
Ver: View Discovery in the Wild
Yue Gong⇤, Zhiru Zhu⇤, Sainyam Galhotra, Raul Castro Fernandez

Department of Computer Science, The University of Chicago
Email: {yuegong, zhiru, sainyam, raulcf}@uchicago.edu

⇤Yue Gong and Zhiru Zhu contributed equally

Abstract—We present Ver1, a data discovery system that iden-
tifies project-join views over large repositories of tables that do
not contain join path information, and even when input queries
are inaccurate. Ver implements a reference architecture to solve
both the technical (scale and search) and human (semantic
ambiguity, navigating a large number of results) problems of view
discovery. We demonstrate users find the view they want when
using Ver with a user study and we demonstrate its performance
with large-scale end-to-end experiments on real-world datasets
containing tens of millions of join paths.

I. INTRODUCTION

The existence of large repositories of data such as those that
originate from the combination of disparate databases [1], data
lakes [2], open data portals [3], and cloud repositories [4] has
the upside of offering opportunities to find valuable data for
tasks such as machine learning, reporting, and data analytics.
The downside is the resulting data discovery problem: identify-
ing a combination of datasets useful for the downstream task
even when these reside in different databases. For example,
a machine learning engineer may need a training dataset
that requires combining a table in a database with the one
sitting on the enterprise data lake. Large volumes of often
incomplete and noisy data without any join information, which
we call pathless table collections, make solving data discovery
difficult and thus hampers productivity.

There are several approaches to identify project-join views
(PJ-views) over pathless table collections. Discovery systems
such as Aurum [5], Goods [6], Auctus [7], Juneau [8],
Josie [9], Table-Union [10], D3L [11] and libraries such
as LSHEnsemble [12], and Lazo [13] help with identifying
datasets that satisfy some relevance criteria whether via key-
words [6] or programs [5]. Analysts can then combine the
datasets to verify that it satisfies the view they need. Another
approach is query-by-example (QBE) interfaces [14], [15] that
lets users provide examples of the view they need. These
can be adapted, with effort, to run on top of data discovery
systems. Whether via keywords, programs, or QBE interfaces,
the result of discovery queries over pathless table collections
leads to ambiguous results that include semantically distinct
results, duplicates or near-duplicates, and different versions of
the data. This ambiguity further complicates identifying the
right view. More generally, solving view discovery in the wild
requires addressing the following challenges:
• Challenge 1. Noisy Queries. Users provide queries that

represent their best knowledge of the data in the form

1code is available at https://github.com/TheDataStation/ver

of keywords, programs, and examples. User-provided input
may or may not appear in the table collection and they may
be noisy and incorrect.

• Challenge 2. Noisy Join Paths. Pathless table collections
do not include join paths. Identifying true join paths auto-
matically is impossible. We resort to identifying inclusion
dependencies, a proxy to join paths, i.e., a join path implies
an inclusion dependency but not the other way around.

• Challenge 3. Large Number of Join Paths. Large volumes
of data result in a large number of join paths that require
efficient data structures to represent and navigate them.

• Challenge 4. Noisy Result Views. A large number of join
paths implies many views may satisfy a user query. Such
result views will be noisy due to ambiguity in the user query
and noisy join paths. Concretely, there will be duplicate
result views, views that are contained within each other,
others that are complementary, and others that will show
contradictory values for the same key.

• Challenge 5. Result View Navigation. Result views will
contain semantically ambiguous results, e.g., views with
“work address” and “home address”. Only users know the
right context so the challenge is to elicit that context and
use it to choose the view they need among all result views.
In this paper, we introduce a reference architecture to iden-

tify PJ-views in the wild. Discovering a PJ-view over pathless
table collections requires understanding human preferences
and requirements (which we refer to as a human problem)
and solving a technical problem. The architecture divides the
larger problem into smaller ones, each of which we tackle
with a different component. Reference architectures help con-
ceptualize problems and have been influential in advancing
the field. For example, [16], [17] for relational databases and
[18], [19], [20], [21] for data integration. The reference archi-
tecture we propose tackles the five challenges above. While
challenges 1-3 are addressed by existing work, we introduce
new techniques to address Challenge 4 and 5 in this paper,
and demonstrate them as part of an implementation of the
reference architecture. We make the following contributions:
• An end-to-end system, Ver, that identifies PJ-views among

tens of millions of join paths. Ver implements the reference
architecture for QBE-based interfaces. We choose QBE
because it permits users to declare the table they would
like to find, even when they do not know examples and can
only provide attribute names (Section III). Ver relies on
existing work [5] to address Challenges 1-3.

ar
X

iv
:2

10
6.

01
54

3v
4

 [c
s.D

B
]

4
O

ct
 2

02
2

• A view presentation component that helps humans to
identify a good view among many. The approach uses a
novel bandit-based approach to learn user-specific discov-
ery preferences, and it uses abduction-based reasoning to
quickly narrow down the search space, reducing the number
of human interactions (Section IV).

• A view distillation component that automatically filters out
views by classifying them into 4C categories: compatible,
contained, complementary, and contradictory. Besides help-
ing with filtering, these categories produce information used
by the view presentation component (Section V).
We conduct an IRB-approved user study (Institutional Re-

view Board) [22] to validate Ver’s approach to the human
problem. We conduct thorough experiments on queries from
open data repositories that lack join paths.

II. DEFINITIONS AND PROBLEM STATEMENT

R(A1, . . . , Am) is a relation schema over m attributes,
where Ai denotes the ith attribute. A table D comprises a
schema R(A1, . . . , Am) and a set of tuples T where each
tuple t 2 T is a specific instance of the schema.

In practice, tables do not look like the ideal defined above
because they may lack header information, have ambiguous
names and contain dirty and noisy data. More formally:

Definition 1 (Noisy structured data): A noisy data D
is characterized by an incomplete schema information
R(A1, . . . , Am) where Ai = � for missing header values and
tuples T such that each tuple t 2 T contains at most m values.

In addition, a pathless collection may contain tables with
contradictory values, e.g., two census tables with different
population counts for the same states of the country. Formally,
two tables Di and Dj contradict if the tables contain different
values for the same key. We discuss the detection of contra-
dictions in Section V.

Definition 2 (Pathless table collection): A pathless table
collection contains a set of noisy tables D = {D1, . . . , Dn}
where each Di is a noisy table and tables Di, Dj may contain
contradictory values.
PJ-example-query. A PJ-query (hereafter called query) con-
tains (possibly noisy) example tuples of the desired output.
The examples are a proxy to user’s discovery requirements.
The quality of examples depends on user’s knowledge. Given
a query q, there may be many tables that contain the input
examples, and many combinations of these may satisfy q,
resulting in a large number of candidate PJ-views.

Definition 3 (Noisy query): An input query q is a noisy table
consisting of l example tuples, � = {�1, . . . ,�l} where each
�i is a noisy tuple denoting example values that are expected
to be present in the desired output. The different columns in
the examples � are denoted by �.Ai, 8i 2 {1, . . . , ⌧}, where
⌧ is the number of attributes in the input query.

PJ-views are constructed by joining datasets through keys.
We first define a join path and then use it to discuss the effects
of noise, followed by a formal problem statement.

Definition 4 (Join path): A join path P is defined as an
ordered set of noisy tables P ⌘ {D1, . . . , Dt} such that tables

Dj and Dj+1 join for all j < t via a key column k 2 Dj , Dj+1

forming a chain of join operations.
Joinable datasets can be identified in the presence of key

information, which is generally absent in pathless scenarios.
A PJ-view V is the dataset formed after materializing the path
P followed by projection, i.e., choosing the relevant columns.

Problem 1 (Project-Join view discovery over pathless table
collections): Consider a pathless table collection D and a
query q with examples �. The goal is to construct a minimal
candidate set of PJ-views D0 that satisfy the user requirements.

Users may require the PJ-view to contain all examples �, or
any of them, depending on user and application. Formalizing
these requirements is outside the scope of this work.

III. A REFERENCE ARCHITECTURE

Why a Reference Architecture? From a systems engineering
perspective, a reference architecture is the materialization of a
“divide and conquer” strategy that splits complex engineering
problems into smaller parts. Thus, a reference architecture
describes a collection of components and their interactions.
In making a reference architecture concrete, we state our
understanding of the problem and represent it as a concrete
artifact that the community can scrutinize and improve.

Design Overview

Finding a PJ-view in the wild requires solving a human
and a technical problem. We present a reference architecture
for view discovery that contains components targeting both
human and technical problems. Along with each component,
we discuss implementation options, including those made by
Ver. We also briefly discuss two novel components, VIEW
DISTILLATION and VIEW PRESENTATION.
Overview. Algorithm 1 shows pseudocode (human compo-
nents are highlighted in blue) and Fig. 1 shows Ver’s architec-
ture inside a funnel, denoting the gradual reduction of views as
data flows downstream. Ver builds a discovery index offline.
DISCOVERY ENGINE AND INDEX CREATION (TECHNI-
CAL). This component builds indices over pathless table
collections: i) a join path index, which can be approximate;
ii) retrieval indices over table names, values, attribute names
and column similarity. The indices are available online, via
the Engine’s API to other components. (Challenge 2).

The indices can be built using state-of-the-art methods such
as Aurum [5] (that Ver’s implementation uses), Auctus [7],
JOSIE [9], LSHEnsemble [12]. After the indices are built,
users design and submit queries via a VIEW-SPECIFICATION
component (line 1).
VIEW SPECIFICATION (HUMAN). Discovery interfaces in-
clude spreadsheet-style, keyword search, APIs, natural lan-
guage, and combinations of these. The reference architecture
supports these interfaces via the VIEW-SPECIFICATION com-
ponent. For QBE-based interfaces, as implemented by Ver,
the input is a set of examples, �, and the output of this stage is
a set of example attributes and values. VIEW-SPECIFICATION

Algorithm 1: Ver Design Overview
Input : Pathless table collection D, Discovery Index I

Output: PJ-views V
1 � VIEW-SPECIFICATION(D)
2 CAND �

3 for �.Ai 2 COLUMNS(�) do
4 CAND(Ai) COLUMN-SELECTION(�.Ai,D, I)
5 if MODE==Interactive then
6 CAND(Ai) Query CAND(Ai)

7 CAND CAND [CAND(Ai)

8 VPJ JOIN-GRAPH-SEARCH(CAND,�)
9 S VIEW-DISTILLATION(VPJ)

10 if MODE==Interactive then
11 V VIEW-PRESENTATION(VPJ ,S)

12 else
13 V Rank VPJ based on overlap score

14 return V

View
Specification Discovery Index

Discovery EngineColumn
Selection

View Distillation

Join Graph
Search

View Presentation

Materializer

C1 C2

C3

C4

C5

Technical

Human

Fig. 1: Ver Reference Architecture. The funnel illustrates the
progressive reduction of data as it flows downstream.

may interact with users when it detects the provided examples
are ambiguous, or to offer examples to choose from.

Next, the COLUMN-SELECTION component selects the sub-
set of tables containing user-provided examples, � (lines 3-7).

COLUMN SELECTION (TECHNICAL). This component must
be designed to identify relevant data even when the input query
is noisy, addressing Challenge 1 above. The output of this
component is a collection of candidate tables and columns.

The candidate columns are processed by the JOIN-GRAPH-
SEARCH component (line 8) to enumerate and materialize
candidate PJ-views (addresses Challenge 3). The candidate
view search space reduces, as shown in Fig. 1.

JOIN GRAPH SEARCH (TECHNICAL). Given a set of candi-
date tables, an input query, and the discovery index providing
join paths, this component identifies all join graphs that,
when materialized, produce candidate PJ-views. The main
goal of this component is to address the large join path space
(Challenge 3). To materialize candidate PJ-views, the JOIN-
GRAPH-SEARCH component uses a MATERIALIZER, a data
processing component with the capacity to execute PJ queries.

JOIN-GRAPH-SEARCH returns many candidate views.
Ranking the views is hard because of users’ differing search
criteria. The VIEW-DISTILLATION component (line 9) sum-
marizes the candidate views, further reducing the view search
space as shown in Fig. 1.

VIEW DISTILLATION (TECHNICAL). This component com-
putes categories from the candidate PJ-views that include
redundancy and containment in the views, as well as oppor-
tunities for unioning views and more. Some categories can be
used to distill/summarize the views (Challenge 4). Others are
shared with the downstream component.

VIEW-PRESENTATION receives the distilled views. It can
rank the views and return top-1 (for a full automated
mode) or it can leverage the categories computed by VIEW-
DISTILLATION to help users find the right data (lines 10-13).
VIEW PRESENTATION (HUMAN). VIEW-PRESENTATION
uses different question interfaces to elicit information from
users via data questions. The questions are designed to narrow
down the space until users find the desired view (Challenge
5). The component chooses what questions to ask, sequentially,
using a bandit-based approach.

Next, we present VIEW-PRESENTATION (Section IV),
VIEW-DISTILLATION (Section V). We also introduce the
implementation details of DISCOVERY-INDEX, COLUMN-
SELECTION and JOIN-GRAPH-SEARCH in Appendix.

IV. VIEW PRESENTATION

Ideally, a query results in one PJ-view. In practice, am-
biguity, redundancy, erroneous join paths, and large table
repositories mean there may be hundreds of result views.
Ver uses novel techniques to reduce the number of views
automatically (Section V), but there is a limit to automation.
Semantic ambiguity requires involving users to obtain the
final view. The VIEW-PRESENTATION component analyzes the
views and generates questions that, when answered, help rank
and select views. For example, this component will ask a user
if they want “home address” or “work address” in their output
when it detects both in the views. By asking questions, users
learn more about the schemas and datasets available, and thus
refine their preferences and discovery needs. A key challenge
is that different users may be able to respond to different
questions and that their preferences evolve as they interact
with the system. Ver’s VIEW-PRESENTATION component is
based on two design principles that cater to varied user needs.
• Mixed-Initiative Interface Design: Lack of knowledge
about available datasets inhibits users from effectively query-
ing the identified set of views. However, users can answer
questions about their desired view. Each user has a different
understanding of the requirements and finds different inter-
faces to be more appropriate depending on that. Therefore,
users may need different interface designs to answer questions.
For example, some users could recognize phone number from
the area code, while others might look for a pattern across
values. Because different users will be able to answer different
questions, Ver supports different question interfaces, each
asking a different question type. This is motivated by previous
mixed-initiative designs [23], [24]. Besides, Ver learns which
interface to offer to a user according to their previous actions.
• Adapt to evolving users’ knowledge: Users’ understand-
ing of their discovery need evolves as they interact with
questions and learn about the schemas and data contained

in the repository. Ver is designed so users can change their
mind about previously answered questions, thus using newly
acquired knowledge, without forcing users to start afresh.
Question Interface. To cater to the diverse preferences of
users, Ver considers the following collection of different
interface designs.
• Dataset interface: This interface shows users a candidate
view to check if it satisfies user’s requirements.
• Attribute interface: This interface shows users an attribute
and asks if it should be present in the desired output.
• Dataset Pair: This interface shows users a pair of views and
asks them to pick one. This interface is specifically designed
to leverage 4C categorization of views (Section V).
• Summary interface: This interface summarizes a collection
of views and checks if it is relevant for the desired output. We
use a wordcloud to visualize the summary.

At every iteration, there are two choices to make: i) what
interface design to choose (i.e., how to show the user the
question); ii) what prioritization strategy to use to choose
the question to show on the chosen interface. For example,
if the algorithm chooses the attribute interface, then it could
show an attribute similar to the input query or one that is
different from others previously shown. We implement two
prioritization strategies to order questions: i) distance of the
question from the input query; ii) distance of dataset schema
to input query. Ver supports other interface designs and
prioritization strategies. Finally, users can always skip any
question and Ver adapts to their responses. We discuss the
relative usefulness of these interfaces in Section VI-A.
Ver’s view presentation addresses the following problem
Problem 2: Given a collection of views and access to

a user who answers questions through interfaces , prioritize
questions to identify the desired view while minimizing the
number of queries to the user.

The VIEW-PRESENTATION component is designed to help
users interact with the collection of candidate views and
effectively navigate the result views. We now present the
key insights we use to solve the problem and Ver’s view
presentation algorithm.

A. Bandit-Based View Presentation Algorithm
A key design principle of the VIEW-PRESENTATION com-

ponent is to not prune any views unless specifically discarded
by the user. Instead, the VIEW-PRESENTATION component
ranks the views, giving users the ability to revisit their choices
as their knowledge evolves. It must balance the need for
asking informative questions that help narrow down views
with questions that the specific user may be able to answer.
Merely learning first what question interface the user prefers
(exploration stage) and then asking questions based on that
interface alone (exploitation stage) would be brittle to users’
changing knowledge and preferences. The algorithm is based
on two insights: i) learning the best interface for a given user
can be modeled as a bandit problem and; ii) the reward in the
bandit problem should be based on a question’s potential to
reduce the number of candidate views.

Bandit-Based approach. A multi-arm bandit algorithm nat-
urally models probabilistic user preferences. Each question
interface is an arm, a question-answer pair is pulling an arm,
and the reduction in candidate views after the answer is the
reward. We design the algorithm off Exp3 [25] because i) it
does not make assumptions about the reward distribution; ii)
the expected reward is represented as the arm’s weights and;
iii) has provable guarantees. Exp3 uses an exponential growth
function to adapt weights of arms that obtain a positive reward,
and all arms start with the same weight and are considered
independent from each other. We improve on this behavior by
leveraging knowledge of the user’s expected reward.

Question’s reward. The reward of a question q is its expected
information gain, defined as the maximum number of irrele-
vant views that are pruned if the user answers q. Information
gain becomes the reward of the bandit formulation and thus it
guides the questions that VIEW-PRESENTATION asks users.

Algorithm 2: VIEW-PRESENTATION
Input : Candidate set of views , Set of question interfaces ,

Exploration factor �
Output: Set of required views .

1
2 while j 2 {1, 2, . . . , T} do
3 for I 2 do

/* Iterate over interfaces to estimate
probability of selection */

4 r(I) Estimate likelihood to answer question with interface I

5 �(I) Calculate info gain if the question using I is answered
6 w(I) r(I)⇥ �(I)

/* Normalize to calculate probability */
7 p(I) (1� �) w(I)P

I2 w(I)
+ �/| |, 8I 2

8 Ic Draw randomly according to distribution p

9 response Query the user using Ic

10 Update r(Ic)
11 if response 6= Skip then
12 reward, Use user response to remove irrelevant views

from and update ranking

13 return

Concretely, the probability of choosing an arm is as follows:

p(I) = (1� �)
w(I)P
I2 w(I)

+
�

| |

where denotes the set of different question interfaces. �
determines the probability of exploring a random arm, while
ignoring the expected reward, and w(I) denotes the estimated
value of the expected information gain on question interface
I . Choosing � = 1 is equivalent to an exploration strategy that
chooses a random arm for every question while � = 0 chooses
an arm that relies on expected reward estimation for each
question. The expected information gain w(I) of an interface
I is r(I) ⇥ �(I), where r(I) is the probability that a user
would answer the question with interface I , and �(I) is the
maximum reduction in candidate set size if the question using
I is answered. Initially, users have not answered any questions
and the estimates of expected gain are not accurate. Therefore,
the approach is bootstrapped with the exploration strategy until
O(log | |) questions have been asked for each interface. The

estimated user behavior is then used to transform to a bandit-
based approach.
Performance Guarantees. Theoretically, using Chernoff
bound [26] we can show that O(log | |) questions per interface
I yield an accurate estimate of the r(I) with a probability
of 1 � 1

| |2 . Using prior results on the maximum coverage
problem [27], greedily choosing the question that maximizes
information gain is the best approximation of the optimal
strategy. Therefore, the accurate reward estimation ensures
effective interaction using a multi-arm bandit approach for
VIEW-PRESENTATION.

B. The View Presentation Algorithm

Algorithm 2 first initializes the candidate set of views
(line 1) and iteratively queries the user until T iterations
(lines 2–12). T is used to denote any stopping criterion,
which could be when the user ends the session or a pre-
defined parameter. In each iteration, the multi-arm bandit
based approach estimates the expected reward of each arm
to calculate the probability distribution of choosing each arm
(lines 3–7). The question interface is chosen according to this
distribution. After choosing the interface Ic, a question that
has the maximum information gain �(I) is asked to the user.
User’s response is subsequently used to either update r(I) or
the candidate set of views.
Ranking Views. Given a collection of questions Q to the user,
an expected utility score is calculated for each view to rank
them. Mathematically, the utility score of a dataset D is a
weighted sum of the view’s utility according to each question:

X

Qi2Q
sQi ⇥ (P (D satisfies user needs|Qi =) · P (Qi =))

where Qi = denotes that the question Qi is answered
correctly and sQi is 1 if D is considered to satisfy user require-
ments by Qi’s response, �1 if D is considered irrelevant by
Qi’s response and 0 otherwise. The probability P(D satisfies
user needs | Qi =) is inversely proportional to the number
of views that Qi captures and the probability that a user would
answer a question is used as a proxy estimate for P(Qi =).
Note that this score is calculated only for candidate views that
are not pruned by user’s responses.

V. VIEW DISTILLATION

VIEW-DISTILLATION consists of two parts: i) categorizing
pairs of result views (i.e., candidate views); ii) applying a
distillation strategy to reduce the number of result views.
4C Categories. Result views with the same schema are
classified into the following categories:

Definition 5 (Compatible view pair): Two candidate views,
V1 and V2, are compatible (denoted by V1 ⌘ V2) if they have
the same set of rows, (V1 \ V2) = V1 = V2.

Definition 6 (Contained view pair): A view, V1, contains
another view, V2, when V2 ⇢ V1, that is, when all rows of V2

are contained in V1.

A pair of views may be Complementary or Contradictory,
based on their candidate keys:

Definition 7 (Candidate key): A candidate key, K(V), is a
set of attributes in an output view, V , that uniquely identify
each row in R 2 V .

Now we define complementary and contradictory pairs.
Definition 8 (Complementary view pair): Two views, V1 and

V2 are complementary if the two views have the same can-
didate key, K(V1) = K(V2), and the views have overlapping
rows V1 \ V2 > 0 but are neither contained nor compatible.

Definition 9 (Contradictory view pair): Two views, V1 and
V2 are contradictory if the two views have the same candidate
key, K(V1) = K(V2), and a key value yields different rows
in V1 and V2.
Note. We categorize a pair of views as contradictory or
complementary with respect to a candidate key. Therefore,
views V1 and V2 may be contradictory with candidate key k1
and complementary with key k2. Our VIEW-DISTILLATION
component exposes all candidate relationships for further
downstream processing.

The first step in VIEW-DISTILLATION is to identify and label
pairs of candidate views with one of the 4C categories. Then, a
distillation strategy automatically prunes views based on their
4C category. Views are nodes in a graph. An edge is labeled
with the category of the nodes it links. More formally:

Problem 3: Given a collection of views , identify a
labelled graph G where the irrelevant views are pruned and
edges that can be categorized as 4C are labelled accordingly.

Algorithm 3: View Distillation
Input : , collection of views
Output: G, graph with edges categorized as 4C

1 G ADD-NODES(), IDENTIFY-KEYS()
2 SCHEMA-BASED-BLOCKS()
3 for V 2 do
4 for 1  i, j  |V|, i > j do
5 Vi V[i], Vj V[j]

/* Iterate over the views, compare
rowwise hashes H */

6 if H[Vi] = H[Vj] then
7 G[(Vi, Vj)] = Compatible
8 V V \ {Vi}
9 else if H[Vi] ⇢ H[Vj] or H[Vj] ⇢ H[Vi] then

10 G[(Vi, Vj)] = Contained
11 V V \ {Vi, Vj} [{Vi [Vj}
12 else if H[Vi] \H[Vj] 6= � then

/* Initialize any overlapping view
pair as complementary */

13 G[(Vi, Vj)] = Complementary

/* Second phase: Identify contradictions */
14 I INDEX(V)
15 for k 2 I.keys() do
16 C GROUP(I[k])

/* Identify pairs in different groups */
17 for (Vi, Vj) : Vi, Vj 2 I[k], C[Vi] 6= C[Vj] do
18 G[(Vi, Vj)] = Contradictory

Ver’s VIEW-DISTILLATION implementation uses the fol-
lowing insights to classify views into 4C categories and
construct the graph G. First, it uses the transitivity property
to not compare any pair of views whose categorization can be
inferred from prior comparisons. For compatibility, if V1 ⌘ V2

and V2 ⌘ V3, then V1 ⌘ V3. And for containment, Ver
maintains the largest view for categorization, i.e. if V1 ✓ V2,
then Ver distills out V1 and keeps V2 as V1’s representative.
Second, it partitions candidate views into SCHEMA-BASED-
BLOCKS. This ensures that pairs of views are compared only
if they share the same schema. Third, it hashes each view
using a row-wise hash function (say H), i.e. H(V) maps V
to a set of values where each value corresponds to a different
row. This hash map helps to efficiently find compatible and
contained pairs of views. Fourth, it identifies approximate key
columns [28], [29] and constructs an inverted index that maps
each value in a key column to the corresponding rows and
views that contain that value. This index helps to identify rows
that have contradictory values and hence contradictory views.

Algorithm 3 presents the pseudocode of Ver’s VIEW-
DISTILLATION. First, it initializes a graph G where each view
is added as a node, identifies keys in each view (line 1)
and partitions the collection of views into different blocks
based on their schema (line 2). These schema-based blocks
are processed sequentially to populate G with 4C categories
(line 3). The categorization process operates in two phases.
The first phase (line 4-13) hashes all views (hash value of
a view V is denoted by H(V)) and compares hashed values
to check containment and compatibility (line 6-11). A pair of
views Vi and Vj that overlap and have the same key but are not
contained or compatible are marked as complementary (line
12-13). These pairs are later updated to be contradictory if
the second phase identifies any contradictions. All previously
described comparisons are performed on the hash of each view.
The hash function maps each view to a set of values, where
each value in the set corresponds to a row in the view and
we employ a cache to not hash any view multiple times. The
second phase constructs an inverted index over the values in
the key column(s) of each view in V . This index maps each key
value (say k) to a list of rows that contain the value k (denoted
by I[k]). Ver iterates over all values of the key column and
identifies contradictions among the rows that contain the value
(line 16-18). Specifically, it groups all duplicate rows that
contain a key value k together (line 16) and pairs of views
not in the same group are labeled contradictory (line 17-18).

Distillation Strategy. Algorithm 3 merges distillation with
graph construction. It applies a distillation strategy that dedu-
plicates compatible views and keeps the largest contained
view. Alternative strategies can be implemented based on the
target use. This strategy helps reduce the search space of views
that VIEW-PRESENTATION component needs to consider.

Complexity Analysis. A crucial step of Algorithm 3 is hash-
ing, which requires O(n) time, where n is the total number
of candidate views. Other than that, Ver partitions the set of
views into different schema blocks and compares views within
a block. In the worst case, it may compare hashes of all pairs
of non-compatible views within a block to check containment,
i.e. requiring total complexity of O(n+↵�2), where ↵ denotes
the number of distinct schemas and � denotes the maximum
number of distinct views sharing the same schema. How-

ever, the distillation property of keeping the largest contained
view helps reduce complexity in practical scenarios (median
reduction ratio of more than 18%). For contradiction and
complementary categorization, calculation of key is the most
time-consuming step, which requires processing all views.
The subsequent steps of constructing the inverted index and
processing each key value in the index are relatively efficient.
Consider a key value k which is present in t different rows, out
of which � are distinct values that contradict each other. The
complexity of Ver’s grouping approach to process the key k
in the inverted index takes O(t) running time to identify all
contradictions involving k. Therefore, this step has complexity
linear in the number of contradictions.

VI. EVALUATION

In this section, we answer these research questions:
• RQ1: Is Ver effective in navigating users to the view that

satisfies their requirements? (human problem)
• RQ2: Is VIEW-DISTILLATION useful for reducing the view

choice space and is VIEW-DISTILLATION scalable? (tech-
nical problem)

• RQ3: End-to-end evaluation of Ver (technical problem)
• Qualitative Study (QS). We discuss qualitative differences

with QBE systems.
In Appendix. C, we include several Microbenchmarks

where we explore the effect of various query and data pa-
rameters on Ver’s performance.
Datasets and Workload. We use three real-world large-scale
datasets in the evaluation. Detailed statistics of these three
datasets are shown in Table I.

Dataset #Tables #Columns ⇠# Joinable
Columns

⇠ Total
#Rows Size

ChEMBL 70 446 435 140M 6.5GB
WDC 10000 39939 11.6M 140K 45MB

Open Data 69407 2955305 28.6M 900M 119GB

TABLE I: Characteristics of Datasets

• ChEMBL: ChEMBL [30] is a database of bioactive
molecules with drug-like properties. ChEMBL is large in
terms of total data size. However, it has a relatively small
number of tables and joinable columns.

• WDC: WDC is a subset of the web tables corpus [31]
containing 10K tables crawled from the web. It has more
than 10 million pairs of joinable columns.

• Open Data [32] This dataset consists of 69K open datasets
collected from the Open Data Portal Watch [33], [34] which
catalogs and monitors 262 open data portals such as NYC
Open data, finances.worldbank.org, etc.

System Setup. We ran all experiments on a Ubuntu server
with 500GB memory and an Intel(R) Xeon(R) CPU with 48
cores and 2.3GHz speed each. We built Ver using python3.6.
Ver uses Aurum to find join paths without using schema
information. In ChemBL, we ignore the schema information
to simulate pathless scenario and instead use schema to

evaluate ground truth. When searching for join graphs, Ver
uses by default a maximum of two hops, ⇢ = 2. We set the
clustering threshold ✓ to 1, and the expected number of output
views k to be the total number of join graphs so we materialize
all join graphs generated from JOIN-GRAPH-SEARCH.

A. RQ1: Is Ver effective in navigating users to the view that
satisfies their requirements?

We conducted a within-subjects user study to answer this
question. We give participants a task and expose them to two
systems: VIEW-PRESENTATION as explained in this paper, and
a ranking of views as produced by overlap-based ranking
mechanism of FASTTOPK [35]. Their goal is to identify a
view that satisfies the task.

Participants. We recruited 18 students with diverse back-
grounds (CS, Economics, Math) from the University. We did
not record any personally identifiable information.

Study Procedure. We design the study to ensure internal
validity. Each participant attends a 30-min training session to
learn the interface design. During the session, we describe
the study, give a tutorial on each interface, and ask partici-
pants to solve two randomly-chosen trial queries using Ver
and FASTTOPK. The goal of the trial task is to familiarize
participants with the interfaces. After finishing the trial tasks,
each participant solves two different queries with Ver and
FASTTOPK, respectively. The order in which the participant
uses Ver and FASTTOPK is randomized to avoid ordering and
learning effects. Participants work in isolation to avoid biasing
each other. After finishing the tasks, participants answer a short
survey about their experience with both systems.

Task Setup. Participants are exposed to 4 (2 trial, 2 study
tasks) of the 5 queries shown in Table II from WDC [31]
dataset. We chose a diverse set of queries involving numerical
and textual attributes that generated semantically ambiguous
results.

Query Example Ver
#Views

FASTTOPK
#Views

Find views containing
IATA code of airports
in any of these states

in the US.

Indiana, Georgia,
Virginia, Illinois,

Connecticut
397 2255

Find views containing
churches in any of these

states in the US

Indiana, Georgia,
Virginia, Illinois,

Connecticut
397 2255

Find views containing
newspaper companies in

any of these cities.

San Diego,
Boston,

Philadelphia
394 838

Find views containing
population of any of

these countries.

China, Japan,
United States 566 2235

Find views containing
the number of births
per 1000 population

in any of these countries.

China, Japan,
United States 566 2235

TABLE II: Tasks used in the user study and # Views generated
by Ver / FASTTOPK.

We manually verified each participant’s output and record
whether they found a relevant view that answers the query.

Interface Setup. We setup Ver’s VIEW-PRESENTATION with
different types of question interfaces. The interface asks users
if they want to include a specific attribute, collection of
attributes or an individual dataset (as discussed in Section IV).
We use two different prioritization strategies for each interface:
one based on the distance of the question from the input query
and other based on the distance of the datasets corresponding
to the questions from the input query. We use pre-trained
word2vec embeddings to calculate distance. In each interac-
tion, the user can either skip or answer the question or explore
the ranking of views to select one view. The scoring model we
adopted in FASTTOPK presents a ranking of views allowing
the user to manually explore the options and pick the one that
satisfies the input query.
Data Collection and Results. We log the interactions of
each participant with the system for subsequent analysis. We
measured interactions and outcomes to answer the following
questions (Table III presents the study results):
Q1. Does the user find the relevant view? 16/18 participants
identify the correct view with Ver versus only 6 when using
the FASTTOPK ranking. 12 participants finished the task
without finding any dataset using FASTTOPK versus only
1 with Ver. The results are statistically significant: we run
Fisher’s exact test and obtain a p-value of 0.002. Due to this
result, we confirm the sample size is adequate for this study.
Q2. Which system would you prefer to search datasets? 12
participants prefer searching for datasets with Ver and 5
prefer FASTTOPK (1 participant was not sure).
Q3. If you are to forward the query and the dataset you chose
using Ver same question for FASTTOPK) to someone else.
How confident are you to share the identified search result
for the input query? 14 participants were confident with the

result they found with Ver. We cannot measure confidence
for FASTTOPK because 12 participants did not find any view.
Q4. How difficult is to use Ver? and Q5. How difficult is to
answer multiple choice questions with Ver? 14 participants
deemed using Ver easy and intuitive and 4 disagreed. Anec-
dotally, some participants mentioned that questions asked by
Ver are easy to answer and do not require in-depth analysis.
Our discussion with the participants revealed that different
users preferred different interface designs. For example, some
students verified the attribute names before choosing a view
while others verified a sample of the records.
Time taken The median participant using Ver finds the view
within 101 seconds (median) and with a median of 3 interac-
tions. They take 93 seconds (median) when using FASTTOPK.

B. RQ2: Does VIEW DISTILLATION reduce the number of
views and is VIEW-DISTILLATION scalable?

We evaluate the effectiveness in reducing result views and
the scalability of VIEW-DISTILLATION.
Noisy Query Generation. Each query consists of a collection
of 2-column, 3-row example values. To generate the query,
we first find a PJ-query that produces a result we call the
ground truth PJ-view. Columns in the ground truth PJ-view

Q1. Does the user find a relevant view?
Ver FASTTOPK

Found 16⇤ 6
Not Found 2 12

*Result is statistically significant with p-value of 0.002
Q2. Which system would you prefer to search datasets?
Ver FASTTOPK Unsure
12 5 1

Q3. Confidence in the identified search result
Ver FASTTOPK

Confident 14 6
Not Confident 4 8

Q4. How difficult is to use Ver?
Intuitive Not Intuitive

14 4
Q5. How difficult is to answer multiple choice questions with Ver?

Easy Difficult
16 2

TABLE III: Summary of survey results.

Query Noise
level Original C1 C2

C3

worst
case

C3

best
case

ChEMBL
Q1

Zero 38 36 36 20 20
Med 20 18 18 8 8
High 33 31 31 21 21

ChEMBL
Q2

Zero 59 58 54 51 47
Med 32 32 30 30 29
High 41 38 35 32 30

ChEMBL
Q3

Zero 58 33 29 23 23
Med 44 21 17 12 14
High 44 21 17 14 14

ChEMBL
Q4

Zero 23 17 14 14 14
Med 83 74 68 62 59
High 83 74 68 62 59

ChEMBL
Q5

Zero 24 18 15 15 15
Med 64 57 51 46 46
High 33 23 20 20 20

WDC
Q2

Zero 44 39 21 8 6
Med 42 37 19 5 3
High 39 34 15 6 5

WDC
Q3

Zero 20 20 20 20 4
Med 15 15 15 15 3

TABLE IV: Effect of view distillation based on 4C signals on
number of view. We excluded queries that have less than 10
original number of views.

are called ground truth columns. Then, we generate the 2⇥ 3
input queries according to three strategies, Zero Noise, Medium
Noise, and High Noise. Zero noise means we sample values
from the ground truth columns. In Medium noise we sample
2
3 values from the ground truth columns and 1

3 from a noise
column, which is a column with a Jaccard Containment of
more than 0.8 with respect to the ground truth column. Finally,
in High noise we sample 1

3 values from the ground truth
column and 2

3 from the noise columns.
We generate 5 ground truth queries by sampling join graphs

from the ground truth views of ChEMBL and WDC. For
each ground truth query, we generate one noisy user query
consisting of example values for each of the 3 noise levels.
For each noisy user query, we obtain input PJ-views to VIEW-
DISTILLATION by getting candidate columns via COLUMN-
SELECTION component and feeding them to JOIN-GRAPH-
SEARCH and MATERIALIZER.

1) Compatible and Contained (C1 and C2): Each group
of compatible views is reduced to a single view. When views
are contained, we keep the larger one. The C1 and C2 columns
in Table IV show the number of views left after pruning
compatible views and contained views, respectively.
Insights of C1. Around 50% of candidate PJ-views in Q3 of
ChEMBL are compatible because many tables have more than
one candidate key. For example, one pair of compatible views
are being materialized using the same join tables: assays and
cell dictionary, but one view’s join key is cell name and the
other’s join key is cell description; since there is a one-to-one
mapping between cell name and cell description, the views
they produced are identical.
Insights of C2. Q2 of WDC pruned 18 contained views for
zero/medium and 19 for high noise level. The majority of the
output views in the output share the same attributes: State and
Newspaper Title. We found that each pair of contained views
are joined using different tables but the same join key, State.
The join key values of one join path are subsumed by the
join key values of other join paths, thus the resulting view is
contained in another view.

2) Complementary (C3): We union complementary views.
The complementarity of views depends on their key. In this
experiment, we consider the key that leads to the least re-
duction (worst case column) and the largest reduction (best
key column). Table IV shows that unioning tables reduces the
number of views in most queries. In the worst case, tables do
not union with each other, as in the case of the WDC Q3.
Insights of C3. The reason WDC Q2 can union many com-
plementary views even in the worst case is that all candidate
PJ-views that share the same list of attributes, State and
Newspaper Title, are joined by two tables using the join key
State; one join table containing the attribute Newspaper Title
is the same for all the views, while the other containing the
attribute State is different for each view. The join tables that
are different have different coverage of State values. Therefore,
a lot of candidate PJ-views are complementary based on the
candidate key State (the worst case).

For ChEMBL queries, typically one pair of views does not
share their contradictory rows with any other pair of views,
so no matter which candidate key we choose, it can always
lead to unionable complementary views since the contradictory
relationships are not transitive across views. For some queries
such as Q5, many views do not have valid candidate keys, so
there are no unionable views.

3) Contradictory (C4): We construct contradictions from
contradictory view pairs by grouping all views that share the
same contradiction together. Given a contradiction, we do not
have an automated way of choosing a view. However, we
calculate the value of pruning by measuring the worst case
and best case reduction in the candidate set size. We sort
contradictions in descending order according to their degree
of discrimination–the number of views that agree with one
side of the contradiction. Then, we select the contradictions
sequentially and consider two cases: (a) where the selection

Fig. 2: Number of views left at each step after pruning views.

leads to the largest reduction of the views (best-case) and (b)
where it leads to the least reduction of the views (worst-case).

Fig. 2 shows the number of remaining views after each step
(for a maximum of 10 steps) for a selection of queries that
present discriminative and non-discriminative contradictions.
As expected, when contradictions are not discriminative, the
reduction is limited, such as in mid/high noise queries of
ChEMBL Q4 in the worst case. However, there are cases
where contradictions are quite discriminative and the signal
proves effective in reducing the set size, such as in the worst
case queries of WDC Q3.
Insights of C4. In ChEMBL, the output of Q4 mid/high
noise queries contains many candidate PJ-views that are
joined by varied join tables and keys. The contradictions in
candidate views are mainly due to wrong join paths. For
example, one view that is partly joined by the two tables
component sequences and component class on the shared
attribute component id, while the other view is joined by
the two tables component sequences on attribute description
and target dictionary on attribute pref name, when projecting
the final attributes, organism and pref name, these two views
have contradictions. component id is a better join key than
description. However, as we do not know the join information
of the input data, we can only perform join operations using
all the attributes that are being considered as valid join keys
by the discovery engine.

Moreover, since the contradictions in ChEMBL mainly arise
due to different join paths, they typically do not share the same
contradictions across multiple views. Each contradictory signal
only contains two views. Therefore, the maximum number
of views we prune at each step is 1. For WDC queries,
however, we are able to prune multiple views in Q3, since
the contradictory views have many shared contradictory rows,
thus each contradictory signal contains many views. And since
we prioritize presenting the more discriminatory contradictions
first, we prune multiple views even in the worst case.

4) Scalability: In this experiment, we evaluate the scala-
bility of VIEW-DISTILLATION using 50 randomly sampled
queries from the OpenData dataset along with 3 datasets built
using random samples of 25%, 50%, and 75% tables from
the original2. Figure 3 shows the distribution of the number

2The subsampling was performed to ensure that all datasets present in a
smaller size version are also present in the larger sample.

Fig. 3: Total Runtime, Get Views Time, and 4C Runtime of
VIEW-DISTILLATION for each sample portion on left y-axis,
and number of views on the right y-axis.

(a) 4C Runtime for different steps (b) Total Runtime of Ver over 50 queries

Fig. 4: (a) Time to execute different steps in 4C
for sample portion=1 (SP=Schema Partition). (b)
CS=COLUMN-SELECTION, JGS=JOIN-GRAPH-SEARCH,
M=MATERIALIZER, VD-IO=Get Views Time in VIEW-
DISTILLATION, 4C=4C Runtime in VIEW-DISTILLATION.

of views for each subsample (see 2nd y-axis). Note that we
use boxplots to report the min, max, 25th, median, 75th, and
max runtimes given the varied complexity of queries. The total
runtime (y-axis) grows linearly with the number of views.
Concretely, and as a proxy summary statistic, we observe
that Ver takes 1.16 seconds to calculate 4C categories for
around 236 views (median for 25% sample size) and around
30 seconds for 6500 views (median of 100% sample size);
we observe similar growth when comparing other percentiles.
The algorithm’s scalability is limited by the time to read views
from disk, which grows with the total amount of data. The total
‘4C Runtime’ is small in comparison.

Figure 4(a) zooms into the time taken by 4C (‘4C Run-
time’ in Figure 3) to understand the impact of different
parts of Algorithm 3. The schema group classification and
identification of contained views are efficient and require less
than 0.5 seconds. Hashing dominates runtime as it needs to
hash each row in the set of candidate views. The time to
find contradictory or complementary views involves two main
steps: i) find candidate keys for each view, which is linear
in the number of total rows; ii) find the actual contradictions
based on the inverted index, which is linear in the number

of contradictions. When the number of contradictions is small
the time to find candidate keys dominates.
Effectiveness of View Distillation. In this experiment, we
evaluated the reduction ratio (fraction of view pruned) of
merging compatible and contained views for the 100% sample
size. We observed that 50% of the queries had a reduction ratio
of more than 17.5%, while 25% had a reduction ratio of 63%.
This demonstrates the effectiveness of VIEW-DISTILLATION
to efficiently prune contained and compatible views.

C. End-to-End Evaluation
We first present an end-to-end experiment of Ver using

different implementations of VIEW-SPECIFICATION. We then
study the QBE implementation in more detail to understand
the effect of different baselines for different components.

1) Alternative View Specification Implementations: In this
experiment, we implement 3 view specification methods i)
QBE (Ver’s default); ii) Keyword search; and iii) Attribute
search. We use 10 randomly chosen queries from OpenData.
Every query runs within 11 minutes (for ⇡ 27K views) with
QBE interface, 13 minutes (⇡ 500 views) for keyword inter-
face and 30 minutes (⇡ 1000 views) for attribute interface. The
views generated by keyword and attribute interfaces contain a
large number of columns as compared to QBE, contributing
to higher running time for these implementations. We further
run VIEW-DISTILLATION to merge compatible and contained
views, followed by VIEW-PRESENTATION with a simulated
user. We simulated the user to answer questions correctly. We
observe that the user identified the ground truth view in as few
as 20 queries for around 500 views and less than 100 queries
for 3000 views. This evaluation demonstrates the effectiveness
of our VIEW-DISTILLATION and PRESENTATION to effectively
prune the search space and help the user identify relevant
views. In terms of runtime, VIEW-PRESENTATION produces
questions for users in less than 10�3 seconds.

We now dive deeper into the QBE implementation to
understand the intricacies of our implementation.

2) Runtime Comparison: In this experiment, we report the
distribution of runtimes for the sample of 50 queries used to
evaluate 4C’s scalability.

Figure 4 (b) shows that the total runtime is below 305.11
seconds for 50% of the queries. The bottleneck is the MA-
TERIALIZER and the time taken to read views from the
disk, which require 145 and 62 seconds for 50% of the
queries, respectively. MATERIALIZER’s runtime is linear with
the number of join graphs generated for a query. We use
pandas library in Python to materialize the join and read the
view from disk, which could be optimized by using a database.

The median runtime of COLUMN-SELECTION and JOIN-
GRAPH-SEARCH is less than 1 second. There are fewer than
3 outlier queries which take more than 100 seconds for
COLUMN-SELECTION because these queries are too general
(numerical values without semantic meaning) and the input
query is present in more than 100K datasets. We do not report
the time taken by VIEW-PRESENTATION as it requires human-
in-the-loop. However, we observe that the median time taken

Ground Truth Hit Ratio
Zero Noise Mid Noise High Noise

SA SB CS SA SB CS SA SB CS
1.0 1.0 1.0 1.0 0.08 1.0 1.0 0.02 0.96

TABLE V: Ground truth hit ratio over 150 queries in input
workload split by noise level in the input query (SA: Select-
All, SB: Select-Best, CS: Column-Selection).

Fig. 5: #joinable groups, join graphs and views on ChEMBL

to initialize the component is 73 seconds but it takes less than
0.5 millisecond per question. Low latency of asking a question
helps to ensure interactive performance of Ver.

3) RQ3: Column Selection and Join Graph Search: In this
section we ask: do COLUMN-SELECTION and JOIN-GRAPH-
SEARCH find relevant PJ-views given a noisy input query over
pathless table collections?
Workload. We generate noisy user queries as described in
Section VI-B. We generate 5 noisy user queries consisting of
example values for each ground truth view and for each of the
3 noise levels. This results in a total of 150 noisy user queries
across both datasets and noise levels.
Baselines. We compare the COLUMN-SELECTION component
in Ver with two other baselines:
• SELECT-ALL. This baseline (implemented from FAST-

TOPK [35]) selects any column that contains at least an
example from the input query.
• SELECT-BEST. This baseline selects the column that

contains the highest number of examples from the input query.
This is the selection strategy implemented by SQuID [36].

After running the baselines, we feed the returned candidate
columns to the JOIN-GRAPH-SEARCH component that finds
joinable groups of tables identified in the Join Graph Enu-
meration stage, identifies join graphs, and materializes them
to produce the set of candidate PJ-views.
Experiment and Metrics. We obtain the output set of can-

Fig. 6: #joinable groups, join graphs and views on WDC

didate PJ-views for each of the 150 input user queries in the
workload as described in Noisy Workload Generation. We
consider two metrics. First, whether the ground truth view
is part of the candidate PJ-views, i.e., the system finds the
required view. In particular, we measure the Ground Truth Hit
Ratio that determines the ratio of input queries for which the
system finds the ground truth view. Second, we measure the
size of the set of candidate PJ-views. Given two systems that
find the ground truth view, we prefer the one producing the
smaller set of candidate PJ-views. Smaller candidate PJ-views
indicate lower runtime (as we will demonstrate later) and more
importantly, facilitates the job of the VIEW-PRESENTATION
stage, e.g., consider a human who needs to look at each view
in the candidate set to select the right one.
Results. Table V shows the Ground Truth Hit Ratio across
the 150 queries, for each baseline, and grouped by different
input query noise levels in the X-axis. When there is no
noise in the input query, then all baselines perform well and
find the ground truth view. As the noise in the input query
increases, the SELECT-BEST strategy crumbles because of
its over-reliance on columns that contain all values in the
input query. This demonstrates that when input queries contain
noise, the SELECT-BEST strategy is inadequate.

With both SELECT-ALL and COLUMN-SELECTION consis-
tently finding the ground truth view, the next question is at
what cost. Fig. 5 and Fig. 6 show results for ChEMBL and
WDC respectively. Each 3⇥ 3 grid shows the size of the set
of candidate PJ-views at the top for the three noise levels. The
results clearly indicate that for all queries across both datasets
and noise levels, the set of the candidate PJ-views is always
significantly larger in the case of SELECT-ALL than in the
case of COLUMN-SELECTION. Since both baselines find the
ground truth view, the smaller sets are preferred.

The SELECT-ALL retrieval strategy selects many columns

Column-Selection

Fig. 7: Run time of COLUMN-SELECTION + JOIN-GRAPH-
SEARCH + MATERIALIZER on ChEMBL and WDC

and produces much larger joinable groups than necessary
(see No. of Joinable Groups in Fig. 5 and Fig. 6). Larger
joinable groups, in turn, lead to a larger number of join
graphs–sometimes up to 4⇥ more, see No. of Join Graphs
in Fig. 5 and Fig. 6)–which results in more candidate PJ-
views. Fig. 7 shows that larger sets of candidate PJ-views leads
to higher runtime. The runtime of COLUMN-SELECTION +
JOIN-GRAPH-SEARCH is an order of magnitude lower than
the SELECT-ALL strategy.

D. QS: Analysis of existing QBE systems

SQuID [36] does not scale to pathless table scenarios. SQuID
precomputes an abduction-ready database (↵DB) that requires
human input to select the pairs of table key and attributes of
interest from other tables. Without human input the number
of combinations grows large, especially given that in pathless
table collections some join path information will be wrong.
Given that the size of ↵DB can be as large as the origi-
nal table—for example, component sequences of ChEMBL
is 5.9M and results in an ↵DB size of 8.1M—the storage
footprint would multiply. Therefore, we were only able to test
SQuID on a dataset containing a handful of tables. Without
a deep understanding of the input dataset—which we lack
in pathless table collections—we can only provide limited
information to the system to compute the ↵DB, thus resulting
in poor query performance. A more reasonable use of SQuID
is to employ it as a downstream component to Ver, where the
input is a narrowed-down version of candidate PJ-views.
Duoquest [38] lets users specify a natural language query
(NLQ) along an input table containing example tuples and ad-
ditional information about the attributes (Table Sketch Query).
It outputs candidate SQL queries ranked from highest to lowest
confidence based on the user’s input queries. Navigating that
ranking presents challenges to the user in pathless table scenar-
ios because the candidate query may consist of incorrect join
tables or keys due to noise in data. An additional presentation
phase is necessary to navigate the user among the candidate
queries. A more reasonable use of Duoquest is to employ it as
an implementation of the VIEW-SPECIFICATION component,
giving users alternative ways of describing their queries.

Technique View
Specification

Column
Selection

Discovery
Engine

Join Graph
Search

View
Distillation

View
Presentation

Input Type Handles Noise Require PK/FK

Q
BE

SQuID [36] Relational N Automatic Y Online N N
S4: FastTopK [35] Relational Y Automatic Y Online Individual signal N

MWeaver [37] Relational N Automatic Y Online Individual signal N
DuoQuest [38] Natural language Y Automatic Y Online Individual signal N

Q
R

E

TALOS [15] N Automatic Y Online Individual signal N
PALEO-J [39] Ranks tuples N Automatic Y Online Individual signal N

SQLSynthesizer [40] Relational N Automatic Y Online Individual signal N
REGAL+ [41] N Automatic Y Online N N

D
at

a
D

isc
. Aurum [5] N N N, Offline index Online N N

Josie [9] N N N, Offline index Online N N
TableUnion [10] N N N, Offline index Online N N

Lazo [13] N N N, Offline index Online N N
LSHEnsemble [12] N N N, Offline index Online N N

PEXESO [42] N N N, Offline index Online N N

V
P

Voyager [43] N N N N N Y
SeeDB [23] N N N N N Y

NorthStar [44] N N N N N Y
RONIN [45] N N N N N Y

Ver Relational Y Automatic,
Interactive N, Offline index Online Individual,

Dependent signal Y

TABLE VI: Overview of SOTA. VP = View Presentation and Data Disc. = Data Discovery. N means the system does not
implement the component. Individual signals means the approach only computes a statistic over candidate views. Dependent
signals consider dependence between candidate views like 4C signals.

VII. RELATED WORK

We use Table VI to overview the related work.

View Specification. Common specification interfaces are key-
words [7], APIs, table search [8], and QBE (relational in the
table). Each of these interfaces caters to different discovery
needs and can be plugged into our reference architecture.
Although we implemented QBE in Ver, we evaluated the
performance of alternative view specification implementations
such as keywords, and attribute-based search interface.

Data Discovery. Some discovery engines [5], [11], [8], [10],
[46] identify join paths in repositories and their emphasis
is often effectiveness and scalability. There are many other
techniques that identify join paths using techniques such as
summaries [47], etc. Most discovery engines leverage key
detection techniques as a building block to identify join
paths [28], [29]. Complementary work to identifying join paths
is on automatically detecting transformations to expand the set
of joinable columns [48], [49], [50]. Any improvement to the
detection of join paths can be incorporated into the reference
architecture presented here. The ‘Discovery Engine’ column
shows what techniques depend on existing join paths and how
the navigation is done (column ‘Join Graph Search’).

View Distillation. Ranking is a well-explored topic in data
management and many approaches naturally leverage this
technique to sort candidate results, see column ‘View Dis-
tillation’ in the table, where Individual Signal refers to the
ranking score. Orthogonally, view summarization [51], and
automated data exploration techniques concentrate in sorting
through data and offer an alternative way of navigating the
data, like view distillation. Unlike distillation, none of these
techniques leverage 4C categories.

View Presentation. There is related work on designing ef-
fective visualizations to assist users in exploring pathless data
collections [32], [52], [45] and view recommendations [53],

[54]. These techniques can be useful to implement the human
components of Ver. Table VI summarizes some techniques.
Applying QBE to Pathless Table Collections. We present the
prior QBE systems in Table VI. Other QBE techniques [37],
[55], [35], [56], [15], [57], [40], [58], [59], [39], [60], [61],
[62] are not a system, are not designed to handle pathless
scenarios and do not focus on Challenges 4 and 5.

Supports Pathless? Existing QBE [36], [38], [35], [55],
[37] and Query Reverse Engineering (QRE) systems [59],
[63], [15], [57] are designed for databases with well-defined
path information, i.e., primary key/foreign key relationships,
and they will generate spurious results when executed over
noisy join paths. Bonifati et al. [56] learns join predicates
without assuming the existence of join paths. But the approach
requires performing a Cartesian product on relevant tables,
which introduces a scalability challenge even in moderate size
databases. Other techniques that use QBE interface, either
assume a different data format, such as knowledge bases [64],
or consider a different view specification interface, such as
exemplar queries in [65], [66], [67], [68] that define a more
general notion of queries than query-by-example.

VIII. CONCLUSIONS

We presented a reference architecture for the discovery of
PJ-views over pathless table collections, and a system, Ver,
that addresses both technical and human problems of view dis-
covery. Ver efficiently addresses the challenges of large-scale
pathless table collections by combining different components,
including VIEW-DISTILLATION and VIEW-PRESENTATION.

IX. ACKNOWLEDGEMENT

We thank the Chameleon cloud platform [69] for providing
the resources necessary to conduct this research. We thank all
participants of our user study and the anonymous reviewers
for helping us improve the work. This work was partially sup-
ported by the NSF Convergence Accelerator (Award Number
#2040718) and NSF grant #2030859.

APPENDIX

A. Discovery Index Construction

Ver leverages Aurum [5] to efficiently build a discovery
index over large collections of data. Ver uses the following
functions provided by Aurum:
SEARCH-KEYWORD(TARGET, FUZZY). Given an input
string, it returns columns that contain the string in either the
attribute name, or in the values, as specified by TARGET. The
match can be exact or fuzzy, after specifying a maximum
Levenshtein distance.
NEIGHBORS(THRESHOLD). Given an input column, it re-
turns all neighbors with a Jaccard containment [13] above the
input THRESHOLD.
GENERATE-JOIN-GRAPHS(TABLES, ⇢). Given a set of ta-
bles, it returns all join graphs connecting input tables, via
inclusion dependencies. Each edge in the join graph has a
maximum number of hops, ⇢.

B. Column Selection

COLUMN-SELECTION generates a set of columns
CAND(Ai) given user-provided input examples, �.Ai. To
deal with noisy inputs, the component clusters candidate
columns and returns clusters with top-✓ scores. Setting ✓ = 1
returns clusters with the highest overlap with �.Ai (there
could be ties). In contrast, ✓ = 1 returns any column with
non-empty overlap. This relaxed design makes the component
more robust to noisy inputs than methods based on exact
containment [36], [38], and more efficient than methods
based on non-empty containment.

Algorithm 4: COLUMN-SELECTION
Input : Example value set �.Ai for a column Ai, Discovery Index

I , Clustering threshold ✓

Output: CAND(Ai) Candidate columns and scores.

1 CAND(Ai) �

2 for e 2 �.Ai do
3 CAND(e) SEARCH-KEYWORD(e)
4 CAND(Ai) CAND(Ai) [CAND(e)

5 C CONNECTED-COMPONENT(CAND(Ai), I)
6 for Cluster 2 C do
7 SCORE(Cluster) = maxcol2Cluster(|col \ �.Ai|)

8 C0 top-✓ clusters in C based on SCORE
9 CAND(Ai)

S
T2C0 T

10 return CAND(Ai)

Algorithm 4 presents the COLUMN-SELECTION algorithm.
First, it identifies all columns that have a non-empty over-
lap with the input examples (lines 2-4). These columns are
then clustered by finding connected components over the
hypergraph constructed by the DISCOVERY ENGINE (line 5).
To identify the connected components, it uses the discovery
NEIGHBORS function. Each cluster is assigned a score that
corresponds to the maximum number of examples contained
in any column in the cluster (line 7). This stage supports both
automatic mode and interactive mode. In the automatic mode,
top-✓ clusters are selected based on their scores (line 8).
Rationale. Isolating this component in the architecture has
two advantages: i) it detects ill-specified queries that lead to

too many unnecessary retrieved columns; ii) it offers a point
of interaction with VIEW-SPECIFICATION to help users select
the right column clusters. Identifying interactive policies to
present clusters is outside the scope of this work; we focus on
providing the mechanism.

C. Join Graph Search and Materializer
The JOIN-GRAPH-SEARCH and MATERIALIZER compo-

nents construct candidate PJ-views by joining the tables re-
turned by COLUMN-SELECTION. The pseudocode in Algo-
rithm 5 operates in two steps.
1) Join Graph Enumeration (lines 1-10) enumerates all pos-
sible combinations of the columns returned by COLUMN-
SELECTION, identifies joinable groups of their corresponding
tables and find all join graphs in a joinable group. A join
graph consists of a group of columns connected via join paths.
Given a pair, ci, cj , of non-joinable columns, no combination
of columns involving ci or cj can be joined. Non-joinable pairs
are cached to skip computation.
2) Ranking and Materialization (lines 11-12) materializes the
top-k views as ranked according to the discovery engine score.
The discovery engine ranks views according to how well join
graphs approximate PK/FK, and according to the size of the
join graph; smaller graphs rank higher. Views are materialized
incrementally via a materializer built on top of Pandas [70];
it can be adapted to use an embedded database [71], [72] or
a processing engine with the external table feature [73] to
achieve better performance.

Algorithm 5: JOIN-GRAPH-SEARCH
Input : QBE-style query �, candidate columns CAND, expected

number of output views k

Output: VPJ : list of candidate PJ-views
/* Step 1: Join Graph Enumeration */

1 ⌧ |COLUMNS(�)|
2 � {(c1, . . . , c⌧) : 8ci 2 CAND(Ai)}
3 �join �

4 for r ⌘ (c1, . . . , c⌧) 2 � do
/* Get join graphs between source
tables of r with ⇢ = 2 */

5 P GENERATE-JOIN-GRAPHS(r.tables(), 2)
6 if 9ci, cj 2 r | P (ci, cj) = � then
7 Remove all candidates r 2 � containing columns ci and cj

such that P (ci, cj) = �

8 Continue

9 else
10 �join �join [P

/* Step 2: Ranking and Materialization */
11 �0

join Select top k join candidates based on join score generated
by the discovery engine.

12 VPJ MATERIALIZE-VIEWS(�0
join)

13 return VPJ

D. Microbenchmarks
In this section, we explore the effect of various query and

data parameters on Ver’s performance.
1) Varying Discovery Index Quality: The quality of the

discovery indices built by the Discovery Engine has an effect
on the set of candidate PJ-views generated by Ver (Challenge
2). We study its effect by modifying the default threshold
Aurum uses to compute the hypergraph. In particular, we use
thresholds 0.8 (the default), 0.7, 0.6, and 0.5. These thresholds

Fig. 8: (a) #join graphs under different t on ChEMBL. Aurum
produces 435 (0.8), 582 (0.7), 2143 (0.6), and 2947 (0.5)
joinable column pairs. (b) #joinable groups, join graphs, views
of different sample size queries (c) #columns, clusters, selected
clusters and selected columns of different sample size queries

lead to 435, 582, 2143, and 2947 joinable column pairs,
respectively. As the thresholds lower, the schema quality wors-
ens, leading to more spurious join paths. These configurations
evaluate the effect of schema quality on the discovery of PJ-
views over pathless table collections, i.e., Challenge 2. As
expected, Fig. 8(a) shows that the number of join graphs
increase as the schema quality worsens. As shown in the
previous section, this leads to a higher number of join graphs,
and consequently, higher runtimes.
Conclusion. When no join path information is available in
the schema, inferring the join paths automatically leads to
noisy and incorrect ones, which in turn, has an effect on the
scalability of the problem (Challenge 2). In conclusion, i)
discovering PJ-views on pathless table collections is strictly
more difficult than on settings with perfect schemas and; ii)
investment in better join path discovery algorithms would
highly benefit this problem as well.

2) Vary the number of Rows in the Query: We increase the
number of rows inside one query view and observe its effect on
the number of joinable groups, join graphs and views (i.e. the
search space). As shown in Fig. 8(b), the relationship between
the number of rows and the search space is not monotonous.
Increasing the number of rows in a query view can cause the
search space to shrink or grow. This is because there are two
factors affecting the search space conversely when the number
of rows in a query increases.
Enlarge the search space. Fig. 8(c) shows that the total
No. of columns before clustering increase as the No. of rows
increase and the No. of column clusters will increase as well.
Shrink the search space. Fig. 8(c) indicates that the number
of clusters that COLUMN-SELECTION selects will decrease as
the No. of examples increases. This is because the score of the

ground truth column and its corresponding cluster increases.
Conclusion. Intuitively, more rows should lead to fewer candi-
date PJ-views at the end, and previous work has demonstrated
this when schemas are well-formed. But in pathless table
collections this is not the case as demonstrated here.

3) Vary the number of Columns in the query: We study
the effect of increasing the number of columns in the input
query. We choose query with 2, 3 and 4 columns on ChemBL.
Unlike varying the number of rows, the results of this exper-
iment are intuitive: higher number of columns in the input
lead to higher number of join graphs, candidate PJ-views, and
runtime, we do not plot the data for space reasons.

REFERENCES

[1] A. Doan, A. Halevy, and Z. Ives, Principles of data integration.
Elsevier, 2012.

[2] F. Nargesian, E. Zhu, R. J. Miller, K. Q. Pu, and P. C. Arocena,
“Data lake management: challenges and opportunities,” PVLDB, vol. 12,
no. 12, pp. 1986–1989, 2019.

[3] N. Huijboom and T. Van den Broek, “Open data: an international
comparison of strategies,” European journal of ePractice, vol. 12, no. 1,
pp. 4–16, 2011.

[4] M. Armbrust, A. Ghodsi, R. Xin, and M. Zaharia, “Lakehouse: A new
generation of open platforms that unify data warehousing and advanced
analytics.” CIDR, 2021.

[5] R. Castro Fernandez, Z. Abedjan, F. Koko, G. Yuan, S. Madden, and
M. Stonebraker, “Aurum: A data discovery system,” in 2018 IEEE 34th
International Conference on Data Engineering (ICDE), 2018, pp. 1001–
1012.

[6] A. Halevy, F. Korn, N. F. Noy, C. Olston, N. Polyzotis, S. Roy, and
S. E. Whang, “Goods: Organizing google’s datasets,” in Proceedings of
the 2016 ACM SIGMOD International Conference on Management of
Data, 2016, pp. 795–806.

[7] F. Chirigati, R. Rampin, A. S. R. Santos, A. Bessa, and J. Freire,
“Auctus: A dataset search engine for data augmentation,” CoRR, vol.
abs/2102.05716, 2021. [Online]. Available: https://arxiv.org/abs/2102.
05716

[8] Y. Zhang and Z. G. Ives, “Juneau: data lake management for jupyter,”
PVLDB, vol. 12, no. 12, 2019.

[9] E. Zhu, D. Deng, F. Nargesian, and R. J. Miller, “Josie: Overlap set
similarity search for finding joinable tables in data lakes,” in Proceedings
of the 2019 ACM SIGMOD International Conference on Management
of Data, 2019, pp. 847–864.

[10] F. Nargesian, E. Zhu, K. Pu, and R. Miller, “Table union search on open
data,” PVLDB, vol. 11, pp. 813–825, 2018.

[11] A. Bogatu, A. A. A. Fernandes, N. W. Paton, and N. Konstantinou,
“Dataset discovery in data lakes,” in ICDE, 2020, pp. 709–720.

[12] E. Zhu, F. Nargesian, K. Q. Pu, and R. J. Miller, “Lsh ensemble: Internet-
scale domain search,” PVLDB, vol. 9, no. 12, 2016.

[13] R. C. Fernandez, J. Min, D. Nava, and S. Madden, “Lazo: A cardinality-
based method for coupled estimation of jaccard similarity and contain-
ment,” in 2019 IEEE 35th International Conference on Data Engineer-
ing (ICDE). IEEE, 2019, pp. 1190–1201.

[14] M. M. Zloof, “Query by example,” in Proceedings of the May 19-22,
1975, national computer conference and exposition, 1975, pp. 431–438.

[15] Q. T. Tran, C.-Y. Chan, and S. Parthasarathy, “Query by output,”
in Proceedings of the 2009 ACM SIGMOD International Conference
on Management of Data, ser. SIGMOD ’09. New York, NY, USA:
Association for Computing Machinery, 2009, p. 535–548. [Online].
Available: https://doi.org/10.1145/1559845.1559902

[16] J. M. Hellerstein, M. Stonebraker, and J. Hamilton, Architecture of a
database system. Now Publishers Inc, 2007.

[17] F. Faerber, A. Kemper, P.-Å. Larson, J. Levandoski, T. Neumann,
A. Pavlo et al., Main memory database systems. Now Publishers,
2017.

[18] L. Seligman, P. Mork, A. Halevy, K. Smith, M. J. Carey, K. Chen,
C. Wolf, J. Madhavan, A. Kannan, and D. Burdick, “Openii: an open
source information integration toolkit,” in Proceedings of the 2010 ACM
SIGMOD International Conference on Management of data, 2010, pp.
1057–1060.

https://arxiv.org/abs/2102.05716
https://arxiv.org/abs/2102.05716
https://doi.org/10.1145/1559845.1559902

[19] Z. G. Ives, N. Khandelwal, A. Kapur, and M. Cakir, “Orchestra: Rapid,
collaborative sharing of dynamic data.” in CIDR, 2005, pp. 107–118.

[20] D. Deng, R. C. Fernandez, Z. Abedjan, S. Wang, M. Stonebraker, A. K.
Elmagarmid, I. F. Ilyas, S. Madden, M. Ouzzani, and N. Tang, “The
data civilizer system.” in Cidr, 2017.

[21] C. Chen, B. Golshan, A. Y. Halevy, W.-C. Tan, and A. Doan, “Biggorilla:
An open-source ecosystem for data preparation and integration.” IEEE
Data Eng. Bull., vol. 41, no. 2, pp. 10–22, 2018.

[22] “Uchicago irb https://sbsirb.uchicago.edu/about/.”
[23] M. Vartak, A. Parameswaran, N. Polyzotis, and S. R. Madden, “Seedb:

automatically generating query visualizations,” 2014.
[24] E. Horvitz, “Principles of mixed-initiative user interfaces,” in Proceed-

ings of the SIGCHI conference on Human Factors in Computing Systems,
1999, pp. 159–166.

[25] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire, “The non-
stochastic multiarmed bandit problem,” SIAM journal on computing,
vol. 32, no. 1, pp. 48–77, 2002.

[26] H. Chernoff, “A measure of asymptotic efficiency for tests of a hypoth-
esis based on the sum of observations,” The Annals of Mathematical
Statistics, pp. 493–507, 1952.

[27] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An analysis of
approximations for maximizing submodular set functions—i,” Mathe-
matical programming, vol. 14, no. 1, pp. 265–294, 1978.

[28] Z. Chen, V. Narasayya, and S. Chaudhuri, “Fast foreign-key detection
in microsoft sql server powerpivot for excel,” PVLDB, vol. 7, no. 13,
pp. 1417–1428, 2014.

[29] L. Bornemann, T. Bleifuß, D. V. Kalashnikov, F. Naumann, and D. Sri-
vastava, “Natural key discovery in wikipedia tables,” in Proceedings of
The Web Conference 2020, 2020, pp. 2789–2795.

[30] A. Gaulton, L. J. Bellis, A. P. Bento, J. Chambers, M. Davies, A. Hersey,
Y. Light, S. McGlinchey, D. Michalovich, B. Al-Lazikani, and J. P.
Overington, “ChEMBL: a large-scale bioactivity database for drug
discovery,” Nucleic Acids Research, vol. 40, no. D1, pp. D1100–D1107,
09 2011. [Online]. Available: https://doi.org/10.1093/nar/gkr777

[31] O. Lehmberg, D. Ritze, R. Meusel, and C. Bizer, “A large public corpus
of web tables containing time and context metadata,” in Proceedings
of the 25th International Conference Companion on World Wide Web,
2016, pp. 75–76.

[32] K. Hu, S. Gaikwad, M. Hulsebos, M. A. Bakker, E. Zgraggen, C. Hi-
dalgo, T. Kraska, G. Li, A. Satyanarayan, and Ç. Demiralp, “Viznet:
Towards a large-scale visualization learning and benchmarking reposi-
tory,” in Proceedings of the 2019 CHI Conference on Human Factors
in Computing Systems, 2019, pp. 1–12.

[33] J. Mitlöhner, S. Neumaier, J. Umbrich, and A. Polleres, “Characteristics
of open data csv files,” in 2016 2nd International Conference on Open
and Big Data (OBD). IEEE, 2016, pp. 72–79.

[34] S. Neumaier, J. Umbrich, and A. Polleres, “Automated quality as-
sessment of metadata across open data portals,” Journal of Data and
Information Quality (JDIQ), vol. 8, no. 1, pp. 1–29, 2016.

[35] F. Psallidas, B. Ding, K. Chakrabarti, and S. Chaudhuri, “S4: Top-k
spreadsheet-style search for query discovery,” ser. SIGMOD ’15, 2015,
p. 2001–2016.

[36] A. Fariha and A. Meliou, “Example-driven query intent discovery:
Abductive reasoning using semantic similarity,” PVLDB, vol. 12, no. 11.

[37] L. Qian, M. J. Cafarella, and H. V. Jagadish, “Sample-driven schema
mapping,” ser. SIGMOD ’12. New York, NY, USA: Association
for Computing Machinery, 2012, p. 73–84. [Online]. Available:
https://doi.org/10.1145/2213836.2213846

[38] C. Baik, Z. Jin, M. Cafarella, and H. V. Jagadish, “Duoquest: A dual-
specification system for expressive sql queries,” ser. SIGMOD ’20, 2020,
p. 2319–2329.

[39] K. Panev, N. Weisenauer, and S. Michel, “Reverse engineering top-
k join queries,” in Datenbanksysteme für Business, Technologie und
Web (BTW 2017), B. Mitschang, D. Nicklas, F. Leymann, H. Schöning,
M. Herschel, J. Teubner, T. Härder, O. Kopp, and M. Wieland, Eds.
Gesellschaft für Informatik, Bonn, 2017, pp. 61–70.

[40] S. Zhang and Y. Sun, “Automatically synthesizing sql queries
from input-output examples,” in Proceedings of the 28th IEEE/ACM
International Conference on Automated Software Engineering, ser.
ASE’13. IEEE Press, 2013, p. 224–234. [Online]. Available:
https://doi.org/10.1109/ASE.2013.6693082

[41] W. C. Tan, M. Zhang, H. Elmeleegy, and d. Srivastava, “Regal<sup>
+ < /sup>: Reverse engineering spja queries,” PVLDB, vol. 11,
no. 12, p. 1982–1985, Aug. 2018. [Online]. Available: https:
//doi.org/10.14778/3229863.3236240

[42] Y. Dong, K. Takeoka, C. Xiao, and M. Oyamada, “Efficient joinable
table discovery in data lakes: A high-dimensional similarity-based
approach,” 2021.

[43] K. Wongsuphasawat, Z. Qu, D. Moritz, R. Chang, F. Ouk, A. Anand,
J. Mackinlay, B. Howe, and J. Heer, “Voyager 2: Augmenting visual
analysis with partial view specifications,” in Proceedings of the 2017
CHI Conference on Human Factors in Computing Systems, 2017, pp.
2648–2659.

[44] T. Kraska, “Northstar: An interactive data science system,” PVLDB,
vol. 11, no. 12, pp. 2150–2164, 2018.

[45] P. Ouellette, A. Sciortino, F. Nargesian, B. G. Bashardoost, E. Zhu,
K. Q. Pu, and R. J. Miller, “Ronin: Data lake exploration,” PVLDB,
vol. 14, no. 12, p. 2863–2866, jul 2021. [Online]. Available:
https://doi.org/10.14778/3476311.3476364

[46] R. El Kindi, A. Bhandari, A. Fariha, B. Price, A. Vanterpool, A. Bowne,
L. McEvoy, and V. Gadepally, “Examples are all you need: Iterative data
discovery by example in data lakes,” 2021.

[47] A. Santos, A. Bessa, F. Chirigati, C. Musco, and J. Freire, “Correlation
sketches for approximate join-correlation queries,” in Proceedings of the
2021 ACM SIGMOD International Conference on Management of Data,
2021, pp. 1531–1544.

[48] Z. Jin, Y. He, and S. Chauduri, “Auto-transform: learning-to-transform
by patterns,” PVLDB, vol. 13, no. 12, pp. 2368–2381, 2020.

[49] Y. He, X. Chu, K. Ganjam, Y. Zheng, V. Narasayya, and S. Chaudhuri,
“Transform-data-by-example (tde) an extensible search engine for data
transformations,” VLDB, vol. 11, no. 10, pp. 1165–1177, 2018.

[50] S. Zhang and K. Balog, “Web table extraction, retrieval, and aug-
mentation: A survey,” ACM Transactions on Intelligent Systems and
Technology (TIST), vol. 11, no. 2, pp. 1–35, 2020.

[51] M. Joglekar, H. Garcia-Molina, and A. Parameswaran, “Interactive data
exploration with smart drill-down,” IEEE Transactions on Knowledge
and Data Engineering, vol. 31, no. 1, pp. 46–60, 2017.

[52] N. Bikakis and T. Sellis, “Exploration and visualization in the web
of big linked data: A survey of the state of the art,” arXiv preprint
arXiv:1601.08059, 2016.

[53] X. Zhang, X. Ge, P. K. Chrysanthis, and M. A. Sharaf, “Viewseeker:
An interactive view recommendation tool.” in EDBT/ICDT Workshops,
2019.

[54] X. Zhang, “Interactive view recommendation,” in Proceedings of the
2020 ACM SIGMOD International Conference on Management of Data,
2020, pp. 2849–2851.

[55] Y. Shen, K. Chakrabarti, S. Chaudhuri, B. Ding, and L. Novik, “Discov-
ering queries based on example tuples,” ser. SIGMOD ’14. Association
for Computing Machinery, 2014, p. 493–504.

[56] A. Bonifati, R. Ciucanu, and S. Staworko, “Learning join queries from
user examples,” ACM Trans. Database Syst., vol. 40, no. 4, Jan. 2016.
[Online]. Available: https://doi.org/10.1145/2818637

[57] A. Das Sarma, A. Parameswaran, H. Garcia-Molina, and J. Widom,
“Synthesizing view definitions from data,” in Proceedings of the 13th
International Conference on Database Theory, ser. ICDT ’10. New
York, NY, USA: Association for Computing Machinery, 2010, p.
89–103. [Online]. Available: https://doi.org/10.1145/1804669.1804683

[58] M. Zhang, H. Elmeleegy, C. M. Procopiuc, and D. Srivastava,
“Reverse engineering complex join queries,” in Proceedings of
the 2013 ACM SIGMOD International Conference on Management of
Data, ser. SIGMOD ’13. New York, NY, USA: Association
for Computing Machinery, 2013, p. 809–820. [Online]. Available:
https://doi.org/10.1145/2463676.2465320

[59] H. Li, C.-Y. Chan, and D. Maier, “Query from examples: An
iterative, data-driven approach to query construction,” vol. 8,
no. 13, p. 2158–2169, Sep. 2015. [Online]. Available: https:
//doi.org/10.14778/2831360.2831369

[60] C. Wang, A. Cheung, and R. Bodik, “Synthesizing highly expressive
sql queries from input-output examples,” SIGPLAN Not., vol. 52, no. 6,
p. 452–466, Jun. 2017. [Online]. Available: https://doi.org/10.1145/
3140587.3062365

[61] W. C. Tan, M. Zhang, H. Elmeleegy, and D. Srivastava, “Reverse
engineering aggregation queries,” PVLDB, vol. 10, no. 11, p.
1394–1405, Aug. 2017. [Online]. Available: https://doi.org/10.14778/
3137628.3137648

[62] D. V. Kalashnikov, L. V. Lakshmanan, and D. Srivastava, “Fastqre: Fast
query reverse engineering,” ser. SIGMOD ’18. New York, NY, USA:
Association for Computing Machinery, 2018, p. 337–350. [Online].
Available: https://doi.org/10.1145/3183713.3183727

https://sbsirb.uchicago.edu/about/
https://doi.org/10.1093/nar/gkr777
https://doi.org/10.1145/2213836.2213846
https://doi.org/10.1109/ASE.2013.6693082
https://doi.org/10.14778/3229863.3236240
https://doi.org/10.14778/3229863.3236240
https://doi.org/10.14778/3476311.3476364
https://doi.org/10.1145/2818637
https://doi.org/10.1145/1804669.1804683
https://doi.org/10.1145/2463676.2465320
https://doi.org/10.14778/2831360.2831369
https://doi.org/10.14778/2831360.2831369
https://doi.org/10.1145/3140587.3062365
https://doi.org/10.1145/3140587.3062365
https://doi.org/10.14778/3137628.3137648
https://doi.org/10.14778/3137628.3137648
https://doi.org/10.1145/3183713.3183727

[63] K. Panev, S. Michel, E. Milchevski, and K. Pal, “Exploring databases
via reverse engineering ranking queries with paleo,” PVLDB, vol. 9, pp.
1525–1528, 09 2016.

[64] N. Jayaram, A. Khan, C. Li, X. Yan, and R. Elmasri, “Querying
knowledge graphs by example entity tuples,” IEEE Transactions on
Knowledge and Data Engineering, vol. 27, no. 10, pp. 2797–2811, 2015.

[65] D. Mottin, M. Lissandrini, Y. Velegrakis, and T. Palpanas, “Exemplar
queries: Give me an example of what you need,” PVLDB, vol. 7, no. 5,
pp. 365–376, 2014.

[66] A. Bonifati, U. Comignani, E. Coquery, and R. Thion, “Interactive
mapping specification with exemplar tuples,” ACM Transactions on
Database Systems (TODS), vol. 44, no. 3, pp. 1–44, 2019.

[67] D. Mottin, M. Lissandrini, Y. Velegrakis, and T. Palpanas, “Exploring
the data wilderness through examples,” in Proceedings of the 2019 ACM
SIGMOD International Conference on Management of Data, 2019, pp.
2031–2035.

[68] R. Pimplikar and S. Sarawagi, “Answering table queries on the web
using column keywords,” arXiv preprint arXiv:1207.0132, 2012.

[69] K. Keahey, J. Anderson, Z. Zhen, P. Riteau, P. Ruth, D. Stanzione,

M. Cevik, J. Colleran, H. S. Gunawi, C. Hammock, J. Mambretti,
A. Barnes, F. Halbach, A. Rocha, and J. Stubbs, “Lessons learned from
the chameleon testbed,” in Proceedings of the 2020 USENIX Annual
Technical Conference (USENIX ATC ’20). USENIX Association, July
2020.

[70] W. McKinney et al., “pandas: a foundational python library for data
analysis and statistics,” Python for High Performance and Scientific
Computing, vol. 14, no. 9, pp. 1–9, 2011.

[71] R. D. Hipp, “SQLite,” 2020. [Online]. Available: https://www.sqlite.
org/index.html

[72] M. Raasveldt and H. Mühleisen, “Duckdb: An embeddable analytical
database,” in Proceedings of the 2019 ACM SIGMOD International
Conference on Management of Data, ser. SIGMOD ’19. New York,
NY, USA: Association for Computing Machinery, 2019, p. 1981–1984.
[Online]. Available: https://doi.org/10.1145/3299869.3320212

[73] M. Cai, M. Grund, A. Gupta, F. Nagel, I. Pandis, Y. Papakonstantinou,
and M. Petropoulos, “Integrated querying of sql database data and s3
data in amazon redshift.” IEEE Data Eng. Bull., vol. 41, no. 2, pp.
82–90, 2018.

https://www.sqlite.org/index.html
https://www.sqlite.org/index.html
https://doi.org/10.1145/3299869.3320212

	I Introduction
	II Definitions and Problem Statement
	III A Reference Architecture
	IV View Presentation
	IV-A Bandit-Based View Presentation Algorithm
	IV-B The View Presentation Algorithm

	V View Distillation
	VI Evaluation
	VI-A RQ1: Is Ver effective in navigating users to the view that satisfies their requirements?
	VI-B RQ2: Does View Distillation reduce the number of views and is View-Distillation scalable?
	VI-B1 Compatible and Contained (C1 and C2)
	VI-B2 Complementary (C3)
	VI-B3 Contradictory (C4)
	VI-B4 Scalability

	VI-C End-to-End Evaluation
	VI-C1 Alternative View Specification Implementations
	VI-C2 Runtime Comparison
	VI-C3 RQ3: Column Selection and Join Graph Search

	VI-D QS: Analysis of existing QBE systems

	VII Related Work
	VIII Conclusions
	IX Acknowledgement
	Appendix
	A Discovery Index Construction
	B Column Selection
	C Join Graph Search and Materializer
	D Microbenchmarks
	D1 Varying Discovery Index Quality
	D2 Vary the number of Rows in the Query
	D3 Vary the number of Columns in the query

	References

