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Abstract

Deep neural networks often rely on spurious

correlations to make predictions, which hinders

generalization beyond training environments.

For instance, models that associate cats with bed

backgrounds can fail to predict the existence of

cats in other environments without beds. Miti-

gating spurious correlations is crucial in building

trustworthy models. However, the existing

works lack transparency to offer insights into the

mitigation process. In this work, we propose an in-

terpretable framework, Discover and Cure (DISC),

to tackle the issue. With human-interpretable

concepts, DISC iteratively 1) discovers unstable

concepts across different environments as spurious

attributes, then 2) intervenes on the training data

using the discovered concepts to reduce spurious

correlation. Across systematic experiments,

DISC provides superior generalization ability

and interpretability than the existing approaches.

Specifically, it outperforms the state-of-the-art

methods on an object recognition task and a

skin-lesion classification task by 7.5% and 9.6%,

respectively. Additionally, we offer theoretical

analysis and guarantees to understand the benefits

of models trained by DISC. Code and data are

available at https://github.com/Wuyxin/DISC.

1. Introduction

Spurious correlations are common in real-world data

analysis. Spurious attributes are typically associated with

the class label but are non-generalizable (Kaushik et al.,

2020; Sagawa et al., 2020). For example, as shown in

Figure 1, neural networks that mistakenly associate cats with

beds are prone to fail in different settings, e.g., dog-on-bed

or cat-on-desk, where the spurious correlation no longer
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Figure 1. Left: The dog/cat classifiers that rely (red) or do not rely

(green) on spurious correlations; Right: Spuriousness discovery

results of Grad-CAM (Selvaraju et al., 2017) and DISC, where

we propose a class-level metric to indicate the degree of spurious

correlation between concepts and the ªcatº class.

holds. This lack of reliability is a central issue in critical

applications, e.g., medical diagnosis (Bissoto et al., 2020).

Existing works have developed methods to mitigate the

spurious correlations inside deep models. For instance,

invariant learning (Arjovsky et al., 2019; Ahuja et al., 2021)

learns a stable representation across environments to avoid

varying factors, including spurious attributes. Leveraging

the vulnerability of Empirical Risk Minimization (ERM)

models towards spurious attributes, some works upweights

over-confident (Nam et al., 2020) or misclassified (Liu et al.,

2021a) instances from a trained ERM model to counteract

the spurious correlation.

However, these works lack interpretability into what are the

information the model is learning or ignoring, which hinders

human understanding and model auditing. While post-hoc

explainability methods (Selvaraju et al., 2017; Ribeiro et al.,

2016; Lundberg & Lee, 2017) offer visualization that could

contain spurious regions, it is still ambiguous to understand.

For example, in Figure 1 (a), the highlighted region shows the

attributes that contribute most to the prediction, explaining

why the image is mistakenly predicted as ªcatº but ªdogº.

Nevertheless, it is not clear which of the attributes (e.g.,

whiteness, wrinkle texture, or items like pillow) mostly

contributes to the spurious correlation. Moreover, such

instance-level interpretations are not informative about the

overall spurious correlations existing in the class.

In this work, we adopt concepts that align with human under-

standings to discover class-level spurious attributes, leverag-
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ing a concept bank as an auxiliary knowledge base. We show

that the invariant concepts, e.g., the shape of cats, remain

stable across data environments, while the spurious concepts,

e.g., ªbedº, have inconstant existence across the instances

within the class. Inspired by this property, we propose a class-

level metric, concept sensitivity, to quantify a concept’s insta-

bility across the data environments. For example, in Figure 1

(b), we identify both ªwrinkleº and ªbedº as highly spurious

concepts of ªcatº based on the large magnitude of concept

sensitivity, and we refer to this step as the discovery step.

Upon discovering the spurious concepts, we propose an

intervention step, namely concept-aware intervention, to

reduce the models’ reliance on spurious concepts. The

high-level idea is to intervene on the selected classes with

spurious concepts to maintain a balanced distribution of

the spurious concepts. For instance, after identifying that

ªwrinkleº and ªbedº are spurious concepts correlated with the

ªcatº class, we use concept images of them to intervene in the

ªdogº class, as shown in the bottom right of Figure 2. With

a balanced distribution of spurious concepts across different

classes, we prevent the model from taking advantage of

spurious concepts to make predictions, thus canceling the

spurious bias. We refer to this process as the cure step.

Discover and Cure. Finally, our algorithm, DISC, iteratively

conducts the discovery and cure steps during training. In each

iteration, it discovers the spurious concepts for the current

model. Then based on the discovered concepts, it intervenes

on the training datasets to remove the spurious correlations,

on top of which the model is updated. Here we focus on image

classification tasks. Empirically, DISC discovers spurious

concepts that align with ground truth spurious attributes and

outperforms the state-of-the-art baselines averagely with a

large margin. Our contributions are:

• We develop a novel and interpretable framework to

discover spurious concepts and effectively mitigate

spurious correlations for model generalization.

• We empirically validate our method’s effectiveness on

diverse datasets and reveal insights into how models

overcome spurious correlations.

• We theoretically guarantee the convergence and general-

ization ability of the models trained by DISC.

2. Related Work

Our work, built on human-interpretable concepts, involves

discovering and curing spurious correlations. Here we

discuss three classes of related works:

Concepts. Concepts, e.g., blueness or stripes, are human-

interpretable semantics. Concepts have been used to build

interpretable models (Lampert et al., 2009; Kumar et al.,

2009; Koh et al., 2020; YÈuksekgÈonÈul et al., 2022), or used

in a post-hoc manner (Bau et al., 2017; Kim et al., 2018) to

interpret the predictions of deep neural networks (DNNs).

Specifically, Kim et al. (2018) introduce Concept Activation

Vectors (CAVs), where a CAV represents the direction in the

hidden space of a DNN that corresponds to the existence of a

concept, helping align the internal state of DNNs with human

expectations.

Discovering Spurious Correlations. Previous works study

spurious correlations in settings like image texture and back-

grounds (Geirhos et al., 2019; Sagawa et al., 2020), domain

shifts (Koh et al., 2021; Gulrajani & Lopez-Paz, 2021; San-

turkar et al., 2021; Ye et al., 2023), and causally unstable

attributes (Arjovsky et al., 2019; Wu et al., 2022). Detecting

spurious correlations reveals model biases that are harmful to

generalization. Some works obtain spurious attributes using

domain knowledge (Clark et al., 2019; Kaushik et al., 2020;

Nauta et al., 2021), however, spurious attributes could go be-

yond domain knowledge. For instance, Creager et al. (2021)

infer spurious attributes by learning environments. Sohoni

et al. (2020); Seo et al. (2022) cluster a model’s embeddings

and use the clusters to reveal spurious attributes.

Recent works (Plumb et al., 2021; Hagos et al., 2022; Abid

et al., 2022) also use explainability techniques to find spuri-

ous attributes and require human inspection. Unlike instance-

level auditing, we propose a class-level metric which of-

fers high-level interpretability that is more reliable and user-

friendly. Moreover, concept-level and interactive debugging

methods (Bontempelli et al., 2022; Bahadori & Heckerman,

2021; Teso & Kersting, 2019) leverage concepts or human

feedback to perform debugging. See Teso et al. (2023) for

an overview. For example, Bontempelli et al. (2022) propose

ProtoPDebug that allows a human supervisor to provide feed-

back to part-prototype networks (Chen et al., 2019) (ProtoP-

Nets) on the model’s explanations. In contrast to our method,

they generally work with a restricted class of models (e.g.,

CBMs (Koh et al., 2020) or ProtoPNets) and often require

human annotation to identify the concepts. See Table 6 for

the comparison between the selected works and our method.

Curing Spurious Bias. Learning spurious attributes makes

models over-sensitive to spurious factors and their distribu-

tion shifts, which is related to invariant and robust learning.

• Invariant Learning. Arjovsky et al. (2019) propose

learning an invariant encoder such that the downstream

classifiers are optimal in different environments. Other

works target invariance via correlation alignment (Sun

& Saenko, 2016), variance penalty (Krueger et al., 2021;

Teney et al., 2020), and gradient alignment (Shi et al., 2021)

across domains. However, these are not interpretable,

which provides little insight into the data bias.

• Instance Reweighting. Instance reweighting puts high

importance on examples that unlikely contain spurious at-

tributes to remove bias (Yaghoobzadeh et al., 2021; Utama

et al., 2020; Dagaev et al., 2021; Zhang et al., 2022b; Nam
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et al., 2020; Li et al., 2022). Despite its simplicity, such in-

stances could be rare when models perfectly fit the training

data, which limits the effectiveness. Distributionally Ro-

bust Optimizaton (DRO) (Ben-Tal et al., 2013; Oren et al.,

2019; Sagawa et al., 2020; Zhang et al., 2021a) is a special

case that puts more weights on observations with high

loss (Namkoong & Duchi, 2016; Hu et al., 2018; Levy et al.,

2020). Yet, the impact of instance reweighting on over-

parameterized DNNs could diminish over epochs (Byrd

& Lipton, 2019), leading to overfitting eventually.

• Data Augmentation. Other works use data augmentations

like adversarial mixup (Xu et al., 2020), selective

augmentation (Yao et al., 2022), and uncertainty-aware

mixup (Han et al.) to reduce the reliance on the spurious

correlation (Zhang et al., 2021b). Moreover, Pinto et al.

(2022) propose that mixup (Zhang et al., 2018) as a regu-

larizer can further improves out-of-distribution robustness.

However, these augmentations do not explicitly consider

multiple and coexistent spurious attributes, which is

common in real-world applications. With a concept bank

generated from a text-to-image generator, DISC detects

the spurious concepts and adaptively mixes up concept

images with instances in selected classes. Concurrent

work (Jain et al., 2022) uses a captioning model to

capture the failure mode and generate synthetic images for

fine-tuning. Nevertheless, the generated data relies on the

captioning model, which can be out-of-distribution and

infeasible for hard-to-describe datasets like skin lesion

images. DISC is a more flexible solution using concept

images to do the intervention.

3. Method

Here, we describe the problem setup and our method. We

formalize our problem setup in Section 3.1 and introduce

the construction of the concept bank in Section 3.2. Then,

we discuss the discovery of spurious concepts in Section 3.3

and the removal of spurious correlations in Section 3.4. For

clarity, we summarize the main notation in Appendix A.

3.1. Problem Formulation

We consider a supervised image classification prob-

lem. Specifically, we are given a training dataset

Dtr={(x1,y1),...,(xn,yn)}. We define Y as the label space

and Ptr as the distribution of the training dataset.

For an arbitrary loss function ℓ, Empirical Risk Minimization

(ERM) minimizes the empirical loss for a model f :

argmin
φ

E(x,y)∼Dtr
[ℓ(fφ(x),y)] (1)

where f is parameterized by ϕ. Due to the unstable nature of

spurious attributes, the test distribution Pte is often different

from the training distribution, i.e., Pte ̸= Ptr. Thus, the

model trained with the ERM falls short of generalizing to

datasetsDte∼Pte where the spurious correlations shift or no

longer hold. Thus, our goal is to overcome the model’s bias

in the presence of spurious correlations. From a causality

perspective, spurious attributes are defined as the attributes

F that are not causally related to the truth label Y , but are

correlated with the truth label Y in the training data due to

data sampling bias or imbalance. For example, ªbedº can

not determine the image being labeled as ªcatº, but may

be correlated to the label ªcatº if the cat images are mostly

taken in bedrooms. For our purpose, we consider spurious

attributes to be attributes whose presence is correlated with

the label in some environments but not others.

3.2. Concept Bank

To describe the spurious attributes, we consider them as

concepts in a human-understandable fashion instead of

pixel-level patterns. We build a comprehensive concept bank

that widely covers potential spurious concept candidates.

Formally, we have

Definition 1 (Concept bank). A concept bank with m
concepts can be expressed as C := {(ci,Pci) | i=1,...,m},

where each ci denotes a concept, Pci is the distribution of

the images with the concept.

We show examples in Figure 7 (Appendix D), where

we utilize text-to-image generative models, e.g., Stable

Diffusion (Rombach et al., 2022) to generate concept images

that represent Pci , using the concept names as prompts.

Moreover, the demand for interpretability calls into aligning

concepts with the inner state of deep models. Without loss

of generality, we denote a deep model as f=h◦g, where g
is an encoder, and h :Rd→R

|Y| is a linear layer. Thus, given

the model f and a concept ci, we define a query operation

to extract the high-dimensional concept representation vi.
Concretely, we construct the positive set Ipi by sampling Np

images from Pci , and the negative set Ini by sampling Nn

images randomly from {Pcj | j ̸= i}. Following Kim et al.

(2018), we learn a linear SVM that finds a hyperplane in the

hidden spaceRd to best separate the positive images from the

negative ones. Then, we compute the vector vi orthogonal

to the hyperplane as the Concept Activation Vector (CAV).

Intuitively, a CAV is the direction in the hidden space

representing the existence of a concept. Thus, the concept

bank serves as an auxiliary knowledge base to discover and

mitigate the spurious correlation in the subsequent steps.

3.3. On Discovering Spurious Concepts

With the concept bank, we aim to identify the spurious

concepts from the concept candidates.

Assumption on Training Distribution. To guarantee the dis-

tinguishability of spurious concepts, we assume the training

distribution is representative of the overall distribution. For
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Figure 2. DISC Framework. At t-th iteration, DISC computes the concept sensitivities based on the previously constructed environments

and the CAVs from the concept bank, which discovers (wrinkle, bed) and (bench, tree) as the spurious concepts of ªcatº and ªdogº,

respectively. In the cure step, based on the concept sensitivities, DISC retrieves concept images, e.g., ªbedº, from the concept bank and mixes

them up with the training subset, e.g., dog images, to remove the spurious correlation. Finally, the model is updated on the balanced dataset.

example, if ªbedº always coexists with ªcatº in the training

dataset, then there is no way we can distinguish that ªcatº is

the invariant concept while ªbedº is not. Thus, the training

distribution should reflect the essential characteristics as the

overall distribution, which is implicitly assumed by the previ-

ous works (Liu et al., 2021a; Nam et al., 2020). We formalize

this assumption in Theorem 1. With the representativeness

assumption, we further propose the following observation

about an inconstancy property of spurious concepts:

Observation 1 (Inconsistancy Property). Spurious con-

cepts tend to be present in heterogeneous subsets of the data

and their correlations with the label are also heterogeneous.

For example, ªbedº is not a common characteristic possessed

by all the ªcatº instances, it might be present in specific

subsets of cat images and how much the presence of bed

correlates with the cat label also differs across different sub-

sets. We want to leverage this property and insight to identify

spurious concepts. Specifically, as a biased model correlates

the label with spurious concepts, the distribution of spurious

concepts has a large impact on the model’s decision boundary.

More importantly, this impact is often inconsistent across

different environments. For example, imagine we cluster the

ªcatº instances based on whether it’s an indoor or outdoor

photo. The models trained under these two scenarios will ex-

hibit distinct preferences for using the ªbedº concept to make

predictions. Thus, the role of spurious concepts is highly frag-

ile and sensitive in different environments, where the distri-

bution of spurious concepts can change dramatically. In con-

trast, invariant concepts, e.g., animal shape, are more uniform

and homogeneous conditioned on any data environments.

Guided by this property, we propose a class-level metric,

Concept Sensitivity, to indicate if a concept is spurious to

a specific class. Here we introduce its computation steps:

Step 1 (Clustering). We first seek good stratification on

the training dataset to construct data environments. As

explored by the previous works (Sohoni et al., 2020; Seo

et al., 2022), even a biased model can well distinguish

different features. Thus, we leverage a model trained with

ERM to generate both representations and predictions on the

training instances, which, similar to Eyuboglu et al. (2022),

takes error type into account by including model predictions.

Based the generated vectors, we conduct one-time clustering

of the instances within each class. For each class y∈Y , we

obtain G(y) = {G
(y)
j }kj=1, where G

(y)
j is the j-th cluster in

class y and k is the number of clusters. Finally, we construct

the environments as

Gj=
|Y|
⋃

y=1
G

(y)
j , j=1,...,k, (2)

where the combination of clusters from each class is to avoid

missing labels in the individual environments. Note that

the combinations could be different according to the order

of cluster indices, thus we randomize the cluster indices to

update the environments for more robust training.

Step 2 (Compute concept sensitivity). For each Gj , we

define the Environment Gradient Matrix (EGM) as

Mj=∇ω[E(x,y)∼Gj
ℓ(f(x),y)]=

∂[E(x,y)∼Gj
ℓ(f(x),y)]

∂ω
(3)

where ω ∈ R
|Y|×d is the parameter of h. Intuitively, Mj

represents the change in the parameter manifold given the ob-

servations in Gj solely. While computing Equation 3 using

all the training instances is expensive, we sample mini-batch

data to approximate Mj . Further, to align the current model

with the concept space, we query the concept bank to ex-

tract the concept representation vi of concept ci. Then, we
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compute vi ·M
T
j ∈ R

|Y|, which indicates how concept ci
is preferred by each class under the environment Gj . For

example, if ªbedº is strongly correlated with ªcatº in the en-

vironment Gj , then the updated decision boundary reflected

by Mj will align with the CAV of the ªbedº concept with the

logits output of being ªcatº. On top of this, we further define

the concept sensitivity Si of concept ci as

Si=Var({(vi ·M
T
j )y′

i
|j=1,...,k}), (4)

where y′i=argmax
y

(

k
∑

j=1

vi ·M
T
j )y

Here y′i is the class dominated by or strongly associated with

the concept ci. Var is the variance operater. For convenience,

we refer to (vi ·M
T
j )y′

i
as Concept Tendency Score (CTS)

of concept ci under the environment Gj . Thus, the concept

sensitivity essentially evaluates the inconsistency of CTS

in different environments. A large variance of CTS indicates

that the concept is unstable and its contribution to the final

prediction varies across different environments. As the

causal concept would exhibit invariance for environments

(Arjovsky et al., 2019; BÈuhlmann, 2020), a large concept

sensitivity can be interpreted as evidence of a concept

being spurious and misleading in the model training. In

our previous example where ªbedº correlates with the ªcatº

class, the CTS’s of ªbedº in different environments show

a large variance since ªbedº has an inconstant existence

with ªcatº in the training data. Also, note that the concept

sensitivity is class-wise, this offers high-level interpretability

to understand the spurious correlations in a certain class.

3.4. Curing Bias via Concept-aware Intervention

Concretely, we blame the model bias for the imbalanced

distribution of spurious concepts among classes. For exam-

ple, in Waterbirds (Sagawa et al., 2020), 95% of instances in

the landbird class have land backgrounds while only 4% of

instances in the waterbird class involve with land. Thus, such

extreme imbalance encourages models to take advantage of

spurious correlations as shortcuts to make predictions.

However, simply removing spurious attributes from the

training dataset could introduce more noise and make the

model overfit (Khani & Liang, 2021). Instead, we maintain

the distribution balance of spurious concepts in different

classes by data augmentation, to cancel the correlation.

Step 3 (Concept-aware Intervention). We denote each

H(y) ∈ R
m as a boolean vector where H

(y)
i = 1 if y′i = y,

and H
(y)
i = 0 otherwise. Then we compute the concept

probability on each class by normalizing the masked concept

sensitivity, i.e., P (y) = S ·H(y)/
∑

[S ·H(y)]. Intuitively,

the concept probability answers both ªwhat are the concepts

correlated with the class yº and ªhow strong are their

spurious correlationsº. To maintain the balance of spurious

concepts, we sample concept images with probability P (y),

Algorithm 1 Pseudocode of DISC

Require: Training data D, concept bank C, a model f = h ◦ g,
learning rate α, parameters β1,β2 of Beta distribution

1: Obtain {{G
(y)
j }

k
j=1}

|Y|
y=1 by clustering the image embeddings

2: while not converge do
3: Randomize cluster indices and obtain {Gj}

k
j=1 (Eq. 2)

4: {P (y)}
|Y|
y=1←CONCEPT SENSITIVITY(G,f,C)

5: for each class y do
6: Sample minibatch (X,Y ), where each Yi ̸=y

7: Sample concept images X(C,P (y)) with prob. P (y)

8: Conduct mixup to obtain (X ′,Y ′) (Eq. 5)
9: ϕ←ϕ−α·∂ℓ[E(f(X ′),Y ′)]/∂ϕ

10:
11: function CONCEPT SENSITIVITY(G,f,C)
12: Query for the CAV matrix V =[vT1 ,...,v

T
m]

13: for j=1,...,k do
14: Sample minibatch (X,Y )∼Gj

15: Compute the EGM Mj (Eq. 3)
16: for each concept ci do
17: Compute the dominant class y′

i and sensitivity Si (Eq. 4)

18: H
(y)
i ←I(y′

i=y), y=1,...,|Y|

19: return {P (y)}
|Y|
y=1

and mix up them with the instances in their non-dominant

classes. Formally, we have

X ′=λX+(1−λ)X(C,P (y)), Y
′=Y, (5)

where λ∼Beta(β1,β2). X(C,P (y)) denotes concept images

sampled with probability P (y) from concept bank C.

(X,Y ) are drawn from the subset where each Yi ∈ Y/{y}.

Intuitively, more sensitive concepts indicate a larger degree

of imbalance between the dominant class and the other

classes. And we devise such leave-one-out augmentation

to compensate the imbalance, where concept images with

high sensitivity are more frequently sampled to be mixed up,

achieving the concept distribution balance. In this way, the in-

tervened dataset removes the spurious correlations involving

multiple spurious concepts from the training dataset.

Adaptive Mitigation. However, the model can learn various

spurious correlations at different stages of training. It is nec-

essary for the concept sensitivity to be adjusted accordingly

to thoroughly correct the model’s decision boundary. There-

fore, as shown in Figure 2, we propose an adaptive framework

DISC, which iteratively conducts spurious concept discovery

(Step 2) and concept-aware intervention (Step 3). At each

epoch, DISC computes concept sensitivity which guides the

concept-aware intervention. Then, the model evolves on the

newly intervened dataset, where the spurious correlations

are canceled. Thus, DISC can gradually mitigate the spuri-

ous correlations learnt by the model in the previous training.

In Theorem 1 of Section 5, we provide guarantees for the

convergence of concept sensitivity and the final model. By

iteratively mixing up images as in Equation 5, DISC reduces

the contribution of spurious concepts to the final model and

improves model generalization.
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Table 1. Overall experimental results. The best results are bold and the second best results are underlined.

MetaShift Waterbirds FMoW ISIC
Avg. Acc. Worst Acc. Avg. Acc. Worst Acc. Avg. Acc. Worst Acc. Avg. AUROC

ERM 72.9± 1.4% 62.1± 4.8% 97.0± 0.2% 63.7± 1.9% 53.0± 0.6% 32.3± 1.3% 36.4± 0.7%
ERM+aug 75.5± 1.7% 65.7± 3.3% 87.4± 0.5% 76.4± 2.0% 55.5± 0.4% 35.7± 0.3% 38.9± 1.5%
UW 72.1± 0.9% 60.5± 3.8% 96.3± 0.3% 76.2± 1.4% 52.5± 0.5% 30.7± 1.5% 39.2± 0.6%
IRM 73.9± 0.8% 64.7± 2.1% 87.5± 0.7% 75.6± 3.1% 50.8± 0.1% 30.0± 1.4% 45.5± 3.6%
IB-IRM 74.8± 0.2% 65.6± 1.1% 88.5± 0.9% 76.5± 1.2% 49.5± 0.5% 28.4± 0.9% 38.6± 1.5%
V-REx 72.7± 1.7% 60.8± 5.5% 88.0± 1.4% 73.6± 0.2% 48.0± 0.6% 27.2± 0.8% 24.5± 6.4%
CORAL 73.6± 0.4% 62.8± 2.7% 90.3± 1.1% 79.8± 1.8% 50.5± 0.4% 31.7± 1.2% 37.9± 0.7%
Fish 64.4± 2.0% 53.2± 4.5% 85.6± 0.4% 64.0± 0.3% 51.8± 0.3% 34.6± 0.2% 42.0± 0.8%
GroupDRO 73.6± 2.1% 66.0± 3.8% 91.8± 0.3% 90.6± 1.1% 52.1± 0.5% 30.8± 0.8% 36.4± 0.9%
JTT 74.4± 0.6% 64.6± 2.3% 93.3± 0.3% 86.7± 1.5% 52.5± 0.3% 33.4± 0.9% 33.8± 0.0%
DM-ADA 74.0± 0.8% 65.7± 1.4% 76.4± 0.3% 53.0± 1.3% 51.6± 0.2% 34.2± 0.8% 35.8± 1.0%
LISA 70.0± 0.7% 59.8± 2.3% 91.8± 0.3% 88.5± 0.8% 52.8± 0.9% 35.5± 0.7% 38.0± 1.3%

DISC 75.5± 1.1% 73.5± 1.4% 93.8± 0.7% 88.7± 0.4% 53.9± 0.4% 36.1± 1.8% 55.1± 2.3%

4. Experiments

We aim to answer the following research questions:

• RQ1: How effective is DISC on tasks with spurious

correlations, compared to state-of-the-art baselines?

• RQ2: What are the training dynamics and insights of

DISC that are beneficial for future works?

• RQ3: How does each component affect DISC’s

performance and contribute to its improvements?

4.1. Settings

Datasets. We summarize the datasets in Appendix C. We

consider image classification tasks with various types of spu-

rious correlations. Specifically, Waterbirds (Sagawa et al.,

2020) associates each class with water or land backgrounds,

and MetaShift (Liang & Zou, 2022) constructs disjoint spuri-

ous attributes for each class. We also use FMoW from Wilds

Benchmark (Koh et al., 2021) where satellite images are col-

lected from different geographical regions that contribute

to potential spurious correlations. Moreover, we consider a

challenging task, ISIC (Codella et al., 2019), which classifies

dermoscopic images of skin lesions into benign or melanoma.

We use the train-test splits in Bissoto et al. (2020), where

each training split amplifies the correlations with 7 spurious

attributes. This task is difficult because multiple spurious at-

tributes, e.g., hairs and gel bubbles, could co-exist and cover

the skin lesion region.

Baselines. We compare DISC with Empirical Risk Mini-

mization (ERM) with and without data augmentations; Up-

weighting (UW) which upweights the instances of minor-

ity groups; Invariant Learning algorithms: IRM (Arjovsky

et al., 2019), IB-IRM (Ahuja et al., 2021); Domain general-

ization/adaptation methods: V-REx (Krueger et al., 2021),

CORAL (Sun & Saenko, 2016), and Fish (Shi et al., 2021);

Instance reweighting methods: GroupDRO (Sagawa et al.,

2020), JTT (Liu et al., 2021a); Data augmentation methods:

DM-ADA (Xu et al., 2020), LISA (Yao et al., 2022).

Concept Bank. Inspired by previous works (Cimpoi et al.,

2014; Fong & Vedaldi, 2018), we build a concept bank with

224 concepts under 6 categories. We generate 200 images per

concept from a pre-trained text-to-image generation model,

Stable Diffusion (Rombach et al., 2022). To avoid unrealis-

tic interventions, we select the concept categories for each

dataset as shown in Table 4. The details of concept bank

construction and concept category selection are described in

Appendix D.

Model Training. We summarize the hyperparameters in

Appendix E and use Gaussian Mixture Model (GMM) as

the clustering algorithm. In Waterbirds, due to the extreme

imbalance of majority and minority groups, we upweight

the minority group for more stable results. While we do not

require group information on the other datasets in training.

Evaluation. For ISIC, since the group size is 27 consid-

ering combinations of spurious attributes, which results in

many small groups, we compute the average AUROC score

across the train-test splits, as standard in Bissoto et al. (2020).

For other datasets, we evaluate the average and worst-group

performance. All the experiments are repeated three times.

4.2. Overall Results (RQ1)

Analysis on the baselines. In Table 1, we summarize the

overall performance of DISC and the baselines. We ob-

serve that ERM with data augmentations constantly sur-

passes ERM, showing the effect of simple data augmen-

tations in preventing the model from overfitting. Also, we

found that GroupDRO performs well in MetaShift and Wa-

terbirds datasets. Yet, its performances are close to or worse

than ERM in FMoW and ISIC datasets, which is in line with

the observation in Gulrajani & Lopez-Paz (2021); Koh et al.

(2021) that GroupDRO generally fails to improve over ERM

in the wild. Moreover, the models trained under invariant

learning are suboptimal given the insufficient performance.

Furthermore, we focus on the ISIC dataset. One interesting
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observation is that JTT fails ± the average AUROC is 3%

less than ERM ± which also justifies our assumption that the

effectiveness of instance reweighting is largely limited when

the minority instances are rare. Under this setting, the results

of data mixup strategies are also unsatisfactory. Specifically,

intra-label mixup proposed by LISA can cause even stronger

spurious correlations, as it increases the population of

majority groups. In conclusion, the limitations of baselines

prevent them from obtaining steady success.

The effectiveness of DISC. Overall, DISC outperforms most

of the baselines in terms of the worst group accuracy. In

particular, we obtain large performance gains over the best

baselines in MetaShift and ISIC datasets by 7.5% and 9.6%,

respectively. This evidence suggests that DISC is able to

mitigate bias when combinations of spurious attributes exist.

In FMoW, DISC achieves the state-of-the-art result on both

average accuracy and worst-group accuracy, showing that

our method can also perform well in wild image datasets.

In Waterbirds, DISC improves over JTT by 2.7% while it

underperforms GroupDRO. A potential explanation is that

the images in the concept bank do not exactly cover the

spurious attributes, which hinders the strength of mitigation.

Nevertheless, DISC provides interpretability to understand

model bias, which is discussed in Section 4.3.

4.3. Interpretability and Training Dynamics (RQ2)

Besides the excellent task performance, our algorithm

provides high transparency thanks to concept sensitivity.

Here we validate that concept sensitivity correctly reveals

spurious correlation and enables user-oriented understanding

of the spurious correlations during training.

Validation on the interpretations of DISC. We investigate

whether the concept sensitivity faithfully reflects the spuri-

ous correlations in the training data. For each concept, we

compute the cumulative concept sensitivity over the training

epochs to indicate the degree of overall spurious correla-

tion. The top 3 concepts with the largest cumulative sensi-

tivity are ªdottedº (0.056), ªstripesº (0.032), and ªstainedº

(0.030). Meanwhile, we borrow CramÂer’s V (CramÂer, 2016)

to measure the spuriousness for the 7 ground truth spurious

attributes, where gel bubbles (0.184), ruler (0.411), ink

(0.215) are among the top spurious attributes. Interestingly,

in Figure 3, we found strong alignments between the spurious

concepts and the spurious attributes. For example, the rulers

and ªstripesº have a large feature-level similarity.

The conclusion here is two-fold. First, the interpretations

align well with the ground-truth spurious attributes, showing

their trustworthiness. We also provide a qualitative

comparison of the interpretations of DISC and the existing

interpretability methods in Appendix F to further show

the high quality of DISC interpretations. Second, we

demonstrate our method’s applicability when certain

ruler ink

dotted

gel bubbles

stripes stained

Spurious 

Concepts

Spurious

Attributes

Figure 3. Alignment of spurious attributes and spurious concepts.

concepts are absent from the concept bank, e.g., ruler,

which are substituted by other concepts preserving the

same essential attributes. Such global and unambiguous

interpretation clearly reveals the spurious correlations.

Robustness of interpretations and mitigation under ab-

sent ground truth spurious concepts. The previous exam-

ple shows that DISC finds highly similar concepts even when

the ground truth concepts are not included in the concept bank.

Thus, we aim to investigate whether such a pattern is consis-

tent. We designed two experiments: (1) Removing ªsofaº and

ªbedº concepts (correlated with ªcatº) on MetaShift, and (2)

removing ªbambooº and ªforestº concepts (correlated with

ªlandbirdº) on Waterbirds. We run the DISC algorithm under

concept removal for each case and observe the interpretations

on the corresponding class before and after the removal.

The top 3 interpretations before and after removal are

(wrinkle, bed, curtain) → (fireplace, bedrooms, paisley)

on MetaShift and (bamboo, forests, flowerpot)→(canopy,

ground, plant) on Waterbirds. Interestingly, we find that

the interpretations before and after the removal have some

conceptual overlappings (e.g., ªbedº→ ºbedroomsº on

MetaShift, ªforestsº →ªcanopyº and ªflowerpotº→
ªplantº on Waterbirds). We further study the effect of con-

cept removal on the worst group performance. Concretely,

the performance decreases by 0.2% on MetaShift and 0.9%

on Waterbirds. The absent concepts have a minor effect on

MetaShift. While the performance on Waterbirds dataset

is more sensitive to the absent concepts, the performance

after removal still outperforms most of the baselines.

DISC can discover spurious correlations when the CAV

of the absent spurious concept is similar to the CAVs of

other concepts. The intuition is that the spurious concept

(e.g., forests) and other concepts (e.g., canopy) may share

part of the essential attributes (e.g., leaves or greenness)

that partially cause the spurious correlation, which results

in the similar CAVs in the embedding space. Thus, the

interpretations and performance of DISC are robust when

ground truth is missing, as supported by our experiments.

Training dynamics as reducing concept sensitivity. The

concept sensitivity reflects the extent of a model being af-

fected by spurious bias, which helps probe the current model
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(a) 

(c) (b) 

Figure 4. Training dynamics on ISIC. (a) Individual concept sen-

sitivity vs. epoch. (b) Test AUROC and (c) The average concept

sensitive of DISC and ERM during training.

Figure 5. The concept sensitivity of spurious concepts on landbird

class on Waterbirds at the beginning and the end of training.

state. As shown in Figure 4 (a), we observe the individual

concept sensitivity during training. With randomly initial-

ized weights, the model tends to learn from the spurious

attributes at the early stage. Correspondingly, the sensitivi-

ties of the top 3 concepts are relatively large at the beginning.

Fortunately, we maintain the balance of spurious concepts

among environments by concept-aware intervention, which

gradually decreases the average sensitivity to almost zero.

Moreover, we compare the average sensitivity of the three

concepts and task performance for DISC and ERM. In

Figure 4 (b) and (c), we found the average concept sensitivity

of ERM has increased and remains high at the end. We

believe the spurious concepts that are falsely associated

with labels and remembered by the model result in the poor

performance of ERM. In contrast, DISC reached a low

concept sensitivity at the end. This pattern is consistent in

the used datasets. For another example, in Figure 5, we show

the comparison of the concept sensitivity before and after the

training on Waterbirds. The reduction of average sensitivity

indicates that the model weight has reached a ªsweet spotº

where the model is not affected by spurious concepts.

4.4. Ablation and Sensitivity Study (RQ3)

Here we empirically dissect the contribution of (1) concept

sensitivity, (2) concept-aware Intervention , and (3) adaptive

mitigation in our algorithm. We proposed three ablations

models respectively:

• DISC-Randint, which discards the concept sensitivity

and randomly samples concept images for the cure step.

• DISC-Reweight, which replaces the cure step with

reweighting instances unlikely to contain spurious

concepts. Formally, the weight of an instance (xj , yj)

is exp{−
∑m

i=1 P
(yj)
i · max{0,

g(xj)
T vi

|g(xj)|·|vi|
}}, which is

negatively proportional to the alignment between its

representation g(xj) and the CAVs of sensitive concepts.

• DISC-Inadaptive, which, instead of updating the concept

sensitivity every epoch, generates the concept sensitivity

based on the pre-trained ERM model and fixes it to conduct

the intervention during training.

Ablation results. In Table 7 (Appendix G), we report the

ablation results. By comparing DISC-Randint and DISC, we

discover that it is not just intervention, but the proper inter-

vention that can effectively reduce spurious correlation. By

ªproperº, we mean both ªwhat concept images should be cho-

senº and ªwhat portion of training data should be intervened

by a specific conceptº, as fulfilled by concept sensitivity.

Further, the comparison between DISC-Reweight and DISC

implies that the concept-aware intervention promotes the

balance of spurious concepts and further mitigates spurious

bias, which is a key to DISC’s success. DISC-Inadaptive

consistently underperforms DISC, and also underperforms

DISC-Randint on FMoW and ISIC. Specifically, on these

two datasets, we found while using fixed concept sensitivity

scores removes the spurious correlations of the concepts with

large sensitivity, the severity of the spurious correlations on

the other concepts could increase, showing the importance

of our adaptive mechanism in removing the spurious correla-

tions more thoroughly. Overall, these three ablation models

justify the efficacy of our framework.

Unsupervised clustering. In Step 1, we conduct unsuper-

vised clustering on the training instances to find good stratifi-

cation on the spurious attributes. Here we are interested in

DISC’s reliance on the clustering results. To search for the

number of clusters k, we adopt Silhouette score as a heuristic

following Sohoni et al. (2020). Due to space limit, we include

the results in Table 9 (Appendix G). We show that, on most

of the datasets, DISC outperforms the best baseline within

a wide range of the cluster number. We further visualize the

clustering results on MetaShift in Figure 6, where the clus-

ters well match the ground truth group assignments. More

visualizations are included in Appendix G. Thus, we validate

the clustering by a trained ERM is informative to construct

data environments.
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(a) Clustering results (b) Ground truth group  

Figure 6. Visualization on the clustering and group assignments.

5. Theoretical Analysis

In this section, we provide theoretical insights to understand

the benefits of DISC in removing spurious correlation.

General Assumptions. We consider a Gaussian mixture

model as the data-generating mechanism, which is widely

adopted in the machine learning theory to shed light upon

understanding complex phenomenon (Montanari et al., 2019;

Liu et al., 2021b; Ji et al., 2021; Deng et al., 2021; Zhang

et al., 2022a). We consider the setting where the concepts

are all well learned, and build model on the concept level.

Specifically, the causal (invariant) concepts are modeled as

xinv = y · µ+ ϵinv, where y ∈ {−1,1} denotes the class

index, µ∈❘p1 represents the signal of the causal concept

with number of dimensions being p1, and ϵinv is the noise

term that is Gaussian with mean 0 and covariance matrix

Σ1. We further assume that the classes are balanced , i.e.,

P(Y = 1) = P(Y = −1) = 1/2. The distributions of the

causal concepts are assumed to be invariant across training

and test environments. In addition, the spurious concepts are

modeled as xspu=γ
(i)
y +ϵspu, where γ

(i)
y ∈❘p2 controls the

spurious correlation and would vary according to different

environments i ∈ [k]. As xspu is spurious, we have γ = 0
in the test distribution Pte. Similar to ϵinv, ϵspu is the noise

term and respects a Gaussian distribution with mean 0 and

covariance matrix I . As each coordinate ofµ andγ represents

a concept, we assume that the values of γ
(i)
y are either 0 or 1,

with 1 indicating the presence of the corresponding concept

in the i-th environment of class y.

We consider minimizing the ℓ2 loss for the classification

problem, which has been commonly used in the deep

learning theory community (Ma & Belkin, 2017; Shankar

et al., 2020; Liang & Recht, 2021). Here we compare the

proposed DISC method with the standard ERM method

(µ̂ERM ,γ̂ERM )=argmin
µ,γ

n
∑

i=1

(yi−µ⊤xinv,i−γ⊤xspu,i)
2,

with the classifer being constructed as ĈERM (x) =
sgn(µ̂⊤

ERMxinv + γ̂⊤
ERMxspu). Similarly, we de-

fine the classifier produced by DISC as ĈDISC(x) =
sgn(µ̂⊤

DISCxinv+ γ̂⊤
DISCxspu), where µ̂DISC and γ̂DISC

are the solution produced by Algorithm 1.

Theorem 1. Assuming that (1). supp(γ
(i)
y )’s are disjoint

for different y’s, and Var({γ
(i)
y,j}

k
i=1) > K0 for j ∈ [p2]

and some constant K0 > 0, (2). ∥µ∥∞ → 0 when p1 →∞,

and K1 ≤λmin(Σ1)≤λmax(Σ1)≤K2 for some constants

K1,K2 > 0, (3). p1/n → 0 and p2 is fixed. Then when

training size n is sufficiently large, Algorithm 1 converges

exponentially fast. Moreover, with probability at least

1−o(1), the solution (µ̂DISC ,γ̂DISC) satisfies

PPte
[ĈDISC(x) ̸=y]<PPte

[ĈERM (x) ̸=y].

We clarify the assumptions and include the detailed proof

in Appendix B. This theorem implies that by iteratively

discovering and intervening, DISC mitigates the variation

of the contribution of spurious concepts to the final model.

Thus, DISC reduces the spurious correlations in the final

model and outperforms ERM.

6. Conclusion and Discussions

We propose DISC as a principled method to discover

spurious correlations in a user-friendly way and then mitigate

these correlations with data augmentation. DISC is guided

by the empirical observation that in many cases, spurious

attributes are heterogeneous across different subsets of the

data. Our systematic experiments demonstrate that DISC

significantly improves model generalizability. Moreover,

it provides useful insights into which concepts are sensitive

and how this sensitivity changes over training.

Limitations. While CAVs connect embedding space with

concept space, the learning of the CAVs requires additional

computation during training. Another limitation is that the

concept bank using a generative model may have its own

biases, which may limit the effectiveness of mitigation.

Future Works. Interestingly, we conducted experiments

on CIFAR-10-C and found DISC outperforms ERM by

13.1% averaged across four types of corruptions, showing

the potential of DISC in OOD generalization. Moreover,

future works can also build better concept bank and tools

for automatic concept category selection, as discussed

in Appendix D. One can also extend the applicability of

DISC to multi-object vision datasets and NLP tasks or adopt

DISC to analyze the concepts generated by techniques like

SENN (Alvarez-Melis & Jaakkola, 2018).
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A. Notation Table

Table 2. Main notations used in the method section. Click here to return to the main paper.

Notation Meaning

Dtr/Dte Training/Testing dataset

Ptr/Pte Training/Testing distribution

Y Label space

f A deep model

g/h The encoder/last linear layer of f
ϕ/ω Parameters of f/h

k Number of clusters per class

m Number of concepts in the concept bank

d Number of hidden dimensions

C A concept bank

ci The i-th concept in the concept bank C
vi The concept activation vector of concept ci
y′i The dominant class of concept ci
Pci The distribution of the images from the i-th concept

Si The concept sensitivity of concept ci
Ipi /I

n
i The positive/negative image set for concept ci

Np/Nn The number of images in positive/negative image set

G
(y)
j The j-th cluster in class y

Gj The j-th environment

Mj The Environment Gradient Matrix corresponding to Gj

H(y) A boolean mask of concepts for the dominant class y
P (y) Concept sampling distribution for class y

X(C,P (y)) Images sampled from concept bank C with probability P (y)

B. Theoretical Analysis

Theorem (Restatement of Theorem 1). Assuming that (1). supp(γ
(i)
y )’s are disjoint for different y’s, and Var({γ

(i)
y,j}

k
i=1)>

K0 for j ∈ [p2] and some constant K0>0, (2). ∥µ∥∞→0 when p1→∞, and K1≤λmin(Σ1)≤λmax(Σ1)≤K2 for some

constants K1,K2>0, (3). p1/n→0 and p2 is fixed. Then when training size n is sufficiently large, Algorithm 1 converges

exponentially fast. Moreover, with probability at least 1−o(1), the solution (µ̂DISC ,γ̂DISC) satisfies

PPte
[ĈDISC(x) ̸=y]<PPte

[ĈERM (x) ̸=y].

Clarification on the assumptions. We provide intuitive clarification on each of the assumptions as follows:

• (1) The support operation supp(·) is a set consisting of all indices corresponding to nonzero entries in the input vector.

The condition of the disjoint supports assumes that the spurious concepts are disjoint in different classes, which is

supported by our observations in the experiments, e.g., Figure 6 in Section 4. The condition of the variance assumes

that the strength of the spurious correlation (measured by the variance of the contribution of the spurious concepts)

is not too small. This condition is necessary to detect spurious concepts by assuming a certain level of distinguishability.

• (2)λmin(·) andλmax(·) represent the smallest and largest eigenvalues of a matrix. The condition on ∥µ∥∞ assumes that the

contribution of causal concepts should be spread out. The assumptions on the upper and lower bounds of eigenvalues ofΣ1

are standard in statistics and machine learning literature (Cai & Zhang, 2019; 2021; Cai et al., 2021; Nakada et al., 2023).

• (3) We assume limited number of spurious concepts. Moreover, the number of training data n needs to largely exceed

the number of causal concepts so that the model can learn the invariant concepts well for the classification.
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Proof. We start the proof by analyzing the two main steps: concept sensitivity computation and the gradient update via mixup

in each iteration.

Denoting the mini-batch size as B. We note that we assume the concepts are all well-learned and only analyze the fitting

on top of the well-learned concepts. The matrix multiplication by CAV will not show up throughout this proof. Under our

model set-up, at iteration t, we have for j∈ [k], the Mj in (3) equals to

Mj,y=X⊤(y1B−X(µt;γt))/B.

The corresponding parts for the causal and spurious features are respectively

Mj,y;inv=X⊤
inv(y1B−X(µt;γt))/B=X⊤

invy1B/B−X⊤
invXinvµt/B−X⊤

invXspuγt/B,

and

Mj,y;spu=X⊤
spu(y1B−X(µt;γt))/B=X⊤

spuy1B/B−X⊤
spuXinvµt/B−X⊤

spuXspuγt/B.

As X are assumed to be sub-gaussian, we have that

Mj,y;inv=❊[X
⊤
invy1B/B−X⊤

invXinvµt/B−X⊤
invXspuγt/B]+O(

√

p1
n
)

=µ−(µµ⊤+Σ1)µt−γ⊤
t γ(i)

y ·µ+O(

√

p1
n
),

and

Mj,y;spu=❊[X
⊤
spuy1B/B−X⊤

spuXinvµt/B−X⊤
spuXspuγt/B]+O(

√

p2
n
)

=y ·γ(i)
y −µ⊤µt ·γ

(i)
y −(γ(i)

y (γ(i)
y )⊤+I)γt+O(

√

p2
n
)

=y ·γ(i)
y −µ⊤µt ·γ

(i)
y −(γ(i)

y )⊤γt ·γ
(i)
y +Iγt+O(

√

p2
n
).

Then, as we now consider the binary classification setting, the Si in (4) now equals to

S
(y)
i,j =Var({γ

(i)
y,j}

k
i=1).

Now, for the invariant part, as ∥µ∥∞=O(1), and fixed p2 implying that |γ⊤
t γ

(i)
y |=O(1), we have for all j∈ [p1],

S
(y)
i,j =o(1).

Also, by assumption, we have ∥γ
(i)
y ∥ > 1 and Var({γ

(i)
y,j}

k
i=1) >K0 for j ∈ [p2], and therefore for all j ∈ [p2] and some

constant K0>0, we have

S
(y)
i,j =Ω(1).

As a result, with probability at least 1−o(1), the sampling according to P (y) will always draw from the spurious concepts

from ∪k
i=1supp(γ

(i)
y ). We denote such an event by E with P(E)≥1−o(1).

Now we analyze the mixup part on the event E. According to our model setup, for j ∈ [p2], the concept image is modeled

as the basis vector ej , with the j-th entry equal to 1, indicating the presence of this concept.

Letting γ̃y =
1
k

∑k

i=1γ
(i)
y . Then after mixup, for the spurious concepts, there exists a vector cy,spu with support belonging

to ∪k
i=1supp(γ

(i)
y ) and nonzero entries are in (0,1), such that the gradient update becomes

S(i)
spu=

∑

y∈{−1,1}

y ·(γ̃y+c−y,spu)−µ⊤µt ·(
∑

y∈{−1,1}

γ̃y+c−y,spu)−(
∑

y∈{−1,1}

(γ̃yγ̃
⊤
y +c−y,spuc

⊤
−y,spu)+I)γt+O(

√

p2
n
),
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Note that we assume y∈{−1,1}. Using the fact that the supports of γ̃y and c−y,spu are disjoint, we have that

St
spu=

∑

y∈{−1,1}

y ·(γ̃y+c−y,spu)−µ⊤µt ·(
∑

y∈{−1,1}

γ̃y+c−y,spu)−(
∑

y∈{−1,1}

(γ̃y+c−y,spu)(γ̃y+c−y,spu)
⊤+I)γt+O(

√

p2
n
).

In addition, the gradient on the invariant (causal) part

St
inv=µ−(µµ⊤+Σ1)µt−γ⊤

t γ(i)
y ·µ+O(

√

p1
n
).

As a result, the update in each iteration t of is equivalent to running gradient descent on minimizing the loss function ℓ(µ̂,γ̂)=

(µ̂;γ̂)⊤
(

Σ1+µµ⊤ 0
0

∑

y∈{−1,1}(γ̃y+c−y,spu)(γ̃y+c−y,spu)
⊤+I

)

(µ̂;γ̂)+(µ̂;γ̂)⊤(µ;
∑

y∈{−1,1}y ·(γ̃y+c−y,spu)).

Since λmin(Σ1),λmin(I)>K1, ℓ is a strongly convex function, implying that Algorithm 1 converges exponentially fast.

At last, we compare the performance of DISC and ERM.

Since (µ̂DISC ,γ̂DISC) minimizes ℓ, we can write out its analytical solution as

µ̂DISC=(Σ1+µµ⊤)µ+O(

√

p1
n
),

and

γ̂DISC=(
∑

y∈{−1,1}

(γ̃y+c−y,spu)(γ̃y+c−y,spu)
⊤+I)−1

∑

y∈{−1,1}

y ·(γ̃y+c−y,spu)

=(
∑

y∈{−1,1}

(γ̃y)(γ̃y)
⊤+

∑

y∈{−1,1}

(c−y,spu)(c−y,spu)
⊤+I)−1

∑

y∈{−1,1}

y ·(γ̃y+c−y,spu)

Similarly, we have

µ̂ERM =(Σ1+µµ⊤)µ+O(

√

p1
n
),

and

γ̂ERM =(
∑

y∈{−1,1}

(γ̃y)(γ̃y)
⊤+I)−1

∑

y∈{−1,1}

y ·γ̃y.

Since all the entries of γ̃y are either 0 or 1, all the entries of cy,spu are between 0 and 1, and the support of γ̃y and c−y,spu

are disjoint, we have that

∥γ̂DISC∥<∥γ̂ERM∥.

Now we analyze the misclassification error in the test domain. For any µ̂ and γ̂, we have

PDte
(sgn(µ̂⊤x1+γ̂⊤x2) ̸=y)=

1

2
PDte

(µ̂⊤µ+µ̂⊤ϵ1+γ̂⊤ϵ2>0)+
1

2
PDte

(−µ̂⊤µ+µ̂⊤ϵ1+γ̂⊤ϵ2<0)

=
1

2
❊[P(µ̂⊤µ+µ̂⊤ϵ1+γ̂⊤ϵ2>0 |ϵ1)]+

1

2
❊[P(−µ̂⊤µ+µ̂⊤ϵ1+γ̂⊤ϵ2<0 |ϵ1)]

=❊[Φ(−
µ̂⊤µ

√

∥µ̂∥2+∥γ̂∥2
)],

where Φ is the cumulative distribution function of a standard normal distribution. As a result, using

µ̂⊤µ=c∥µ∥2+O(
√

p1/n)>0 and ∥γ̂DISC∥<∥γ̂ERM∥, We have that

PDte
[ĈDISC(x) ̸=y]<PDte

[ĈERM (x) ̸=y].
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C. Datasets

Table 2. (a) Metashift Dataset.

Target: classify cat / dog.

Spurious feature: object / background; sofa, bed (cat); bench, bike (dog).

Image:

Group g: 0 1 2 3 4 5
Target y∈{0,1}: 0 (cat) 0 (cat) 1 (dog) 1 (dog) 0 (cat) 1 (dog)

Spurious s: 0 (sofa) 1 (bed) 2 (bench) 3 (bike) 4 (shelf) 4 (shelf)

# Train data: 231 380 145 367 - -

# Val data (OOD): - - - - 34 47

# Test data: - - - - 201 259

Table 2. (b) Waterbirds Dataset.

Target: bird type; Spurious feature: background type.

Image:

Group g: 0 1 2 3
Target y∈{0,1}: 0 (landbird) 0 (landbird) 1 (waterbird) 1 (waterbird)

Spurious s: 0 (land) 1 (water) 0 (land) 1 (water)

# Train data: 3,498 (73%) 184 (4%) 56 (1%) 1,057 (22%)

# Val data: 467 466 133 133

# Test data: 2,255 2,255 642 642

Table 2. (c) FMoW Dataset.

Target: one of 62 building or land use categories, e.g., park, shopping mall, dam, stadium, airport.

Spurious features: Unknown (not explicitly given by the data source).

Image:

Group g: Europe Asia Americas Africa Oceania

# Train data: 34,816 17,809 20,973 1,582 1,641

# Val data: 7,732 4,121 6,562 803 693

# Test data: 5,858 4,963 8,024 2,593 666
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Table 2. (d) ISIC Dataset. For methods that require domain information, we use the existence of hairs as the domain labels. Each training

split amplifies different correlations, and the corresponding testing set provides reversed correlations.

Target: benign / melanoma skin lesions

Spurious features: dark corners, hair, gel borders, gel bubbles, ruler, ink markings/staining, patches.

Image: ...

Target y∈{0,1}: 0 (benign) 0 (benign) ... 1 (malignant) 1 (malignant)

Spurious s:
patch, ink,

...
dark corner, ruler,

gel border hair gel bubble dark corner

# Train data: 1,826

# Val data: 154

# Test data: 618

D. Concept Bank

Concept categories. In Table 3, we list all the 224 concepts in the concept bank under 6 categories, which are (Color, Texture,

Nature, City, Household, Others). Note that the concept bank could be easily extended with user-defined concepts since the

concept images are cheap to obtain, leveraging the text-to-image generative models.

Table 3. A comprehensive concept list of the concept bank in this work.

Concept category Concepts

Color [blackness, blueness, greenness, redness, whiteness]

Texture [concrete, granite, leather, laminate, metal, blotchy, blurriness, stripes, polka dots, knitted, cracked, frilly, waf-
fled, scaly, lacelike, grooved, stratified, gauzy, marbled, flecked, stained, braided, matted, meshed, cobwebbed,
spiralled, dotted, crosshatched, wrinkled, woven, potholed, crystalline, paisley, veined, fibrous, studded, bubbly,
pleated, grid, perforated, porous, interlaced, smeared, honeycombed, sprinkled, chequered, lined, banded,
bumpy, zigzagged, swirly, pitted, freckled]

Nature [bamboo, beach, bridge, bush, canopy, earth, field, flower, flowerpot, fluorescent, forest, grass, ground, harbor,
hill, lake, mountain, muzzle, palm, path, plant, river, sand, sea, snow, tree, water]

City [awning, base, bench, building, earth, fence, field, ground, house, manhole, path, snow, streets]

Household [air-conditioner, apron, armchair, back-pillow, balcony, bannister, bathrooms, bathtub, bed, bedclothes, bed-
rooms, cabinet, carpet, ceiling, chair, chandelier, chest-of-drawers, countertop, curtain, cushion, desk, dining-
rooms, door, door-frame, double-door, drawer, drinking-glass, exhaust-hood, figurine, fireplace, floor, flower,
flowerpot, fluorescent, ground, handle, handle-bar, headboard, headlight, house, jar, lamp, light, microwave,
mirror, ottoman, oven, pillow, plate, refrigerator, sofa, stairs, toilet]

Others [bird, cat, cow, dog, horse, mouse, paw, arm, back, body, ear, eye, eyebrow, female-face, leg, male-face, foot, hair,
hand, head, inside-arm, knob, mouth, neck, nose, outside-arm, ashcan, airplane, bag, bus, beak, bicycle, blind,
board, book, bookcase, bottle, bowl, box, brick, basket, bucket, bumper, can, candlestick, cap, car, cardboard,
ceramic, chain-wheel, chimney, clock, coach, coffee-table, column, computer, counter, cup, desk, engine, fabric,
fan, faucet, flag, floor, food, foot-board, frame, glass, keyboard, lid, loudspeaker, minibike, motorbike, napkin,
pack, painted, painting, pane, paper, pedestal, person, pillar, pipe]

Concept image generation and examples. All the concept images are synthetic and generated by the Stable Diffusion model

with the pretrained weights ªstable-diffusion-v1-4º, where we use the concept name or its pluralization form as prompts. The

code of generating concept bank is made public at this link. As shown in Figure 7, we present the selected concept images in

the concept bank as demonstrations.
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Tree

Stripes

Concept Category Example of Concept Images

Nature

Texture

Blueness Color

CityStreets

Figure 7. Examples of concept images in the concept bank.

Potential bias of concept images. Generative models may not necessarily be perfect at generating concept images. While it

is true that they may have their own biases, they are trained on much larger datasets and thus are less likely to contain more

severe spurious correlations for simple concepts. Empirically, we found that synthetic concept images are less noisy or biased

compared to real images. For example, we observed that the concept images of ªtreeº in the BRODEN dataset (Fong &

Vedaldi, 2018) of visual concepts highly coexist with ªhumanº (e.g., while hiking), while the synthetic images in our concept

bank are much less likely to contain such bias, as shown in Figure 7. Moreover, previous work (Abid et al., 2022) also shows

that learning the CAVs does not require a large number of concept images, which allows simple filtering on the concept bank

to further guarantee its trustworthiness.

Table 4. Selected concept categories for each dataset

Concept categories

Color Texture Nature City Household Others

MetaShift " " " " " "

Waterbirds " " "

FMoW " " " "

ISIC " "

Concept category selection and filtering. As shown in Table 4, we select concept categories for each dataset. The general

principle of selection is including the appeared objects in the dataset, based on the prior knowledge of the dataset context. We

give the following demonstrations:

• We include Color and Texture for all the datasets since these two concept categories have general existence.

• With the prior knowledge that FMoW is a satellite image dataset, we include Nature and City categories since they may

appear in the dataset and thus could contain candidates of spurious concepts.

• With the prior knowledge that ISIC is a skin disease dataset, we exclude Nature, City, etc., that do not exist from the concept

candidates for this dataset, and only include Texture and Color concepts.

In real-world applications, such knowledge of dataset contexts is fundamentally required for downstream tasks, which is

generalizable to the other datasets. Moreover, since the large concept bank is shared across datasets and the practitioner

can select the categories instead of the individual concepts, which requires little labor.
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Moreover, in our implementation, we use a filtering module to filter relevant concepts in a dataset inspired by Abid et al.

(2022). The benefits of the concept category selection and filtering are (1) avoiding unrealistic interventions, e.g., mixup

animal images with satellite images, and (2) reducing the computational cost of computing CAVs during the training process.

Automatic concept category selection. As a future direction, to further avoid the concept category selection for an unknown

downstream task, the protocol to automatically select suitable concept categories can be

• Leveraging image recognition models to identify existing objects in the datasets.

• Then, extracting concepts or concept categories from our dataset-agnostic concept bank, which is defined in Table 3.

Learning CAVs. To learn the CAVs, we use Np=Nn=150 for all the concepts. Another future direction is that we can learn

more accurate concept representations by using hard negative samples. For example, we can construct the negative set for tree

concept using concepts images that are similar to tree images, e.g., grass and flowers. For simplicity, we use random sampling

to construct the negative sets in this work.

E. Model and Optimization Details

We adopt DenseNet121 (Huang et al., 2017) on FMoW and ResNet-50 (He et al., 2016) on the other datasets. The

hyper-parameters are summarized in Table 5. For the Beta distribution, we use α=µ=2 in all the datasets. Note that we

search the number of clusters per class using Silhouette score, which is detailed in Appendix G.

Table 5. Hyper-parameters of DISC during training.

Leaning Rate Batch Size Weight Decay #Clusters per Class

MetaShift 5e-4 16 1e-4 2
Waterbirds 1e-4 32 1e-4 3
FMoW 1e-4 10 0.0 3
ISIC 5e-4 16 1e-5 3

F. Results of Interpretation Comparison

Here we first analyze the advantages of the interpretations generated by DISC over the existing baselines that identify spurious

correlation. We study three dimensions of interpretability:

• Class/group-wise: Whether the explanations are concerning a class or group, which have the advantage of obtaining

common insights across several instances, as opposed to instance-wise explanations.

• Concept/caption-based: Whether the explanations are based on captions or concepts that are more human-friendly

and unambiguous instead of feature maps.

• Adaptive: Whether the explanations are adaptive or intrinsic during the training process, which enables dynamic

inspection, as opposed to post-hoc explanations.

We consider different explanation types, including the existing saliency-based and concept-based methods. To highlight,

DISC is the only method that fulfills the three advantages.

In Figure 8, we further qualitatively evaluate the interpretations of DISC and three other types of explanations: (1) Grad-CAM

(saliency-based method). (2) Failure-Direction (Jain et al., 2022) (caption-based method). (3) CCE (Abid et al., 2022)

(concept-based method). For Grad-CAM, similar to the previous observation, the instance-wise saliency maps could be

hard to interpret and draw global insights in understanding the predictions for a class. For Failure-Direction, we compute

the caption scores following the original paper and obtain the word scores by aggregation. Specifically, we found that the

caption model sometimes focuses on the foreground instead of the background, making a subset of the captions uninformative

for debugging. Moreover, the interpretations lack diversity due to the limitation of the captioning model. For CCE, we find

that the interpretations of DISC and CCE are similar. This aligns with our expectations since both DISC and CCE leverage

CAVs to generate interpretations. Moreover, DISC offers more dynamic inspection during model training.
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Table 6. Comparison between interpretations of DISC and the existing methods.

Explanation types Class/group-wise Concept/caption-based Adaptive

Singla & Feizi (2022)

Saliency-based "(partial) "(partial) ✗Selvaraju et al. (2017)

Singla et al. (2022)

Sohoni et al. (2020)
Clustering-based " ✗ ✗

Seo et al. (2022)

Creager et al. (2021)

Partition-based " ✗ ✗
Liu et al. (2021a)

Li et al. (2022)

Ahmed et al. (2021)

Abid et al. (2022)
Concept-based " " ✗

Bontempelli et al. (2022)

Jain et al. (2022)
Caption-based ✗ " ✗

Eyuboglu et al. (2022)

Lang et al. (2021)
Generative counterfactuals

✗ ✗ ✗

Li & Xu (2021) " ✗ ✗

DISC Adaptive concept-based " " "

BranchWildTreeForestWord

0.090.210.721.0Score (normalized)

(b) Failure-Directions

(a) Grad-CAM

(d) DISC

(c) CCE 

snow     bamboo   forest       bridge       plant
sea         lake        beach

1.0          0.94        0.92         0.76         0.55

‐0.96      ‐0.99        ‐1.0

Figure 8. Different interpretations on Waterbirds explaining ªwhy the images are predicted as land birds?º . (a) Grad-CAM visualization.

(b) The word score generated by Jain et al. (2022). (c) The averaged concept scores when generating counterfactuals using CCE (Abid et al.,

2022). (d) The concept sensitivity of spurious concepts on landbird class before the after the DISC training.
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G. Results of Ablation and Sensitivity Study

Table 7. All experimental results of the ablation of model design choices.

MetaShift Waterbirds FMoW ISIC

Avg. Acc. Worst Acc. Avg. Acc. Worst Acc. Avg. Acc. Worst Acc. Avg. AUROC

DISC-Randint 71.7% 64.5% 91.0% 85.9% 53.0% 32.1% 49.3%

DISC-Reweight 72.8% 62.5% 88.9% 81.4% 51.0% 32.0% 35.9%

DISC-Inadaptive 73.0% 68.3% 89.6% 86.5% 51.9% 31.8% 47.1%

DISC 75.4% 72.6% 93.8% 88.7% 53.9% 36.1% 55.1%

Ablation Results. In Table 7, we report the ablation results on all the datasets. The conclusions are consistent with our

statements in the main paper. Specifically, DISC outperforms the ablation models by large margins, validating our algorithm

design empirically.

Unsupervised Clustering. We use the Silhouette score as a heuristic to search for the hyper-parameter of cluster number

per class. As shown in Figure 9, interestingly, we found this metric well aligns with the testing performances on most

datasets. Empirically, we found a small number of clusters per class, e.g., 3, generally achieves the best results. One potential

explanation is that when the number of clusters increases, the concept sensitivity could be passive and arbitrary by recognizing

insignificant spurious concepts. We believe this is also an interesting perspective to investigate concept sensitivity or, in

general, environment construction, in future works.

WaterbirdsMetaShift ISIC (split-1)FMoW

Figure 9. Worst Group Accuracy and Silhouette score w.r.t. number of clusters per class. For the ISIC dataset, we report the sensitivity result

on one of the train-test splits.

(a) Clustering results (b) Ground truth group  

Figure 10. Comparison of clustering and group assignments on Waterbirds.

Besides the clustering results of MetaShift in Figure 6, we visualize the clustering results on Waterbirds in Figure 10. We

found the clustering algorithm is able to capture part of the spurious attributes. Yet, good data environments could be difficult

to find with extremely uneven groups. While DISC also outperforms most of the baselines, these results suggest that DISC

is more robust even with ªimpreciseº environments.
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