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Abstract

Recently there has been sustained interest in modifying prediction algorithms to satisfy fairness

constraints. These constraints are typically complex nonlinear functionals of the observed data

distribution. Focusing on the path-specific causal constraints proposed by Nabi and Shpitser (2018),

we introduce new theoretical results and optimization techniques to make model training easier and

more accurate. Specifically, we show how to reparameterize the observed data likelihood such that

fairness constraints correspond directly to parameters that appear in the likelihood, transforming a

complex constrained optimization objective into a simple optimization problem with box constraints.

We also exploit methods from empirical likelihood theory in statistics to improve predictive perfor-

mance by constraining baseline covariates, without requiring parametric models. We combine the

merits of both proposals to optimize a hybrid reparameterized likelihood. The techniques presented

here should be applicable more broadly to fair prediction proposals that impose constraints on

predictive models.

Keywords: Algorithmic fairness, causal inference, counterfactual path-specific effects.

1. Introduction

Predictive models trained on imperfect data are increasingly being used in socially-impactful settings.

Predictions (such as risk scores) have been used to inform high-stakes decisions in criminal justice

(Perry et al., 2013), healthcare (Kappen et al., 2018), and finance (Khandani et al., 2010). While

automation may bring many potential benefits – such as speed and accuracy – it is also fraught

with risks. Predictive models introduce two dangers in particular: the illusion of objectivity and

violation of fairness norms. Predictive models may appear to be “neutral,” since humans are less

involved and because they are products of a seemingly impartial optimization process. However,

predictive models are trained on data that reflects the structural inequities, historical disparities, and

other imperfections of our society. Often data includes sensitive attributes (e.g., race, gender, age,

disability status), or proxies for such attributes. A particular worry in the context of data-driven

decision-making is “perpetuating injustice,” which occurs when unfair dependence between sensitive

features and outcomes is maintained, introduced, or reinforced by automated tools.

We study how to construct fair predictive models by correcting for the unfair causal dependence

of predicted outcomes on sensitive features. We work with the proposed fairness criteria in Nabi

and Shpitser (2018), where the fair prediction requires imposing hard constraints on the predictive

model in the form of restricting certain causal path-specific effects. Impermissible pathways are

user-specified and context-specific, hence the framework requires input from policymakers, legal
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experts, or the general public. Some alternative but also causally-motivated constrained prediction

methods are proposed in Kusner et al. (2017a); Zhang and Bareinboim (2018); Chiappa (2019). For

a survey and discussion of distinct fairness criteria (both causal and associative) see Mitchell et al.

(2018).

We advance the state of the art in two ways. First, we give a novel reparameterization of the

observed data likelihood in which unfair path-specific effects appear directly as parameters. This

allows us to greatly simplify the constrained optimization problem, which has previously required

complex or inefficient algorithms. Second, we demonstrate how tools from the empirical likelihood

literature (Owen, 2001) can be readily adapted to construct hybrid (semi-parametric) observed data

likelihoods that satisfy given fairness criteria. With this approach, the entire likelihood is constrained,

rather than only part of the likelihood as in past proposals. As a result, we use the data more efficiently

and achieve better performance. Finally, we show how both innovations may be combined into a

single procedure.

As a guiding example we consider computer-assisted hiring, in which predictive models are used

to infer job success from features found in applicant data. In this setting, we assume models have

access to historical data on job success of some applicants, quantified by a numerical score, as well

as their resume information including demographics. In addition, we are interested in predicting

the job success score of new individuals for whom only resume and demographic information is

available. This may be considered a variant of semi-supervised learning or prediction with missing

labels on a subset of the population. We aim to estimate scores quantifying job success subject to

path-specific fairness constraints that ensure, for instance, that perceived race has no direct influence

on the component of the job success score pertaining to employee evaluation by their supervisor.

In order to describe the various components of this proposal, we must review some background on

causal inference, path-specific effects, and constrained prediction.

2. Causal Inference and a Causal Approach to Fairness

Causal inference is concerned with quantities which describe the consequences of interventions.

Causal models are often represented graphically, e.g. by directed acyclic graphs (DAGs). We will

use capital letters (V ) to denote sets of random variables as well as corresponding vertices in graphs

and lowercase letters (v) to denote values or assignments to those random variables. A DAG consists

of a set of vertices V connected by directed edges (Vi → Vj for some {Vi, Vj} ⊆ V ) such that there

are no directed cycles. The set paG(Vi) ≡ {Vj ∈ V | Vj → Vi} denotes the parents of Vi in DAG G.

XA denotes the statespace of A ⊆ V .

A causal model of a DAG G is a set of distributions defined on potential outcomes (a.k.a.

counterfactuals). For example, we consider distributions p(V (a)) subject to some restrictions, where

V (a) represents the value of V had all variables in paG(V ) been set, possibly contrary to fact, to

value a. In this paper, we assume Pearl’s structural causal model (Pearl, 2009) for a DAG G which

stipulates that the sets of potential outcome variables
{
{Vi(ai) | ai ∈ XpaG(Vi)} | Vi ∈ V

}
are

mutually independent. All other counterfactuals may be defined using recursive substitution:

Vi(a) ≡ Vi(apaG(Vi)∩A, {Vj(a) : Vj ∈ paG(Vi) \A}), for any A ⊆ V \ {Vi}.

where {Vj(a) : Vj ∈ paG(Vi) \A} is taken to mean the (recursively defined) set of counterfactuals

associated with variables in paG(Vi) \A, had A been set to a. Equivalently, Pearl’s model may be

described by a system of nonparametric structural equations with independent errors.

2



OPTIMAL FAIR PREDICTION

A causal parameter is said to be identified in a causal model if it is a function of the observed

data distribution p(V ). In the structural causal model of a DAG G (as well as some weaker causal

models), all interventional distributions p(V (a)), for any A ⊆ V , are identified by the g-formula:

p(V (a)) =
∏

Vi∈V \A p(Vi| paG(Vi))
∣∣
A=a

. For example, consider the DAG in Fig. 1(a). Y (a)
is defined to be Y (a,M(a,X), X) by recursive substitution and its distribution is identified as∑

X,M p(Y |a,M,X) × p(M |a,X) × p(X). The mean difference between Y (a) and Y (a′) for

some treatment value a of interest and reference value a′ is E[Y (a)]− E[Y (a′)] and quantifies the

average causal effect of treatment A on the outcome Y .

2.1. Mediation Analysis and Path-Specific Effects

An important goal in causal inference is to understand the mechanisms by which some treatment A
influences some outcome Y . A common framework for studying mechanisms is mediation analysis

which seeks to decompose the effect of A on Y into the direct effect and the indirect effect mediated

by a third variable, or more generally into components associated with particular causal pathways. As

an example, the direct effect of A on Y in Fig. 1(a) corresponds to the effect along the edge A → Y
and the indirect effect corresponds to the effect along the path A → M → Y , mediated by M .

In the potential outcome notation, the direct and indirect effects can be defined using nested

counterfactuals such as Y (a,M(a′)) for a, a′ ∈ XA, which denotes the value of Y when A is set to

a while M is set to whatever value it would have attained had A been set to a′. The natural direct

effect (NDE) (on the expectation difference scale) is defined as E[Y (a,M(a′))]− E[Y (a′)] and the

natural indirect effect (NID) is defined as E[Y (a)]− E[Y (a,M(a′))]. Under certain identification

assumptions discussed by Pearl (2001), the distribution of Y (a,M(a′)) (and thereby direct and

indirect effects) can be nonparametrically identified from observed data by the following formula:

p(Y (a,M(a′)) =
∑

X,M

p(Y | a,X,M) p(M | a′, X) p(X).

More generally, when there are multiple proper pathways from A to Y (a proper causal path only

intersects A at the source node) one may define various path-specific effects (PSEs). The effect along

a specific path will be obtained by comparing two potential outcomes, one where for the selected

paths all nodes behave as if A = a, and along all other paths nodes behave as if A = a′.

PSEs are defined by means of nested, path-specific potential outcomes. Fix a set of treatment

variables A, and a subset of proper causal paths π from any element in A. Next, pick a pair of value

sets a and a′ for elements in A. For any Vi ∈ V , define the potential outcome Vi(π, a, a
′) by setting

A to a for the purposes of paths in π, and to a′ for the purposes of proper causal paths from A to Y
not in π. Formally, the definition is as follows, for any Vi ∈ V , Vi(π, a, a

′) ≡ a if Vi ∈ A, otherwise

Vi(π, a, a
′) ≡Vi

({
Vj(π, a, a

′) | Vj ∈ paπG(Vi)
}
,
{
Vj(a

′) | Vj ∈ paπG(Vi)
})

, (1)

where Vj(a
′) ≡ a′ if Vj ∈ A and given by recursive substitution otherwise, paπG(Vi) is the set of

parents of Vi along an edge which is a part of a path in π, and paπG(Vi) is the set of all other parents

of Vi.

A counterfactual Vi(π, a, a
′) is said to be edge inconsistent if counterfactuals of the form

Vj(ak, . . .) and Vj(a
′
k, . . .) occur in Vi(π, a, a

′), otherwise it is said to be edge consistent. It is known

that a joint distribution p(V (π, a, a′)) containing an edge-inconsistent counterfactual Vi(π, a, a
′)
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Figure 1: (a) A causal DAG, with treatment A, outcome Y , baseline variables X , and a mediator

M. (b) A causal graph with two mediators M and L and unmeasured confounders U .

is not identified in the structural causal model (nor weaker causal models) with a corresponding

graphical criterion on π and G(V ) called the ‘recanting witness’ (Shpitser, 2013). Under some

assumptions, PSEs are nonparametrically identified by means of the edge g-formula described in

Shpitser and Tchetgen Tchetgen (2016) and reproduced in our Appendix A.

As an example, consider the DAG in Fig. 1(b). The PSE of A on Y along the paths π =
{A → Y,A → L → Y } is encoded by a counterfactual contrast of the form Y (π, a, a′) =
Y (a,M(a′), L(a,M(a′))). The corresponding counterfactual density is identified by a special case

of the edge g-formula as follows: (for more details on PSEs, see Shpitser (2013))

p(Y (a,M(a′), L(a,M(a′))) =
∑

X,M,L

p(Y | a,X,M)× p(L | a,M,X)× p(M | a′, X)× p(X).

2.2. Algorithmic Fairness via Constraining Path-Specific Effects

There has been a growing interest in the issue of fairness in machine learning (Pedreshi et al., 2008;

Feldman et al., 2015; Hardt et al., 2016; Kamiran et al., 2013; Corbett-Davies et al., 2017; Jabbari

et al., 2017; Kusner et al., 2017b; Zhang and Bareinboim, 2018; Zhang et al., 2017; Gillis et al.,

2021). In this paper, we adopt the causal notion of fairness described in Nabi and Shpitser (2018) and

Nabi et al. (2019), where unfairness corresponds to the presence of undesirable or impermissble path-

specific effects of sensitive attributes on outcomes – a view which generalizes an example discussed

in Pearl (2009). We provide a brief summary of their perspective on fairness in the following without

defending it for lack of space; see Nabi and Shpitser (2018) for more details.

Consider an observed data distribution p(Y, Z) induced by a causal model, where Y is an outcome

and Z = {X,A,M} includes all baseline factors X , sensitive features A, and post-treatment pre-

outcome mediators M . Context and background ethical considerations pick out some path-specific

effect of the sensitive feature A on the outcome Y as unfair. We assume this effect is identified

as some function of the observed distribution: g(p(Y, Z)). Fix upper and lower bounds εl, εu for

the PSE, representing a tolerable range. The most relevant bounds in practice are εl = εu = 0 or

approximately zero. Nabi and Shpitser propose to transform the inference problem on p(Y, Z), the

“unfair world,” into an inference problem on another distribution p∗(Y, Z), called the “fair world,”

which is close in the sense of minimal KL-divergence to p(Y, Z) while also having the property that

the PSE lies within (εl, εu).

Given a dataset D = {(Yi, Zi), i = 1, . . . , n} drawn from p(Y, Z), a likelihood function L(D;α)
parameterized by α, an estimator ĝ(D) of the unfair PSE, and bounds εl, εu, Nabi and Shpitser (2018)
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suggest to approximate p∗(Y, Z) by solving the following constrained maximum likelihood problem:

α̂ = argmax
α

LY,Z(D;α) subject to εl ≤ ĝ(D;α) ≤ εu. (2)

(Here we write the estimated PSE as ĝ(D;α) to make explicit that this constraint depends

on parameters which parameterize the likelihood function.) Having approximated the fair world

p∗(Y, Z; α̂) in this way, Nabi and Shpitser (2018) point out a key difficulty for using these estimated

parameters to predict outcomes for new instances (e.g., new job applicants). A new set of observations

Z is not sampled from the “fair world” p∗(Z) but from “unfair world” p(Z). Nabi and Shpitser (2018)

propose to map new instances from p to p∗ and use the result for predicting Y with constrained

model parameters α̂. They assume Z can be partitioned into Z1 and Z2 such that p∗(Y, Z) =
p∗(Y, Z1|Z2)p(Z2). In other words, variables in Z2 are shared between p and p∗: p∗(Z2) = p(Z2)
but p∗(Z1|Z2) 6= p(Z1|Z2). Z1 typically corresponds to variables that appear in the estimator ĝ(D).
There is no obvious principled way of knowing exactly what values of Z1 the “fair version” of

the new instance would attain. Consequently, all such possible values are averaged out, weighted

appropriately by how likely they are according to the estimated p∗. This entails predicting Y as the

expected value E
∗[Y |Z2], with respect to the distribution

∑
Z1

p∗(Y, Z1|Z2).
Next, we explain some limitations of the inference procedure described here and present our

main contributions to address these limitations.

3. Fair Predictive Models in a Batch Setting

Prediction problems in machine learning are typically tackled from the perspective of nonparametric

risk minimization and the “train-and-test” framework. Here, we instead take the perspective of

maximum likelihood and missing data, i.e., we treat unknown outcomes as missing values which we

hope to impute in a way that is consistent with our specified likelihood for the entire data set. Our

motivation for doing so is the nature of our constrained prediction problem. Specifically, our causal

constraints contain “nuisance” components (conditional expectations and conditional distributions

derived from the observed data distribution) which must be modeled correctly to ensure the causal

effects are reliably estimated. Specifically, we choose to estimate these nuisance components (semi-

)parametrically because we desire certain frequentist properties, namely fast rates of convergence,

for estimating the relevant PSEs. In the subsequent prediction step, we should predict in a way that

is consistent with what has already been modeled, or else we fail to exploit all the information we

have already committed to in the constraint estimation step. We choose the maximum likelihood

framework as the most natural and simplest approach to accomplish this. Alternative methods for

coherently combining nuisance estimation with nonparametric risk minimization are left to future

work.

Unlike Nabi and Shpitser (2018), we consider a batch prediction setting – this allows us to

avoid the inefficient averaging described in the previous section. In our case, historical data (of

sample size n1) consists of observations on {X,A,M, Y } and new instances (of size n2) comprise

a set of observations with just {X,A,M}. The outcome labels for new instances are missing

data which we aim to predict, subject to fairness constraints. Instead of training our constrained

model on historical data alone, we train on the combination of historical data and new instances.

This seems complicated since the observed data likelihood for the combined data set includes

some complete rows and some partially incomplete rows. However, we can borrow ideas from the

literature on missing data to accomplish this task. Specifically, we can impute missing outcomes
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(“labels”) using appropriate functions of observed data. In this paper we assume the labels are

missing at random (MAR), as is typical in the semi-supervised learning setting (Little and Rubin,

2002; Lafferty and Wasserman, 2008). Specifically, we assume that the instances with missing labels

are sampled from the same distribution that generated the complete historical data (with observed

labels) – this satisfies MAR, since whether a label is missing or not for a particular instance is

not informative. Let the random variable R denote the missingness status of the outcome variable

Y for each instance. That is, R = 1 for all rows in the historical data (since Y is observed) and

R = 0 for all rows in the new instances. Then, assuming MAR, the observed data likelihood is∏n=n1+n2

i=1 p(Xi, Ai,Mi) p(Ri|Xi, Ai,Mi) p(Yi|Xi, Ai,Mi)
Ri . Our approach may be extended to

any identifiable missing not at random (MNAR) model by appropriately modifying this observed

data likelihood. See Bhattacharya et al. (2019); Malinsky et al. (2021); Nabi et al. (2020) for recent

developments on identified MNAR models.

The likelihood function describes the probability of the entire data set, though it only uses Y
values from historical data. We can then maximize the likelihood subject to the specified path-specific

constraints, and associate predicted values Ŷnew to the new instances. Note that the setting where new

instances arrive sequentially one-at-a-time is a special case of this general setup, which would require

retraining on the full combined data after the arrival of each instance. Though this is computationally

more intensive than the proposal in Nabi and Shpitser (2018) (where they only train once), it will

deliver significantly more accurate predictions because it uses all available information. We will

elaborate on this point in Section 4.

The approach to fair prediction outlined in Nabi and Shpitser (2018) suffers from two problems:

one general and one specific to our setting here. First, their approach requires solving a compu-

tationally challenging constrained optimization problem. The constraints on path-specific effects

involve nonlinear and complicated functionals of the observed data distribution. This makes the

proposed constrained optimization a daunting task that relies on complex optimization software

(or computationally expensive methods such as rejection sampling), which do not always find high

quality local optima. Second, Nabi and Shpitser (2018) propose to constrain only part of the like-

lihood. Specifically they do not constrain the density p(X) over the baseline features (since this

is high-dimensional and thus inplausible to model accurately in their parametric approach). The

baseline density is instead estimated by placing 1/n mass at every observed data point. This is

sub-optimal in the specific setting we consider, where we do not need to average over constrained

variables. Constraining a larger part of the joint distribution should lead to a fair world distribution

KL-closer to the observed distribution, which leads to better predictive performance as long as the

likelihood is correctly specified. This intuition is formalized in the following result.

Theorem 1 Let p(Z) denote the observed data distribution and let Z1, Z2 ⊆ Z. Let p∗1(Z) and

p∗2(Z) denote two constrained distributions that are obtained by constraining the distribution over

variables that are not in Z1 and Z2, respectively. That is p∗1 constrains the variables in Z \ Z1 and

p∗2 constrains the variables in Z \ Z2, so p∗1(Z1) = p(Z1) and p∗2(Z2) = p(Z2). More formally,

p∗1(Z) = argmin
q(Z)

DKL(p || q), s.t. εl ≤ g(q(Z)) ≤ εu, and q(Z1) = p(Z1),

p∗2(Z) = argmin
q(Z)

DKL(p || q), s.t. εl ≤ g(q(Z)) ≤ εu, and q(Z2) = p(Z2).

If Z2 ⊆ Z1 ⊆ Z, then DKL(p || p∗2) ≤ DKL(p || p∗1).
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The conditions in Theorem 1 specify that a larger part of p∗2(Z) is constrained compared to p∗1(Z)
(since Z2 ⊆ Z1 ⊆ Z implies that {Z \ Z1} ⊆ {Z \ Z2} ⊆ Z). Theorem 1 then states that p∗2(Z)
is at least as close to p(Z) as p∗1(Z). This should match intuition: if a larger part of the joint is

being constrained, there are more “degrees of freedom” available to satisfy the constraint, and so the

constrained distribution may lie “closer” to the unconstrained distribution.

To address the first aforementioned difficulty (that constraints are complex nonlinear functions

of the joint), we provide a novel reparameterization of the observed data likelihood such that the

causal parameter corresponding to the unfair PSE appears directly in the likelihood. This approach

generalizes previous work on reparameterizations implied by structural nested models (Robins,

2000; Tchetgen Tchetgen and Shpitser, 2014) to apply to a wide class of PSEs. With such a

reparameterization, the MLE with a PSE constraint simply corresponds to maximizing the likelihood

in a submodel where a certain likelihood parameter is set to 0. Optimization can then be carried out

with standard software.

To address the second difficulty (that constraining only part of the likelihood is suboptimal), we

propose an approach to constraining the density p(X). An alternative to fully parametric modeling

is to consider nonparametric representations of p(X). It is well known that the nonparametric

maximum likelihood estimate of any p(X) from a set of i.i.d draws is the empirical distribution,

placing mass 1/n at every observed point. Empirical likelihood methods have been developed for

settings where the nonparametric and parametric (hybrid) likelihood must be maximized subject

to moment constraints (Owen, 2001). We describe below how these methods may be adapted to

our setting, taking advantage of the fact that constraints on the PSEs we consider correspond to

moment constraints. Finally, we show how both the reparameterization method and the empirical

likelihood method can be combined to yield a constrained optimization method that maximizes a

semi-parametric (hybrid reparameterized) likelihood.

4. Efficient Approximation of Fair Worlds

4.1. Fairness Constraints Via Reparameterized Likelihoods

In this section, we describe how to reparameterize the observed data likelihood in terms of causal

parameters that correspond to path-specific effects. The result presented in the following theorem

greatly simplifies the constrained optimization problem (2) in settings where the PSE includes the

direct influence of A on Y . This is due to the fact that the constrained parameter, corresponding

to the PSE of interest, now appears as a single coefficient in the outcome regression model. For

simplicity, we describe the reparameterization approach without reference to missing data – the

extension to missing at random models we use in our analysis is straightforward.

Theorem 2 Assume the observed data distribution p(Y, Z) is induced by a causal model where

Z = {X,A,M} includes pre-treatment measures X , binary treatment A, and post-treatment pre-

outcome mediators M . Let p(Y (π, a, a′)) denote the potential outcome distribution that corresponds

to the effect of A on Y along proper causal paths in π, where π includes the direct edge A → Y ,

and let p(Y0(π, a, a
′)) denote the identifying functional for p(Y (π, a, a′)) obtained from the edge

g-formula, where the term p(Y |Z) is evaluated at {Z \A} = 0. Then E[Y |Z] can be written as:

E[Y |Z] = f(Z)−
(
E[Y (π, a, a′)]− E[Y0(π, a, a

′)]
)
+ φ(A),
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where f(Z) := E[Y |Z] − E[Y |A, {Z \ A} = 0] and φ(A) = w0 + waA. Furthermore, wa

corresponds to π-specific effect of A on Y .

To illustrate the above reparameterization, consider the graph in Fig. 1(b), discussed in Nabi and

Shpitser (2018); Chiappa (2019). Assume the direct path and the paths through M of A on Y are

the impermissible pathways. The corresponding PSE is encoded by a counterfactual contrast with

respect to Y (a,M(a), L(a′,M(a))). The reparameterization in Theorem 2 amounts to:

E[Y | Z] = f(Z)−
∑

Z\A

{
f(Z)× p(L | M,X,A = 0)× p(M | X,A = 1)× p(X)

}
+ w0 + waA, (3)

where wa represents the PSE of interest and f(Z) := E[Y | Z]− E[Y | A,X = M = L = 0]; see

the Appendix A for a detailed derivation.

Under linearity assumptions, the PSE of interest in Fig. 1(b) has a simple form. Assume the data

generating process in Fig. 1(b) is the same as the one given in display (2) of Chiappa (2019), i.e.,

a system of linear equations with θjk denoting the linear coefficent on variable k in the structural

equation for variable j. Then by simple path analysis, PSE = θya + θymθma + θyl θ
l
mθma . In this case,

our reparameterization takes the following form:

E[Y | X,A,M,L] =
(
θyxX + θymM + θyl L

)

︸ ︷︷ ︸
f(Z)

−
((

θm0 θym + (θl0 + θlmθm0 )θyl
)
+
(
θymθma + θyl θ

l
mθma

)
A
)

︸ ︷︷ ︸
∑

Z\A

{
f(Z)×p(L|M,X,A=0)×p(M |X,A=1)×p(X)

}
+

(
θy0+

(
θm0 θym+(θl0+θlmθm0 )θyl

)
︸ ︷︷ ︸

w0

+
(
θya+θymθma +θyl θ

l
mθma

)
︸ ︷︷ ︸

wa≡PSE

A
)
.

In order to move away from the linear setting and exploit more flexible techniques, Chiappa

(2019) posits some assumptions on the latent variables. However, such assumptions are often hard to

verify in practice. In contrast, our result in identifying the PSE is entirely nonparametric and does

not rely on any assumptions beyond what is encoded in the causal DAG.

Given Theorem 2, the constrained optimization problem in eq. (2) significantly simplifies to the

following optimization problem:

α̂ = argmax
α

LY,Z(D;α) subject to εl ≤ wa ≤ εu, (4)

where α contains wa and the nonlinear constraint has been replaced by a box-constraint on the

parameter wa. In the prediction setting, i.e., finding optimal parameters for E[Y |Z;αy], this amounts

to an unconstrained maximum likelihood problem with outcome regression taking the specific

form where wa is set to zero. For instance, the regression in eq. (3) becomes E[Y |Z;αy] =
f(Z;αf )−

∑
X,M,L

{
f(Z;αf )× p(L|M,X,A = 0;αm)× p(M |X,A = 1;αm)× p(X)

}
+w0.

Likelihood reparameterization has been introduced for sequential ignorable models Robins

(2000), but has not been studied in general for arbitrary path-specific effects. In addition to the

immediate application in this paper, Theorem 2 solves a general open problem in generalizing

structural nested models to longitudinal mediation analysis. A special case of this reparameterization,

where PSE is simply the direct effect, is implicit in the work of Tchetgen Tchetgen and Shpitser
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(2014). An advantage of this theorem in causal inference is developing flexible semiparametric

estimators for arbitrary PSEs. With fairness being the primary focus of this paper, we do not

investigate further the importance of this theorem in causal inference applications.

In the next section, we explain how p(X) can be incorporated into the constrained optimization

problem using empirical likelihood methods.

4.2. Fairness Constraints Via Hybrid Likelihoods

In light of Theorem 1, we are interested in constraining the nonparameteric form of p(X). Following

work in Owen (2001), we use hybrid/semi-parametric empirical likelihood methods to estimate

p(X) nonparametrically which is a novel idea in the fairness setting. First, according to Theorem 1,

constraining p(X) would bring our learned distribution closer to the observed (unfair) distribution,

and hence results in improvement of model performance, as we demonstrate in our simulations.

Second, p(X) is often a high dimensional object that is difficult to estimate due to the curse of

dimensionality. For simplicity of presentation, we focus on the DAG in Fig. 1(a), and the constraint

represented by the NDE, although the methods we describe generalize without difficulty to arbitrary

causal models and constraints represented by arbitrary PSEs.

Let (Xi, Ai,Mi, Yi), i = 1, . . . , n, be independent and identically distributed random vectors.

We assume a semiparametric model on the joint distribution p(Y,M,A,X) where p(X) is left

completely unspecified. If the unfair effect is the NDE, our constraint on the observed distribution

is that the NDE should be zero. Let p(Y |M,A,X), p(M |A,X), p(A|X) be parameterized by

α = {αy, αm, αa}. The direct effect can be identified by Ex[m(X;α)], where

m(X;α) =
∑

M

{
E[Y |A = 1,M,X;αy]− E[Y |A = 0,M,X;αy]

}
× p(M |A = 0, X;αm). (5)

As is standard in empirical likelihood theory (we provide a general overview in Appendix B), we

introduce “weight” parameters pi = p(Xi = xi). The profile empirical likelihood ratio estimates

({p̂i, α̂}
opt) are then given by

argmax
pi,α

n∏

i=1

pi × p(Yi | Mi, Ai, Xi;αy)× p(Mi | Ai, Xi;αm)× p(Ai | Xi;αa)

such that

n∑

i=1

pi = 1,

n∑

i=1

pi ×m(Xi;α) = 0. (6)

The above optimization problem involves a semi-parametric hybrid likelihood (Owen, 2001),

that contains both nonparametric and parametric terms. In order to solve the above optimization

problem (formulated on both α and pi parameters), we can apply the Lagrange multiplier method

and solve its dual form (formulated on both α and the Lagrange multipliers); see Appendix B for

more details. Empirical likelihood methods provide a natural extension to imposing constraints on

arbitrary PSEs, since these can be written in the form of Ex[m(X;α)] for some m(·).
If outcomes are missing at random, the NDE is identified by Ex[mmar(X;α)], where

mmar(X;α) (7)

=
∑

M

{
E[Y |A = 1,M,X,R = 1;αy]− E[Y |A = 0,M,X,R = 1;αy]

}
× p(M |A = 0, X;αm).

9
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Algorithm 1 Hybrid Reparameterized Likelihood

Input: D = {Xi, Ai,Mi, Ri, Yi}, i = 1, . . . , n and specification of a PSE of the form EX [m(X;α)].

Output: α̂, p̂i by solving

argmax
pi,α

n∑

i=1

(
log pi +Ri × log p(Yi | Mi, Ai, Xi;α) + log p(Ri,Mi, Ai | Xi;α)

)

such that

n∑

i=1

pi ×mmar

(
Xi, ; pi, α

)
= 0,

n∑

i=1

pi = 1.

1: Pick starting values for p
(1)
i and α(1).

2: At kth iteration, given fixed p
(k−1)
i and α(k−1), estimate the following (in order)

I. m
(
Xi; {p

(k−1)
i }, α(k−1)

)
using (7).

II. Solve
∑n

i=1
m(Xi;p

(k−1)
i

,α(k−1))

1+λ m(Xi;{p
(k−1)
i

},α(k−1)
) = 0 for λ, which is a monotone function in λ.

III. p
(k)
i = 1

n
1

1+λm(Xi;p
(k−1)
i

,α(k−1))
, ∀i = 1, . . . , n,

IV. α(k) = argmaxα LY,M,A|X(D;α) subject to wa = 0,

where in L, E[Y |X,A,M ;αy] = w0 + f(Z;αf ) −
∑n

i=1

{∑
m f(Zi;αf )p(M |A =

0, Xi;αm)
}
p
(k)
i , and f(Z) := E[Y |X,A,M ]− E[Y |A,X = M = 0]

3: Repeat Step (2) until convergence.

The resulting functional is then used as a moment restriction in the missing data version of the
profile empirical likelihood in (6), yielding: (where mmar(X;α) is given in (7))

argmax
pi,α

n∏

i=1

pi × p(Yi | Mi, Ai, Xi;αy)
Ri × p(Mi | Ai, Xi;αm)× p(Ai | Xi;αa)× p(Ri | Xi,Mi, Ai;αr)

such that

n∑

i=1

pi = 1,

n∑

i=1

pi ×mmar(Xi;α) = 0. (8)

4.3. Fairness Constraints Via Hybrid Reparameterized Likelihoods

In Section 4.1, we reformulated the constrained optimization problem of interest by rewriting the

likelihood in terms of the parameters we were interested in constraining, and directly setting those

parameters to zero. However, we did not place any constraints on p(X). In Section 4.2, we used

hybrid likelihoods to constrain a nonparametric estimate of p(X), but did not provide a convenient

reparameterization of the likelihood in terms of relevant parameters. In this section we describe

an approach to optimizing a hybrid reparameterized likelihood that combines the advantages of

both proposals. This allows us to constrain the entire likelihood and do so with standard maximum

likelihood software, since the constraint we must satisfy directly corresponds to a parameter in the

hybrid likelihood.

10
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For simplicity of presentation, we again focus on constraining the NDE in the full data version

of the problem, although the methods we describe generalize without difficulty to constraints

represented by arbitrary PSEs, and to the missing at random likelihood we use. The direct effect

can then be estimated by Ex[m(X;α)], where m(X;α) is given in (5), and E[Y |A,M,X;αy] is

E[Y |Z;αy] = f(Z;αf ) −
∑

X,M

{
f(Z;αf ) × p(M |X,A = 0;αm) × p(X)

}
+ w0. Once again,

note that under MAR E[Y |Z;αy, R = 0] = E[Y |Z;αy, R = 1]. For an arbitrary PSE, m(X;α)
is obtained from edge g-formula (Shpitser, 2013), and the outcome regression is reparameterized

according to Theorem 2.

Assuming pi = p(Xi = xi) as before, m(X;α) will be a function of pi parameters as well and

we can use (7) to compute it. The profile empirical likelihood ratio ({pi, α̂}
opt) is then given by:

argmax
pi,α

n∏

i=1

pi × p(Yi | Mi, Ai, Xi;αy)
Ri × p(Mi | Ai, Xi;αm)× p(Ai | Xi;αa)× p(Ri | Xi,Mi, Ai;αr)

such that

n∑

i=1

pi = 1,
n∑

i=1

pi ×mmar(Xi; pi, α) = 0. (9)

Unlike the constrained optimization problem in (6), it is not straightforward to find the dual form

of the optimization problem in (9), which is the standard approach for solving such problems in

the empirical likelihood literature. The reason is that pi appears in multiple places – specifically,

m(Xi; pi, α) is now a function of both α and pi. To solve this problem, we provide a heuristic

approach for optimizing (9) via an iterative procedure that starts with an initialization of α and pis,

and at the kth iteration updates the values for αk and pki s by treating m(Xi; pi, α) as a function

of {Xi, p
k−1
i , αk−1}. The procedure terminates when the difference between the two updates is

sufficiently small. In Algorithm 1, we describe our proposed iterative procedure.

5. Experiments

Simulation 1. The result in Theorem 1 implies that the accuracy of our prediction procedure depends

on which components of p(Z, Y ;α) are constrained, which in turn is contingent on the chosen

estimator ĝ(D). Here, we illustrate this dependence via experiments by considering four consistent

estimators of the NDE presented in Tchetgen Tchetgen and Shpitser (2012). We generated synthetic

data (n = 5000 with 20% missing outcomes), according to the causal model shown in Fig. 1(a),

where A,M are binary and X,Y are continuous variables. We fit models for E[Y |A,M,X;αy],
p(M |A,X;αm), and p(A|X;αa) by maximum likelihood. The first estimator (g-formula) is the

MLE plug-in estimator and uses Y and M models to estimate NDE. The second one is the inverse

probability weighted (IPW) estimator that uses A and M models. The third “mixed” estimator uses

the A and Y models, and the fourth estimator (EIF) uses all three models, and is based on the efficient

influence function for the PSE parameter. See Appendices C and D for details on these estimators

and the model specifications. The code is attached to this submission.

We approximated the fair world p∗ by standard constrained MLE described in Section 2. We esti-

mated the NDE using each of the four estimators and evaluated the performance of the approximated

p∗ in each case. In Table 1, we show the estimated NDE with respect to p∗, the log likelihood, KL-

divergence between p∗ and p, and the mean squared error (MSE) between the observed outcomes and

the predicted ones (averaged over 100 repetitions). We contrast these results with the unconstrained

prediction model. KL-divergence and MLE are reported with respect to p(Y,M,A | X) since we

11
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Table 1: (left) Comparing p∗ obtained via constraining different parts of the likelihood. (right)

Evaluating different estimation methods by KL divergence and predictive accuracy (MSE).

M0: Unconstrained MLE, M1: Constrained MLE (sec. 2.2), M2: Reparameterized MLE

(sec. 4.1), M3: Hybrid MLE (sec. 4.2), and M4: Hybrid reparameterized MLE (sec. 4.3)

Method Estimator Effect Log L DKL(p||p
∗) MSE

Unconstrained g-formula 2.19 −13148 0.000 1.002

Constrained

g-formula 0.05 −15124 0.395 3.459

IPW 0.05 −13651 0.101 5.009

Mixed 0.05 −14348 0.240 2.795

EIF 0.05 −13560 0.082 4.867

Method Effect DKL(p||p
∗) MSE

M0 2.19 6.997 0.999

M1 0.05 7.321 3.497

M2 0.00 7.220 3.377

M3 0.02 7.181 1.166

M4 0.00 7.225 1.569

used an empirical evaluation of p(X) in all the estimators of NDE. The role of constraining p(X), via

our described procedures in Section 4, is demonstrated in the next experiment. According to Table 1,

unconstrained MLE is KL-closest to the true distribution and yields the lowest MSE, as expected.

However, it suffers from being unfair: NDE = 2.19. In all the constrained MLE methods, NDE is

restricted to lie between −0.05 and 0.05. AIPW produces the second closest approximation to the

true distribution while being fair, which is expected by Theorem 1. However, the MSE under AIPW is

relatively large, since more information is averaged out from the predictions in p∗. The approximated

fair distributions under the other three estimators are KL-farther from the true distribution, and the

accuracy of prediction varies, underscoring how the performance of the learned model depends

strongly on what part of the information is being averaged out and what estimator is being used.

Simulation 2. Here, we illustrate that even in simple settings our three proposed methods for

solving constrained maximum likelihood problems considerably outperform the existing method

described in Nabi and Shpitser (2018). We use the same synthetic data generated in Simulation 1,

and assume that the direct effect of sensitive feature A on outcome Y is unfair. We estimate the

effect via g-formula. We approximate the fair world p∗ by constrained MLE using the three methods

described in Section 4, and contrast them with the constrained MLE described in Section 2 as well as

regular unconstrained MLE. We evaluated the performance of all five methods by computing the

direct effect with respect to p∗, KL-divergence between p∗ and p, and the MSE between the observed

and predicted outcomes. Results are displayed in Table 1 (averaged over 100 repetitions). The NDE

is again restricted to lie between −0.05 and 0.05.

According to Table 1, our three proposed methods (M2,M3,M4), all yield a better approximation

of the fair distribution p∗ compared to the standard constrained MLE (M1), in terms of KL-distance

to the true unfair distribution p. Note that each likelihood method handles p(X) differently: M0,M1,
and M2 do not constrain p(X), while M3 and M4 directly include it in the constrained optimization

– this explains the large KL difference between p and p∗ (even for M0) where here we are evaluating

the distance to the entire joint p(Y,M,A,X). The reparameterized MLE method in M2 requires

averaging over the constrained covariates. Hence, there is only minimal improvement in prediction

accuracy (measured by MSE). However, both hybrid methods M3 and M4 use all information in the

data, and therefore achieve substantial improvements in prediction accuracy.

Simulation 3. We emphasize the importance of Theorem 2 by generalizing the notion of direct

effect as a measure of unfairness to a more complex path-specific effect involving multiple mediators.

We generated data according to the model shown in Fig. 1(b) and assumed both the direct path and
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the paths through M are impermissible pathways. The reparameterized outcome regression, where

the impermissible PSE shows up as a single parameter, and the corresponding optimization problem

are shown in (3) and (4). The unfair PSE is estimated to be 2.39 and we restrict it to lie between

−0.05 and 0.05. The constrained MLE procedure in Nabi and Shpitser (2018) yields an MSE of

2.484, while our reparameterized MLE yields an MSE of 1.910 (averaged over 100 repetitions.)

We observe further improvement in MSE by incorporating p(X) into the constrained optimization

problem, as suggested in Theorem 1, using our hybrid MLE procedure. As a result, the MSE reduces

down to 1.131, highlighting the advantage of hybrid MLE procedure over regular constrained MLE.

6. Conclusion

Imposing hard fairness constraints on predictive models involves a balance of parametric modeling,

nonparametric methods, and constrained optimization. In this paper, we have proposed two innova-

tions to make the problem easier and make predictions more accurate: a reparameterization of the

likelihood such that nonlinear constraints appear explictly as likelihood parameters constrained to be

zero, and an incorporation of techniques from empirical likelihood theory to make the constrained

distribution closer to the unconstrained unfair distribution. In addition to the immediate application

in this paper, the reparameterization technique outlined in Theorem 2 solves a general open problem

in causal mediation analysis. Though we focus primarily on the path-specific fairness constraints,

the ideas presented here should be applicable more broadly to fair prediction proposals that require

imposing constraints on predictive models. Our simulations show that even in a relatively simple

setting, we can significantly improve on prior proposals, achieving prediction performance compara-

ble to unconstrained (unfair) MLE, particularly with the hybrid approach. At this stage, our method

which combines reparameterization with hybrid likelihood is somewhat heuristic; in future work, we

hope to develop an approach for optimizing EL weights and likelihood parameters jointly without

the need for iteration.
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Supplementary Materials

In Appendix A, we provide two detailed examples to illustrate the reparameterization idea put

forth in Theorem 2. In Appendix B, we provide a brief overview of empirical likelihood methods

and some additional theoretical details useful for understanding our proposed hybrid likelihood

approach. In Appendix C, we state the statistical modeling assumptions we made in our simulation

experiments. In Appendix D, we give some relevant details for the simulations reported in the main

paper. Appendix E contains proofs of our theorems.

A. Reparameterized Likelihood: Examples

For reference, we reproduce the edge g-formula here from Shpitser and Tchetgen Tchetgen (2016):

p(V (π, a, a′)) =
∏

Vi∈V \A

p(Vi | a ∩ paπi , a
′ ∩ paπ, paG(Vi) \A).

Example 1. Consider the DAG in Fig. 1(a), and assume the natural direct effect (NDE) is the

unfair effect we wish to constrain to be 0. The NDE corresponds to the counterfactual contrast of the

form Y (a,M(a′)). Under certain identification assumptions discussed in Pearl (2001), the NDE is

identified as follows.

NDE :=E[Y (1,M(0))]− E[Y (0,M(0))]

=
∑

X,M

E[Y | X,A = 1,M ]× p(M | A = 0, X)× p(X)

−
∑

X,M

E[Y | X,A = 0,M ]× p(M | A = 0, X)× p(X) (10)

According to Theorem 2, we get the following reparameterization of the regression model as

follows.

E[Y | X,A,M ] = E[Y | X,A,M ]− E[Y | A,X = 0,M = 0]︸ ︷︷ ︸
f(X,A,M)

−
∑

X,M

f(X,A,M)× p(M | A = 0, X)× p(X)

+
∑

X,M

E[Y | X,A,M ]× p(M | A = 0, X)× p(X)

︸ ︷︷ ︸
φ(A)=w0+waA

. (11)

Note that the last term is only a function of A, and since A is binary we can write it as φ(A) =
w0 + waA. The coefficient wa corresponds to the direct effect, since
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NDE =
∑

X,M

E[Y | X,A = 1,M ]× p(M | A = 0, X)× p(X)

−
∑

X,M

E[Y | X,A = 0,M ]× p(M | A = 0, X)× p(X)

= φ(A = 1)− φ(A = 0)

= wa. (12)

The observed data likelihood is given by

LY,M,A,X(D;α)

=
n∏

i=1

p(Yi|Mi, Ai, Xi;αy)× p(Mi|Ai, Xi;αm)× p(Ai|Xi;αa)× p(Xi),

where p(Y |M,A,X;αy) has mean given by eq. (11). The constrained optimization problem in

eq. (2) then simplifies to the following optimization problem:

argmax
α

LY,M,A,X(D;α) subject to wa = 0. (13)

In other words, we can simply set wa to be zero in the reparameterized outcome mean regression

in eq. (11). Simply, p(Y |M,A,X;αy) now has mean

E[Y |X,A,M ;αy] (14)

= f(X,A,M ;αf )−
∑

x,m

f(X,A,M ;αf )× p(M |A = 0, X;αm)× p(X) + w0.

Example 2. Consider the DAG in Fig. 1(b), and assume the effect along the paths in {A →
Y,A → M → · · · → Y } is the unfair path-specific effect (PSE) we wish to constrain to be 0. This

PSE corresponds to the counterfactual contrast of the form Y (a,M(a), L(a′,M(a))). Under no

recanting witness assumption Shpitser (2013), the PSE is identified as follows.

PSE := E[Y (1,M(1), L(0,M(1)))]− E[Y (0,M(0), L(0,M(0)))] (15)

=
∑

X,M,L

E[Y | X,A = 1,M,L]× p(L | A = 0, X,M)× p(M | A = 1, X)× p(X)

−
∑

X,M,L

E[Y | X,A = 0,M,L]× p(L | A = 0, X,M)× p(M | A = 0, X)× p(X).

According to Theorem 2, we get the following reparameterization of the regression function.
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E[Y | X,A,M,L] = E[Y | X,A,M,L]− E[Y | A,X = M = L = 0]︸ ︷︷ ︸
f(X,A,M,L)

(16)

−
∑

X,M,L

f(X,A,M,L)× p(L | A = 0, X,M)× p(M | A,X)× p(X)

+
∑

X,M,L

E[Y | X,A,M,L]× p(L | A = 0, X,M)× p(M | A,X)× p(X)

︸ ︷︷ ︸
φ(A)=w0+waA

.

Similar to Example 1, the last term in the display above, is only a function of A and can be written

as w0 + waA, if A is binary. Given the identification functional in eq. (15), it is straightforward to

show that the coefficient wa corresponds to the path-specific effect that we want, i.e.,

PSE = φ(A = 1)− φ(A = 0) = wa.

The observed data likelihood is given by

LY,L,M,A,X(D;α) =

n∏

i=1

p(Yi|Li,Mi, Ai, Xi;αy)× p(Li | Mi, Ai, Xi;αl)

× p(Mi|Ai, Xi;αm)× p(Ai|Xi;αa)× p(Xi),

where p(Y |L,M,A,X;αy) has mean given by eq. (16). The constrained optimization problem in

eq. (2) then simplifies to the following optimization problem:

argmax
α

LY,L,M,A,X(D;α) subject to wa = 0.

In other words, we can simply set wa to be zero in the reparameterized outcome mean regression

in eq. (16). Simply, p(Y |L,M,A,X;αy) now has mean

E[Y |X,A,M,L;αy]

= f(X,A,M,L;αf )

−
∑

x,m,l

f(X,A,M,L;αf )× p(L|A = 0,M,X;αl)× p(M |A,X;αm)× p(X)

+ w0.

B. Hybrid Likelihood: Overview and Details

Empirical Likelihood

We briefly review empirical likelihood methods, described in detail in Owen (2001). Let X1, . . . , Xn

be independent random vectors with common distribution F0. Let F be any CDF, where F (x) =
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p(X ≤ x), and Fn be the empirical distribution. Suppose that we are interested in F through

θ = T (F ), where T is a real-valued function of the distribution. The true unknown parameter is

θ0 = T (F0). Proceeding by analogy to parametric MLE, the non-parametric MLE of θ is θ̂ = T (Fn).

The nonparametric likelihood ratio, R(F ) = L(F )
L(Fn)

, is used as a basis for hypothesis testing and

deriving confidence intervals. The profile likelihood ratio function is defined as

R(θ) = sup
{
R(F ) | T (F ) = θ, F ∈ F

}
,

where F denotes the set of all distributions on R.

Often, θ ≡ θ(F ) is the solution to an estimating equation of the form E[m(X, θ)] = 0. A natural

estimator for θ is produced by solving the empirical estimating equation 1
n

∑n
i=1m(Xi, θ̂) = 0.

Assuming pi = f(X = xi) for i = 1, . . . , n, the profile empirical likelihood ratio function of θ is

defined as

R(θ) = max
{ n∏

i=1

pi such that

n∑

i=1

pi ×m(Xi, θ) = 0, pi ≥ 0,
n∑

i=1

pi = 1
}
. (17)

Since maximizing the likelihood is equivalent to maximizing the logarithm of the likelihood, the

profile empirical likelihood ratio is rewritten in terms of log likelihood as follows.

R(θ) = max
{ n∑

i=1

log pi such that

n∑

i=1

pi ×m(Xi, θ) = 0, pi ≥ 0,

n∑

i=1

pi = 1
}
. (18)

In order to solve the above optimization problem, we can apply the Lagrange multiplier method.

T ({pi}, λ, λ1) =
n∑

i=1

log pi + λ1(
n∑

i=1

pi − 1)− nλ
n∑

i=1

pi ×m(Xi; θ),

where λ, λ1 are the Lagrange multipliers. We take the derivative of T ({pi}, λ, λ1), with respect to

the pi’s, and set them to zero. Solving the system of equations reveals that λ1 = −n, and

pi =
1

n
×

1

1 + λm(Xi; θ)
, ∀i = 1, . . . , n, (19)

where λ is the solution to

n∑

i=1

m(Xi; θ)

1 + λ m(Xi; θ)
= 0, (20)

which is a monotone function in λ. Maximizing the profile empirical log-likelihood ration in (18) is

equivalent to maximizing the following (substituting pi from (19) into (18)):

l(θ) = −
n∑

i=1

log(1 + λ m(Xi; θ))− n log n. (21)

20



OPTIMAL FAIR PREDICTION

Maximizing l(θ) over a small set of parameters θ, is a much simpler optimization problem than

maximizing (18) over n unknowns. Equation 21 is known as the dual representation of 18. See Owen

(2001) for more details.

Hybrid Likelihood

Now, consider independent pairs (X1, Y1), . . . , (Xn, Yn). Suppose that all n observations are in-

dependent, and that we have a correctly specified parametric model for p(Y |X; θy) but p(X) is

unspecified. Let pi = p(X = xi). A natural approach for estimating θy and the pis is to form a

hybrid likelihood that is nonparametric in the distribution of Xi but is parametric in the conditional

distribution of Yi|Xi:

L(D; {pi}, θ) =
n∏

i=1

pi × p(Yi|Xi; θ).

Suppose we are interested in parameter θ through the estimating equation E[m(X,Y ; θ)] = 0.

Hence, the equivalent form of (18) for the profile hybrid likelihood ratio function is as follows:

R(θ) = max
{ n∑

i=1

(
log pi + log p(Yi|Xi; θ)

)

such that

n∑

i=1

pi ×m(Xi, Yi; θ) = 0, pi ≥ 0,
n∑

i=1

pi = 1
}
. (22)

Similar to the empirical likelihood, we can apply the Lagrange multiplier method to solve the

above optimization problem. For more details, see Owen (2001) and Qin (2017).

C. Simulation details

Here we report the precise parameter settings used in our simulation studies. We trained our models

on a batch size of 5, 000 using the following data generating processes, where outcome Y is treated

as missing on 20% of the data.

Simulations 1 and 2. In these simulations, data is generated according to the causal model

shown in Fig. 1(a) as follows.

X ∼ N (0, 1)

p(A = 1 | X) ∼ expit(−0.5− 0.5X)

p(M = 1 | A,X) ∼ expit(−0.5−X − 0.5A+AX)

Y = 1 +X + 2A− 2AX +M + 3XM +AM +XAM +N (0, 1)

Simulation 3. In this simulation, data is generated according to the causal model shown in

Fig. 1(b) as follows. X,A, and M are generated in the same way as the ones above.

p(L = 1|A,X,M) ∼ expit(−0.5−X−0.5A−0.25M+AX+0.5AM+0.25AXM)

Y = 1 +X + 2A+M + 0.5L− 2AX +AM +AL+AML+N (0, 1)
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D. Details on Estimation Strategies

Given Theorem 1, the accuracy of the prediction procedure will depend on what parts of p(Z, Y ;α)
are constrained, and following Nabi and Shpitser (2018) this depends on the estimator ĝ(D). Here,

we define several consistent estimators of the NDE (assuming the model shown in Fig. 1(a) is correct)

presented in Tchetgen Tchetgen and Shpitser (2012).

G-formula: The first estimator is the MLE plug in estimator, where we use the Y and M models

to estimate NDE. We fit models E[Y |A,M,X;αy] and p(M |A,X;αm) by maximum likelihood,

and use the following formula:

Pn

(∑

m

(
E[Yi | A = 1, Xi,M ; α̂y]− E[Yi | A = 0, Xi,M ; α̂y]

)
× p(M | A = 0, Xi; α̂m)

)
.

(23)

Since solving (2) using (23) entails constraining E[Y |A,M,X] and p(M |A,X), classifying a

new instance entails using E[Y |A,X] =
∑

M E[Y |A,M,X]× p(M |A,X).

Inverse probability weighting (IPW): The second estimator is the IPW estimator where we use

the A and M models to estimate NDE. We can fit the models p(A|X;αa) and p(M |A,X;αm) by

MLE, and use the following weighted empirical average as our estimate of the NDE:

Pn

(
I(Ai = 1)

p(Ai = 1|Xi; α̂a)
×

p(Xi|A = 0, Xi; α̂m)

p(Mi|A = 1, Xi; α̂m)
× Yi −

I(Ai = 0)

p(Ai = 0|Xi; α̂a)
× Yi

)
. (24)

Since solving the constrained MLE problem using this estimator entails only restricting parame-

ters of A and M models, predicting a new instance is done using E[Y |X] =
∑

A,M E[Y |A,M,X]×
p(M |A,X)× p(A|X).

Mixed approach: The third way of computing the NDE is using A and Y models. In this

estimator, we fit the models p(A|X;αa) and E[Y |A,M,X;αy] by MLE, as usual, and combine the

edge G-formula and IPW in the following way:

Pn

(
I(Ai = 0)

p(Ai = 0|Xi; α̂a)
× E[Yi|A = 1,Mi, Xi; α̂y]− E[Yi|A = 0,Mi; α̂y]

)
, (25)

Since solving the constrained MLE problem using this estimator entails only restricting parame-

ters of A and Y models, predicting a new instance is done using E[Y |M,X] =
∑

A E[Y |A,M,X]×
p(M |A,X)×p(A|X)∑
A
p(M |A,X)×p(A|X) .

Efficient Influence Functinon (EIF): The final estimator uses all three models, as follows:
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Pn

(
I(Ai = 1)

p(Ai = 1|Xi; α̂a)
×

p(Mi | A = 0, Xi; α̂m)

p(Mi|A = 1, Xi; α̂m)
×
{
Yi − E[Yi|A = 1,Mi, Xi; α̂y]

}
(26)

+
I(Ai = 0)

p(Ai = 0|Xi)
×
{
E[Yi|A = 1,Mi, Xi; α̂y]− η(1, 0, Xi)

}
+ η(1, 0, Xi)

−
I(Ai = 0)

p(Ai = 0|Xi; α̂a)
×
{
Yi − η(0, 0, Xi)

}
+ η(0, 0, Xi)

)
,

with η(a, a′, X) ≡
∑

M E[Y |a,M,X]× p(M |a′, X). Since the models of A,M , and Y are all con-

strained with this estimator, predicting Y for a new instance is via E[Y |X] =
∑

A,M E[Y |A,M,X]×
p(M |A,X)× p(A|X). For more details on semiparametric estimators of average causal effects in

presence of unmeasured confounders, see Bhattacharya et al. (2020).

E. Proofs

Theorem 1 Let p(Z) denote the observed data distribution and let Z1, Z2 ⊆ Z. Let p∗1(Z) and

p∗2(Z) denote two constrained distributions that are obtained by constraining the distribution over

variables that are not in Z1 and Z2, respectively. That is p∗1 constrains the variables in Z \ Z1 and

p∗2 constrains the variables in Z \ Z2, so p∗1(Z1) = p(Z1) and p∗2(Z2) = p(Z2). More formally,

p∗1(Z) = argmin
q(Z)

DKL(p || q), s.t. εl ≤ g(q(Z)) ≤ εu, and q(Z1) = p(Z1),

p∗2(Z) = argmin
q(Z)

DKL(p || q), s.t. εl ≤ g(q(Z)) ≤ εu, and q(Z2) = p(Z2).

If Z2 ⊆ Z1 ⊆ Z, then DKL(p || p∗2) ≤ DKL(p || p∗1).

Proof Let

M1 =
{
p∗1(Z) = argmin

q(Z)
DKL(p||q), s.t. εl ≤ g(q(Z)) ≤ εu, and q(Z1) = p(Z1)

}
,

and

M2 =
{
p∗2(Z) = argmin

q(Z)
DKL(p||q), s.t. εl ≤ g(q(Z)) ≤ εu, and q(Z2) = p(Z2)

}
.

Since the joint distribution in model M1 is more restricted than M2, then M1 is a submodel of M2.
This implies that maximizing the likelihood under model M1 yields a likelihood that is less than or

equal to the one under model M2, i.e., maxLM1
(D) ≤ maxLM2

(D). Maximizing the likelihood

of observed data with respect to the model parameters is equivalent to minimizing KL-divergence

between the likelihood and the true distribution of the data (Wasserman, 2013). Consequently, KL-

divergence between p∗ and p is smaller in M2 compared to M1, i.e DKL(p || p∗2) ≤ DKL(p || p∗1).

Theorem 2 Assume the observed data distribution p(Y, Z) is induced by a causal model where

Z = {X,A,M} includes pre-treatment measures X , binary treatment A, and post-treatment pre-

outcome mediators M . Let p(Y (π, a, a′)) denote the potential outcome distribution that corresponds
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to the effect of A on Y along proper causal paths in π, where π includes the direct edge A → Y ,

and let p(Y0(π, a, a
′)) denote the identifying functional for p(Y (π, a, a′)) obtained from the edge

g-formula, where the term p(Y |Z) is evaluated at {Z \ A} = 0. Then E[Y |Z] can be written as

follows:

E[Y |Z] = f(Z)−
(
E[Y (π, a, a′)]− E[Y0(π, a, a

′)]
)
+ φ(A),

where f(Z) := E[Y |Z]− E[Y |A, {Z \ A} = 0] and φ(A) = w0 + waA. Furthermore, wa corre-

sponds to π-specific effect of A on Y .

Proof By letting φ(A = a) = E[Y (π, a, a′)], it suffices to show that E[Y0(π, a, a
′)] = E[Y |A, {Z \

A} = 0]. Given the identification result for edge-consistent counterfactuals in Shpitser and Tchetgen

Tchetgen (2016), we can write the identification functional as follows.

E[Y0(π, a, a
′)] =

∑

V ∈XV \{A,Y }

E[Y |A = a, {Z \A} = 0]× h(V ∈ XV \ Y ),

where h(V ∈ XV \ Y ) is a function of all variables excluding Y . Note that h, does not include any

density where A appears on the LHS of the conditioning bar. Therefore, we have:

E[Y0(π, a, a
′)] = E[Y |A = a, {Z \A} = 0]×

∑

V ∈XV \{A,Y }

h(V ∈ XV \ Y )

= E[Y |A = a, {Z \A} = 0].
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