C.2).

Lemma C.2. Consider two arbitrary distributions p, q. Let the log-likelihood ratio be defined as
v = log %. Suppose there is a parameter x > 0 such that we have the following conditions:

1 di(p.q) < (1+ k)i Dxu(pll @)

Dxw(pllq) -1
2. Bty €A +R)TH 1+ 4]

3. E,[v? < (1+k)2Dkr(p | q)
4. Eq[v?] < (1 + k)2Dkr(p| 9)
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5. Bplly*] < (14 %) 5 2Dxw(p || )"
6. Eq[ly["] < (1 +w) 5 2Dxn(p | )+
Then, for k < 0.01, nDkw(p || ¢) > 1 and Dk1,(p| q) < 1,

1— dTv(p@m, q®n) > 9~ (1+0(x)+0(1/y/nDxr(p [l 9))+O0(Dxi(p | 9)))nDxr(p [l 9)/4

Proof. Define
BCs(p.) = [ Vi < Vr(S)a(S)

to be the restriction of the Bhattacharyya coefficient BC(p, q) = 1 — d%(p, q) to a subset S of the
domain. For any .S, we have

in in ([ v/min(p, ¢) max(p,q))>  BCs(p,q)*
)= [mina) = [ miniy.) > Toms(pa) P +a(S)

1_dTV pa

We apply this to p®™ and ¢®", getting for any S:

BCs(p®™, ¢®™)?

1 —dpy(p®",¢%") > :
T 2 en (8) 1 g (s)

©))

Thus, the goal now is to find an event S such that BC'g(p®", ¢®™) is big relative to p®™(S) 4 ¢®™(S).

For the rest of the proof, we use the notation 7 to denote the n-sample empirical log-likelihood ratio,
namely %ZZ Y=g w2 log p(?)

We now define Sy, for k € Z, to be the event {7 €lk—3%.k+1]-aDkiL(p| q)} for some parameter
a = O(max(k,1/y/nDkr(p || q), Dx1.(p |l q))), and set S = Sy. We have that

BCs(p®",¢®™) = BC(p®", E BCs, (p®", ®")ZBC(P7Q)R—§ P& (Sk)q®™ (Sk)
k0 k0
(10)

Now, define
§ = e~ min(Dxu(p | 9),Dxr(q [ p))/4

We note that § < (BC/(p, q)™)(1~Or)=0Dkepll19) a5 follows:
BC(p.q) =1~ di(p,q)

S1-(1+ omg min(Dw(p || 9), Dkw(q || p))

> exp (—(1 + O(k) + O(DxL(p || Q)))% min(Dxr(p | ¢), Dxr(q || p)))

where the first inequality follows from conditions 1 and 2 in the lemma statement, and the second
inequality follows from the fact that 1 — 2 = exp(—(1 4+ O(z))x). The above claim follows from
raising both sides to the power of n.

We shall now bound p®"(Sy) and ¢®"(Sy) in terms of §. By standard sub-Gamma concentration
bounds, conditions 3—6 imply that

K
Pr [7 > —Dxiu(pllq) +t/2(1+ k) DkL(pllq) + §t2] < e (11)

and

K 2
Pr[7 < Diawlallp) — 20+ 0)Dxr(plq) = 5t2] < /2 (12)
We now bound p®"(Sy) by

pers < v [v2 (k- 3 ) absiolo)]
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Solving the equation

K

2

tk:@JW(\/HlLL(H(k—;)a)q)

By Equation 11, p®"(S},) < e~"%/2 whenever (k — Da > -1.

tr +v2(1+ k) Dxr(plla) te — Dxu(p |l @) = (k - ;) aDxwL(pl q)

yields

Also observe that, when < 0.01, the function 1(,/1+ 13 (1+2) — 1) within the range

z € [-1,1.01] can be lower bounded by simply 3(1 — 2x)(1 + z). For the range z > 1, we
can lower bound the function by (1 — 2x)y/z. This implies that p®™(Sj) can be upper bounded
by e~ & 1-0NDxr(p )1+ (k=3)0)* < §A-06))(1+(k=3))" when (k — 1)a € [~1,1.01], and

similarly, upper bounded by e~"(1=O() Pxr(pll)(k=3)a < §401-0()(k=2) when (k — L)a > 1.
Finally, observe that for (k — 1)a < —1, we can trivially bound p®"(S},) by 1.

We now bound ¢®"(S},) by

(50 <7< (k4 3) aDratola)]

Solving the equation

K

5t~ VAT D00t + Drsla ) = (k-4 3 ) aDialo 1)

yields (by condition 2)

tgz\/TJW(\/lJrlin(l—n—(kJr;)a)—l)

By Equation 12, ¢®"(S},) < e~™(1)*/2 whenever (k + %)a <1-—k.

We now bound ¢®"(Sy) similar to how we bounded p®"(S;). When x < 0.01, the function
%(\/1 + 2 (1 — K + ) — 1) within the range = € [—1.01, 1 — ] can be lower bounded by simply

T+

1(1 = 2k)(1 — k — ). For the range z < —1, we can lower bound the function by (1 — 2x)/z.
This implies that ¢®"(S})) can be upper bounded by e~ 110 DrL(pll ) (1-r—(k+3)a)* <
§1-0(=r=(k+3))* when (k + 3)a € [~1.01,1 — «], and similarly, upper bounded by
en(1=0(m))DxL(p ) (kt3)a < §-401-0w)(k+3)a when (k + 1)a < —1. Finally, observe that
for (k+ $)o > 1 — k, we can trivially bound ¢®"(Sy) by 1.

We are now ready to upper bound >, /p®"(Sk)q®"(Sk). We decompose this sum into three
regions of non-zero k.

The main region K; is where (k — 2)a > —1 and (k + 3)o < 1 — k. In this re-

gion, /p®"(S;)q®"(S) can be upper bounded by 5T [+ k=3’ + 1=k (k+§))’] <
51-0tN(+(1K1=1%)  Now observe that ¥ s, S1-ORNAH(k=1)%a%) < §1-0()+0(w) <

5142 a5 long as 590 « 1and o = Q(k). These two conditions are satisfied by the choice of
a = Q(max(r, 1/y/nDkr(p | 9)))-

The second region K, is where (k — 1)a < —1, which also means that (k + 1)a < —(1 +
Q()). In this case, we use the bound p®(Sy) < 1 and ¢®"(S;) < & *41-O)(h+3)a,
Thus, in this region, \/W is upper bounded §21-0(m)(k+3)a  This means that

Sk, VP (Sk)qE(S)) S 621 70RN1=0(@) « §1HU) a5 Jong as 6~ < 1 and as long as
Kk < 1and o < 1. This is again satisfied by our choice of a.
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The last region K3 is where (k + 1)a > 1 — k, which also means that (k — 3)a > (1 —
O(r) — O(e)). In this case, we use the bound p®™(S}) < §41-CW)(E=3)a and ¢¥n(S;) < 1.
Thus, in this region, \/p®"(Sy)g®"(Sy) is upper bounded §2(1=C(")(k=3)e  This means that
Y kers VPEH(Sk)qE(S)) < 621 70RNI=0(@) « §1HU) a5 Jong as 6~ < 1 and as long as
Kk < 1 and o < 1. This is again satisfied by our choice of «.

Summarizing, we have shown that }7, o \/p®"(Sk)g¢®"(Sk) < SIHUND for o =
Q(max(k,1/v/nDk1(p| ¢))). Furthermore, as o > Q(Dxky(p | ¢)) by construction, the above
bound is much less than (BC(p, q))", since (BC(p, q))" > §*+Or)+0Dxrpl19) from earlier in
this proof. This yields that BCs(p®", ¢®") > BC(p, q)" — >;0 VP®" (Sk)q®™(Sk) > §1+0(@)
since o = Q(Dkw(p || 9))-

The last quantities we have to bound are p®™(Sy) and ¢®™(Sy). These were already bounded in the

respective paragraphs bounding p®™(Sy,) and ¢®"(S},) for general k. When k = 0, the bounds are at
most 614 (again, when @ = Q(k)). Finally, we get that

. ®@n , ®n (BCS(p®n7q®n))2 > 520 _ s140(a)

Expandmg the  definition of as well as the choice of « =
O(max(k, 1/v/nDkr(p | q), Dxr(p | q)) gives the lemma statement. O

C.1 Showing the conditions for Lemma C.2

In this subsection, we calculate the KL-divergence, squared Hellinger distance, as well as moment
bounds for the log-likelihood ratio for f, and f2¢ for a generic r-smoothed distribution f,..

Lemma C.3. Consider the parametric family f)(x) = f,.(z — \) for some r-smoothed distribution
fr with Fisher information Z,.. Then fore < %,

Dxv(fr || f?s) = 26217‘ (1 +0 (7’2\6/71) >

Proof. Let {(x) = log f,(z)

Div(f |l £2¢ / £(2) log 22 26(( )) dz

- [ it / My

== [ E s+l ay
0 z

—fr

2e 2

0
— 227, + 0 \/Ii —227, (140 (-
- T T‘T2 - T 7"2,\/"[7

where the O result is from Lemma B.2.

O

Lemma C.4. Consider the parametric family f)(x) = f,(x — \) for some r-smoothed distribution
fr with Fisher information L. Then for e < r,

3
Bl £2°) < D (fe | 72+ 0(5)
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Proof. Observe that the squared Hellinger distance is

B =5 | VI - VIE@)

_1 > _ ffs(l")z T
—2[me<x><1 o

r2e
Since for y > 0 we have (1 — \/7)? < —1(logy) + L+ + 2 (y — 1)%, substituting y = fﬁ.((;)), the
previous expression is at most

1o Lo fE@) 1@ 11 ()
5[ @ (‘2k’g o e ot (e ‘1>+> o

The first term inside the big parentheses equals iDKL (£ |l £2€); the next two terms cancel out (since
they each integrate all the probability mass of f); the final, cubic, term we bound now.

We start by bounding the cubic term for a Gaussian g of standard deviation r:
o0 3 3
2
/ (@) (W _ 1) de = 0(%)
— o0 g(x) + r

where the bound is easily computed from the closed form evaluation of the integral, valid while ¢ is
bounded by some fixed multiple of r.

Now the r-smoothed distribution f is just a convex combination of Gaussians of width r, and the

. 3
desired inequality follows from the observation that the expression f,.(x) (J;E ((;)) — 1) is convex
e "

3
in the sense that, in terms of y, z > 0, the function y (5 — 1) is a convex 2-variable function. Thus
+

the total contribution of the cubic term is bounded by its value for the Gaussian, namely O(i—z)
O

2¢e
Lemma C.5. Let k > 3. For an r-smoothed distribution f,, let v = log J;Lr Fore <1, we have

IE[Mk] < %!(305/7”)]“_24521 (1 +0 (i\ [log T%))

Proof. Let ¢(x) = log f(x). We have
k
dz

o0

e’} x+2e
[ f2(2) llog f, (x) — log fi(x + 20)|* = / p(z) / ¢(y)dy

o xr+2¢e
< ek / p(z) / 10/ (4)|* dy dz

— 00

— o [ Bl e+ )y
2e

-1 k! k-2 sz 2
< o)1 505/ [ Bl o+l

< (25)’“15!(15/7«)’“*2 /2€I+O Y1 1ogi dy
- 2 0 T r2T
k! € 1
_ kR k—2 € |
= (2¢) ) (15/r)"=°T (1 + 0 (r log r2I>>
K k—2 . 9 € 1
= 2(306/r) 4€I<1+O<r”10gr21

where the first three inequalities are by convexity, by Lemma A.6, and by Lemma B.3. O
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Lemma C.6. For an r-smoothed distribution f,, let v =

1
2] 4.2 €./
%[M | <4e I<1+O (r log 27

Proof. Let {(x) = log f,(x). We have

2
dx

x+2¢

[fr<x>\logfr() log f, (x + 2¢) 2 / I () dy

<< [ @ / “lew)P ayas

25/0 E[sr(o: +y)?] dy

<o [ m( F)

where the first two inequalities are by convexity, and by Lemma B.3. O

C.2 Proving Theorem 1.3

We are ready to prove Theorem 1.3.

Proof of Theorem 1.3. We will be applymg Lemma C.2 on the distributions fr and f2¢ for an
appropriately chosen ¢, with kK = O(£ ) (note that by Lemma 3.1, Z,. < 1/r% so r?Z, < 1).

r T2I

Lemma C.4 combined with Lemma C.3 show condition 1 on Lemma C.2. Lemma C.3 shows
condition 2. Lemma C.6 shows condition 3, and an essentially identical calculation shows condition
4. Lemma C.5 shows condition 5, and again an essentially identical calculation shows condition 6.

Thus, applying Lemma C.2 and Fact C.1, the failure probability of distinguishing p = f,. and ¢ = f2¢
is at least

—(1+O(7 21 V+O0(1/v/ne?Z,)+0(e2Z,.))ne? T, /2

Picking

logt 1 1 log & 2log &
=|1-0 9 —0 —0 s s
c n r3TL5 <1og (15> ( n ) nZ,

yields a failure probability lower bound of 4, thus showing the theorem statement. O
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