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ABSTRACT

Algorithmic fairness plays an increasingly critical role in machine learning re-
search. Several group fairness notions and algorithms have been proposed. How-
ever, the fairness guarantee of existing fair classification methods mainly depends
on specific data distributional assumptions, often requiring large sample sizes,
and fairness could be violated when there is a modest number of samples, which
is often the case in practice. In this paper, we propose FaiREE, a fair classifica-
tion algorithm that can satisfy group fairness constraints with finite-sample and
distribution-free theoretical guarantees. FaiREE can be adapted to satisfy various
group fairness notions (e.g., Equality of Opportunity, Equalized Odds, Demo-
graphic Parity, etc.) and achieve the optimal accuracy. These theoretical guaran-
tees are further supported by experiments on both synthetic and real data. FaiREE
is shown to have favorable performance over state-of-the-art algorithms.

1 INTRODUCTION

As machine learning algorithms have been increasingly used in consequential domains such as
college admission Chouldechova & Roth (2018), loan application Ma et al. (2018), and disease
diagnosis Fatima et al. (2017), there are emerging concerns about the algorithmic fairness in re-
cent years. When standard machine learning algorithms are directly applied to the biased data
provided by humans, the outputs are sometimes found to be biased towards certain sensitive at-
tribute that we want to protect (race, gender, etc). To quantify the fairness in machine learn-
ing algorithms, many fairness notions have been proposed, including the individual fairness no-
tion Biega et al. (2018), group fairness notions such as Demographic Parity, Equality of Op-
portunity, Predictive Parity, and Equalized Odds (Dieterich et al., 2016; Hardt et al., 2016; Ga-
jane & Pechenizkiy, 2017; Verma & Rubin, 2018), and multi-group fairness notions including
multi-calibration HÂebert-Johnson et al. (2018) and multi-accuracy Kim et al. (2019). Based on
these fairness notions or constraints, corresponding algorithms were designed to help satisfy the
fairness constraints (Hardt et al., 2016; Pleiss et al., 2017; Zafar et al., 2017b; Krishnaswamy
et al., 2021; Valera et al., 2018; Chzhen et al., 2019; Zeng et al., 2022; Thomas et al., 2019).

Figure 1: Comparison of FairBayes and FaiREE on the syn-
thetic data with sample size = 1000. See Table 2 for detailed
numerical results. Left: DEOO v.s. α, Right: DEOO v.s.
Test accuracy. Here, DEOO is the degree of violation to
fairness constraint Equality of Opportunity and α is the pre-
specified desired level to upper bound DEOO for both meth-
ods. See Eq. (1) in Section 2 for a more detailed definition.

Among these fairness algorithms, post-
processing is a popular type of algo-
rithm which modifies the output of the
model to satisfy fairness constraints. How-
ever, recent post-processing algorithms are
found to lack the ability to realize accu-
racy±fairness trade-off and perform poorly
when the sample size is limited (Hardt
et al., 2016; Pleiss et al., 2017). In ad-
dition, since most fairness constraints are
non-convex, some papers propose con-
vex relaxation-based methods Zafar et al.
(2017b); Krishnaswamy et al. (2021). This
type of algorithms generally do not have
the theoretical guarantee of how the output satisfies the exact original fairness constraint. Another
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line of research considers recalibrating the Bayes classifier by a group-dependent threshold (Valera
et al., 2018; Chzhen et al., 2019; Zeng et al., 2022). However, their results require either some
distributional assumptions or infinite sample size, which is hard to verify/satisfy in practice.

In this paper, we propose a post-processing algorithm FaiREE that provably achieves group fairness
guarantees with only finite-sample and free of distributional assumptions (this property is also called
ªdistribution-freeº in the literature (Maritz, 1995; Clarke, 2007; GyÈorfi et al., 2002)). To the best of
our knowledge, this is the first algorithm in fair classification with a finite-sample and distribution-
free guarantee. A brief pipeline of FaiREE is to first score the dataset with the given classifier, and
select a candidate set based on these scores which can fit the fairness constraint with a theoretical
guarantee. As there are possibly multiple classifiers that can satisfy this constraint, we further de-
velop a distribution-free estimate of the test mis-classification error, resulting in an algorithm that
produces the optimal mis-classification error given the fairness constraints. As a motivating exam-
ple, Figure 1 shows that applying state-of-the-art FairBayes method in Zeng et al. (2022) on a dataset
with 1000 samples results in substantial fairness violation on the test data and incorrect behavior of
fairness-accuracy trade-off due to lack of fairness generalization. Our proposed FaiREE improved
fairness generalization in these finite sample settings.

Additional Related Works. The fairness algorithms in the literature can be roughly categorized
into three types: 1). Pre-processing algorithms that learn a fair representation to improve fairness
(Zemel et al., 2013; Louizos et al., 2015; Lum, 2016; Adler et al., 2018; Calmon et al., 2017; Gordal-
iza et al., 2019; Madras et al., 2018; Kilbertus et al., 2020) 2). In-processing algorithms that optimize
during training time (Calders et al., 2009; Woodworth et al., 2017; Zafar et al., 2017b;a; Agarwal
et al., 2018; Russell et al., 2017; Zhang et al., 2018; Celis et al., 2019) 3). Post-processing algorithms
that try to modify the output of the original method to fit fairness constraints (Kamiran et al., 2012;
Feldman, 2015; Hardt et al., 2016; Fish et al., 2016; Pleiss et al., 2017; Corbett-Davies et al., 2017;
Menon & Williamson, 2018; HÂebert-Johnson et al., 2018; Kim et al., 2019; Deng et al., 2023).

The design of post-processing algorithms with distribution-free and finite-sample guarantees gains
much attention recently due to its flexibility in practice Shafer & Vovk (2008); Romano et al. (2019),
as it can be applied to any given algorithm (eg. a black-box neural network), and achieve desired
theoretical guarantee with almost no assumption. One of the research areas that satisfies this property
is conformal prediction (Shafer & Vovk, 2008; Lei et al., 2018; Romano et al., 2019) whose aim is
to construct prediction intervals that cover a future response with high probability. In this paper, we
extend this line of research beyond prediction intervals, by designing classification algorithms that
satisfy certain group fairness with distribution-free and finite-sample guarantees.

Paper Organization. Section 2 provides the definitions and notations we use in the paper. Section 3
provides the general pipeline of FaiREE. In Section 4, we further extend the results to other fairness
notions. Finally, Section 5 conducts experiments on both synthetic and real data and compares with
several state-of-art algorithms to show that FaiREE has desirable performance 1.

2 PRELIMINARY

In this paper, we consider two types of features in classification: the standard feature X ∈ X , and
the sensitive attribute, which we want the output to be fair on, is denoted as A ∈ A = {0, 1}. For the
simplicity of presentation, we consider the binary classification problem with labels in Y = {0, 1}.
We note that our analysis can be similarly extended to the multi-class and multi-attribute setting.
Under the binary classification setting, we use the score-based classifier that outputs a prediction

Ŷ = Ŷ (x, a) ∈ {0, 1} based on a score function f(x, a) ∈ [0, 1] that depends on X and A:

Definition 1. (Score-based classifier) A score-based classifier is an indication function Ŷ =
ϕ(x, a) = ✶{f(x, a) > c} for a measurable score function f : X × {0, 1} → [0, 1] and some
threshold c > 0.

To address the algorithmic fairness problem, several group fairness notions have been developed in
the literature. In the following, we introduce two of the popular notions, Equality of Opportunity
and Equalized Odds. We will discuss other fairness notions in Section A.8 of the Appendix.

Equality of Opportunity requires comparable true positive rates across different protected groups.

1Code is available at https://github.com/lphLeo/FaiREE
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Definition 2. (Equality of Opportunity (Hardt et al., 2016)) A classifier satisfies Equality of Oppor-

tunity if it satisfies the same true positive rate among protected groups: PX|A=1,Y=1(Ŷ = 1) =

PX|A=0,Y=1(Ŷ = 1).

Equalized Odds is an extension of Equality of Opportunity, requiring both false positive rate and
true positive rate are similar across different attributes.

Definition 3. (Equalized Odds (Hardt et al., 2016)) A classifier satisfies Equalized Odds if it satisfies

the following equality: PX|A=1,Y=1(Ŷ = 1) = PX|A=0,Y=1(Ŷ = 1) and PX|A=1,Y=0(Ŷ = 0) =

PX|A=0,Y=0(Ŷ = 0).

Sometimes it is too strict to require the classifier to satisfy Equality of Opportunity or Equalized
Odds exactly, which may sacrifice a lot of accuracy (as a very simple example is f(x, a) ≡ 1).
In practice, to strike a balance between fairness and accuracy, it makes sense to relax the equality
above to an inequality with a small error bound. We use the difference with respect to Equality of
Opportunity, denoted by DEOO, to measure the disparate impact:

DEOO = PX|A=1,Y=1(Ŷ = 1)− PX|A=0,Y=1(Ŷ = 1). (1)

For a classifier ϕ, following (Zeng et al., 2022; Cho et al., 2020), |DEOO(ϕ)| ≤ α denotes an
α-tolerance fairness constraint that controls the difference between the true positive rates below α.

Similarly, we define the following difference with Equalized Odds. Since Equalized Odds, the
difference is a two-dimensional vector:

DEO = (PX|A=1,Y=1(Ŷ = 1)−PX|A=0,Y=1(Ŷ = 1),PX|A=1,Y=0(Ŷ = 1)−PX|A=0,Y=0(Ŷ = 1)).

For notational simplicity, we use the notation ⪯ for the element-wise comparison between vectors,

that is, DEO ⪯ (α1, α2) if and only if PX|A=1,Y=1(Ŷ = 1) − PX|A=0,Y=1(Ŷ = 1) ≤ α1 and

PX|A=1,Y=0(Ŷ = 1)− PX|A=0,Y=0(Ŷ = 1) ≤ α2.

Additional Notation. We denote the proportion of group a by pa := P(A = a) for a ∈ {0, 1}; the
proportion of group Y = 1 conditioned on A for pY,a := P(Y = 1 | A = a); the proportion of
group Y = 1 conditioned on A and X for ηa(x) := P(Y = 1 | A = a,X = x). Also, we denote by
PX(x) and PX|A=a,Y=y(x) respectively the distribution function of X and the distribution function
of X conditioned on A and Y . The score function of standard Bayes-optimal classifier without
fairness constraint is defined as ϕ∗(x, a) = ✶{f∗(x, a) > 1/2}, where f∗ ∈ argminf [P(Y ̸=

✶{f(x, a) > 1/2})]. We denote v(k) as the kth ordered value of sequence v in non-decreasing

order. For a set T , we denote sort(T ) as a function that returns T in non-decreasing order. For a
number a ∈ R, we use ⌈a⌉ to denote the ceiling function that maps a to the least integer greater than
or equal to a. For a positive integer n, we use [n] to denote the set {1, 2, ..., n}.

3 FAIREE: A FINITE SAMPLE BASED ALGORITHM

In this section, we propose FaiREE, a general post-processing algorithm that produces a Fair clas-
sifier in a finite-sample and distribution-fREE manner, and can be applied to a wide range of group
fairness notions. We will illustrate its use in Equality of Opportunity as an example in this section,
and discuss more applications in later sections.

3.1 THE GENERAL PIPELINE OF FAIREE

Suppose we have dataset S = S0,0 ∪ S0,1 ∪ S1,0 ∪ S1,1, where Sy,a = {xy,a
1 , . . . , xy,a

ny,a} is the
set of features associated with label Y = y ∈ {0, 1} and protected attribute A = a ∈ {0, 1}. We
denote the size of Sy,a by ny,a. Throughout the paper, we assume that xy,a

i , i ∈ {1, . . . , ny,a} are
independently and identically distributed given Y = y,A = a. We define n = n0,0 + n0,1 + n1,0 +
n1,1 to be the total number of samples. Our goal is to post-process any given classifier to make it
satisfy certain group fairness constraints.

FaiREE is a post-processing algorithm that can transform any pre-trained classification function
score f in order to satisfy fairness constraints. In particular, FaiREE consists of three main steps,
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scoring, candidate set construction, and candidate selection. See Figure 2 for an illustration. We
would like to note that the procedure that first chooses a candidate set of tuning parameters and then
selects the best one has been commonly used in machine learning, such as in Seldonian algorithm
framework to control safety and fairness Thomas et al. (2019); Giguere et al. (2022); Weber et al.
(2022), the Learn then Test framework for risk control Angelopoulos et al. (2021), and in high-
dimensional statistics Wang et al. (2022).

Figure 2: A concrete pipeline of FaiREE for Equality of Opportunity. Edges in Step 2 represent the selected
candidate pair and the red edge in Step 3 represents the final optimal candidate selected from all the edges.
Each pair represents two different thresholds of a single classifier.

Step 1: Scoring. FaiREE takes input as 1). a given fairness guarantee G, such as Equality of
Opportunity or Equalized Odds; 2). an error bound α, which controls the violation with respect to
our given fairness notion; 3). a small tolerance level δ, which makes sure our final classifier satisfies
our requirement with probability at least 1− δ; 4). a dataset S.

For scoring, we first apply the given classifier f to Sy,a and denote the outcome ty,ai := f(xy,a
i )

as scores for each sample. These scores are then sorted within each subset in non-decreasing order
respectively and obtain T y,a = {ty,a(1) , . . . , t

y,a
(ny,a)}.

Step 2: Candidate Set Construction. We first present a key observation for this step, which holds
for many group fairness notions such as Equality of Opportunity, Equalized Odds (see details of
more fairness notions in Section 3.2):

Any classifier can fit the fairness constraint with high probability by setting the decision threshold
appropriately, regardless of the data distribution.

The insight of this observation comes from recent literature on post-processing algorithms and
Neyman-Pearson classification algorithm (Fish et al., 2016; Corbett-Davies et al., 2017; Valera et al.,
2018; Menon & Williamson, 2018; Tong et al., 2018; Chzhen et al., 2019). Under Equality of Op-
portunity, this observation is formalized in Proposition 1. We also establish similar results under
other fairness notions beyond Equality of Opportunity in Section 3.2. From this observation we
can build an algorithm to calculate the probability that a classifier f with a certain threshold will
satisfy the fairness constraint: DiffG(f) ≤ α , where DiffG(f) is a generic notation to denote the
violation rate of f under some fairness notion G. Then we choose the classifiers with the probability
P(DiffG(f) > α) ≤ δ as our candidate set C. This candidate set consists of a set of threshold
values, with potentially different thresholds for different subpopulations.

Step 3: Candidate Selection. Furthermore, as there might be multiple classifiers that satisfy the
given fairness constraints, we aim to choose a classifier with a small mis-classification error. To do
this, FaiREE estimates the mis-classification error err(f) of the classifier f , and chooses the one
with the smallest error among the candidate set constructed in the second step.

In the rest part of the section, as an example, we consider Equality of Opportunity as our target
group fairness constraint and provide our algorithm in detail.

3.2 APPLICATION TO EQUALITY OF OPPORTUNITY

In this section, we apply FaiREE to the fairness notion Equality of Opportunity. The following two
subsections explain the steps Candidate Set Construction and Candidate Selection in detail.
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3.2.1 CANDIDATE SET CONSTRUCTION

We first formalize our observation in the following proposition. Using the property of order statis-
tics, the following proposition states that it is sufficient to choose the threshold of the score-based
classifier from the sorted scores to control the fairness violation in a distribution-free and finite-
sample manner. Here, k1,a is the index from which we select the threshold in T 1,a.

Proposition 1. Consider k1,a ∈ {1, . . . , n1,a} for a ∈ {0, 1}, and the score-based classifier

ϕ(x, a) = ✶{f(x, a)) > t1,a(k1,a)}. Let g1(k, a) = E[
n1,a∑
j=k

(
n1,a

j

)
(Q1,1−a − α)j(1 − (Q1,1−a −

α))n
1,a−j ] with Q1,a ∼ Beta(k, n1,a − k + 1), then we have:

P(|DEOO(ϕ)| > α) ≤ g1(k
1,1, 1) + g1(k

1,0, 0).

Additionally, if t1,a(k1,a) is a continuous random variable, the inequality above becomes tight equality.

Here, g1 is a function constructed using the property of order statistics so that g1(k
1,1, 1) and

g1(k
1,0, 0) upper bound P(DEOO(ϕ) > α) and P(DEOO(ϕ) < −α) respectively. We note

that g1 can be efficiently compute using Monte Carlo simulations. In our experiments, we approx-
imate g1 by randomly sampling from the Beta distribution for 1000 times and achieve satisfactory
approximation. This proposition ensures that the DEOO of a given classifier can be controlled with
high probability if we choose an appropriate threshold value when post-processing.

Based on the above proposition, we then build our classifiers for an arbitrarily given score function
f as below. We define L(k1,0, k1,1) = g1(k

1,1, 1) + g1(k
1,0, 0). Recall that the error tolerance

is α, and δ is the tolerance level. Our candidate set is then constructed as K = {(k1,0, k1,1) |
L(k1,0, k1,1) ≤ δ}.

Before we proceed to the theoretical guarantee for this candidate set, we introduce a bit more
notation. Let us denote the size of the candidate set K by M , and the elements in the set

K by (k1,01 , k1,11 ), . . . , (k1,0M , k1,1M ). Additionally, we let ϕ̂i(x, a) = ✶{f(x, a) > t1,a
(k1,a

i )
}, for

i = 1, . . . ,M .

To ensure that there exists at least one valid classifier (i.e. M ≥ 1), we should have E[(Q1,0 −

α)n
1,0

]+E[(Q1,1−α)n
1,1

] ≤ δ, which requires a necessary and sufficient lower bound requirement
on the sample size, as formulated in the following proposition:

Theorem 1. If min{n1,0, n1,1} ≥ ⌈
log δ

2

log(1−α)⌉, for each i ∈ {1, . . . ,M} in the candidate set, we

have |DEOO(ϕ̂i)| < α with probability 1− δ.

As there are at most n1,0n1,1 elements in the candidate set, the size of K, M , can be as large as
O(n2). To further reduce the computational complexity, in the following part, we provide a method
to shrink the candidate set.

Our construction is inspired by the following lemma, which gives the analytical form of the fair
Bayes-optimal classifier under the Equality of Opportunity constraint. This Bayes-optimal classifier
is defined as ϕ∗

α = argmin|DEOO(ϕ)|≤αP(ϕ(x, a) ̸= Y ).

Lemma 1 (Adapted from Theorem E.4 in Zeng et al. (2022)). The fair Bayes-optimal classifier
under Equality of Opportunity can be explicitly written as ϕ∗

α(x, a) = ✶{f∗(x, a) > t∗a}, then
t∗1 =

p1pY,1

2p1pY,1−(1/t1,0
(k)

−2)·p0pY,0
.

Note that in practice, the input classifier f can be the classifier trained by a classification algorithm
on the training set, which means it is close to f∗. Thus from this observation, we can adopt a
new way of building a much smaller candidate set. Note that our original candidate set is defined

as : K = {(k1,0, k1,1) | L(k1,0, k1,1) ≤ δ} = {(k1,01 , k1,11 ), . . . , (k1,0M , k1,1M )}. Now, for every

1 ≤ k ≤ n1,0, from Lemma 1 we denote u1(k) = argmin
u

|t1,1(u) −
p̂1p̂Y,1

2p̂1p̂Y,1−(1/t1,0
(k)

−2)·p̂0p̂Y,0
|, where

p̂a = n1,a+n0,a

n0,0+n0,1+n1,0+n1,1 and p̂y,a = n1,a

n0,a+n1,a . We then build our candidate set as below:

K ′ ={(k1,0, u1(k
1,0)) | L(k1,0, u1(k

1,0)) ≤ δ}. (2)
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This candidate set K ′ has cardinality at most n. Since our next step, Candidate Selection, has
computational complexity that is linear in the size of the candidate set, using the new set K ′ would
help us reduce the computational complexity from O(n2) to O(n).

3.2.2 CANDIDATE SELECTION

In this subsection, we explain in detail how we choose the classifier with the smallest mis-

classification error from the candidate set constructed in the last step. For a given pair (k1,0i , k1,1i ) in

the candidate set of index (i ∈ [M ]), we need to know the rank of t1,0
(k1,0

i )
and t1,1

(k1,1
i )

in the sorted set

T 0,0 and T 0,1 respectively in order to compute the test error where we need to consider both y = 0
and 1. Specifically, we find the k0,ai such that t0,a

(k0,a
i )
≤ t1,a

(k1,a
i )

< t0,a
(k0,a

i +1)
for a ∈ {0, 1}.

To estimate the test mis-classification error of ϕ̂i(x, a) = ✶{f(x, a) > t1,a
(k1,a

i )
}, we divide the error

into four terms by different values of y and a. We then estimate each part using the property of order
statistics respectively, and obtain the following proposition:

Proposition 2. Suppose the density functions of f under A = a, Y = 1 are continuous. Let

êi =
k1,0
i

n1,0+1
n1,0

n +
k1,1
i

n1,1+1
n1,1

n +
n0,0+ 1

2−k0,0
i

n0,0+1
n0,0

n +
n0,1+ 1

2−k0,1
i

n0,1+1
n0,1

n , for i = 1, 2, ...,M . Then,

there exist two constants c1, c2 > 0 such that | P(ϕ̂i(x, a) ̸= Y ) − êi |≤ c1/min(n0,0, n0,1) with
probability larger than 1− c2 exp(−min(n0,0, n0,1)).

The above proposition enables us to efficiently estimate the test error of the M classifiers ϕ̂i’s de-

fined above, from which we can choose a classifier with the lowest test error ϕ̂. The algorithm is
summarized in Algorithm 1. In the following, we provide the theory showing that the output of

Algorithm 1: FaiREE for Equality of Opportunity

Input: Training data S = S0,0 ∪ S0,1 ∪ S1,0 ∪ S1,1; the error bound α; the tolerance level δ; a
given pre-trained classifier f

1 T y,a = {f(xy,a
1 ), . . . , f(xy,a

ny,a
)}

2 {ty,a(1) , . . . , t
y,a
(ny,a)

} =sort(T y,a)

3 Define g1(k, a) as in Proposition 1, and let L(k1,0, k1,1) = g1(k
1,1, 1) + g1(k

1,0, 0)

4 Build candidate set K ′ as in Eq. 2, and write K ′ = {(k1,01 , k1,11 ), . . . , (k1,0M ′ , k
1,1
M ′)}

5 Find k0,0i , k0,1i : t0,0
(k0,0

i )
≤ t1,0

(k1,0
i )

< t0,0
(k0,0

i +1)
, t0,1

(k0,1
i )
≤ t1,1

(k1,1
i )

< t0,1
(k0,1

i +1)

6 i∗ ← argmin
i∈[M ′]

{êi} (êi is defined in Proposition 2)

Output: ϕ̂(x, a) = ✶{f(x, a) > t1,a
(k1,a

i∗
)
}

Algorithm 1 is approaching the optimal mis-classification error under Equality of Opportunity. The
following theorem states that the final output of FaiREE has both controlled DEOO, and achieved
almost minimum mis-classification error when the input classifier is properly chosen.

Theorem 2. Given any α′ < α. Set δ = c0/M for some c0 > 0, where M is the candidate set size.

Suppose min{n1,0, n1,1} ≥ ⌈
log δ

2

log(1−α)⌉. ϕ̂ is the output of FaiREE, then:

(1). |DEOO(ϕ̂)| < α with probability 1− c0.

(2). Suppose the density functions of f and f∗ under A = a, Y = 1 are continuous. For
any δ′, ϵ0 > 0, there exist 0 < c < 1 and c1 > 0 such that when the input classi-
fier f(x, a) satisfies ∥f − f∗∥∞ ≤ ϵ0 and the constructed candidate set is K ′, we have

P(ϕ̂(x, a) ̸= Y ) − P(ϕ∗
α′(x, a) ̸= Y ) ≤ 2F ∗

(+)(2ϵ0) + δ′ with probability larger than

1− c1c
min{n1,0,n0,0,n0,1}. (F ∗

(+)(x) is defined in Lemma 6 in the appendix.)

Theorem 2 ensures that our classifier will approximate fair Bayes-optimal classifier if the input
classifier is close to f∗. Here, α′ < α is any positive constant, which we adopt to promise that our
candidate set is not empty.
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Remark: We remark that FaiREE requires no assumption on data distribution except for a minimum
sample size. It has the advantage over existing literature which generally imposes different assump-
tions to data distribution. For example, Chzhen et al. (2019) assumes η(x, a) must surpass the level
1
2 on a set of non-zero measure. Valera et al. (2018) assumes that the shifting threshold of the clas-
sifier follows the beta distribution. Also, Zeng et al. (2022)’s result only holds for population-level,
and the finite-sample version is not studied.

4 APPLICATION TO MORE FAIRNESS NOTIONS

4.1 EQUALIZED ODDS

In this section, we apply our algorithm to the fairness notion Equalized Odds, which has two fairness
constraints simultaneously. To ensure the two constraints, the algorithm of equalized odds should
be different from Algorithm 1. We should consider all Sy,a instead of just S1,a when estimating the
violation to fairness constraint in the step Candidate Set Construction. Thus we add a function g0
that deals with data with protected attribute A = 1, to perfect our algorithm together with g1 defined
in the last section.

Similar to Proposition 1, the following proposition assures that choosing an appropriate threshold
during post-processing enables the high probability control of a given classifier’s DEO.

Proposition 3. Given k1,0, k1,1 satisfying k1,a ∈ {1, . . . , n1,a} (a = 0, 1). Define ϕ(x, a) =

✶{f(x, a)) > t1,a(k1,a)}, gy(k, a) = E[
ny,a∑
j=k

(
ny,a

j

)
(Qy,1−a − α)j(1 − (Qy,1−a − α))n

y,a−j ] with

Qy,a ∼ Beta(k + 1− y, ny,a − k + y), then we have:

P(|DEO(ϕ)| ⪯ (α, α)) ≥ 1− g1(k
1,1, 1)− g1(k

1,0, 0)− g0(k
0,1, 1)− g0(k

0,0, 0).

Similar to Proposition 1, g0 and g1 jointly control the probability of ϕ violating the DEO constraint.

Algorithm 2: FaiREE for Equalized Odds

Input: Training data S = S0,0 ∪ S0,1 ∪ S1,0 ∪ S1,1; the error bound α; the tolerance level δ; a
given pre-trained classifier f

1 T y,a = {f(xy,a
1 ), . . . , f(xy,a

ny,a
)}

2 {ty,a(1) , . . . , t
y,a
(ny,a)

} =sort(T y,a)

3 Define g0(k, a) and g1(k, a) as in Proposition 3, L1(k
1,0, k1,1) = g1(k

1,1, 1) + g1(k
1,0, 0), and

L0(k
0,0, k0,1) = g0(k

0,1, 1) + g0(k
0,0, 0).

4 For every k1,0, k1,1, there exists k0,0, k0,1 such that t0,0(k0,0) ≤ t1,0(k1,0) < t0,0(k0,0+1),

t0,1(k0,1) ≤ t1,1(k1,1) < t0,1(k0,1+1).

5 Build the candidate set as

K = {(k1,0, k1,1) | L1(k
1,0, k1,1) + L0(k

0,0, k0,1) ≤ δ} = {(k1,01 , k1,11 ), . . . , (k1,0M , k1,1M )}.
6 Compute êi as in Proposition 2), and let i∗ = argmin

i∈[M ]

{êi}.

Output: ϕ̂(x, a) = ✶{f(x, a) > t1,a
(k1,a

i∗
)
}

Proposition 3 yields the following proposition on the DEO of classifiers in the candidate set.

Theorem 3. If min{n0,0, n0,1, n1,0, n1,1} ≥ ⌈
log δ

4

log(1−α)⌉, then for each i ∈ {1, . . . ,M}, we have

|DEO(ϕ̂i)| ⪯ (α, α) with probability 1− δ.

The theoretical analysis of test error is similar to the algorithm for Equality of Opportunity.

Theorem 4. Given α′ < α. Set δ = c0/M for some c0 > 0, where M is the candidate set size.

Suppose min{n0,0, n0,1, n1,0, n1,1} ≥ ⌈
log δ

4

log(1−α)⌉. ϕ̂ is the final output of FaiREE, then:

(1). |DEO(ϕ̂)| ⪯ (α, α) with probability 1− c0.

(2). Suppose the density functions of f∗ under A = a, Y = 1 are continuous. We denote
ϕ∗
α′,α′ = argmin|DEO(ϕ)|⪯(α′,α′)P(ϕ(x, a) ̸= Y ). For any δ′, ϵ0 > 0, there exist 0 < c <

7
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1 and c1 > 0 such that when the input classifier f satisfies | f(x, a) − f∗(x, a) |≤ ϵ0, we

have P(ϕ̂(x, a) ̸= Y ) − P(ϕ∗
α′,α′(x, a) ̸= Y ) ≤ 2F ∗

(+)(2ϵ0) + δ′ with probability larger

than 1− c1c
min{n1,0,n1,1,n0,0,n0,1}. (F ∗

(+)(x) is defined in Lemma 6 in the appendix.)

4.2 ON COMPARING DIFFERENT FAIRNESS CONSTRAINTS

In this subsection, we further extend our algorithms to more fairness notions. The detailed technical
results and derivations are deferred to Section A.8 in the appendix. Specifically, we compare the
sample size requirement to make any given score function f to achieve certain fairness constraint.
We note that our algorithm is almost assumption-free, except for the i.i.d. assumption and a neces-
sary and sufficient condition of the sample size. Therefore, we make a chart below to recommend
different fairness notions used in practice when the sample sizes are limited. We summarize our
results in the following table:

Table 1: Sample complexity requirements for FaiREE to achieve different fairness constraints. We consider the
following fairness notions: DP (Demographic Parity), EOO (Equality of Opportunity), EO (Equalized Odds),
PE (Predictive Equality), EA (Equalized Accuracy), and na = n0,a + n1,a.

DP EOO PE EO EA

na ≥ ⌈
log δ

2
log(1−α)

⌉ n1,a ≥ ⌈
log δ

2
log(1−α)

⌉ n0,a ≥ ⌈
log δ

2
log(1−α)

⌉ ny,a ≥ ⌈
log δ

4
log(1−α)

⌉ ny,a ≥ ⌈
log δ

4

log(
1−y+(2y−1)pY,|y−a|−α

y(2pY,a−1)+1−pY,a)

⌉

From this table, we find that Demographic Parity requires the least sample size, Equality of Opportu-
nity and Predictive Equality need a lightly larger sample size, and Equalized Odds is the notion that
requires the largest sample size among the first four fairness notions. The sample size requirement
for Equalized Accuracy is similar to that of Equalized Odds, but does not have a strict dominance.

5 EXPERIMENTS

In this section, we conduct experiments to test and understand the effectiveness of FaiREE. For both
synthetic data and real data analysis, we compare FaiREE with the following representative meth-
ods for fair classification: Reject-Option-Classification (ROC) method in Kamiran et al. (2012),
Eqodds-Postprocessing (Eq) method in Hardt et al. (2016), Calibrated Eqodds-Postprocessing (C-
Eq) method in Pleiss et al. (2017) and FairBayes method in Zeng et al. (2022).The first three base-
lines are designed to cope with Equalized Odds and the last one is for Equality of Opportunity.

5.1 SYNTHETIC DATA

To show the distribution-free and finite-sample guarantee of FaiREE, we generate the synthetic data
from mixed distributions. Real world data are generally heavy-tailed (Resnick (1997)). Thus, we
consider the following models with various heavy-tailed distributions for generating synthetic data:

Model 1. We generate the protected attribute A and label Y with probability p1 = P(A = 1) =
0.7, p0 = P(A = 0) = 0.3, py,1 = P(Y = y | A = 1) = 0.7 and py,0 = P(Y = y |
A = 0) = 0.4 for y ∈ {0, 1}. The dimension of features is set to 60, and we generate

features with x0,0
i,j

i.i.d.
∼ t(3), where t(k) denotes the t-distribution with degree of freedom

k, x0,1
i,j

i.i.d.
∼ χ2

1, x1,0
i,j

i.i.d.
∼ χ2

3 and x1,1
i,j

i.i.d.
∼ N(µ, 1), where µ ∼ U(0, 1) and the scale

parameter is fixed to be 1, for j = 1, 2, ..., 60.

Model 2. We generate the protected attribute A and label Y with the probability, location param-
eter and scale parameter the same as Model 1. The dimension of features is set to

80, and we generate features with x0,0
i,j

i.i.d.
∼ t(4), x0,1

i,j
i.i.d.
∼ χ2

2, x1,0
i,j

i.i.d.
∼ χ2

4 and

x1,1
i,j

i.i.d.
∼ Laplace(µ, 1), for j = 1, 2, ..., 80.

For each model, we generate 1000 i.i.d. samples, and the experimental results are summarized in
Tables 2 and 3.

From these two tables, we find that our proposed FaiREE, when applied to different fairness notions
Equality of Opportunity and Equality of Opportunity, is able to control the required fairness vio-
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Table 2: Experimental studies under Model 1. Here |DEOO| denotes the sample average of the absolute value

of DEOO defined in Eq. (1), and |DEOO|95 denotes the sample upper 95% quantile. |DPE| and |DPE|95
are defined similarly for DPE defined in Eq. (13). ACC is the sample average of accuracy. We use ª/º in the
DPE line because FairBayes and FaiREE-EOO are not designed to control DPE.

Eq C-Eq ROC FairBayes FaiREE-EOO FaiREE-EO

α / / / 0.08 0.12 0.16 0.08 0.12 0.16 0.08 0.12 0.16

|DEOO| 0.061 0.132 0.255 0.117 0.149 0.170 0.028 0.046 0.063 0.025 0.031 0.042
|DEOO|95 0.146 0.307 0.500 0.265 0.297 0.316 0.073 0.115 0.157 0.079 0.108 0.133

|DPE| 0.051 0.029 0.511 / / / / / / 0.039 0.042 0.045
|DPE|95 0.110 0.091 0.850 / / / / / / 0.075 0.084 0.106

ACC 0.472 0.606 0.637 0.663 0.656 0.646 0.621 0.657 0.669 0.552 0.562 0.615

Table 3: Experimental studies under Model 2, with the same notation as Table 2.

Eq C-Eq ROC FairBayes FaiREE-EOO FaiREE-EO

α / / / 0.08 0.12 0.16 0.08 0.12 0.16 0.08 0.12 0.16

|DEOO| 0.063 0.105 0.237 0.251 0.320 0.324 0.027 0.047 0.073 0.028 0.035 0.047
|DEOO|95 0.080 0.137 0.502 0.676 0.742 0.765 0.075 0.112 0.153 0.077 0.114 0.143

|DPE| 0.043 0.107 0.209 / / / / / / 0.041 0.044 0.056
|DPE|95 0.066 0.144 0.443 / / / / / / 0.071 0.090 0.127

ACC 0.380 0.600 0.616 0.606 0.598 0.589 0.595 0.627 0.639 0.575 0.589 0.606

lation respectively with high probability, while all the other methods cannot. In addition, although
satisfying stronger constraints, the mis-classification error FaiREE is comparable to, and sometimes
better than the state-of-the-art methods.

5.2 REAL DATA ANALYSIS

In this section, we apply FaiREE to a real data set, Adult Census dataset (Dua et al., 2017), whose
task is to predict whether a person’s income is greater than $50,000. The protected attribute is
gender, and the sample size is 45,222, including 32561 training samples and 12661 test samples. To
facilitate the numerical study, we randomly split data into training set, calibration set and test set
at each repetition and repeat for 500 times. FaiREE is compared the existing methods described in
the last subsection. Again, as shown in Table 4, the proposed FaiREE method controls the fairness
constraints at the desired level, and achieve small mis-classification error. More implementation
details and experiments on other benchmark datasets are presented in A.9.

Table 4: Result of different methods on Adult Census dataset

Eq C-Eq ROC FairBayes FaiREE-EOO FaiREE-EO

α / / / 0.07 0.1 0.14 0.07 0.1 0.14 0.07 0.1 0.14

|DEOO| 0.043 0.087 0.031 0.107 0.101 0.104 0.034 0.039 0.066 0.002 0.039 0.067
|DEOO|95 0.112 0.154 0.097 0.140 0.153 0.153 0.065 0.090 0.124 0.008 0.094 0.125

|DPE| 0.027 0.048 0.044 / / / / / / 0.030 0.066 0.074
|DPE|95 0.058 0.105 0.117 / / / / / / 0.056 0.078 0.086

ACC 0.815 0.823 0.691 0.847 0.847 0.847 0.845 0.846 0.847 0.512 0.845 0.846

6 CONCLUSION AND DISCUSSION

In this paper, we propose FaiREE, a post-processing algorithm for fair classification with theoretical
guarantees in a finite-sample and distribution-free manner. FaiREE can be applied to a wide range
of group fairness notions and is shown to achieve small mis-classification error while satisfying the
fairness constraints. Numerical studies on both synthetic and real data show the practical value of
FaiREE in achieving a superior fairness-accuracy trade-off than the state-of-the-art methods. One in-
teresting direction of future work is to extend the FaiREE techniques to multi-group fairness notions
such as multi-calibration (HÂebert-Johnson et al., 2018) and multi-accuracy Kim et al. (2019).
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A APPENDIX

A.1 PROOF OF PROPOSITION 1

Proof. The classifier is

ϕ =

{
✶{f(x, 0) > t1,0(k1,0)}, a = 0

✶{f(x, 1) > t1,1(k1,1)}, a = 1

we have:

|DEOO(ϕ)| = |P(Ŷ = 1 | A = 0, Y = 1)− P(Ŷ = 1 | A = 1, Y = 1)|

= |P(f(x, 0) > t1,0(k1,0) | A = 0, Y = 1)− P(f(x, 1) > t1,1(k1,1) | A = 1, Y = 1)|

= |1− F 1,0(t1,0(k1,0))− [1− F 1,1(t1,1(k1,1))]|

= |F 1,1(t1,1(k1,1))− F 1,0(t1,0(k1,0))|

Hence,

P(|DEOO(ϕ)| > α) = P(|F 1,1(t1,1(k1,1))− F 1,0(t1,0(k1,0))| > α)

= P(F 1,1(t1,1(k1,1))− F 1,0(t1,0(k1,0)) > α) + P(F 1,1(t1,1(k1,1))− F 1,0(t1,0(k1,0)) < −α)

∆
=A+B.

We then have

A = P(F 1,1(t1,1(k1,1))− F 1,0(t1,0(k1,0)) > α)

= P(F 1,0(t1,0(k1,0)) < F 1,1(t1,1(k1,1))− α)

≤ E[P(t1,0(k1,0) < F 1,0−1
(F 1,1(t1,1(k1,1))− α))✶{F 1,1(t1,1(k1,1))− α > 0} | t1,1(k1,1)]

= E{P[at least k1,0 of t1,0’s are less than F 1,0−1
(F 1,1(t1,1(k1,1))− α)]✶{F 1,1(t1,1(k1,1))− α > 0} | t1,1(k1,1)}

Following this, we obtain

A ≤ E{

n1,0∑

j=k1,0

P[exactly j of the t1,0’s are less than F 1,0−1
(F 1,1(t1,1(k1,1))− α)]✶{F 1,1(t1,1(k1,1))− α > 0} | t1,1(k1,1)}

= E{

n1,0∑

j=k1,0

(
n1,0

j

)
P[t1,0 < F 1,0−1

(F 1,1(t1,1(k1,1))− α)]j(1− P[t1,0 < F 1,0−1
(F 1,1(t1,1(k1,1))− α)])n

1,0−j

✶{F 1,1(t1,1(k1,1))− α > 0} | t1,1(k1,1)}

≤ E[
n1,0∑

j=k1,0

(
n1,0

j

)
(F 1,1(t1,1(k1,1))− α)j(1− (F 1,1(t1,1(k1,1))− α))n

1,0−j | t1,1(k1,1)]

Similarly, we have

B ≤ E[
n1,1∑

j=k1,1

(
n1,1

j

)
(F 1,0(t1,0(k1,0))− α)j(1− (F 1,0(t1,0(k1,0))− α))n

1,1−j | t1,0(k1,0)]
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Hence, we have

A+B ≤E[

n1,0∑

j=k1,0

(
n1,0

j

)
(F 1,1(t1,1(k1,1))− α)j(1− (F 1,1(t1,1(k1,1))− α))n

1,0−j | t1,1(k1,1)]

+ E[

n1,1∑

j=k1,1

(
n1,1

j

)
(F 1,0(t1,0(k1,0))− α)j(1− (F 1,0(t1,0(k1,0))− α))n

1,1−j | t1,0(k1,0)]

≤E[

n1,0∑

j=k1,0

(
n1,0

j

)
(Q1,1 − α)j(1− (Q1,1 − α))n

1,0−j ]

+ E[

n1,1∑

j=k1,1

(
n1,1

j

)
(Q1,0 − α)j(1− (Q1,0 − α))n

1,1−j ]

The last inequality holds because F 1,a(t1,a(k1,a)) is stochastically dominated by Beta(k1,a, n1,a −

k1,a + 1).

If t1,a is continuous random variable, the equality holds.

Now we complete the proof.

A.2 PROOF OF LEMMA 1

We first introduce the lemma (theorem E.4 in Zeng et al. (2022)):

Lemma 2. (Fair Bayes-optimal Classifiers under Equality of Opportunity). Let E⋆ = DEOO(f⋆).
For any α > 0, all fair Bayes-optimal classifiers f⋆

E,α under the fairness constraint |DEOO(f)| ≤ α
are given as follows:
- When |E⋆| ≤ α, f⋆

E,α = f⋆

- When |E⋆| > α, suppose PX|A=1,Y=1

(
η1(X) =

p1pY,1

2(p1pY,1−t⋆
E,α)

)
= 0, then for all x ∈ X and

a ∈ A,

f⋆
E,α(x, a) = I

(
ηa(x) >

papY,a
2papY,a + (1− 2a)t⋆E,α

)

where t⋆E,α is defined as

t⋆E,α = sup

{
t : PY |A=1,Y=1

(
η1(X) >

p1pY,1
2p1pY,1 − t

)
> PY |A=0,Y=1

(
η0(X) >

p0pY,0
2p0pY,0 + t

)
+

E⋆

|E⋆|
α

}
.

Now we come back to prove Proposition 1.

Proof. From Lemma 2, we have

t∗0 =
p0pY,0

2p0pY,0 + t∗E,α

(3)

t∗1 =
p1pY,1

2p1pY,1 − t∗E,α

(4)

Combine Eq. (3) and (4) together and we complete the proof.

A.3 PROOF OF PROPOSITION 2

We first provide a lemma for the mis-classification error of the classifier in the candidate set.

Lemma 3. | P(ϕ̂i(x, a) ̸= Y ) − [
k1,0
i

n1,0+1p0pY,0 +
k1,1
i

n1,1+1p1pY,1 +
n0,0+ 1

2−E(k0,0
i )

n0,0+1 p0(1 − pY,0) +
n0,1+ 1

2−E(k0,1
i )

n0,1+1 p1(1− pY,1)] |≤
p0(1−pY,0)
2(n0,0+1) +

p1(1−pY,1)
2(n0,1+1)
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We also have the following lemma:

Lemma 4. F 0,0(t0,0(k1,0)) ∼ Beta(k0,0, n0,0−k0,0+1), F 0,1(t0,1(k0,1)) ∼ Beta(k0,1, n0,1−k0,1+1).

Proof of Lemma 4. Since F 0,0, F 0,1 are the continuous cumulative distribution functions of the

t0,0’s and t0,1’s, we have F 0,0(t0,0), F 0,1(t0,1) ∼ U(0, 1), thus F 0,0(t0,0(k0,0)) is the k0,0
th

order

statistic of n0,0 i.i.d samples from U(0, 1) and F 0,1(t0,1(k0,1)) is the k0,1
th

order statistic of n0,1 i.i.d

samples from U(0, 1).

Thus, from the well known fact of the ordered statistics, we have F 0,0(t0,0(k0,0)) ∼ Beta(k0,0, n0,0 −

k0,0 + 1) and F 0,1(t0,1(k0,1)) ∼ Beta(k0,1, n0,1 − k0,1 + 1).

Now we come back to the proof of Lemma 3:

Proof of Lemma 3. The classifier is:

ϕ̂ =

{
✶{f(x, 0) > t1,0(k1,0)}, A = 0

✶{f(x, 1) > t1,1(k1,1)}, A = 1

So we have the mis-classification error:

P(Y ̸= Ŷ ) = P(Y = 1, Ŷ = 0) + P(Y = 0, Ŷ = 1)

= P(Y = 1, Ŷ = 0, A = 0) + P(Y = 1, Ŷ = 0, A = 1)

+ P(Y = 0, Ŷ = 1, A = 0) + P(Y = 0, Ŷ = 1, A = 1)

= P(Ŷ = 0|Y = 1, A = 0)P(Y = 1, A = 0) + P(Ŷ = 0|Y = 1, A = 1)P(Y = 1, A = 1)

+ P(Ŷ = 1|Y = 0, A = 0)P(Y = 0, A = 0) + P(Ŷ = 1|Y = 0, A = 1)P(Y = 0, A = 1)

= E[P(f(x, 0) ≤ t1,0(k1,0) | Y = 1, A = 0) | t1,0(k1,0)]p0pY,0

+ E[P(f(x, 1) ≤ t1,1(k1,1) | Y = 1, A = 1) | t1,1(k1,1)]p1pY,1

+ E[P(f(x, 0) ≥ t1,0(k1,0) | Y = 0, A = 0) | t1,0(k1,0)]p0(1− pY,0)

+ E[P(f(x, 1) ≥ t1,1(k1,1) | Y = 0, A = 1) | t1,1(k1,1)]p1(1− pY,1)

≤ E[P(f(x, 0) ≤ t1,0(k1,0) | Y = 1, A = 0) | t1,0(k1,0)]p0pY,0

+ E[P(f(x, 1) ≤ t1,1(k1,1) | Y = 1, A = 1) | t1,1(k1,1)]p1pY,1

+ E[P(f(x, 0) ≥ t0,0(k0,0) | Y = 0, A = 0) | t1,0(k1,0)]p0(1− pY,0)

+ E[P(f(x, 1) ≥ t0,1(k0,1) | Y = 0, A = 1) | t1,1(k1,1)]p1(1− pY,1)

= E[F 1,0(t1,0(k1,0)) | t
1,0
(k1,0)]p0pY,0 + E[F 1,1(t1,1(k1,1)) | t

1,1
(k1,1)]p1pY,1

+ E[1− E[F 0,0(t0,0(k0,0)) | t
0,0
(k0,0)] | t

1,0
(k1,0)]p0(1− pY,0) + E[1− E[F 0,1(t0,1(k0,1)) | t

0,1
(k0,1)] | t

1,1
(k1,1)]p1(1− pY,1)

=
k1,0i

n1,0 + 1
p0pY,0 +

k1,1i

n1,1 + 1
p1pY,1 +

n0,0 + 1− E(k0,0i )

n0,0 + 1
p0(1− pY,0) +

n0,1 + 1− E(k0,1i )

n0,1 + 1
p1(1− pY,1)

The last equality comes from Lemma 4, and from the fact that E(Beta(α, β)) = α
α+β .

Similarly, we have

P(Y ̸= Ŷ ) ≥
k1,0i

n1,0 + 1
p0pY,0+

k1,1i

n1,1 + 1
p1pY,1+

n0,0 − E(k0,0i )

n0,0 + 1
p0(1−pY,0)+

n0,1 − E(k0,1i )

n0,1 + 1
p1(1−pY,1)
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Thus, we have | P(ϕ̂i(x, a) ̸= Y )− [
k1,0
i

n1,0+1p0pY,0 +
k1,1
i

n1,1+1p1pY,1 +
n0,0+ 1

2−E(k0,0
i )

n0,0+1 p0(1− pY,0) +
n0,1+ 1

2−E(k0,1
i )

n0,1+1 p1(1− pY,1)] |≤
p0(1−pY,0)
2(n0,0+1) +

p1(1−pY,1)
2(n0,1+1) .

Now we complete the proof of Lemma 3.

Next, we come to prove Proposition 2.

Lemma 5 (Hoeffding’s inequality). Let X1, . . . , Xn be independent random variables. Assume that
Xi ∈ [mi,Mi] for every i. Then, for any t > 0, we have

P

{
n∑

i=1

(Xi − EXi) ≥ t

}
≤ e

− 2t2
∑n

i=1(Mi−mi)
2

Proof of Proposition 2. First, we notice that k0,ai is the number of t0,a’s such that t0,a < t1,a
(k1,a

i )
, i.e.

k0,ai =
n0,1∑
j=1

✶{t0,aj < t1,a
(k1,a

i )
}.

Thus, for a given ϵ > 0, from Hoeffding’s inequality, we have with probability 1− e−2n0,aϵ2 ,

k0,ai − E(k0,ai )

n0,a
=

n0,1∑
j=1

✶{t0,aj < t1,a
(k1,a

i )
} −

n0,1∑
j=1

E(✶{t0,aj < t1,a
(k1,a

i )
})

n0,a
≤ ϵ.

Similarly, with probability 1− e−2n0,aϵ2 ,

k0,ai − E(k0,ai )

n0,a
=

n0,1∑
j=1

✶{t0,aj < t1,a
(k1,a

i )
} −

n0,1∑
j=1

E(✶{t0,aj < t1,a
(k1,a

i )
})

n0,a
≥ −ϵ.

Thus, |
k0,a
i −E(k0,a

i )

n0,a |≤ ϵ with probability 1− 2e−2n0,aϵ2 .

Then we estimate pa and pY,a by p̂a = n1,a+n0,a

n and p̂Y,a = nY,a

n (n is the number of the total

samples). Here, n1,a+n0,a

n =

n∑

i=1
✶{Za

i =1}

n and nY,a

n =

n∑

i=1
✶{ZY,a

i =1}

n , where Za
i ∼ B(1, pa) and

ZY,a
i ∼ B(1, pY,a). From Hoeffding’s inequality (Lemma 5), we have:

P(| p̂a − pa |≥

√
n0,a

n
ϵ) ≤ 2e−2n0,aϵ2 ,

P(| p̂Y,a − pY,a |≥

√
n0,a

n
ϵ) ≤ 2e−2n0,aϵ2

Thus, with probability 1− 6e−2n0,aϵ2 , we have:





| p̂a − pa | ≤

√
n0,a

n
ϵ

| p̂Y,a − pY,a | ≤

√
n0,a

n
ϵ

|
k0,ai − E(k0,ai )

n0,a
| ≤ ϵ
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Hence, we have with probability 1− 6(e−2n0,0ϵ2 + e−2n0,1ϵ2),

|P(ϕ̂i(x, a) ̸= Y )− P̂(ϕ̂i(x, a) ̸= Y )|

≤|
k1,0i

n1,0 + 1
p0pY,0 +

k1,1i

n1,1 + 1
p1pY,1 +

n0,0 + 0.5− E(k0,0i )

n0,0 + 1
p0(1− pY,0) +

n0,1 + 0.5− E(k0,1i )

n0,1 + 1
p1(1− pY,1)

− [
k1,0i

n1,0 + 1
p̂0p̂Y,0 +

k1,1i

n1,1 + 1
p̂1p̂Y,1 +

n0,0 + 0.5− k0,0i

n0,0 + 1
p̂0(1− p̂Y,0) +

n0,1 + 0.5− k0,1i

n0,1 + 1
p̂1(1− p̂Y,1)]|

+
p0(1− pY,0)

2(n0,0 + 1)
+

p1(1− pY,1)

2(n0,1 + 1)

≤ϵ[

√
n0,0

n

k1,0i

n1,0 + 1
(p0 + pY,0) +

√
n0,1

n

k1,1i

n1,1 + 1
(p1 + pY,1)] + ϵ2(

n0,0

n

k1,0i

n1,0 + 1
+

n0,1

n

k1,1i

n1,1 + 1
)

+ ϵ[
n0,0

n0,0 + 1
[p0 + p0pY,0 +

√
n0,0

n
ϵ(

√
n0,0

n
ϵ+ p0 + pY,0 + 1)]

+
n0,1

n0,1 + 1
[p1 + p1pY,1 +

√
n0,1

n
ϵ(

√
n0,1

n
ϵ+ p1 + pY,1 + 1)]]

+
n0,0 + 0.5− E(k0,0i )

n0,0 + 1

√
n0,0

n
ϵ[

√
n0,0

n
ϵ+ p0 + pY,0 + 1]

+
n0,1 + 0.5− E(k0,1i )

n0,1 + 1

√
n0,1

n
ϵ[

√
n0,1

n
ϵ+ p1 + pY,1 + 1] +

p0(1− pY,0)

2(n0,0 + 1)
+

p1(1− pY,1)

2(n0,1 + 1)

≤ϵ[

√
n0,0

n
(p0 + pY,0) +

√
n0,1

n
(p1 + pY,1)] + ϵ2(

n0,0

n
+

n0,1

n
)

+ ϵ[
n0,0

n0,0 + 1
[p0 + p0pY,0 +

√
n0,0

n
ϵ(

√
n0,0

n
ϵ+ p0 + pY,0 + 1)]

+
n0,1

n0,1 + 1
[p1 + p1pY,1 +

√
n0,1

n
ϵ(

√
n0,1

n
ϵ+ p1 + pY,1 + 1)]]

+

√
n0,0

n
ϵ[

√
n0,0

n
ϵ+ p0 + pY,0 + 1] +

√
n0,1

n
ϵ[

√
n0,1

n
ϵ+ p1 + pY,1 + 1]

+
p0(1− pY,0)

2(n0,0 + 1)
+

p1(1− pY,1)

2(n0,1 + 1)

≤2ϵ+ ϵ2 + ϵ[ϵ2 + 4ϵ+ 2] + ϵ2 + 4ϵ+
p0(1− pY,0)

2(n0,0 + 1)
+

p1(1− pY,1)

2(n0,1 + 1)

=ϵ3 + 6ϵ2 + 8ϵ+
p0(1− pY,0)

2(n0,0 + 1)
+

p1(1− pY,1)

2(n0,1 + 1)

Thus we complete the proof.

A.4 THEOREM FOR THE ORIGINAL CANDIDATE SET K

Sometimes we would use the original candidate set K instead of the small set K ′ to achieve the
optimal accuracy more precisely. Now we provide our results for the candidate set K.

To facilitate the theoretical analysis, we first introduce the following lemma which implies that the
difference between the output of the function can be controlled by the difference between the input.
(i.e. the cumulative distribution function won’t increase drastically.)

Lemma 6. For a distribution F with a continuous density function, suppose q(x) denotes the quan-
tile of x under F , then for x > y, we have F(−)(x − y) ≤ q(x) − q(y) ≤ F(+)(x − y), where

F(−)(x) and F(+)(x) are two monotonically increasing functions, F(−)(ϵ) > 0, F(+)(ϵ) > 0 for

any ϵ > 0 and lim
ϵ→0

F(−)(ϵ) = lim
ϵ→0

F(+)(ϵ) = 0.
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Proof of Lemma 6. Since the domain of q(x) is a closed set and q(x) is continuous, we know that
q(x) is uniformly continuous. Thus we can easily find F(+) to satisfy the RHS. For F(−), we simply

define F(−)(t) = inf
x
{q(x+ t)− q(t)}. Since q(x+ t)− q(t) > 0 for t > 0 and the domain of x is

a closed set, we have F(−)(ϵ) > 0 for ϵ > 0 and lim
ϵ→0

F(−)(ϵ) = 0. Now we complete the proof.

Now we provide the following theorem.

Theorem 5. Given α′ < α. If min{n1,0, n1,1} ≥ ⌈
log δ

2

log(1−α)⌉. Suppose ϕ̂ is the final output of

FaiREE, we have:
(1) |DEOO(ϕ̂)| < α with probability (1− δ)M , where M is the size of the candidate set.
(2) Suppose the density distribution functions of f∗ under A = a, Y = 1 are continuous. When
the input classifier f satisfies | f(x, a) − f∗(x, a) |≤ ϵ0, for any ϵ > 0 such that F ∗

(+)(ϵ) ≤
α−α′

2 − F ∗
(+)(2ϵ0), we have

P(ϕ̂(x, a) ̸= Y )−P(ϕ∗
α′(x, a) ̸= Y ) ≤ 2F ∗

(+)(2ϵ0)+2F ∗
(+)(ϵ)+2ϵ3+12ϵ2+16ϵ+

p0(1− pY,0)

n0,0 + 1
+
p1(1− pY,1)

n0,1 + 1

with probability 1− (2M + 4)(e−2n0,0ϵ2 + e−2n0,1ϵ2)− (1− F 1,0
(−)(2ϵ))

n1,0

− (1− F 1,1
(−)(2ϵ))

n1,1

.

Proof of Theorem 5. The (1) of the theorem is a direct corollary from Theorem 1, now we prove the
(2) of the theorem. The proof can be divided into two parts. The first part is to prove that there exist
classifiers in our candidate set that are close to the fair Bayes-optimal classifier. The second part is
to prove that our algorithm can successfully choose one of these classifiers with high probability.

We suppose the fair Bayes optimal classifier has the form ϕ∗
α′(x, a) = ✶{f∗(x, a) > λ∗

a}. And the

output classifier of our algorithm is of the form ϕ̂(x, a) = ✶{f(x, a) > λa}.

For the first part, for any ϵ > 0, from Lemma 6, t1,a has a positive probability F 1,a
(+)(2ϵ) to fall in

the interval [λ∗
a − ϵ, λ∗

a + ϵ], which implies that the probability that there exists a ∈ {0, 1} such that

all t1,a’s fall out of [λ∗
a − ϵ, λ∗

a + ϵ] is less than (1 − F 1,0
(+)(2ϵ))

n1,0

+ (1 − F 1,1
(+)(2ϵ))

n1,1

. So with

probability 1 − (1 − F 1,0
(+)(2ϵ))

n1,0

− (1 − F 1,1
(−)(2ϵ))

n1,1

, there will exist t1,a in [λ∗
a − ϵ, λ∗

a + ϵ],

which we denote as ϕ0(x, a) = ✶{f(x, a) > t1,a∗ }. We also denote ϕ∗
0(x, a) = ✶{f∗(x, a) > t1,a∗ }.

Hence the gap between the classifier ϕ0 and the Bayes-optimal classifier will be very close. In detail,
we have

| P(ϕ0(x, a) ̸= Y )− P(ϕ∗
α′(x, a) ̸= Y ) |

≤ | P(ϕ0(x, a) ̸= Y )− P(ϕ∗
0(x, a) ̸= Y ) | + | P(ϕ∗

0(x, a) ̸= Y )− P(ϕ∗
α′(x, a) ̸= Y ) |

≤P(t1,a∗ − ϵ0 ≤ f∗(x, a) ≤ t1,a∗ + ϵ0) + P(min{t1,a∗ , λ∗
a} ≤ f∗(x, a) ≤ max{t1,a∗ , λ∗

a})

(Lemma 6) ≤F ∗
(+)(2ϵ0) + F ∗

(+)(max{t1,a∗ , λ∗
a} −min{t1,a∗ , λ∗

a})

≤F ∗
(+)(2ϵ0) + 2F ∗

(+)(ϵ)

so we complete the first part of the proof.

Now we come to the second part. First, we notice that DEOO(ϕ0) and DEOO(ϕ∗
α′) are close to

each other.
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|| DEOO(ϕ0) | − | DEOO(ϕ∗
α′) ||

≤ || DEOO(ϕ0) | − | DEOO(ϕ∗
0) || + || DEOO(ϕ∗

0) | − | DEOO(ϕ∗
α′) ||

= || P(f > t1,0∗ | Y = 1, A = 0)− P(f > t1,1∗ | Y = 1, A = 1) |

− | P(f∗ > t1,0∗ | Y = 1, A = 0)− P(f∗ > t1,1∗ | Y = 1, A = 1) ||

+ || P(f∗ > t1,0∗ | Y = 1, A = 0)− P(f∗ > t1,1∗ | Y = 1, A = 1) |

− | P(f∗ > λ∗
0 | Y = 1, A = 0)− P(f∗ > λ∗

1 | Y = 1, A = 1) ||

≤ | P(f > t1,0∗ | Y = 1, A = 0)− P(f∗ > t1,0∗ | Y = 1, A = 0) |

+ | P(f > t1,1∗ | Y = 1, A = 1)− P(f∗ > t1,1∗ | Y = 1, A = 1) |

+ || P(f∗ > t1,0∗ | Y = 1, A = 0)− P(f∗ > t1,1∗ | Y = 1, A = 1) |

− | P(f∗ > λ∗
0 | Y = 1, A = 0)− P(f∗ > λ∗

1 | Y = 1, A = 1) ||

≤P(t1,0∗ − ϵ0 ≤ f∗(x, a) ≤ t1,0∗ + ϵ0) + P(t1,1∗ − ϵ0 ≤ f∗(x, a) ≤ t1,1∗ + ϵ0)

+ | P(f∗ > t1,0∗ | Y = 1, A = 0)− P(f∗ > t1,1∗ | Y = 1, A = 1)

− P(f∗ > λ∗
0 | Y = 1, A = 0) + P(f∗ > λ∗

1 | Y = 1, A = 1) |

≤2F ∗
(+)(2ϵ0) + P(min{t1,a∗ , λ∗

a} ≤ f∗(x, a) ≤ max{t1,a∗ , λ∗
a})

(Lemma 6) ≤2F ∗
(+)(2ϵ0) + F ∗

(+)(max{t1,a∗ , λ∗
a} −min{t1,a∗ , λ∗

a})

≤2F ∗
(+)(2ϵ0) + 2F ∗

(+)(ϵ)

Thus, | DEOO(ϕ0) |≤| DEOO(ϕ∗
α′) | +2F ∗

(+)(2ϵ0) + 2F ∗
(+)(ϵ) = α′ + 2F ∗

(+)(2ϵ0) + 2F ∗
(+)(ϵ).

If F ∗
(+)(ϵ) ≤

α−α′

2 − F ∗
(+)(2ϵ0), then there will exist at least one feasible classifier in the candidate

set.

From Lemma 3, we have the mis-classification error

| P(ϕ̂i(x, a) ̸= Y ) − [
k1,0
i

n1,0+1p0pY,0 +
k1,1
i

n1,1+1p1pY,1 +
n0,0+ 1

2−E(k0,0
i )

n0,0+1 p0(1 − pY,0) +
n0,1+ 1

2−E(k0,1
i )

n0,1+1 p1(1− pY,1)] |≤
p0(1−pY,0)
2(n0,0+1) +

p1(1−pY,1)
2(n0,1+1) .

If we can accurately estimate the mis-classification error, than the second part is almost done. For

the estimation of E(k0,0i ), we can easily use k0,0i . We notice that k0,ai is the number of t0,a’s such

that t0,a < t1,a
(k1,a

i )
, i.e. k0,ai =

n0,1∑
i=1

✶{t0,ai < t1,a
(k1,a

i )
}.

Thus, from Hoeffding’s inequality, we have with probability 1− e−2n0,aϵ2 ,

k0,ai − E(k0,ai )

n0,a
=

n0,1∑
j=1

✶{t0,aj < t1,a
(k1,a

i )
} −

n0,1∑
j=1

E(✶{t0,aj < t1,a
(k1,a

i )
})

n0,a
≤ ϵ.

Similarly, with probability 1− e−2n0,aϵ2 ,

k0,ai − E(k0,ai )

n0,a
=

n0,1∑
j=1

✶{t0,aj < t1,a
(k1,a

i )
} −

n0,1∑
j=1

E(✶{t0,aj < t1,a
(k1,a

i )
})

n0,a
≥ −ϵ.

Thus, |
k0,a
i −E(k0,a

i )

n0,a |≤ ϵ with probability 1− 2e−2n0,aϵ2 .

Then, it’s easy to estimate pa and pY,a with p̂a = n1,a+n0,a

n and p̂Y,a = nY,a

n (n is the number of the

total samples). Here, n1,a+n0,a

n =

n∑

i=1
✶{Za

i =1}

n and nY,a

n =

n∑

i=1
✶{ZY,a

i =1}

n , where Za
i ∼ B(1, pa)

and ZY,a
i ∼ B(1, pY,a). From Hoeffding’s inequality, we have:

P(| p̂a − pa |≥

√
n0,a

n
ϵ) ≤ 2e−2n0,aϵ2 ,
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P(| p̂Y,a − pY,a |≥

√
n0,a

n
ϵ) ≤ 2e−2n0,aϵ2

Thus, with probability 1− 6e−2n0,aϵ2 , we have:





| p̂a − pa | ≤

√
n0,a

n
ϵ

| p̂Y,a − pY,a | ≤

√
n0,a

n
ϵ

|
k0,ai − E(k0,ai )

n0,a
| ≤ ϵ

Hence, we have with probability 1− (2M + 4)(e−2n0,0ϵ2 + e−2n0,1ϵ2), for each i ∈ {1, . . . ,M},

|P(ϕ̂i(x, a) ̸= Y )− P̂(ϕ̂i(x, a) ̸= Y )|

≤|
k1,0i

n1,0 + 1
p0pY,0 +

k1,1i

n1,1 + 1
p1pY,1 +

n0,0 + 0.5− E(k0,0i )

n0,0 + 1
p0(1− pY,0) +

n0,1 + 0.5− E(k0,1i )

n0,1 + 1
p1(1− pY,1)

− [
k1,0i

n1,0 + 1
p̂0p̂Y,0 +

k1,1i

n1,1 + 1
p̂1p̂Y,1 +

n0,0 + 0.5− k0,0i

n0,0 + 1
p̂0(1− p̂Y,0) +

n0,1 + 0.5− k0,1i

n0,1 + 1
p̂1(1− p̂Y,1)]|

+
p0(1− pY,0)

2(n0,0 + 1)
+

p1(1− pY,1)

2(n0,1 + 1)

≤ϵ[

√
n0,0

n

k1,0i

n1,0 + 1
(p0 + pY,0) +

√
n0,1

n

k1,1i

n1,1 + 1
(p1 + pY,1)] + ϵ2(

n0,0

n

k1,0i

n1,0 + 1
+

n0,1

n

k1,1i

n1,1 + 1
)

+ ϵ[
n0,0

n0,0 + 1
[p0 + p0pY,0 +

√
n0,0

n
ϵ(

√
n0,0

n
ϵ+ p0 + pY,0 + 1)]

+
n0,1

n0,1 + 1
[p1 + p1pY,1 +

√
n0,1

n
ϵ(

√
n0,1

n
ϵ+ p1 + pY,1 + 1)]]

+
n0,0 + 0.5− E(k0,0i )

n0,0 + 1

√
n0,0

n
ϵ[

√
n0,0

n
ϵ+ p0 + pY,0 + 1]

+
n0,1 + 0.5− E(k0,1i )

n0,1 + 1

√
n0,1

n
ϵ[

√
n0,1

n
ϵ+ p1 + pY,1 + 1]

+
p0(1− pY,0)

2(n0,0 + 1)
+

p1(1− pY,1)

2(n0,1 + 1)
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Further, we obtain

|P(ϕ̂i(x, a) ̸= Y )− P̂(ϕ̂i(x, a) ̸= Y )|

≤ϵ[

√
n0,0

n
(p0 + pY,0) +

√
n0,1

n
(p1 + pY,1)] + ϵ2(

n0,0

n
+

n0,1

n
)

+ ϵ[
n0,0

n0,0 + 1
[p0 + p0pY,0 +

√
n0,0

n
ϵ(

√
n0,0

n
ϵ+ p0 + pY,0 + 1)]

+
n0,1

n0,1 + 1
[p1 + p1pY,1 +

√
n0,1

n
ϵ(

√
n0,1

n
ϵ+ p1 + pY,1 + 1)]]

+

√
n0,0

n
ϵ[

√
n0,0

n
ϵ+ p0 + pY,0 + 1]

+

√
n0,1

n
ϵ[

√
n0,1

n
ϵ+ p1 + pY,1 + 1]

+
p0(1− pY,0)

2(n0,0 + 1)
+

p1(1− pY,1)

2(n0,1 + 1)

≤2ϵ+ ϵ2 + ϵ[ϵ2 + 4ϵ+ 2] + ϵ2 + 4ϵ

+
p0(1− pY,0)

2(n0,0 + 1)
+

p1(1− pY,1)

2(n0,1 + 1)

=ϵ3 + 6ϵ2 + 8ϵ+
p0(1− pY,0)

2(n0,0 + 1)
+

p1(1− pY,1)

2(n0,1 + 1)

Combining two parts together, we have:

with probability 1− (2M + 4)(e−2n0,0ϵ2 + e−2n0,1ϵ2)− (1− F 1,0
(−)(2ϵ))

n1,0

− (1− F 1,1
(−)(2ϵ))

n1,1

,

P(ϕ̂(x, a) ̸= Y )−P(ϕ∗
α′(x, a) ̸= Y ) ≤ 2F ∗

(+)(ϵ)+2F ∗
(+)(2ϵ0)+2ϵ3+12ϵ2+16ϵ+

p0(1− pY,0)

n0,0 + 1
+
p1(1− pY,1)

n0,1 + 1
.

Now we complete the proof.

A.5 PROOF OF THEOREM 2

Proof. The (1) of the theorem is a direct corollary from Theorem 1, now we prove the (2) of the
theorem.

It’s sufficient to modify the first part of the proof of Theorem 5 and the second part simply follows
Theorem 5.

For the first part, for any ϵ > 0, from Lemma 6, t1,0 has a positive probability F 1,0
(−)(2ϵ) to fall in the

interval [λ∗
0 − ϵ, λ∗

0 + ϵ], which implies that the probability that all t1,0’s fall out of [λ∗
0 − ϵ, λ∗

0 + ϵ]

is less than (1 − F 1,0
(−)(2ϵ))

n1,0

. So with probability 1 − (1 − F 1,0
(−)(2ϵ))

n1,0

, there will exist t1,0 in

[λ∗
0−ϵ, λ∗

0+ϵ], which we denote as λ0. We denote the corresponding classifier as ✶{f(x, a) > λa}.

From the proof of Theorem 5, we have with probability 1− 4e−2n0,aϵ2 − (1− F 1,0
(−)(2ϵ))

n1,0

,





| p̂a − pa | ≤

√
n0,a

n
ϵ

| p̂Y,a − pY,a | ≤

√
n0,a

n
ϵ

| λ0 − λ∗
0 | ≤ ϵ
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We have the following equalities:





λ∗
1 =

1

2−
( 1
λ∗
0
−2)p0pY,0

p1pY,1

λ1 =
1

2−
( 1
λ0

−2)p̂0p̂Y,0

p̂1p̂Y,1

Hence, 



p0pY,0
λ∗
0

+
p1pY,1
λ∗
1

= 2(p0pY,0 + p1pY,1)

p̂0p̂Y,0
λ0

+
p̂1p̂Y,1
λ1

= 2(p̂0p̂Y,0 + p̂1p̂Y,1)

By subtracting, we have

(2−
1

λ1
)p̂1p̂Y,1 − (2−

1

λ∗
1

)p1pY,1 = (
1

λ0
− 2)p̂0p̂Y,0 − (

1

λ∗
0

− 2)p0pY,0.

We have

(
1

λ0
− 2)p̂0p̂Y,0 − (

1

λ∗
0

− 2)p0pY,0

≤(
1

λ0
− 2)(p0 +

√
n0,0

n
ϵ)(pY,0 +

√
n0,0

n
ϵ)− (

1

λ∗
0

− 2)p0pY,0

≤
ϵ

λ∗
0(λ

∗
0 − ϵ)

p0pY,0 +

√
n0,0

n
ϵ(

1

λ∗
0 − ϵ

− 2)(p0 + pY,0 +

√
n0,0

n
ϵ)

Similarly, we have

(
1

λ0
− 2)p̂0p̂Y,0 − (

1

λ∗
0

− 2)p0pY,0

≥ −
ϵ

λ∗
0(λ

∗
0 + ϵ)

p0pY,0 +

√
n0,0

n
ϵ(

1

λ∗
0 + ϵ

− 2)(−p0 − pY,0 +

√
n0,0

n
ϵ);

(2−
1

λ1
)p̂1p̂Y,1 − (2−

1

λ∗
1

)p1pY,1

≤(
1

λ∗
1

−
1

λ1
)p1pY,1 +

√
n0,1

n
ϵ(2−

1

λ1
)(p1 + pY,1 +

√
n0,1

n
ϵ);

(2−
1

λ1
)p̂1p̂Y,1 − (2−

1

λ∗
1

)p1pY,1

≥(
1

λ∗
1

−
1

λ1
)p1pY,1 +

√
n0,1

n
ϵ(2−

1

λ1
)(−p1 − pY,1 +

√
n0,1

n
ϵ).

Now, we get:





(
1

λ∗
1

−
1

λ1
)p1pY,1 +

√
n0,1

n
ϵ(2−

1

λ1
)(−p1 − pY,1 +

√
n0,1

n
ϵ)

≤
ϵ

λ∗
0(λ

∗
0 − ϵ)

p0pY,0 +

√
n0,0

n
ϵ(

1

λ∗
0 − ϵ

− 2)(p0 + pY,0 +

√
n0,0

n
ϵ)

(
1

λ∗
1

−
1

λ1
)p1pY,1 +

√
n0,1

n
ϵ(2−

1

λ1
)(p1 + pY,1 +

√
n0,1

n
ϵ)

≥−
ϵ

λ∗
0(λ

∗
0 + ϵ)

p0pY,0 +

√
n0,0

n
ϵ(

1

λ∗
0 + ϵ

− 2)(−p0 − pY,0 +

√
n0,0

n
ϵ)
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Hence, we have:

λ1 − λ
∗
1

≤
λ1λ

∗
1

p1pY,1
[

ϵ

λ∗
0(λ

∗
0 − ϵ)

p0pY,0 +

√

n0,0

n
ϵ(

1

λ∗
0 − ϵ

− 2)(p0 + pY,0 +

√

n0,0

n
ϵ)− 2

√

n0,1

n
ϵ(−p1 − pY,1 +

√

n0,1

n
ϵ)]

and

λ1 − λ
∗
1

≥
λ1λ

∗
1

p1pY,1
[−

ϵ

λ∗
0(λ

∗
0 + ϵ)

p0pY,0 +

√

n0,0

n
ϵ(

1

λ∗
0 + ϵ

− 2)(−p0 − pY,0 +

√

n0,0

n
ϵ)− 2

√

n0,1

n
ϵ(p1 + pY,1 +

√

n0,1

n
ϵ)]

Thus, we have:

| λ1 − λ
∗
1 |≤

ϵ
λ∗
0(λ

∗
0−ϵ)

p0pY,0 + ϵ( 1
λ∗
0−ϵ

− 2)(2 + ϵ) + 4ϵ

p1pY,1

Now, combined with above, we have with probability 1− 4e−2n0,aϵ2 − (1− F
1,0
(−)(2ϵ))

n1,0

,















































| p̂a − pa | ≤

√

n0,a

n
ϵ

| p̂Y,a − pY,a | ≤

√

n0,a

n
ϵ

| λ0 − λ
∗
0 | ≤ ϵ

| λ1 − λ
∗
1 | ≤

ϵ
λ∗
0(λ

∗
0−ϵ)

p0pY,0 + ϵ( 1
λ∗
0−ϵ

− 2)(2 + ϵ) + 4ϵ

p1pY,1

From the proof of Theorem 5, we have:

If F ∗
(+)(ϵ) ≤ α−α′

2
− F ∗

(+)(2ϵ0), then with probability 1 − (2M + 4)(e−2n0,0ϵ2 + e−2n0,1ϵ2) − (1 −

F
1,0
(−)(2ϵ))

n1,0

,

P(ϕ̂(x, a) ̸= Y )− P(ϕ∗
α′(x, a) ̸= Y )

≤2F ∗
(+)(2ϵ0) + F

∗
(+)(ϵ) + F

∗
(+)(

ϵ
λ∗
0(λ

∗
0−ϵ)

p0pY,0 + ϵ( 1
λ∗
0−ϵ

− 2)(2 + ϵ) + 4ϵ

p1pY,1
) + 2ϵ3 + 12ϵ2 + 16ϵ.

Now we complete the proof.

A.6 FAIR BAYES-OPTIMAL CLASSIFIERS UNDER EQUALIZED ODDS

Theorem 6 (Fair Bayes-optimal Classifiers under Equalized Odds). Let EO⋆ = DEO(f⋆) =
(E⋆, P ⋆). For any α > 0, there exist 0 < α1 ≤ α and 0 < α2 ≤ α such that all fair Bayes-optimal
classifiers f⋆

EO,α under the fairness constraint |DEO(f)| ⪯ (α1, α2) are given as below:

• When |EO⋆| ⪯ (α1, α2), f
⋆
EO,α = f⋆.

• When E∗ > α1 or P ∗ > α2, for all x ∈ X and a ∈ A, there exist t⋆1,EO,α and t⋆2,EO,α
such that

f⋆
EO,α(x, a) =

I

(
ηa(x) >

papY,a+(2a−1)
PY,a

1−PY,a
t⋆2,EO,α

2papY,a+(2a−1)(
PY,a

1−PY,a
t⋆2,EO,α

−t⋆1,EO,α
)

)

+ aτ⋆EO,αI

(
ηa(x) =

papY,a+(2a−1)
PY,a

1−PY,a
t⋆2,EO,α

2papY,a+(2a−1)(
PY,a

1−PY,a
t⋆2,EO,α

−t⋆1,EO,α
)

)
,

Here, we assume PX|A=1,Y=1

(
η1(X) =

p1pY,1+
pY,1

1−pY,1
t⋆2,EO,α

2p1pY,1+
pY,1

1−pY,1
t⋆2,EO,α

−t⋆1,EO,α

)

= PX|A=0,Y=0

(
η1(X) =

p1pY,1+
pY,1

1−pY,1
t⋆2,EO,α

2p1pY,1+
pY,1

1−pY,1
t⋆2,EO,α

−t⋆1,EO,α

)
= 0 and thus τ⋆EO,α ∈ [0, 1]

can be an arbitrary constant.
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To prove Theorem 6, we first introduce the Neyman-Pearson Lemma.

Lemma 7. (Generalized Neyman-Pearson lemma). Let f0, f1,. . . , fm be m+1 real-valued functions
defined on a Euclidean space X . Assume they are ν -integrable for a σ -finite measure ν. Let ϕ0 be
any function of the form

ϕ0(x) =





1, f0(x) >
∑m

i=1 cifi(x)
γ(x) f0(x) =

∑m
i=1 cifi(x)

0, f0(x) <
∑m

i=1 cifi(x)

where 0 ≤ γ(x) ≤ 1 for all x ∈ X . For given constants t1, . . . , tm ∈ R, let T be the class of Borel
functions ϕ : X 7→ R satisfying

∫

X

ϕfidν ≤ ti, i = 1, 2, . . . ,m (5)

and T0 be the set of ϕ s in T satisfying (5) with all inequalities replaced by equalities. If
ϕ0 ∈ T0, then ϕ0 ∈ argmax

ϕ∈T0

∫
X
ϕf0dν. Moreover, if ci ≥ 0 for all i = 1, . . . ,m, then

ϕ0 ∈ argmax
ϕ∈T

∫
X
ϕf0dν.

Then we come to prove the theorem.

Proof. If |EO⋆| ⪯ (α, α), we are done since f⋆ is just our target classifier. Now, we assume

|EO⋆| ⪯ (α, α) does not hold. Let f be a classifier that gives output Ŷ = 1 with probability f(x, a)
under X = x and A = a. The mis-classification error for f is

R(f) = P(Ŷ ̸= Y ) = 1− P(Ŷ = 1, Y = 1)− P(Ŷ = 0, Y = 0)

= P(Ŷ = 1, Y = 0)− P(Ŷ = 1, Y = 1) + P(Y = 1)

Thus, to minimize the mis-classification error is just equivalent to maximize P(Ŷ = 1, Y = 0) −

P(Ŷ = 1, Y = 1), which can be expressed as:

P(Ŷ = 1, Y = 1)− P(Ŷ = 1, Y = 0)

=PX|A=1,Y=1(Ŷ = 1)p1pY,1 + PX|A=0,Y=1(Ŷ = 1) (1− p1) pY,0

− PX|A=1,Y=0(Ŷ = 1)p1 (1− pY,1)− PX|A=0,Y=0(Ŷ = 1) (1− p1) (1− pY,0)

=p1

[
pY,1

∫

X

f(x, 1)dPX|1,1(x)− (1− pY,1)

∫

X

f(x, 1)dPX|A=1,Y=0(x)

]

+ (1− p1)

[
pY,0

∫

X

f(x, 0)dPX|A=0,Y=1(x)− (1− pY,0)

∫

X

f(x, 0)dPX|A=0,Y=0(x)

]

=

∫

A

∫

X

f(x, a)M(x, a)dPX(x)dP(a)

with

M(x, a) = ap1

[
pY,1

dPX|A=1,Y =1(x)

dPX(x) − (1− pY,1)
dPX|A=1,Y =0(x)

dPX(x)

]

+(1− a)p0

[
pY,0

dPX|A=0,Y =1(x)

dPX(x) − (1− pY,0)
dPX|A=0,Y =0(x)

dPX(x)

]
.

(6)

Next, for any classifier f , we have,

DEO(f) = (PX|A=1,Y=1(Ŷ = 1)− PX|A=0,Y=1(Ŷ = 1),PX|A=1,Y=0(Ŷ = 1)− PX|A=0,Y=0(Ŷ = 1))

= (

∫

X

f(x, 1)dPX|A=1,Y=1(x)−

∫

X

f(x, 0)dPX|A=0,Y=1(x),

∫

X

f(x, 1)dPX|A=1,Y=0(x)−

∫

X

f(x, 0)dPX|A=0,Y=0(x))

= (

∫

A

∫

X

f(x, a)HE(x, a)dPX(x)dP(a),

∫

A

∫

X

f(x, a)HP (x, a)dPX(x)dP(a))
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with





HE(x, a) =
adPX|A=1,Y=1(x)

p1dPX(x)
−

(1− a)dPX|A=0,Y=1(x)

p0dPX(x)

HP (x, a) =
adPX|A=1,Y=0(x)

p1dPX(x)
−

(1− a)dPX|A=0,Y=0(x)

p0dPX(x)
.

(7)

Since lim
t2→∞

p2
1pY,1+

pY,1
1−pY,1

t2

2p2
1pY,1+

pY,1
1−pY,1

t2−t1
= lim

t2→∞

p2
0pY,0−

pY,0
1−pY,0

t2

2p2
0pY,0−

pY,0
1−pY,0

t2+t1
= 1, we have:

lim
t2→∞

PX|A=1,Y=1(η1(x) >
p21pY,1 +

pY,1

1−pY,1
t2

2p21pY,1 +
pY,1

1−pY,1
t2 − t1

)

= lim
t2→∞

PX|A=0,Y=1(η0(x) >
p20pY,0 −

pY,0

1−pY,0
t2

2p20pY,0 −
pY,0

1−pY,0
t2 + t1

)

=0

and

lim
t2→∞

PX|A=1,Y=0(η1(x) >
p21pY,1 +

pY,1

1−pY,1
t2

2p21pY,1 +
pY,1

1−pY,1
t2 − t1

)

= lim
t2→∞

PX|A=0,Y=0(η0(x) >
p20pY,0 −

pY,0

1−pY,0
t2

2p20pY,0 −
pY,0

1−pY,0
t2 + t1

)

=0

So there exist t⋆1,EO,α and t⋆2,EO,α, such that:

t⋆1,EO,α
E∗

|E∗| > 0, t⋆2,EO,α
P∗

|P∗| > 0, and











































































E⋆

|E⋆|
[PX|A=1,Y =1(η1(x) >

p21pY,1 +
pY,1

1−pY,1
t⋆2,EO,α

2p21pY,1 +
pY,1

1−pY,1
t⋆2,EO,α − t⋆1,EO,α

) + τPX|A=1,Y =1(η1(x) =
p21pY,1 +

pY,1

1−pY,1
t⋆2,EO,α

2p21pY,1 +
pY,1

1−pY,1
t⋆2,EO,α − t⋆1,EO,α

)

−PX|A=0,Y =1(η0(x) >
p20pY,0 −

pY,0

1−pY,0
t⋆2,EO,α

2p20pY,0 −
pY,0

1−pY,0
t⋆2,EO,α + t⋆1,EO,α

)] = α1 < α

P ⋆

|P ⋆|
[PX|A=1,Y =0(η1(x) >

p21pY,1 +
pY,1

1−pY,1
t⋆2,EO,α

2p21pY,1 +
pY,1

1−pY,1
t⋆2,EO,α − t⋆1,EO,α

) + τPX|A=1,Y =0(η1(x) =
p21pY,1 +

pY,1

1−pY,1
t⋆2,EO,α

2p21pY,1 +
pY,1

1−pY,1
t⋆2,EO,α − t⋆1,EO,α

)

−PX|A=0,Y =0(η0(x) >
p20pY,0 −

pY,0

1−pY,0
t⋆2,EO,α

2p20pY,0 −
pY,0

1−pY,0
t⋆2,EO,α + t⋆1,EO,α

)] = α2 < α

We consider the constraint,















E⋆

|E⋆|

∫

A

∫

X

f(x, a)HE(x, a)dPX(x)dP(a) ≤ α1

F ⋆

|F ⋆|

∫

A

∫

X

f(x, a)HP (x, a)dPX(x)dP(a) ≤ α2.

(8)

Let f be the classifier of the form:

fs1,s2,τ (x, a) =











1, M(x, a) > s1
E⋆

|E⋆|
HE(x, a) + s2

P⋆

|P⋆|
HP (x, a);

aτ, M(x, a) = s1
E⋆

|E⋆|
HE(x, a) + s2

P⋆

|P⋆|
HP (x, a);

0, M(x, a) < s1
E⋆

|E⋆|
HE(x, a) + s2

P⋆

|P⋆|
HP (x, a),

(9)
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From (6) & (7), M(x, a) > s1
E⋆

|E⋆|
HE(x, a) + s2

P⋆

|P⋆|
HP (x, a) is equal to

ap1

[

pY,1
dPX|A=1,Y =1(x)

dPX(x)
− (1− pY,1)

dPX|A=1,Y =0(x)

dPX(x)

]

+ (1− a)p0

[

pY,0
dPX|A=0,Y =1(x)

dPX(x)
− (1− pY,0)

dPX|A=0,Y =0(x)

dPX(x)

]

>
E⋆

|E⋆|
s1(

adPX|A=1,Y =1(x)

p1dPX(x)
−

(1− a)dPX|A=0,Y =1(x)

p0dPX(x)
)

+
P ⋆

|P ⋆|
s2(

adPX|A=1,Y =0(x)

p1dPX(x)
−

(1− a)dPX|A=0,Y =0(x)

p0dPX(x)
)

which is equal to






















p1

[

pY,1
dPX|A=1,Y =1(x)

dPX(x)
− (1− pY,1)

dPX|A=1,Y =0(x)

dPX(x)

]

>

E⋆

|E⋆|
s1dPX|A=1,Y =1(x) +

P⋆

|P⋆|
s2dPX|A=1,Y =0(x)

p1dPX(x)
, a = 1

p0

[

pY,0
dPX|A=0,Y =1(x)

dPX(x)
− (1− pY,0)

dPX|A=0,Y =0(x)

dPX(x)

]

> −

E⋆

|E⋆|
s1dPX|A=0,Y =1(x) +

P⋆

|P⋆|
s2dPX|A=0,Y =0(x)

p0dPX(x)
, a = 0

Thus,

M(x, a) > s1
E⋆

|E⋆|
HE(x, a) + s2

P ⋆

|P ⋆|
HP (x, a)

⇐⇒ pa

[

pY,a

dPX|A=a,Y =1(x)

dPX(x)
− (1− pY,a)

dPX|A=a,Y =0(x)

dPX(x)

]

> (2a− 1)

E⋆

|E⋆|
s1dPX|A=a,Y =1(x) +

P⋆

|P⋆|
s2dPX|A=a,Y =0(x)

padPX(x)
.

⇐⇒
pY,adPX|A=a,Y =1(x)

pY,adPX|A=a,Y =1(x) + (1− pY,a)dPX|A=a,Y =0(x)
>

p2apY,a + (2a− 1)
pY,a

1−pY,a
t2

2p2apY,a + (2a− 1)(
pY,a

1−pY,a
t2 − t1)

.

where t1 = 2
E⋆

|E⋆|
s1, t2 = 2

P ⋆

|P ⋆|
s2.

⇐⇒ ηa(x) >
p2apY,a + (2a− 1)

pY,a

1−pY,a
t2

2p2apY,a + (2a− 1)(
pY,a

1−pY,a
t2 − t1)

.

As a result, fs1,s2,τ (x, a) in (9) can be written as

ft1,t2,τ (x, a) = ✶{ηa(x) >
p2apY,a + (2a− 1)

pY,a

1−pY,a
t2

2p2apY,a + (2a− 1)(
pY,a

1−pY,a
t2 − t1)

}+aτ✶{ηa(x) =
p2apY,a + (2a− 1)

pY,a

1−pY,a
t2

2p2apY,a + (2a− 1)(
pY,a

1−pY,a
t2 − t1)

}.

(10)
Further, the constraint (8) for f in (10) is equivalent to










































































E⋆

|E⋆|
[PX|A=1,Y =1(η1(x) >

p21pY,1 +
pY,1

1−pY,1
t2

2p21pY,1 +
pY,1

1−pY,1
t2 − t1

) + τPX|A=1,Y =1(η1(x) =
p21pY,1 +

pY,1

1−pY,1
t2

2p21pY,1 +
pY,1

1−pY,1
t2 − t1

)

−PX|A=0,Y =1(η0(x) >
p20pY,0 −

pY,0

1−pY,0
t2

2p20pY,0 −
pY,0

1−pY,0
t2 + t1

)] ≤ α1

P ⋆

|P ⋆|
[PX|A=1,Y =0(η1(x) >

p21pY,1 +
pY,1

1−pY,1
t2

2p21pY,1 +
pY,1

1−pY,1
t2 − t1

) + τPX|A=1,Y =0(η1(x) =
p21pY,1 +

pY,1

1−pY,1
t2

2p21pY,1 +
pY,1

1−pY,1
t2 − t1

)

−PX|A=0,Y =0(η0(x) >
p20pY,0 −

pY,0

1−pY,0
t2

2p20pY,0 −
pY,0

1−pY,0
t2 + t1

)] ≤ α2

(11)

Now, let Tα1,α2 be the class of Borel functions f that satisfy (8) and Tα1,α2,0 be the set of f -s in Tα that satisfy
(8) with all the inequalities being replaced by equalities.

From the definition of t⋆1,EO,α and t⋆2,EO,α, clearly ft⋆
1,EO,α

,t⋆
2,EO,α

,τ (x, a) ∈ Tα1,α2,0. Further, we have

s∗1 = t⋆1,EO,α
E∗

2|E∗|
> 0 and s∗2 = t⋆2,EO,α

P∗

2|P∗|
> 0.

Hence, from Generalized Neyman-Pearson lemma, we have:

ft⋆
1,EO,α

,t⋆
2,EO,α

,τ (x, a) ∈ argmax
f∈Tα1,α2

∫

A

∫

X

ft1,t2,τ (x, a)M(x, a)dPX(x)dP(a)
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Now we complete our proof.

A.7 PROOF OF PROPOSITION 3

Proof. The classifier is

ϕ =

{
✶{f(x, 0) > t1,0(k1,0)}, a = 0

✶{f(x, 1) > t1,1(k1,1)}, a = 1

we have:

|DEO(ϕ)| = (|F 1,1(t1,1(k1,1))− F 1,0(t1,0(k1,0))|, |F
0,1(t1,1(k1,1))− F 0,0(t1,0(k1,0))|)

From Proposition 1, we have P(|F 1,1(t1,1(k1,1)) − F 1,0(t1,0(k1,0))| > α) ≤ E[
n1,0∑

j=k1,0

(
n1,0

j

)
(Q1,1 −

α)j(1− (Q1,1 − α))n
1,0−j ] + E[

n1,1∑
j=k1,1

(
n1,1

j

)
(Q1,0 − α)j(1− (Q1,0 − α))n

1,1−j ]

Also,

P(|F 0,1(t1,1(k1,1))− F 0,0(t1,0(k1,0))| > α)

=P(F 0,1(t1,1(k1,1))− F 0,0(t1,0(k1,0)) > α) + P(F 0,1(t1,1(k1,1))− F 0,0(t1,0(k1,0)) < −α)

∆
=A+B

And we have

A = P(F 0,1(t1,1(k1,1))− F 0,0(t1,0(k1,0)) > α)

= P(F 0,0(t1,0(k1,0)) < F 0,1(t1,1(k1,1))− α)

≤ P(F 0,0(t0,0(k0,0)) < F 0,1(t0,1(k0,1+1))− α)

≤ E[P(t0,0(k0,0) < F 0,0−1
(F 0,1(t0,1(k0,1+1))− α))✶{F 0,1(t0,1(k0,1+1))− α > 0} | t0,1(k0,1+1)]

= E{P[at least k0,0 of t0,0’s are less than F 0,0−1
(F 0,1(t0,1(k0,1+1))− α)]✶{F 0,1(t0,1(k0,1+1))− α > 0} | t0,1(k0,1+1)}

= E{
n0,0∑

j=k0,0

P[exactly j of the t0,0’s are less than F 0,0−1
(F 0,1(t0,1(k0,1+1))− α)]✶{F 0,1(t0,1(k0,1+1))− α > 0} | t0,1(k0,1+1)}

= E{
n0,0∑

j=k0,0

(
n0,0

j

)
P[t0,0 < F 0,0−1

(F 0,1(t0,1(k0,1+1))− α)]j(1− P[t0,0 < F 0,0−1
(F 0,1(t0,1(k0,1+1))− α)])n

0,0−j

✶{F 0,1(t0,1(k0,1+1))− α > 0} | t0,1(k0,1+1)}

≤ E[

n0,0∑

j=k0,0

(
n0,0

j

)
(F 0,1(t0,1(k0,1+1))− α)j(1− (F 0,1(t0,1(k0,1+1))− α))n

0,0−j | t0,1(k0,1+1)]

Similarly, we have

B ≤ E[
n0,1∑

j=k0,1

(
n0,1

j

)
(F 0,0(t0,0(k0,0+1))− α)j(1− (F 0,0(t0,0(k0,0+1))− α))n

0,1−j | t0,0(k0,0+1)]

Hence, we have

A+B ≤E[
n0,0∑

j=k0,0

(
n0,0

j

)
(F 0,1(t0,1(k0,1+1))− α)j(1− (F 0,1(t0,1(k0,1+1))− α))n

0,0−j | t0,1(k0,1+1)]

+ E[

n0,1∑

j=k0,1

(
n0,1

j

)
(F 0,0(t0,0(k0,0+1))− α)j(1− (F 0,0(t0,0(k0,0+1))− α))n

0,1−j | t0,0(k0,0+1)]
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Since F 0,a(t0,a(k0,a+1)) is stochastically dominated by Beta(k0,a + 1, n0,a − k0,a), we complete the

proof.

A.8 ALGORITHMS FOR OTHER GROUP FAIRNESS CONSTRAINTS

In addition to Equality of Opportunity and Equalized Odds, there are other common fairness con-
straints and we can extend FaiREE to them.

Definition 4 (Demographic Parity). A classifier satisfies Demographic Parity if its prediction Ŷ is
statistically independent of the sensitive attribute A :

P(Ŷ = 1 | A = 1) = P(Ŷ = 1 | A = 0)

Definition 5 (Predictive Equality). A classifier satisfies Predictive Equality if it achieves the same
TNR (or FPR) among protected groups:

PX|A=1,Y=0(Ŷ = 1) = PX|A=0,Y=0(Ŷ = 1)

Definition 6 (Equalized Accuracy). A classifier satisfies Equalized Accuracy if its mis-classification
error is statistically independent of the sensitive attribute A:

P(Ŷ ̸= Y | A = 1) = P(Ŷ ̸= Y | A = 0)

Similar to DEOO, we can define the following measures:

DDP = PX|A=1(Ŷ = 1)− PX|A=0(Ŷ = 1) (12)

DPE = PX|A=1,Y=0(Ŷ = 1)− PX|A=0,Y=0(Ŷ = 1) (13)

DEA = P(Ŷ ̸= Y | A = 1)− P(Ŷ ̸= Y | A = 0). (14)

A.8.1 FAIREE FOR DEMOGRAPHIC PARITY

Algorithm 3: FaiREE for Demographic Parity

Input:
Training data: S = S0,0 ∪ S0,1 ∪ S1,0 ∪ S1,1

α: error bound
δ: small tolerance level
f : a classifier

1 T y,a = {f(xy,a
1 ), . . . , f(xy,a

ny,a
)}

2 {ty,a(1) , . . . , t
y,a
(ny,a)

} =sort(T y,a)

3 T y = T y,0 ∪ T y,1

4 {ty(1), . . . , t
y
(ny)
} =sort(T y)

5 Define g(k, a) = E[
na∑
j=k

(
na

j

)
(Q1−a − α)j(1− (Q1−a − α))n

a−j ] with

Qa ∼ Beta(k, na − k + 1), L(k0, k1) = g(k0, 0) + g(k1, 1)
6 Build candidate set K = {(k0, k1) | L(k0, k1) ≤ δ} = {(k01, k

1
1), . . . , (k

0
M , k1M )}

7 Find ky,0i : ty,0
(ky,0

i )
≤ t0

(k0
i )

< ty,0
(ky,0

i +1)
, ty,1

(ky,1
i )
≤ t1

(k1
i )

< ty,1
(ky,1

i +1)
, y ∈ {0, 1}

8 i∗ ← argmin
i∈[M ]

{êi} (êi is defined in Proposition 2)

Output: ϕ̂(x, a) = ✶{f(x, a) > ta(ka
i∗

)}

Similar to the algorithm for Equality of Opportunity, we have the following propositions and as-
sumption:
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Proposition 4. Given k0, k1 satisfying ka ∈ {1, . . . , na} (a = 0, 1). Define ϕ(x, a) = ✶{f(x, a) >

ta(ka)}, g(k, a) = E[
na∑
j=k

(
na

j

)
(Q1−a −α)j(1− (Q1−a −α))n

a−j ] with Qa ∼ Beta(k, na − k+1),

then we have:

P(|DDP (ϕ)| > α) ≤ g(k0, 0) + g(k1, 1).

If ta is continuous random variable, the equality holds.

Theorem 7. If min{n0, n1} ≥ ⌈
log δ

2

log(1−α)⌉, we have |DDP (ϕ̂i)| < α with probability 1 − δ, for

each i ∈ {1, . . . ,M}.

Theorem 8. Given α′ < α. If min{n0, n1} ≥ ⌈
log δ

2

log(1−α)⌉. Suppose ϕ̂ is the final output of FaiREE,

we have:
(1) |DDP (ϕ̂)| ≤ α with probability (1− δ)M , where M is the size of the candidate set.
(2) Suppose the density distribution functions of f∗ under A = a, Y = 1 are continuous. ϕ∗

DDP,α =

argmin|DDP (ϕ)|≤αP(ϕ(x, a) ̸= Y ). When the input classifier f satisfies ∥f(x, a)− f∗(x, a)∥∞ ≤

ϵ0, for any ϵ > 0 such that F ∗
(+)(ϵ) ≤

α−α′

2 − F ∗
(+)(2ϵ0), we have

| P(ϕ̂(x, a) ̸= Y )− P(ϕ∗
α′(x, a) ̸= Y ) |≤ 2F ∗

(+)(2ϵ0) + 2F ∗
(+)(ϵ) + 2ϵ3 + 12ϵ2 + 16ϵ

with probability 1− (2M + 4)(e−2n1,0ϵ2 + e−2n1,1ϵ2 + e−2n0,0ϵ2 + e−2n0,1ϵ2).

A.8.2 FAIREE FOR PREDICTIVE EQUALITY

Algorithm 4: FaiREE for Predictive Opportunity

Input:
Training data: S = S0,0 ∪ S0,1 ∪ S1,0 ∪ S1,1

α: error bound
δ: small tolerance level
f : a classifier

1 T y,a = {f(xy,a
1 ), . . . , f(xy,a

ny,a
)}

2 {ty,a(1) , . . . , t
y,a
(ny,a)

} =sort(T y,a)

3 Define g0(k, a) = E[
n0,a∑
j=k

(
n0,a

j

)
(Q0,1−a − α)j(1− (Q0,1−a − α))n

0,a−j ] with

Q0,a ∼ Beta(k, n0,a − k + 1), L(k0,0, k0,1) = g0(k
0,0, 0) + g0(k

0,1, 1)

4 Build candidate set K = {(k0,0, k0,1) | L(k0,0, k0,1) ≤ δ} = {(k0,01 , k0,11 ), . . . , (k0,0M , k0,1M )}

5 Find k1,0i , k1,1i : t1,0
(k1,0

i )
≤ t0,0

(k0,0
i )

< t1,0
(k1,0

i +1)
, t1,1

(k1,1
i )
≤ t0,1

(k0,1
i )

< t1,1
(k1,1

i +1)

6 i∗ ← argmin
i∈[M ]

{êi} (êi is defined in Proposition 2)

Output: ϕ̂(x, a) = ✶{f(x, a) > t0,a
(k0,a

i∗
)
}

Similar to the algorithm for Equality of Opportunity, we have the following propositions and as-
sumption:

Proposition 5. Given k0,0, k0,1 satisfying k1,a ∈ {1, . . . , n0,a} (a = 0, 1). Define ϕ(x, a) =

✶{f(x, a) > t0,a(k0,a)}, g0(k, a) = E[
n0,a∑
j=k

(
n0,a

j

)
(Q0,1−a−α)j(1−(Q0,1−a−α))n

0,a−j ] with Q0,a ∼

Beta(k, n0,a − k + 1), then we have:

P(|DPE(ϕ)| > α) ≤ g0(k
0,0, 0) + g0(k

0,1, 1).

If t0,a is continuous random variable, the equality holds.

Theorem 9. If min{n0,0, n0,1} ≥ ⌈
log δ

2

log(1−α)⌉, we have |DPE(ϕ̂i)| < α with probability 1− δ, for

each i ∈ {1, . . . ,M}.
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Theorem 10. Given α′ < α. If min{n0,0, n0,1} ≥ ⌈
log δ

2

log(1−α)⌉. Suppose ϕ̂ is the final output of

FaiREE, we have:
(1) |DPE(ϕ̂)| ≤ α with probability (1− δ)M , where M is the size of the candidate set.
(2) Suppose the density distribution functions of f∗ under A = a, Y = 1 are continuous. ϕ∗

DPE,α =

argmin|DPE(ϕ)|≤αP(ϕ(x, a) ̸= Y ). When the input classifier f satisfies ∥f(x, a)− f∗(x, a)∥∞ ≤

ϵ0, for any ϵ > 0 such that F ∗
(+)(ϵ) ≤

α−α′

2 − F ∗
(+)(2ϵ0), we have

| P(ϕ̂(x, a) ̸= Y )− P(ϕ∗
α′(x, a) ̸= Y ) |≤ 2F ∗

(+)(2ϵ0) + 2F ∗
(+)(ϵ) + 2ϵ3 + 12ϵ2 + 16ϵ

with probability 1− (2M + 4)(e−2n1,0ϵ2 + e−2n1,1ϵ2)− (1− F 0,0
(−)(2ϵ))

n0,0

− (1− F 0,1
(−)(2ϵ))

n0,1

.

A.8.3 FAIREE FOR EQUALIZED ACCURACY

Algorithm 5: FaiREE for Equalized Accuracy

Input:
Training data: S = S0,0 ∪ S0,1 ∪ S1,0 ∪ S1,1

α: error bound (α > |pY,1 − pY,0|)
δ: small tolerance level
f : a classifier

1 T y,a = {f(xy,a
1 ), . . . , f(xy,a

ny,a
)}

2 {ty,a(1) , . . . , t
y,a
(ny,a)

} =sort(T y,a)

3 Define g1(k, a) = E[
n1,a∑
j=k

(
n1,a

j

)
(
pY,1−aQ

1,1−a−α
pY,a

)j(1−
pY,1−aQ

1,1−a−α
pY,a

)n
1,a−j ] with

Q1,a ∼ Beta(k, n1,a − k + 1),L1(k
1,0, k1,1) = g1(k

1,1, 1) + g1(k
1,0, 0)

4 Define g0(k, a) =

E[
n0,a∑
j=k

(
n0,a

j

)
(
(1−pY,1−a)Q

0,1−a+pY,1−a−pY,a−α
1−pY,0

)j(1−
(1−pY,1−a)Q

0,1−a+pY,1−a−pY,a−α
1−pY,a

)n
0,a−j ]

with Q0,a ∼ Beta(k + 1, n0,a − k), L0(k
0,0, k0,1) = g0(k

0,1, 1) + g0(k
0,0, 0)

5 Find k0,0, k0,1: t0,0(k0,0) ≤ t1,0(k1,0) < t0,0(k0,0+1), t
0,1
(k0,1) ≤ t1,1(k1,1) < t0,1(k0,1+1).

6 Build candidate set

K = {(k1,0, k1,1) | L1(k
1,0, k1,1) + L0(k

0,0, k0,1) ≤ δ} = {(k1,01 , k1,11 ), . . . , (k1,0M , k1,1M )}
7 i∗ ← argmin

i∈[M ]

{êi} (êi is defined in Proposition 2)

Output: ϕ̂(x, a) = ✶{f(x, a) > t1,a
(k1,a

i∗
)
}

Similar to the algorithm for Equalized Odds, we have the following propositions and assumption:

Proposition 6. Given k1,0, k1,1 satisfying k1,a ∈ {1, . . . , n1,a} (a = 0, 1) and

α > |pY,1 − pY,0|. Define ϕ(x, a) = ✶{f(x, a) > t1,a(k1,a)}, g1(k, a) =

E[
n1,a∑
j=k

(
n1,a

j

)
(
pY,1−aQ

1,1−a−α
pY,a

)j(1 −
pY,1−aQ

1,1−a−α
pY,a

)n
1,a−j ] with Q1,a ∼ Beta(k, n1,a − k +

1), qY,a(α) =
(1−pY,1−a)Q

0,1−a+pY,1−a−pY,a−α
1−pY,a

, and g0(k, a) = E[
n0,a∑
j=k

(
n0,a

j

)
(qY,a(α))

j(1 −

qY,a(α))
n0,a−j ] with Q0,a ∼ Beta(k + 1, n0,a − k). Then we have:

P(|DPE(ϕ)| > α) ≤ g1(k
1,1, 1) + g1(k

1,0, 0) + g0(k
0,1, 1) + g0(k

0,0, 0).

Assumption 1. n0,0 ≥ ⌈
log δ

4

log(1− α
1−pY,0

)⌉, n
0,1 ≥ ⌈

log δ
4

log(1− α
1−pY,1

)⌉, n
1,0 ≥ ⌈

log δ
4

log(
pY,1−α

pY,0
)
⌉, n1,1 ≥

⌈
log δ

4

log(
pY,0−α

pY,1
)
⌉, in which ⌈·⌉ denotes the ceiling function.

Theorem 11. Under Assumption 1, we have |DEA(ϕ̂i)| ≤ α with probability 1 − δ, for each
i ∈ {1, . . . ,M}.
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Corollary 1. Under Assumption 1, we have |DEA(ϕ̂)| ≤ α with probability (1 − δ)M , where M
is the size of the candidate set.

A.9 IMPLEMENTATION DETAILS AND ADDITIONAL EXPERIMENTS

From Lemma 2, we adopt a new way of building a much smaller candidate set. Note that our shrunk
candidate set for Equality of Opportunity is:

K ′ ={(k1,0, u1(k
1,0)) | L1(k

1,0, u1(k
1,0)) ≤ δ}.

Since Equalized Odds constraint is an extension of Equality of Opportunity, our target classifier
should be in K ′.

To select our target classifier, it’s sufficient to add a condition of similar false positive rate between
privileged and unprivileged groups. Specifically, we choose our final candidate set as below:

K ′′ ={(k1,0, u1(k
1,0)) | L1(k

1,0, u1(k
1,0)) ≤ δ, L0(k

0,0, k1,0) ≤ δ}.

We also did experiments on other benchmark datasets.

First, we apply FaiREE to German Credit dataset Kamiran & Calders (2009), whose task is to predict
whether a bank account holder’s credit is good or bad. The protected attribute is gender, and the
sample size is 1000, with 800 training samples and 200 test samples. To facilitate the numerical
study, we randomly split data into training set, calibration set, and test set at each repetition and
repeat 500 times.

Table 5: Result of different methods on German Credit dataset

Eq C-Eq ROC FairBayes FaiREE-EOO FaiREE-EO

α / / / 0.07 0.1 0.14 0.07 0.1 0.14 0.07 0.1 0.14

|DEOO| 0.078 0.093 0.100 0.126 0.125 0.126 0.020 0.029 0.034 0.001 0.025 0.048
|DEOO|95 0.179 0.127 0.267 0.160 0.182 0.186 0.066 0.097 0.130 0.004 0.084 0.120

|DPE| 0.109 0.072 0.138 / / / / / / 0.041 0.063 0.092
|DPE|95 0.235 0.114 0.334 / / / / / / 0.059 0.097 0.133

ACC 0.707 0.720 0.591 0.722 0.723 0.723 0.717 0.729 0.745 0.702 0.721 0.722

Then, we apply FaiREE to Compas Score dataset Angwin et al. (2016), whose task is to predict
whether a person will conduct crime in the future. The protected attribute is gender, and the sample
size is 5278, with 4222 training samples and 1056 test samples. To facilitate the numerical study,
we randomly split data into training set, calibration set and test set at each repetition and repeat for
500 times.

Table 6: Result of different methods on Compas Score dataset

Eq C-Eq ROC FairBayes FaiREE-EOO FaiREE-EO

α / / / 0.07 0.1 0.14 0.07 0.1 0.14 0.07 0.1 0.14

|DEOO| 0.083 0.642 0.070 0.077 0.109 0.136 0.026 0.033 0.042 0.027 0.049 0.098
|DEOO|95 0.101 0.684 0.174 0.145 0.186 0.250 0.066 0.097 0.131 0.068 0.090 0.140

|DPE| 0.025 0.291 0.067 / / / / / / 0.026 0.048 0.060
|DPE|95 0.047 0.332 0.148 / / / / / / 0.057 0.092 0.114

ACC 0.629 0.664 0.652 0.658 0.658 0.659 0.654 0.660 0.672 0.623 0.654 0.669

We further generate a synthetic model where trained classifiers are more informative.

Model 3. We generate the protected attribute A and label Y with the probability, location parameter
and scale parameter the same as Model 1. The dimension of features is set to 60, and we
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generate features with x0,0
i,j

i.i.d.
∼ t(1), x0,1

i,j
i.i.d.
∼ t(4), x1,0

i,j
i.i.d.
∼ χ2

1 and x1,1
i,j

i.i.d.
∼ χ2

4, for
j = 1, 2, ..., 60.

Table 7: Experimental studies under Model 3. Here |DEOO| denotes the sample average of the absolute value

of DEOO defined in Eq. (1), and |DEOO|95 denotes the sample upper 95% quantile. |DPE| and |DPE|95
are defined similarly for DPE defined in Eq. (13). ACC is the sample average of accuracy. We use ª/º in the
DPE line because FairBayes and FaiREE-EOO are not designed to control DPE.

Eq C-Eq ROC FairBayes FaiREE-EOO FaiREE-EO

α / / / 0.04 0.06 0.08 0.04 0.06 0.08 0.04 0.06 0.08

|DEOO| 0.041 0.020 0.034 0.048 0.062 0.076 0.018 0.025 0.033 0.015 0.032 0.034
|DEOO|95 0.115 0.042 0.070 0.080 0.113 0.143 0.038 0.054 0.076 0.036 0.058 0.069

|DPE| 0.093 0.106 0.062 / / / / / / 0.026 0.034 0.046
|DPE|95 0.272 0.191 0.101 / / / / / / 0.039 0.055 0.077

ACC 0.887 0.921 0.834 0.898 0.901 0.912 0.946 0.950 0.963 0.900 0.914 0.933

A.9.1 COMPARISON WITH MORE ALGORITHMS

In this subsection, we further compare FaiREE with more baseline algorithms that are designed for
achieving Equalized Odds or Equality of Opportunity, including pre-processing algorithms (Fairde-
cision in Kilbertus et al. (2020) and LAFTR in Madras et al. (2018)) and in-processing algorithms
(Meta-cl in Celis et al. (2019) and Adv-debias in Zhang et al. (2018)) under synthetic settings Model
1 and Model 2 described in Section 5.1, and the real dataset Adult Census in Section 5.2. The results
are summarized in Tables 8, 9, and 10.

From the experimental results, we can find that FaiREE has favorable results over these baseline
methods, with respect to fairness and accuracy. In particular, the experimental results indicate that
while the baseline methods are designed to minimize the fairness violation as much as possible (i.e.
set α = 0), these methods are unable to have an exact control of the fairness violation to a desired
level α. For example, in the analysis of Adult Census dataset, the 95% quantile of the DEOO fairness
violations of Fairdecision is 0.078, and that of LAFTR, Meta-cl and Adv-debias are all above 0.2.
Moreover, our results found that If we allow the same fairness violation of DEOO and DEP for our
proposed method FaiREE, we have a much higher accuracy (0.845) compared to the accuracy of
those four baseline methods.

Table 8: Results of different methods on Adult Census dataset. Here |DEOO| denotes the sample average
of the absolute value of DEOO defined in Eq. (1), and |DEOO|95 denotes the sample upper 95% quantile.

|DPE| and |DPE|95 are defined similarly for DPE defined in Eq. (13). ACC is the sample average of
accuracy. We use ª/º in the DPE line because Fairdecision and FaiREE-EOO are not designed to control
DPE.

Fairdecision LAFTR Meta-cl Adv-debias FaiREE-EOO FaiREE-EO

α / / / / 0.07 0.1 0.14 0.07 0.1 0.14

|DEOO| 0.041 0.124 0.172 0.199 0.034 0.039 0.066 0.002 0.039 0.067
|DEOO|95 0.078 0.203 0.253 0.248 0.065 0.090 0.124 0.008 0.094 0.125

|DPE| / 0.044 0.194 0.074 / / / 0.030 0.066 0.074
|DPE|95 / 0.083 0.271 0.094 / / / 0.056 0.078 0.086

ACC 0.772 0.822 0.688 0.791 0.845 0.846 0.847 0.512 0.845 0.846
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Table 9: Experimental studies under Model 1, with the same notation as Table 8

Fairdecision LAFTR Meta-cl Adv-debias FaiREE-EOO FaiREE-EO

α / / / / 0.08 0.12 0.16 0.08 0.12 0.16

|DEOO| 0.072 0.081 0.028 0.062 0.028 0.046 0.063 0.025 0.031 0.042
|DEOO|95 0.177 0.145 0.108 0.226 0.073 0.115 0.157 0.079 0.108 0.133

|DPE| / 0.061 0.118 0.179 / / / 0.039 0.042 0.045
|DPE|95 / 0.104 0.272 0.412 / / / 0.075 0.084 0.106

ACC 0.616 0.533 0.620 0.645 0.621 0.657 0.669 0.552 0.562 0.615

Table 10: Experimental studies under Model 2, with the same notation as Table 8.

Fairdecision LAFTR Meta-cl Adv-debias FaiREE-EOO FaiREE-EO

α / / / / 0.08 0.12 0.16 0.08 0.12 0.16

|DEOO| 0.675 0.450 0.094 0.096 0.027 0.047 0.073 0.028 0.035 0.047
|DEOO|95 0.744 0.633 0.208 0.263 0.075 0.112 0.153 0.077 0.114 0.143

|DPE| / 0.502 0.120 0.140 / / / 0.041 0.044 0.056
|DPE|95 / 0.686 0.312 0.418 / / / 0.071 0.090 0.127

ACC 0.584 0.647 0.606 0.628 0.595 0.627 0.639 0.575 0.589 0.606

A.10 SUPPLEMENTARY FIGURES

Figure 3: DEOO v.s. Accuracy, as a complementary figure for Figure 1

Figure 4: DEOO v.s. Accuracy & DPE v.s. Accuracy for Model 1
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Figure 5: DEOO v.s. Accuracy & DPE v.s. Accuracy for Model 2

Figure 6: DEOO v.s. Accuracy & DPE v.s. Accuracy for Model 3

Figure 7: DEOO v.s. Accuracy & DPE v.s. Accuracy for Adult Census dataset

Figure 8: DEOO v.s. Accuracy & DPE v.s. Accuracy for German Credit dataset
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Figure 9: DEOO v.s. Accuracy & DPE v.s. Accuracy for Compas Score dataset
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