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Abstract
The advances of modern sequencing techniques have generated an unprecedented 
amount of multi-omics data which provide great opportunities to quantitatively 
explore functional genomes from different but complementary perspectives. How-
ever, distinct modalities/sequencing technologies generate diverse types of data 
which greatly complicate statistical modeling because uniquely optimized meth-
ods are required for handling each type of data. In this paper, we propose a unified 
framework for Bayesian nonparametric matrix factorization that infers overlapping 
bi-clusters for multi-omics data. The proposed method adaptively discretizes dif-
ferent types of observations into common latent states on which cluster structures 
are built hierarchically. The proposed Bayesian nonparametric method is able to 
automatically determine the number of clusters. We demonstrate the utility of the 
proposed method using simulation studies and applications to a single-cell RNA-
sequencing dataset, a combination of single-cell RNA-sequencing and single-cell 
ATAC-sequencing dataset, a bulk RNA-sequencing dataset, and a DNA methylation 
dataset which reveal several interesting findings that are consistent with biological 
literature.
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1  Introduction

This paper proposes a unified Bayesian framework for model-based bi-overlapping-
clustering of multi-omics data. The advances of modern sequencing techniques have 
generated an unprecedented amount of multi-omics data (e.g., DNA methylation, 
chromatin accessibility, and mRNA gene expression). Unlike genetic/genomic data 
from single modality which can only provide a partial view, multi-omics data have 
enabled researchers to interrogate the complex biological systems from different 
perspectives and characterize more comprehensive knowledge of cellular functions 
and activities at the molecular level. These new scientific advancements have greatly 
impacted public health via improved strategies of diagnosis, treatment, and pre-
vention of genetic diseases such as cancer. However, despite the continuous efforts 
by the multi-omics research community, new statistical methods are still in great 
need to keep up the pace with fast evolving sequencing technologies. For example, 
though traditional bulk RNA-sequencing (RNA-seq) and relatively new single-cell 
RNA-seq (scRNA-seq) techniques aim to measure the same molecules, the cluster-
ing algorithms for analyzing bulk RNA-seq data is not suitable for scRNA-seq data 
due to its unique features (e.g., sparsity) and thus need to be redesigned.

1.1 � Challenges in Model‑Based Clustering of Multi‑Omics Data

1.1.1 � Mixed Data Types

Different modalities/sequencing technologies generate various types of data. For 
example, while DNA copy number variation can be coded as ordinal variables 
representing status loss, neutral, or gain, DNA methylation level is often modeled 
as beta values in the range between 0 and 1. While bulk RNA-seq data are often 
treated as Gaussian distributed after log-normalization, scRNA-seq data are gener-
ally regarded as zero-inflated counts. The wide range of sampling distributions of 
multi-omics data makes model-based clustering tasks challenging since each data 
type requires a special treatment.

1.1.2 � Noisiness

Multi-omics data contain high levels of noise due to technical limitations, which 
inevitably confound with biological variations that researchers strive to investigate. 
Ignoring such intrinsic and experimental noise promotes susceptibility to false con-
clusions which will be propagated to downstream analysis, thereby hindering sci-
entific discoveries. For instance, [26] showed a large fraction of stochastic allele-
specific expression from scRNA-seq data can be explained by technical noise, 
especially for lowly and moderately expressed genes. Without properly account-
ing for technical noise, statistical modeling can easily skew biological interpreta-
tions. Many attempts have been made to address high levels of noise. For example, 
[49] proposed a mixture model that can eliminate noise from microarray data. [34] 
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introduced surrogate variable analysis to model and remove noise from sequencing 
data. [14] suggested to remove technical noise based on spike-in ERCC molecules in 
scRNA-seq data.

1.1.3 � Heterogeneity

Biological samples are heterogeneous due to, e.g., genetic differences, environmen-
tal influences, or disease severity [21, 40]. Individualized characterization is neces-
sary to account for heterogeneity and avoid spurious results derived from the homo-
geneous modeling assumption. For instance, tumor heterogeneity is a well-known 
characteristic of cancer, and therefore sequencing data collected from tumor tissues 
are inherently heterogeneous. An increasing number of studies have been carried out 
to decipher the tumor heterogeneity from (bulk) sequencing data (e.g., the feature 
allocation model [33] with DNA sequencing data). Sampling heterogeneity is also 
commonly observed in single-cell data where tissue samples often contain multiple 
tissue types. Various clustering methods have been proposed to identify cell types; 
see e.g., a recent review [28].

1.1.4 � Data Integration

With the availability of multi-omics data, a joint analysis that integrates all sources 
information is often desired. Although single-modality clustering methods can be 
independently applied to one modality at a time, post hoc processing is necessary 
in order to achieve a consensus conclusion from potentially incompatible clustering 
results from each modality. Proper propagation of the uncertainty from estimation 
to post hoc processing is especially important for noisy biological data but remains 
highly non-trivial. In addition, data integration is exposed to an even more pressing 
challenge for single-cell multi-omics data because typically each cell can be only 
assayed on a single modality. The lack of matching samples across modalities ren-
ders most of existing multi-omics data integration methods inapplicable with the 
exception of [36] who developed a model-based approach for the integrative analy-
sis of single-cell chromatin accessibility and gene expression. There is, therefore, a 
critical need to develop new integrative clustering methods to jointly cluster multi-
omics data (especially single-cell multi-omics data).

1.2 � Review of Existing Literature

1.2.1 � Clustering

Clustering is an unsupervised learning task that seeks to divide units into mutually 
exclusive groups. Extensive work has been done in developing clustering methods 
such as algorithm-based hierarchical clustering [23] and k-means clustering [20], 
and model-based finite mixture [41] and infinite mixture models [43].
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1.2.2 � Bi‑clustering

Clustering methods are useful for clustering either observations or covariates but 
are not directly applicable for joint clustering both observations and covariates. Bi-
clustering extends clustering by simultaneously clustering rows and columns of a 
data matrix. Again, numerous methods have been developed for this purpose [19, 
38, 56]. A common thread of clustering and bi-clustering is that the clusters have 
to be mutually exclusive which becomes a limitation in clustering multi-omics data 
because, for example, a gene can participate in multiple pathways.

1.2.3 � Overlapping Clustering

Overlapping clustering, also known as feature allocation or fuzzy clustering, relaxes 
the restriction to mutually exclusive clusters and allocates each unit to possibly 
more than one cluster. Like clustering, the vast majority of the existing overlapping 
clustering methods [3, 4, 11, 16] do not jointly cluster observations and covariates. 
Moreover, they usually work well for continuous data only.

1.2.4 � Sparse Matrix Factorization

Matrix factorization decomposes a high-dimensional matrix into two low-rank 
matrices. Sparse matrix factorization encourages the low-rank matrices to be sparse 
and can be interpreted as clustering. For instance, [51] proposed a latent factor 
model with a sparse loading matrix for continuous data. The sparsity pattern indi-
cates an overlapping clustering of the covariates. Many specific sparse matrix fac-
torization algorithms have been developed for non-negative matrices [22, 30, 31], 
count matrices [17, 61], binary matrices [59, 60], categorical matrices [45], multino-
mial matrices [63], and other types of matrices. In [45, 63], both low-rank matrices 
are assumed to be sparse and hence can be interpreted as bi-overlapping-clustering.

1.2.5 � The Proposed Method

In this paper, we extend the work of [45, 63] by proposing a sparse unified matrix 
factorization (UMF) framework which is, in principle, applicable to any type of omic 
data. The proposed UMF introduces a mixture model representation of the observa-
tions through a set of latent variables to indicate the underlying state of multi-omics 
observations. This simple formulation of the sampling model adaptively discretizes 
the observations into a binary/categorical matrix, which is more robust to high levels 
of noises. Moreover, while the choice of mixture kernel depends on the specific type 
of the omic data, the latent states are universal, which allows us to impose essen-
tially the same latent matrix factorization priors to characterize the heterogeneity 
among both observations and covariates for virtually any type of omic data. Further-
more, the proposed framework can also be used to integrate multi-modal single-cell 
sequencing data.

Particularly, we construct a hierarchical model with a combination of latent logistic 
model, Indian buffet process (IBP, [16]) prior, and Dirichlet-categorical prior. Using 
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IBP, we are able to infer an unknown number of overlapping clusters of observations. 
Conditional on the clusters of observations, the Dirichlet-categorical prior clusters 
covariates, again allowing overlaps. Through simulation studies, we demonstrate that 
the proposed UMF has superior performance compared to competing methods across 
different types of data. We subsequently illustrate UMF with applications to a mouse 
scRNA-seq dataset, a breast cancer bulk RNA-seq dataset, a head and neck cancer 
DNA methylation dataset, and an integration of human scRNA-seq gene expression 
and scATAC-seq chromatin accessibility dataset, which reveal some interesting results 
that are consistent with existing biological literature.

The remainder of the paper is organized as follows. We introduce the proposed 
latent matrix factorization model in Sect. 2. Posterior inference based on Markov chain 
Monte Carlo (MCMC) sampling is described in Sect. 3. In Sects. 4 and 5 , we illustrate 
our approach with simulation studies, and analyses of four real datasets. This paper is 
concluded with a brief discussion in Sect. 6.

2 � Model

2.1 � Classifying Omic Data via Adaptive Discretization

Let xij generically denote the observed value of gene j in sample i with i = 1,… , n and 
j = 1,… , p . Depending on the application, xij can represent gene expression, methyla-
tion, chromatin accessibility, etc. The general idea of UMF in modeling noisy sequenc-
ing data is to introduce latent indicator variables zij ’s to adaptively classify observa-
tions into latent states. In this section, we focus on four types of omic data although 
UMF has much wider applicability: bulk RNA-seq gene expression, DNA methylation, 
scRNA-seq gene expression, and scATAC-seq chromatin accessibility. In the follow-
ing, we describe the unique features and corresponding sampling distribution of each 
data type. Moreover, the proposed UMF is also applicable to mixed data types; as an 
illustration, we will discuss the integration of scRNA-seq and scATAC-seq data.

2.1.1 � Bulk RNA‑Seq Gene Expression

Gene expression measurements provide opportunities to quantitatively characterize 
complex genetic diseases such as cancer at the mRNA level. Identifying disease sub-
types is one of the first steps in developing personalized treatments. We will work with 
log-transformed, centered mRNA measurements which are often treated as continuous 
data with heavy tails. Let N(�, �2) denote Gaussian distribution with mean � and vari-
ance �2 , and U(a, b) denote uniform distribution on the interval (a, b). We adopt the 
probability of expression model (POE, [49]) to represent gene expressions as a mixture 
of one Gaussian and two uniform distributions,

xij ∼ I
(
zij = −1

)
U
(
�j − k−

j
,�j

)
+ I

(
zij = 0

)
N
(
�j, �

2
j

)
+ I

(
zij = 1

)
U
(
�j,�j + k+

j

)
.
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The constraint 𝜎j < min(k−
j
, k+

j
)∕k0 with k0 > 5 is imposed to capture the heavy tails 

through uniform distributions. The latent variable zij = −1 , 0, and 1 respectively 
indicates the case of under, normal, and over-expression of gene j in sample i. We 
assume k−

j
, k+

j
∼ Gamma(�k, �k) , 𝜎2

j
∼ IG(𝛼𝜎 , 𝛽𝜎)I(𝜎j < min(k−

j
, k+

j
)∕k0) , and 

�j ∼ N(m�, �
2
�
).

2.1.2 � DNA Methylation

DNA methylation is an essential epigenetic factor that regulates gene transcription, 
and plays critical roles in gene regulation. The methylation levels are often calcu-
lated as beta values that are defined as the ratios of intensities between methylated 
and unmethylated alleles. Beta values are between 0 and 1 with 0 being unmethyl-
ated and 1 fully methylated. Given the range of the beta values, beta distribution is 
appropriate to model the methylation data. Let Beta(u, v) denote a beta distribution 
with mean u and effective sample size v (in a more conventional parameterization of 
beta distribution with shape parameters a and b, u = a∕(a + b) and v = a + b ). We 
assume that observations are generated from a mixture of two beta distributions,

We restrict u−
j
< u+

j
 so that zij = 1 indicates a relatively high methylation level, 

whereas zij = 0 stands for a low level. We assume p(u−
j
, u+

j
) ∝ Beta(u−

j
|�u, �u)

Beta(u+
j
|𝛼u, 𝛽u)I(u−j < u+

j
) and v−

j
, v+

j
∼ Gamma(�v, �v) independently.

2.1.3 � scRNA‑Seq Gene Expression

scRNA-seq technologies catalogue transcriptomic activities in individual cells and 
have facilitated new biological discoveries that were until recently impossible with 
bulk RNA-seq, such as revealing new gene regulatory relationships and cell types 
at the single-cell level. However, the excessive zeros and dispersed measurements 
render conventional statistical analysis unsuitable in analyzing scRNA-seq data. To 
incorporate these unique features of scRNA-seq data, we consider a mixture of zero-
inflated Poisson and negative binomial distributions,

where NB(r,�) denotes the negative binomial distribution with mean r > 0 and dis-
persion � , and ZIP(�, �) denotes the zero-inflated Poisson distribution with zero 
inflation probability 0 ≤ � ≤ 1 and Poisson rate parameter 𝜆 > 0 . The probability 
mass function of ZIP(�, �) is given by,

We assume 𝜆j < rj so that the latent state zij = 1 represents large dispersed expres-
sions captured by the negative binomial component and zij = 0 represents small 

xij ∼ I
(
zij = 0

)
Beta

(
u−
j
, v−

j

)
+ I

(
zij = 1

)
Beta

(
u+
j
, v+

j

)
.

(1)xij ∼ I
(
zij = 0

)
ZIP

(
�j, �j

)
+ I(zij = 1)NB

(
rj,�j

)
,

Pr(X = x) =

{
𝜋 + (1 − 𝜋) exp(−𝜆) if x = 0,

(1 − 𝜋)exp(−𝜆)𝜆x∕x! if x > 0.
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(including zero) expressions captured by the zero-inflated Poisson component. We 
assume �j ∼ Beta(�� , ��) , p(𝜆j, rj) ∝ Gamma(𝜆j|𝛼𝜆, 𝛽𝜆)Gamma(rj|𝛼r, 𝛽r)I(𝜆j < rj) , 
and �j ∼ Beta(��, ��).

2.1.4 � scATAC‑Seq Chromatin Accessibility

The single-cell assay for transposase-accessible chromatin (scATAC-seq) maps the 
landscape of chromatin accessibility [8], allowing characterization of chromatin 
variability among individual cells. The accessible chromatin is a hallmark of active 
DNA regulatory elements. The close-to-binary nature of scATAC-seq leads us to 
consider the following mixture model representation,

While other choices of f−(⋅) and f+(⋅) can be made, we follow [36] to set f−(⋅) to 
be a point mass at zero and f+(⋅) to be a probability mass function with zero mass 
at zero due to the fact that scATAC-seq data are small counts with a large number 
of zeros. Therefore, the latent state is deterministic: zij = 1 ( zij = 0 ) if the promoter 
region of gene j is (not) accessible, i.e., xij ≠ 0 ( xij = 0).

2.1.5 � Integration of scRNA‑Seq and scATAC‑Seq

scRNA-seq and scATAC-seq experiments are sometimes performed jointly to meas-
ure gene expression and chromatin accessibility for the same cell population 
although individual cell can only be measured by one platform. An independent 
analysis is deemed less efficient than a joint analysis because the former ignores the 
biological links between these two types of data. Because each observation/cell has 
only one type of data, joint clustering the combined data is challenging. Our pro-
posed UMF is able to overcome this difficulty through dichotomizing both datasets 
to binary indicators and matching them on the gene levels. Specifically, for each 
gene j, we identify its corresponding promoter region which promotes its transcrip-
tion to mRNA. In other words, if the promoter region is accessible, the correspond-
ing gene is more likely to be transcribed/expressed. More precisely, without loss of 
generality, let xr

ij
 denote the scRNA-seq gene expression of gene j in the first n1 cells 

and let xa
�j

 denote the scATAC-seq chromatin accessibility of the promoter region of 
gene j in the next n2 cells. The total number of cells is n = n1 + n2 . We assume that 
xr
ij
 follows the sampling model (1) with indicators zr

ij
 and that xa

�j
 follows the sam-

pling model (2) with indicators za
�j

 . Despite the disparate sampling distributions, the 
latent indicators zr

ij
 and za

ij
 have coherent interpretations across the modalities: if 

zr
ij
= 1 or za

�j
= 1 , gene j is expected to have high expression in cell i or � . A similar 

strategy was used in [36]; they focused on clustering cells whereas we consider clus-
tering both cells and genes with possible overlaps.

(2)xij ∼ I(zij = 0)f−(xij) + I(zij = 1)f+(xij).



	 Statistics in Biosciences

1 3

2.2 � Bi‑overlapping‑Clustering Omic Data via Unified Matrix Factorization

As shown in Sect. 2.1, multi-omics data measured from different modalities can be rep-
resented by the latent variables zij ’s in a unified way. Let Z = [zij]

n,p

i=1,j=1
 . Note that for 

the integration of scRNA-seq and scATAC-seq data, we vertically concatenate 
Z = [Zr;Za] where Zr = [zr

ij
]
n1,p

i=1,j=1
 and Za = [za

�j
]
n2,p

�=1,j=1
 ; see Figure 1 for an illustra-

tion. We introduce lower-dimensional matrices to characterize the heterogeneity of 
both rows and columns of Z . The latent indicator matrix Z ∈ {0, 1}n×p is binary except 
for bulk RNA-seq data for which Z ∈ {−1, 0, 1}n×p is categorical. We will discuss the 
prior distributions for categorical and binary Z respectively.

2.2.1 � Categorical

We let A ∈ {0, 1}n×K and C ∈ {−1, 0, 1}p×K denote the sample-latent and the covar-
iate-latent matrices, of which the clustering interpretations will be given at the end of 
this section. The number K of columns of A and C is usually much smaller than the 
dimensions of the original data (n and p). We link A and C to Z by a latent multi-class 
logistic model,

where M is a normalizing constant. Parameters w−
jk

 and w+
jk

 tie the jth covariate to the 
kth cluster. Parameters �−

j
 and �+

j
 represent the baseline probabilities of belonging to 

categories −1 and +1.

zij ∼ Categorical
{
M−1 exp

(∑
k

aikw
−
jk
I(cjk = −1) + �−

j

)
,M−1,

M−1 exp
(∑

k

aikw
+
jk
I(cjk = 1) + �+

j

)}
,

zr1p

z an21

scATAC 1

z an22

z rn11

zr11

Gene 2

za1p

scATAC 2 z a2p

scRNA 1 zr12

zan2 p

z rn12

z r2p

z a22

z rn1p

z r22

scRNA n1

z r21

Gene p

za12

scRNA 2

Gene 1

za11

z a21

scATAC n2

scRNA sequencing

scATAC sequencing

Fig. 1   Concatenation of scRNA-seq and scATAC-seq data
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2.2.2 � Binary

We use the same notation A for the sample-latent matrix but let B = (bjk) ∈ {0, 1}p×K 
denote the binary covariate-latent matrix. We link A and B by a latent binary logistic 
model,

The interpretation of wjk and �j is similar to the categorical case.

2.2.3 � Interpretations of Clustering Matrices

The sample-latent matrix A and covariate-latent matrix B or C can be interpreted 
as clustering of the rows and columns of Z , respectively. Observation i (covariate j) 
belongs to cluster k if aik ≠ 0 ( bjk ≠ 0 or cjk ≠ 0 ). Since we do not constrain A , B , and 
C to having unit row sums, clusters can have overlaps.

2.3 � Indian Buffet Process and Hyperpriors

To make inference on the latent matrices, we will first impose a Bayesian nonparamet-
ric prior on A that can automatically determine the number K of clusters.

The Indian buffet process has been widely used as a Bayesian nonparametric prior 
on binary matrices with a potentially unbounded number of columns. To describe the 
matrix-generating process, we first assume a fixed number K̃ of columns of A which 
will be relaxed later. Conditional on K̃ , aik ’s are assumed to be independent Bernoulli 
random variables,

where m is a hyper-parameter. Marginalizing out �k , we have

where rk =
∑n

i=1
aik is the sum of the entries in the kth column of A . We then take 

K̃ → ∞ , denote K as the number of non-empty columns of A , and remove the col-
umns whose entries are all zeros. The resulting matrix A follows an IBP(m) prior 
with probability mass function,

where Hn =
∑n

i=1
1∕i is the nth harmonic number. Moreover, the rows of A are 

exchangeable and the conditional probability for aik = 1 is p(aik = 1|a(−i)k) = r(−i)k∕n 
provided r(−i)k > 0 , where a(−i)k is the kth column of A excluding the ith row and 

zij ∼ Bernoulli

�
exp

�∑
k aikwjkbjk + �j

�

1 + exp
�∑

k aikwjkbjk + �j
�
�

.

aik|�k ∼ Bernoulli(�k), �k ∼ Beta(m∕K̃, 1),

p(A) =

K̃∏
k=1

mΓ(rk + m∕K̃)Γ(n − rk + 1)

K̃Γ(n + 1 + mK̃)

p(A) =
mK exp(−mHn)

K!

K∏
k=1

Γ(rk)Γ(n − rk + 1)

Γ(n + 1)
,
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r(−i)k is the number of ones in a(−i)k . The distribution of number of new columns/
clusters for each row is Poission(m∕n).

Conditional on matrix A via the number of columns K, each element bjk of B fol-
lows an independent beta-Bernoulli distribution bjk ∼ Bernoulli(�) with 
� ∼ Beta(��, ��) . Likewise, each element cjk of C follows the Dirichlet-categorical 
distribution cjk ∼ Categorical(�) with � = (�−1, �0, �1) ∼ Dirichlet(�−1,�0,�1) . We 
assume wjk,w

−
jk
,w+

jk
∼ Gamma (aw, bw) , �j, �

−
j
, �+

j
∼ N(�� , �

2
�
) , and m ∼ Gamma(�m, �m)

.

3 � Posterior Inference

We summarize the posterior inference by MCMC simulation for the proposed 
UMF with categorical covariate-latent representation; UMF with binary covari-
ate-latent representation can be treated as a special case. The proposed UMF with 
categorical latent representation is parameterized by

where � generically denote the parameters of the sampling models described in 
Sect. 2.1, for example, � = {�j, �

2
j
, k−

j
, k+

j
}
p

j=1
 in the bulk RNA-seq data. While most 

of the parameters are trivial to update with Gibbs or Metropolis-Hasting, care must 
be taken in updating A as its dimension can change from iteration to iteration. The 
details of the updating scheme of A are provided below.

We let ak and a(−i)k respectively denote the kth column of A and the kth column 
of A without the ith entry. Sequentially for i = 1,… , n , we cycle through the fol-
lowing two steps. 

Step i.	� Update existing non-empty columns k = 1,… ,K of A . If a(−i)k = 0 , drop 
feature k. Otherwise, sample aik from the full conditional distribution 

 If a column becomes all zeros after updating, we delete this column and reduce K to 
K = K − 1.

Step ii.	� After updating existing columns, we propose to add new columns. We first 
draw K∗ ∼ Poission(m∕n) . If K∗ = 0 , we will skip this step. Otherwise, we 
propose a set of new parameters c∗

k
= (c∗

1k
,… , c∗

pk
)� and {w−∗

jk
,w+∗

jk
}
p

j=1
 

from their prior distributions, for k = K + 1,… ,K + K∗ . We accept new 
features and the associated parameters with probability 

{
A,C,Z, {w−

j
,w+

j
, �−

j
, �+

j
}
p

j=1
,�, �,m

}
,

p(aik = 1|⋅) ∝ p
(
aik = 1|a(−i)k

) p∏
j=1

p

(
zij

|||||
{
aik, cjk,w

−
jk
,w+

jk

}K

k=1
, �−

j
, �+

j

)
.
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 where ai,K+1 = ⋯ = ai,K+K∗ = 1 . If new columns are accepted, we increase K to 
K = K + K∗.
In addition, due to the high correlation between latent matrix Z and uniform limits 
k−
j
, k+

j
 in the POE model during MCMC simulation [49], we perform a joint update 

of these parameters for better mixing. Details of the full MCMC algorithm are given 
in the Supplementary Materials.

To summarize the posterior distribution based on the Monte Carlo samples, we 
proceed by first calculating the maximum a posteriori estimate K̂ of K from the mar-
ginal posterior distribution. Conditional on estimated K̂ , we find the point estimate 
of A by the following procedure. For any matrices A, Ã ∈ {0, 1}n×K̂ , we define a dis-
tance d(A, Ã) = min� D(A,�(Ã)) , where �(Ã) denotes a permutation of the columns 
of Ã and D(⋅, ⋅) is the Hamming distance between the two matrices. A point estima-
tor Â of A is then obtained as

Empirically, both the integration and the optimization can be approximated using 
the available Monte Carlo samples. We remark that, in principle, one can obtain the 
maximum a posteriori (MAP) estimate of A based on its posterior samples. How-
ever, due to the discrete nature of A , even the most probable estimate may only be 
visited once or twice during the entire course of MCMC and therefore the MAP is in 
general not a reliable estimate.

Conditional on Â , we continue to run the chain for a short period, then point esti-
mates of other parameters are obtained as posterior means computed from those new 
Monte Carlo samples. Similar approaches have been adopted by [33, 45].

The code implementing the proposed models can be found in the GitHub reposi-
tory at https://​github.​com/​fangt​ing-​zhou/​unifi​ed-​matrix-​facto​rizat​ion.

4 � Simulation

To assess the utility of the proposed UMF, we conduct three simulation studies 
for sparse count data, heavy-tailed continuous data, and beta-valued data which 
respectively represent applications of scRNA-seq, bulk RNA-seq, and DNA meth-
ylation. We consider datasets with n = 1000 observations and p = 50 covariates. 
We generate the sample-latent matrix A from IBP resulting in K columns. The 
binary covariate-latent matrix B is generated as independent Bernoulli with suc-
cess probability � , and the ordinal C is generated as independent categorical with 
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�−1 = �1 = �∕2 . For each data type, we consider two scenarios (K, �) = (6, 0.15) 
and (K, �) = (9, 0.3) . The generated A , B , and C for (K, �) = (6, 0.15) are depicted 
in the left panels of the first, second, and third rows of Fig. 2, respectively. We 
generate latent indicators zij ’s from the latent (two-class or multi-class) logistic 

(a) True A. (b) Count Â. (c) Continuous Â. (d) Beta Â.

Clusters

(e) True B.

Clusters

(f) CounttB̂.

Clusters

(g) Beta B̂.

Clusters

(h) True C.

Clusters

(i) Continuous Ĉ.

Fig. 2   Simulation results averaged over 50 replicates in scenario (K, �) = (6, 0.15) . a, e and h The true 
values of A,B , and C used to generate the simulated data. Green, black, and red cells are -1, 0, 1 respec-
tively. b–d, f, g and i The estimated A,B , and C averaged over 50 repeated simulations. The colors of 
cells change gradually from red to black to green representing the values from − 1 to 0 to 1. For visuali-
zation, we plot the same 100 randomly selected rows from A and Â (Color figure online)
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model described in Sect.  2.2. Finally, we generate observations xij ’s from the 
sampling models specific to each data type as described in Sect. 2.1.

We run the MCMC algorithm for 10,000 iterations with one random initial clus-
ter. The first 5000 iterations are discarded as burn-in and posterior samples are 
retained every 5th iteration after burn-in. We compare the proposed method with 
two competing methods. The first method is a two-step approach (TSA) that is simi-
lar to the proposed matrix factorization. But instead of joint modeling, it first dichot-
omizes the observations at quantile 0.25 for the sparse count data and beta-valued 
data or trichotomizes at quantiles (0.25, 0.75) for the heavy-tailed continuous data, 
similar in essence to [9] and then uses the same Bayesian nonparametric binary/
categorical matrix factorization method in Sects. 2.2 and 2.3 to the discretized data. 
The second method that we compare to is a sparse non-negative matrix factorization 
(SNMF, [22]), where we regard sparsity as presence/absence of clusters. We set the 
number of components and sparsity parameters in this algorithm to the truth. For the 
continuous data, we convert them to positive numbers by taking the absolute values 
for SNMF.

For the sparse count data and beta-valued data, we report the estimation errors of 
A and B . Analogously, the estimation errors of A and C for heavy-tailed continuous 
data are also presented. Specifically, we compute the Hamming distances between 
the estimated and true A , B , and C , and normalize them by the respective total num-
ber of elements in the corresponding matrices. When two matrices have different 
numbers of columns, we pad missing columns with zeros. The results under two 
sets of true values of (K, �) are summarized in Table 1 based on 50 repeated simula-
tions. The performance of the proposed method is consistently better than SNMF 
and TSA that depends crucially on the choices of quantile cutoffs. It shows that the 
ad hoc choice of dichotomizing and/or trichotomizing the observations may lead to 
suboptimal results. The proposed UMF, on the other hand, solves this issue by adap-
tively discretizing the data under a Bayesian paradigm. Moreover, UMF correctly 
identifies the number of clusters K in 96% of the simulations whereas TSA often 
underestimates it when the cutoff quantile is not appropriately chosen for the simu-
lated data. It is further worth noting that the performance of SNMF is inferior to the 
proposed UMF even though the number of clusters is specified to the truth, which 
suggests that the highly noisy and heterogeneous nature of multi-omics data poses 
challenges to traditional statistical methods. Figure 2 depicts the estimated sample-
latent matrix A and covariate-latent matrices B or C of the proposed method aver-
aging over repeat simulations in the scenario (K, �) = (6, 0.15) , after adjusting for 
label switching. These findings are visually quite close to the truth indicating that 
our proposed method is able to identify the overlapping clustering structures of both 
observations and covariates with high accuracy.

5 � Applications

We illustrate the proposed method with four applications: (i) a scRNA-seq gene 
expression dataset with AhR intestinal stem cell-specific knockout versus wild type 
mouse, (ii) a combination of human B lymphocyte scRNA-seq gene expression and 



	 Statistics in Biosciences

1 3

Ta
bl

e 
1  

S
im

ul
at

io
n 

re
su

lts
 o

f o
ur

 u
ni

fie
d 

m
at

rix
 fa

ct
or

iz
at

io
n 

an
d 

tw
o 

co
m

pe
tin

g 
ap

pr
oa

ch
es

A
ve

ra
ge

 e
rr

or
s i

n 
es

tim
at

in
g 
A
,
B

 , a
nd

 C
 a

re
 q

ua
nt

ifi
ed

 a
s t

he
 H

am
m

in
g 

di
st

an
ce

 b
et

w
ee

n 
th

e 
es

tim
at

ed
 a

nd
 tr

ue
 A
,
B

 , a
nd

 C
 , n

or
m

al
iz

ed
 b

y 
th

e 
re

sp
ec

tiv
e 

to
ta

l n
um

be
r o

f 
el

em
en

ts
. N

um
be

rs
 w

ith
in

 th
e 

pa
re

nt
he

se
s a

re
 th

e 
st

an
da

rd
 d

ev
ia

tio
ns

 o
ve

r 5
0 

re
pl

ic
at

es

M
et

ho
ds

(K
,
�
)
=
(6
,
0
.
1
5
)

(K
,
�
)
=
(9
,
0
.
3
)

C
ou

nt
C

on
tin

uo
us

B
et

a
C

ou
nt

C
on

tin
uo

us
B

et
a

Er
r A

Er
r B

Er
r A

Er
r C

Er
r A

Er
r B

Er
r A

Er
r B

Er
r A

Er
r C

Er
r A

Er
r B

U
M

F
0.

04
7

(0
.0

08
)

0.
02

3
(0

.0
09

)
0.

05
2

(0
.0

44
)

0.
03

1
(0

.0
19

)
0.

05
6

(0
.0

20
)

0.
02

0
(0

.0
09

)
0.

05
4

(0
.0

04
)

0.
05

6
(0

.0
02

)
0.

08
2

(0
.0

23
)

0.
06

5
(0

.0
31

)
0.

09
3

(0
.0

67
)

0.
02

7
(0

.0
41

)
TS

A
0.

01
4

(0
.0

02
)

0.
03

6
(0

.0
10

)
0.

05
9

(0
.0

38
)

0.
10

7
(0

.0
22

)
0.

01
5

(0
.0

17
)

0.
02

9
(0

.0
20

)
0.

14
3

(0
.0

71
)

0.
12

5
(0

.0
71

)
0.

13
3

(0
.0

30
)

0.
26

7
(0

.0
18

)
0.

17
1

(0
.0

54
)

0.
16

2
(0

.0
85

)
SN

M
F

0.
27

5
(0

.0
50

)
0.

15
8

(0
.0

36
)

0.
26

7
(0

.0
43

)
0.

19
7

(0
.0

33
)

0.
29

4
(0

.0
29

)
0.

20
1

(0
.0

35
)

0.
31

5
(0

.0
24

)
0.

36
6

(0
.0

42
)

0.
31

6
(0

.0
36

)
0.

32
4

(0
.0

53
)

0.
35

7
(0

.0
22

)
0.

43
4

(0
.0

36
)



1 3

Statistics in Biosciences	

scATAC-seq chromatin accessibility dataset, (iii) a TCGA breast cancer bulk RNA-
seq gene expression dataset, and (iv) a TCGA head and neck cancer DNA methyla-
tion dataset.

5.1 � Descriptions of Four Datasets

5.1.1 � AhR Mouse scRNA‑Seq Data

scRNA-seq technologies catalogue transcriptome at the single-cell level. In this 
study, we analyze a scRNA-seq gene expression dataset collected on two groups 
of mice from controlled experiments, AhR wild type (normal) and AhR knockout 
targeted to gastrointestinal LGR5+ stem cells. AhR, the Aryl hydrocarbon recep-
tor, is a ligand-activated transcription factor that is capable of integrating external 
environmental, e.g., dietary, stimuli and host responses to modulate intestinal stem 
cell development, tissue regeneration, and colon cancer risk [27, 52]. We focus on 
a list of putative marker genes that are potentially differentially expressed between 
cell types. Among the list of genes, we filter out those that appear in less than 5% 
of samples, and discard samples that contain zero counts. The resulting dataset con-
tains 12,812 observations with 6575 samples from experimental group and 6237 
from control group, and provides expression level of 45 genes. The proposed UMF 
will be used to simultaneously cluster cells and genes with possible overlaps. Allow-
ing a cell to potentially belong to more than one cluster is important in this appli-
cation because cells might be undergoing dynamic cell differentiation processes at 
the time of measurement and therefore the transitioning cells do not belong to any 
definitive cell type biologically [39].

5.1.2 � Human Lymphoblastoid scRNA‑Seq & scATAC‑Seq Data

This dataset is made of two single-cell sequencing modalities: one is the scRNA-
seq and the other is the scATAC-seq, i.e., the single-cell chromatin accessibility 
profile. In this dataset, 7247 cells were measured with scRNA-seq and 3664 cells 
were measured with scATAC-seq, all from the same lymphoblastoid cell line (LCL) 
GM12878. One advantage of the proposed UMF is able to jointly cluster cells and 
genes by integrating the two single-cell sequencing modalities. We select top 25 
genes with the largest variability across cells for subsequent clustering analysis, 
which is potentially useful for detecting previously uncharacterized cell subtypes in 
LCL and identifying corresponding marker genes.

5.1.3 � TCGA Breast Cancer Bulk RNA‑Seq Data

The Cancer Genome Atlas (TCGA, https://​www.​cancer.​gov/​tcga) characterized tens 
of thousands cancer and normal samples spanning major cancer types that include 
genetic, epigenetic, genomic, and proteomic features. We analyze a TCGA breast 
cancer dataset involving 658 primary tumor samples downloaded from the TCGA 
database using software TCGA-Assembler [55]. Breast cancer is the most common 

https://www.cancer.gov/tcga
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cancer diagnosed among US women and is the second leading cause of cancer death 
among women [13]. Here, we focus our effort on clustering breast cancer patients 
using bulk RNA-seq gene expression data. Among more than 15,000 genes in the 
raw data, we select 45 genes in the ERBB signaling pathway [1], which is a crucial 
pathway in breast cancer development and progression. Application of the proposed 
UMF to this dataset can help define breast cancer subtypes and find associated 
marker genes.

5.1.4 � TCGA Head and Neck Cancer DNA Methylation Data

DNA methylation is an epigenetic modification which modifies the gene expression. 
It is known to play key roles in the carcinogenesis of head and neck squamous cell 
carcinoma [62] through e.g., silencing the expression of tumor suppressor genes 
when their promoter regions are methylated. We analyze a TCGA dataset containing 
298 primary tumor samples from head and neck cancer patients. We concentrate on 
21 genes from the tumor suppressor gene panels that are candidate genes frequently 
methylated in head and neck cancer [12]. Clustering based on methylation profiles 
can help elucidate the heterogeneity among head and neck cancer patients and meth-
ylated genes.

5.2 � Results

We apply the proposed method to these four datasets. To check the model fit ade-
quacy, we perform within-sample prediction that compares the observed measure-
ments with the posterior predictive mean. The correlations between observations 
and predictions are 0.93, 0.98, 0.96 and 0.98 for the AhR mouse scRNA-seq data, 
human lymphoblastoid scRNA-seq & scATAC-seq data, TCGA breast cancer bulk 
RNA-seq data, and TCGA head and neck cancer DNA methylation data, respec-
tively, which indicates adequate model fit.

5.2.1 � AhR Mouse scRNA‑Seq Data

We find 8 clusters as shown in Fig. 3a and b. Clusters 2 and 4 are likely subtypes of 
intestinal stem cells that allow for intestinal epithelium tissue repair and regenera-
tion because they contain the well-known intestinal stem cell marker genes, LGR5, 
ASCL2, SLC12A2, AXIN2, SMOC2, and KCNE3 [44]. Likewise, clusters 1 and 6 
can be interpreted as goblet cell subtypes as they include typical mucus components 
GUCA2A, MUC2, TFF3, ZG16, FCGBP, and CLCA1 which are identified as mark-
ers of goblet cells in gastrointestinal tract [7]. Cluster 5 contains marker genes of 
enteroendocrine cells CCK, TAC1, SCT, SST, CHGA, and CHGB [15]. This cluster 
also consists of neuropeptides TAC1 and CCK, which are markers of enteric neurons 
in the gastrointestinal tract [57]. Interestingly, it is well known that enteroendocrine 
cells produce gastrointestinal hormones or peptides in response to various stimuli 
and transmit them to the enteric nervous system to activate nervous responses [50]. 
Additionally, we also find some genes that are selected across several clusters. For 
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example, TRPM5, over-expressed in clusters 7 and 8, is an intrinsic signaling com-
ponent of mammalian chemosensory organs [25]. S100A16, over-expressed in all 
but clusters 5 and 8, acts as a novel adipogenesis promoting factor [37]. Despite the 
known functions of these genes, further experiments are needed to investigate the 
mechanism of their over-expression across clusters.

5.2.2 � Human Lymphoblastoid scRNA‑Seq & scATAC‑Seq Data

We identify 5 clusters shown in Fig. 4a and b, representing 5 potential cell subtypes 
in the lymphoblastoid cell line (LCL) GM12878, which is derived from human B 
cells. We find that these subtypes show profiles similar to those of B cells and other 
antigen-presenting cells. For example, cluster 3 contains the known marker genes 
of B cells, LTB, CCR7, and BIRC3. Clusters 1 and 5 contain marker genes of den-
dritic cells, CCL22, CCL17, and CCR7. Dendritic cells are antigen-presenting cells 
of the mammalian immune system [2]. While the human LCLs are supposed to be 
a homogeneous population, our analysis suggests that there is an uncharacterized, 
cell subtype structure among the cells, suggesting the more heterogeneous nature of 
LCLs. Specifically, in GM12878, we find clusters (1, 3, and 5) with profiles similar 
to those of B cells and dendritic cells, two cell types well known to closely inter-
act with each other [10, 29]. Additionally, several genes belong to multiple clusters 
and appear to play multiple roles in cellular processes. For example, studies have 
shown that IL4I1 (over-expressed in clusters 1, 3, and 4) regulates multiple steps 
in B cell physiology [5]. Three histone coding genes HIST1H1C, HIST1H4C, and 
HIST1H2BJ are involved in clusters 2 and 4, but their role in cellular differentiation 
has yet to be established in the literature. Further experiments need to be conducted 

(a) Sample clusters.
G
en

es

Clusters

(b) B: gene clusters.

Fig. 3   AhR mouse gastrointestinal scRNA-seq data. a Bipartite graph for clusters of randomly sampled 
units. Blue nodes are clusters, orange nodes are samples, and edges present sample-cluster relationship. c 
Heatmap of gene clusters. Green and black cells are 1 and 0, respectively (Color figure online)
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to verify the biological significance of these findings which can potentially confirm 
new cell subtypes in LCL.

5.2.3 � TCGA Breast Cancer Bulk RNA‑Seq Data

We discover 5 clusters as shown in Fig. 5a and b. Genes in MAPK signaling path-
way is entirely included in cluster 2, while cluster 3 and cluster 4 also contain some 

(a) Sample clusters. (b) B: gene clusters.
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Fig. 4   Human lymphoblastoid scRNA-seq & scATAC-seq data. a Bipartite graph for sample clusters. 
Blue nodes are clusters, orange nodes are 500 randomly selected samples, and edges present sample-
cluster relationship. b Heatmap of gene clusters. Green and black cells are 1 and 0, respectively (Color 
figure online)

(a) Sample clusters.
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es

Clusters

(b) C: gene clusters.

Fig. 5   TCGA breast cancer bulk RNA-seq gene expression data. a Bipartite graph for sample clusters. 
Blue nodes are clusters, orange nodes are samples, and edges present sample-cluster relationship. b Heat-
map of gene clusters. Green, black, and red cells are 1, 0, −1 respectively (Color figure online)
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of its members. The crucial role of MAPK signaling pathway in breast cancer cell 
growth is well established in the literature (see, for example, [18]). Primary genes 
in PI3K-AKT signaling pathway, which plays a significant role in cell growth and 
tumor proliferation in breast cancer [48], are detected in all clusters. Clinical experi-
ments also showed that these two pathways have significant cross-talk [32]. Clus-
ters 2 and 3 primarily contain members of the SRC/PTK2 pathway which has been 
identified as a promising therapeutic target in cancer [6]. The EPHB4 receptor sup-
presses breast cancer through the ABL1/CRK pathway [46], which is involved in 
cluster 2.

Genes that are significantly associated with cancer progression appear in several 
clusters. For instance, CBL enhances breast tumor formation and is over-expressed 
in human breast cancer [24]. We find CBL is under-expressed in clusters 1 &4 and 
over-expressed in clusters 2, 3, and 5. HBEGF is over-expressed in clusters 1 and 3 
which is known as a potent inducer of cancer tumor growth and angiogenesis [47]. 
NCK1, over-expressed in clusters 2, 3, and 5, advances breast carcinoma cell pro-
gression and metastasis [42]. Increased (clusters 1, 3, and 5) and decreased (clus-
ter 2) levels of STAT5A are both found in breast cancer [58]. The ERBB family 
includes epidermal growth factor receptor and ERBB2, ERBB3, and ERBB4 which 
are often mutated in cancers [54]. We find ERBB family members exhibit heteroge-
neous expression levels across clusters.

5.2.4 � TCGA Head and Neck Cancer DNA Methylation Data

We find 4 clusters as shown in Fig. 6a and b . Genes DLC1, DLEC1, EDNRB, 
and UCHL1 are included in all clusters indicating their universal roles in head 
and neck cancer, which has been previously reported [35] in nasopharyngeal 

(a) Sample clusters.
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es

Clusters

(b) B: gene clusters.

Fig. 6   TCGA head and neck cancer DNA methylation data. a Bipartite graph for sample clusters. Blue 
nodes are clusters, orange nodes are samples, and edges present sample-cluster relationship. b Heatmap 
of gene clusters. Green and black cells are 1 and 0, respectively (Color figure online)
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carcinoma (a subtype of head and neck cancer). Inactivation of CDKN2A (meth-
ylated in clusters 1 and 2) and CDKN2B (methylated in clusters 1 and 4) is fre-
quently found in head and neck cancer [53]. They provide instructions for making 
P14, P15, and P16 proteins that are tumor suppressors keeping cells from grow-
ing and dividing rapidly. However, increased methylation represses their expres-
sion which can ultimately lead to malignancy and the uncontrolled tumor growth. 
Patients belonging to different clusters exhibit diverse methylation patterns and 
hence may have different responses to treatments. Co-methylated genes discov-
ered by our method can be potential clinical targets with future experiments.

For comparison, we also apply SNMF to the same four datasets with results 
given in the Supplementary Materials. We tried different combinations of sparse-
nesses and dimensionalities, and selected the one with minimal loss. Generally 
speaking, the obtained clusters lack meaningful interpretations.

6 � Discussion

In this paper, we developed a unified framework to simultaneously cluster obser-
vations and covariates for multi-omics data. The proposed approach accounts for 
the noisy, heterogeneous, sparse, and non-Gaussian nature of sequencing data, 
and describes the data generating process by a hierarchical Bayesian model, 
which allows for probabilistic characterization of latent structures via overlapping 
clusters through full posterior inference with natural uncertainty quantification. 
Using simulation studies and four real applications, we have demonstrated the 
proposed method is capable of identifying biologically meaningful clusters and is 
widely applicable to different types of multi-omics data.

There are a few directions to extend this work. First, the joint modeling 
approach can be used for many other tasks beyond matrix factorization. For 
example, gene expression networks can be inferred by replacing the matrix fac-
torization model with a graphical model (e.g. Markov random fields or Bayesian 
networks) on the latent categorical/binary indicators Z . Second, MCMC allows 
for full posterior inference but is not scalable to large and high-dimensional data. 
The current inference algorithm can be substantially accelerated by using con-
sensus Monte Carlo algorithms for big-data clustering without sacrificing much 
accuracy. Finally, the overlapping clusters can be restricted to non-overlapping 
clusters if desired by considering random partition models including various 
extensions of the Dirichlet process.

Supplementary Information  The online version contains supplementary material available at https://​doi.​
org/​10.​1007/​s12561-​022-​09350-w.
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