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Abstract

Machine learning algorithms typically assume

that training and test examples are drawn from the

same distribution. However, distribution shift is a

common problem in real-world applications and

can cause models to perform dramatically worse

at test time. In this paper, we specifically consider

the problems of subpopulation shifts (e.g., imbal-

anced data) and domain shifts. While prior works

often seek to explicitly regularize internal repre-

sentations or predictors of the model to be domain

invariant, we instead aim to learn invariant pre-

dictors without restricting the model’s internal

representations or predictors. This leads to a sim-

ple mixup-based technique which learns invariant

predictors via selective augmentation called LISA.

LISA selectively interpolates samples either with

the same labels but different domains or with the

same domain but different labels. Empirically, we

study the effectiveness of LISA on nine bench-

marks ranging from subpopulation shifts to do-

main shifts, and we find that LISA consistently

outperforms other state-of-the-art methods and

leads to more invariant predictors. We further an-

alyze a linear setting and theoretically show how

LISA leads to a smaller worst-group error. Code

is released in https://github.com/huaxiuyao/LISA

1. Introduction

To deploy machine learning algorithms in real-world appli-

cations, we must pay attention to distribution shift, i.e. when

the test distribution is different from the training distribution,

which substantially degrades model performance. In this
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paper, we refer this problem as out-of-distribution (OOD)

generalization and specifically consider performance gaps

caused by two kinds of distribution shifts: subpopulation

shifts and domain shifts. In subpopulation shifts, the test

domains (or subpopulations) are seen but underrepresented

in the training data. When subpopulation shift occurs, mod-

els may perform poorly when they falsely rely on spurious

correlations between the particular subpopulation and the

label. For example, in health risk prediction, a machine

learning model trained on the entire population may asso-

ciate the labels with demographic features (e.g., gender and

age), making the model fail on the test set when such an

association does not hold in reality. In domain shifts, the

test data is from new domains, which requires the trained

model to generalize well to test domains without seeing the

data from those domains at training time. In the health risk

example, we may want to train a model on patients from

a few sampled hospitals and then deploy the model to a

broader set of hospitals (Koh et al., 2021).

To improve model robustness under these two kinds of distri-

bution shifts, prior works have proposed various regularizers

to learn representations or predictors that are invariant to

different domains while still containing sufficient informa-

tion to fulfill the task (Li et al., 2018; Sun & Saenko, 2016;

Arjovsky et al., 2019; Krueger et al., 2021; Rosenfeld et al.,

2021). However, designing regularizers that are widely suit-

able to datasets from diverse domains is challenging, and

unsuitable regularizers may adversely limit the model’s ex-

pressive power or yield a difficult optimization problem,

leading to inconsistent performance among various real-

world datasets. For example, on the WILDS datasets, invari-

ant risk minimization (IRM) (Arjovsky et al., 2019) with

reweighting ± a representative method for learning invariant

predictor ± outperforms empirical risk minimization (ERM)

on CivilComments, but fails to improve robustness on a

variety of other datasets like Camelyon17 and RxRx1 (Koh

et al., 2021).

Instead of explicitly imposing regularization, we propose to

learn invariant predictors through data interpolation, leading

to a simple algorithm called LISA (Learning Invariant Pre-

dictors with Selective Augmentation). Concretely, inspired

by mixup (Zhang et al., 2018), LISA linearly interpolates

the features for a pair of samples and applies the same
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(b) Intra-label LISA: interpolates samples with the same label but different domains

(c) Intra-domain LISA: interpolates samples with the same domain but different labels

(a) Colored MNIST dataset

Figure 1. Illustration of the variants of LISA (Intra-label LISA and Intra-domain LISA) on Colored MNIST dataset. λ represents the

interpolation ratio, which is sampled from a Beta distribution. (a) Colored MNIST (CMNIST). We classify MNIST digits as two classes,

and original digits (0,1,2,3,4) and (5,6,7,8,9) are labeled as class 0 and 1, respectively. Digit color is used as domain information, which is

spuriously correlated with labels in training data; (b) Intra-label LISA (LISA-L) cancels out spurious correlation by interpolating samples

with the same label; (c) Intra-domain LISA (LISA-D) interpolates samples with the same domain but different labels to encourage the

model to learn specific features within a domain.

interpolation strategy on the corresponding labels. Crit-

ically, the pairs are selectively chosen according to two

selective augmentation strategies ± intra-label LISA (LISA-

L) and intra-domain LISA (LISA-D), which are described

below and illustrated on Colored MNIST dataset in Figure 1.

Intra-label LISA (Figure 1(b)) interpolates samples with the

same label but from different domains, aiming to eliminate

domain-related spurious correlations. Intra-domain LISA

(Figure 1(c)) interpolates samples with the same domain but

different labels, such that the model should learn to ignore

the domain information and generate different predicted

values as the interpolation ratio changes. In this way, LISA

encourages the model to learn domain-invariant predictors

without any explicit constraints or regularizers.

The primary contributions of this paper are as follows:

(1) We propose a simple yet widely-applicable method for

learning domain invariant predictors that is shown to be

robust to subpopulation shifts and domain shifts. (2) We

conduct broad experiments to evaluate LISA on nine bench-

mark datasets from diverse domains. In these experiments,

we make the following key observations. First, we observe

that LISA consistently outperforms seven prior methods to

address subpopulation and domain shifts. Second, we find

that LISA produces predictors that are consistently more

domain invariant than prior approaches. Third, we identify

that the performance gains of LISA are from canceling out

domain-specific information or spurious correlations and

learning invariant predictors, rather than simply involving

more data via interpolation. Finally, when the degree of

distribution shift increases, LISA achieves more significant

performance gains. (3) We provide a theoretical analysis of

the phenomena distilled from the empirical studies, where

we provably demonstrate that LISA can mitigate spurious

correlations and therefore lead to smaller worst-domain er-

ror compared with ERM and vanilla mixup. We also note

that to the best of our knowledge, our work provides the

first theoretical framework of studying how mixup (with or

without the selective augmentation strategies) affects mis-

classification error.

2. Preliminaries

In this paper, we consider the setting where one predicts

the label y ∈ Y based on the input feature x ∈ X . Given

a parameter space Θ and a loss function ℓ, we need to

train a model fθ under the training distribution Ptr, where

θ ∈ Θ. In empirical risk minimization (ERM), the empirical

distribution over the training data is P̂tr; ERM optimizes

the following objective:

θ∗ := argmin
θ∈Θ

E(x,y)∼P̂ [ℓ(fθ(x), y)]. (1)

In a traditional machine learning setting, a test set, sampled

from a test distribution Pts, is used to evaluate the general-

ization of the trained model θ∗, where the test distribution

is assumed to be the same as the training distribution, i.e.,

P tr = P ts. In this paper, we are interested in the setting

when distribution shift occurs, i.e., P tr ̸= P ts.

Specifically, following Muandet et al. (2013); Albuquerque

et al. (2019); Koh et al. (2021), we regard the overall data

distribution containing D = {1, . . . , D} domains and each
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domain d ∈ D is associated with a data distribution Pd

over a set (X,Y, d) = {(xi, yi, d)}N
d

i=1, where Nd is the

number of samples in domain d. Then, we formulate the

training distribution as the mixture of D domains, i.e.,

P tr =
∑

d∈D rtrd Pd, where {rtrd } denotes the mixture prob-

abilities in training set. Here, the training domains are

defined as Dtr = {d ∈ D|rtrd > 0}. Similarly, the test

distribution could be represented as P ts =
∑

d∈D rtsd Pd,

where {rtsd } is the mixture probabilities in test set. The test

domains are defined as Dts = {d ∈ D|rtsd > 0}.
In subpopulation shifts, the test set has domains that have

been seen in the training set, but with a different propor-

tion of subpopulations, i.e., Dts ⊆ Dtr but {rtsd } ≠ {rtrd }.
Under this setting, following Sagawa et al. (2020a), we con-

sider group-based spurious correlations, where each group

g ∈ G is defined to be associated with a domain d and a label

y, i.e., g = (d, y). We assume that the domain is spuriously

correlated with the label. For example, we illustrate the CM-

NIST dataset in Figure 1, where the digit color d (green or

red) is spuriously correlated with the label y ([1, 0] or [0, 1]).

Based on the group definition, we evaluate the model via the

worst test group error, i.e., maxg E(x,y)∼g[ℓ0−1(fθ(x), y)],
where ℓ0−1 represents the 0-1 loss.

In domain shifts, we investigate the problem where the

test domains are disjoint from the training domains, i.e.,

Dtr ∩ Dts = ∅. In general, we assume the test domains

share some common properties with the training domains.

For example, in Camelyon17 (Koh et al., 2021), we train

the model on some hospitals and test it in a new hospital.

We evaluate the worst-domain and/or average performance

of the classifier across all test domains.

3. Learning Invariant Predictors with Selective

Augmentation

This section presents LISA, a simple way to improve robust-

ness to subpopulation shifts and domain shifts. The key idea

behind LISA is to encourage the model to learn invariant

predictors by selective data interpolation, which could also

alleviates the effects of domain-related spurious correlations.

Before detailing how to select interpolated samples, we first

provide a general formulation for data interpolation.

In LISA, we perform linear interpolation between train-

ing samples. Specifically, given samples (xi, yi, di) and

(xj , yj , dj) drawn from domains di and dj , we apply

mixup (Zhang et al., 2018), a simple data interpolation

strategy, separately on the input features and corresponding

labels as:

xmix = λxi + (1− λ)xj , ymix = λyi + (1− λ)yj , (2)

where the interpolation ratio λ ∈ [0, 1] is sampled from

a Beta distribution Beta(α, β) and yi and yj are one-hot

vectors for classification problem. Notice that the mixup

approach in (2) can be replaced by CutMix (Yun et al.,

2019), which shows stronger empirical performance in

vision-based applications. In text-based applications, we

can use Manifold Mixup (Verma et al., 2019), interpolating

the representations of a pre-trained model, e.g., the output

of BERT (Devlin et al., 2019).

After obtaining the interpolated features and labels, we re-

place the original features and labels in ERM with the in-

terpolated ones. Then, the optimization process in (1) is

reformulated as:

θ∗ := argmin
θ∈Θ

E{(xi,yi,di),(xj ,yj ,dj)}∼P̂ [ℓ(fθ(xmix), ymix)].

(3)

Without additional selective augmentation strategies, vanilla

mixup will regularize the model and reduce overfit-

ting (Zhang et al., 2021b), allowing it to attain good in-

distribution generalization. However, vanilla mixup may

not be able to cancel out spurious correlations, causing the

model to still fail at attaining good OOD generalization (see

empirical comparisons in Section 4.3 and theoretical discus-

sion in Section 5). In LISA, we instead adopt a new strategy

where mixup is only applied across specific domains or

groups, which leans towards learning invariant predictors

and thus better OOD performance. Specifically, the two

kinds of selective augmentation strategies are presented as:

Intra-label LISA (LISA-L): Interpolating samples with

the same label. Intra-label LISA interpolates samples with

the same label but different domains (i.e., di ̸= dj , yi =
yj). As shown in Figure 1(a), this produces datapoints that

have both domains partially present, effectively eliminating

spurious correlations between domain and label in cases

where the pair of domains correlate differently with the

label. As a result, intra-label LISA should learn domain-

invariant predictors for each class and thus achieve better

OOD robustness.

Intra-domain LISA (LISA-D): Interpolating samples

with the same domain. Supposing domain information

is highly spuriously correlated with the label information,

intra-domain LISA (Figure 1(b)) applies the interpolation

strategy on samples with the same domain but different la-

bels, i.e., di = dj , yi ̸= yj . Intuitively, even within the same

domain, the model is supposed to generate different pre-

dicted labels since the interpolation ratio λ is randomly sam-

pled, corresponding to different labels ymix. This causes

the model to make predictions that are less dependent on

the domain, again improving OOD robustness.

In this paper, we randomly perform intra-label or intra-

domain LISA during the training process with probability

psel and 1− psel, where psel is treated as a hyperparameter

and determined via cross-validation. Intuitively, the choice

of psel depends on the number of domains and the strength
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of the spurious correlations. Empirically, using intra-label

LISA brings more benefits when there are more domains

or when the the spurious correlations are not very strong.

Intra-domain LISA benefits performance when domain in-

formation is highly spuriously correlated with the label. The

pseudocode of LISA is in Algorithm 1.

Algorithm 1 Training Procedure of LISA

Require: Training data D, step size η, learning rate γ,

shape parameters α, β of Beta distribution

1: while not converge do

2: Sample λ ∼ Beta(α, β)
3: Sample minibatch B1 ∼ D
4: Initialize B2 ← {}
5: Select strategy s ∼ Bernoulli(psel)
6: if s is True then

7: for (xi, yi, di) ∈ B1 do

8: Randomly sample (xj , yj , dj) ∼ {(x, y, d) ∈
D} which satisfies (yi = yj) and (di ̸= dj).

9: Put (xj , yj , dj) into B2.

10: else

11: for (xi, yi, di) ∈ B1 do

12: Randomly sample (xj , yj , dj) ∼ {(x, y, d) ∈
D} which satisfies (yi ̸= yj) and (di = dj).

13: Put (xj , yj , dj) into B2.

14: Update θ with data λB1 + (1− λ)B2 with learning

rate γ.

4. Experiments

In this section, we conduct comprehensive experiments to

evaluate the effectiveness of LISA. Specifically, we aim to

answer the following questions: Q1: Compared to prior

methods, can LISA improve robustness to subpopulation

shifts and domain shifts (Section 4.1 and Section 4.2)? Q2:

Which aspects of LISA are the most important for improving

robustness (Section 4.3)? Q3: Does LISA successfully

produce more invariant predictors (Section 4.4)? Q4: How

does LISA perform with varying degrees of distribution

shifts (Section 4.5)?

To answer Q1, we compare to ERM, IRM (Arjovsky et al.,

2019), IB-IRM (Ahuja et al., 2021), V-REx (Krueger et al.,

2021), CORAL (Li et al., 2018), DRNN (Ganin & Lem-

pitsky, 2015), GroupDRO (Sagawa et al., 2020a), Domain-

Mix (Xu et al., 2020), and Fish (Shi et al., 2021). Upweight-

ing (UW) is particularly suitable for subpopulation shifts,

so we also use it for comparison. We adopt the same model

architectures for all approaches. The strategy selection prob-

ability psel is selected via cross-validation.

4.1. Evaluating Robustness to Subpopulation Shifts

Evaluation Protocol. In subpopulation shifts, we evaluate

the performance on four binary classification datasets, in-

cluding Colored MNIST (CMNIST), Waterbirds (Sagawa

et al., 2020a), CelebA (Liu et al., 2015), and Civilcom-

ments (Borkan et al., 2019). We detail the data descriptions

of subpopulation shifts in Appendix A.1.1 and report the

detailed data statistics in Table 1, covering domain infor-

mation, model architecture, and class information. Follow-

ing Sagawa et al. (2020a), in subpopulation shifts, we use

the worst-group accuracy to evaluate the performance of all

approaches. In these datasets, the domain information is

highly spurious correlated with the label information. For

example, as suggested in Figure 1, 80% images in the CM-

NIST dataset have the same color in each specific class, i.e.,

green color for label [1, 0] and red color for label [0, 1].

In CMNIST, Waterbirds, and CelebA, we find that psel =
0.5 works well for choosing selective augmentation strate-

gies, while in CivilComments, we set psel as 1.0 . This is not

surprising because it might be more beneficial to use intra-

label LISA more often to eliminate domain effects when

there are more domains, i.e., eight domains in CivilCom-

ments v.s. two domains in others. The rest hyperparameter

settings and training details are listed in Appendix A.1.2.

Results. In Table 2, we report the overall performance

of LISA and other methods. According to Table 2, we ob-

serve that the performance of approaches that learn invariant

predictors with explicit regularizers (e.g., IRM, IB-IRM, V-

REx) is not consistent across datasets. For example, IRM

and V-REx outperform UW on CMNIST, but they fail to

achieve better performance than UW on Waterbirds. The

results corroborate our hypothesis that designing widely

effective regularizers is challenging, and that inappropriate

regularizers may even hurt the performance. LISA instead

consistently outperforms other invariant learning methods

(e.g., IRM, IB-IRM, V-REx, CORAL, DomainMix, Fish) in

all datasets. LISA further shows the best performance on

CMNIST, CelebA, and CivilComments. In Waterbirds, it

is slightly worse than GroupDRO, but the performance is

comparable. These results demonstrate the effectiveness of

LISA in improving robustness to subpopulation shifts.

Effects of Intra-label and Intra-domain LISA. For CM-

NIST, Waterbirds and CelebA, both intra-label and intra-

domain LISA are used (i.e., psel = 0.5), we illustrate

the separate results in Figure 2 and observe that both vari-

ants contribute to the final performance. In addition, intra-

domain LISA performs slightly better than intra-label LISA,

corroborating our assumption that intra-domain LISA ben-

efits more when domain information is highly spuriously

correlated with the label (see the discussion of the strength

of spurious correlation in Appendix A.3).

4.2. Evaluating Robustness to Domain Shifts

Experimental Setup. In domain shifts, we study five

datasets. Four of them (Camelyon17, FMoW, RxRx1, and
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Table 1. Dataset Statistics for Subpopulation Shifts. All datasets are binary classification tasks and we use the worst group accuracy as the

evaluation metric.

Datasets Domains Model Architecture Class Information

CMNIST 2 digit colors ResNet-50 digit (0,1,2,3,4) v.s. (5,6,7,8,9)
Waterbirds 2 backgrounds ResNet-50 waterbirds v.s. landbirds
CelebA 2 hair colors ResNet-50 man v.s. women
CivilComments 8 demographic identities DistilBERT-uncased toxic v.s. non-toxic

Table 2. Results of subpopulation shifts. Here, we show the average and worst group accuracy. We repeat the experiments three times and

put full results with standard deviation in Table 10.

CMNIST Waterbirds CelebA CivilComments
Avg. Worst Avg. Worst Avg. Worst Avg. Worst

ERM 27.8% 0.0% 97.0% 63.7% 94.9% 47.8% 92.2% 56.0%
UW 72.2% 66.0% 95.1% 88.0% 92.9% 83.3% 89.8% 69.2%
IRM 72.1% 70.3% 87.5% 75.6% 94.0% 77.8% 88.8% 66.3%
IB-IRM 72.2% 70.7% 88.5% 76.5% 93.6% 85.0% 89.1% 65.3%
V-REx 71.7% 70.2% 88.0% 73.6% 92.2% 86.7% 90.2% 64.9%
CORAL 71.8% 69.5% 90.3% 79.8% 93.8% 76.9% 88.7% 65.6%
GroupDRO 72.3% 68.6% 91.8% 90.6% 92.1% 87.2% 89.9% 70.0%
DomainMix 51.4% 48.0% 76.4% 53.0% 93.4% 65.6% 90.9% 63.6%
Fish 46.9% 35.6% 85.6% 64.0% 93.1% 61.2% 89.8% 71.1%

LISA (ours) 74.0% 73.3% 91.8% 89.2% 92.4% 89.3% 89.2% 72.6%
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Figure 2. Effects of intra-label and intra-domain LISA in CMNIST,

Waterbirds and CelebA. The experiments are repeated three times

with different seeds.

Amazon) are selected from WILDS (Koh et al., 2021), cov-

ering natural distribution shifts across diverse domains (e.g.,

health, language, and vision). Besides the WILDS data, we

also apply LISA on the MetaShift datasets (Liang & Zou,

2021), constructed using the real-world images and natural

heterogeneity of Visual Genome (Krishna et al., 2016). We

summarize these datasets in Table 4, including domain in-

formation, evaluation metric, model architecture, and the

number of classes. Detailed dataset descriptions and other

training details are discussed in Appendix A.2.1 and A.2.2,

respectively.

The strategy selection probability psel is set as 1.0 for these

domain shifts datasets, i.e., only intra-label LISA is used.

Additionally, we only interpolate samples with the same

labels without considering the domain information in Came-

lyon17, FMoW, and RxRx1, which empirically leads to the

best performance. One potential reason is that the spurious

correlations between labels and domains are not very strong

in datasets with natural domain shifts under the existing

domain partitions. Here, to evaluate the strength of spurious

correlation, we adopt CramÂer’s V (CramÂer, 2016) (see the

detailed definition in Appendix A.3) to measure the associa-

tion between the domain set D and the label set Y , where

the results are reported in Table 13 of Appendix A.3. The

CramÂer’s V values in Camelyon17, FMoW, and RxRx1 are

significantly smaller than other datasets, indicating relatively

weak spurious correlations. Under this setting, enlarging the

interpolation scope by directly interpolating samples within

the same class regardless of existing domain information

may bring more benefits.

Results. We report the results of domain shifts in Table 3,

where full results that include validation performance and

other metrics are listed in Appendix A.6. Aligning with

the observation in subpopulation shifts, the performance

of prior regularization-based invariant predictor learning

methods (e.g., IRM, IB-IRM, V-REx) is still unstable across

different datasets. For example, V-REx outperforms ERM

on Camelyon17, while it fails in RxRx1. However, LISA

consistently outperforms all these methods on five datasets

regardless of the model architecture and data types (i.e.,

image or text), indicating its effectiveness in improving

robustness to domain shifts with selective augmentation.

4.3. Are the Performance Gains of LISA from Data

Augmentation?

In LISA, we apply selective augmentation strategies on

samples either with the same label but different domains or
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Table 3. Main domain shifts results. LISA outperforms prior methods on all five datasets. Following the instructions of Koh et al. (2021),

we report the performance of Camelyon17 over 10 different seeds and the results of other datasets are obtained over 3 different seeds.

Camelyon17 FMoW RxRx1 Amazon MetaShift

Avg. Acc. Worst Acc. Avg. Acc. 10-th Per. Acc. Worst Acc.

ERM 70.3 ± 6.4% 32.3 ± 1.25% 29.9 ± 0.4% 53.8 ± 0.8% 52.1 ± 0.4%
IRM 64.2 ± 8.1% 30.0 ± 1.37% 8.2 ± 1.1% 52.4 ± 0.8% 51.8 ± 0.8%
IB-IRM 68.9 ± 6.1% 28.4 ± 0.90% 6.4 ± 0.6% 53.8 ± 0.7% 52.3 ± 1.0%
V-REx 71.5 ± 8.3% 27.2 ± 0.78% 7.5 ± 0.8% 53.3 ± 0.0% 51.6 ± 1.8%
CORAL 59.5 ± 7.7% 31.7 ± 1.24% 28.4 ± 0.3% 52.9 ± 0.8% 47.6 ± 1.9%
GroupDRO 68.4 ± 7.3% 30.8 ± 0.81% 23.0 ± 0.3% 53.3 ± 0.0% 51.9 ± 0.7%
DomainMix 69.7 ± 5.5% 34.2 ± 0.76% 30.8 ± 0.4% 53.3 ± 0.0% 51.3 ± 0.5%
Fish 74.7 ± 7.1% 34.6 ± 0.18% 10.1 ± 1.5% 53.3 ± 0.0% 49.2 ± 2.1%

LISA (ours) 77.1 ± 6.5% 35.5 ± 0.65% 31.9 ± 0.8% 54.7 ± 0.0% 54.2 ± 0.7%

Table 4. Dataset Statistics for Domain Shifts.

Datasets Domains Metric Base Model Num. of classes

Camelyon17 5 hospitals Avg. Acc. DenseNet-121 2
FMoW 16 years x 5 regions Worst-group Acc. DenseNet-121 62
RxRx1 51 experimental batches Avg. Acc. ResNet-50 1,139
Amazon 7,676 reviewers 10th Percentile Acc. DistilBERT-uncased 5
MetaShift 4 backgrounds Worst-group Acc. ResNet-50 2

with the same domain but different labels. Here, we explore

two substitute interpolation strategies:

• Vanilla mixup: in Vanilla mixup, we do not add any con-

straints on the sample selection, i.e., the mixup is per-

formed on any pairs of samples.

• In-group mixup: this strategy applies data interpolation on

samples with the same labels and from the same domains.

Notice that all substitute interpolation strategies use the

same variant of mixup as LISA (e.g., mixup/CutMix). Fi-

nally, as upweighting (UW) small groups significantly im-

proves performance in subpopulation shifts, we evaluate

UW combined with Vanilla/In-group mixup.

The results of substitute interpolation strategies on domain

shifts and subpopulation shifts are in Table 5 and Table 6,

respectively. Furthermore, we also conduct experiments

on datasets without spurious correlation in Table 14 of Ap-

pendix A.4. From the results, we make the following three

key observations. First, compared with Vanilla mixup, the

performance of LISA verifies that selective data interpola-

tion indeed improve the out-of-distribution robustness by

canceling out the spurious correlations and encouraging

learning invariant predictors rather than simple data aug-

mentation. These findings are further strengthened by the

results in Table 14 of Appendix A.4, where Vanilla mixup

outperforms LISA and ERM without spurious correlations

but LISA achieves the best performance with spurious cor-

relations. Second, the superiority of LISA over In-group

mixup verifies that only interpolating samples within each

group is incapable of eliminating out the spurious informa-

tion, where In-group mixup still performs the role of data

augmentation. Third, though incorporating UW significantly

improves the performance of Vanilla mixup and In-group

mixup in subpopulation shifts, LISA still achieves larger

benefits than these enhanced substitute strategies, demon-

strating its stronger power in improving OOD robustness.

4.4. Does LISA Lead to More Invariant Predictors?

We further analyze the model invariance learned by LISA.

Specifically, for each sample (xi, yi, d) in domain d, we

denote the unscaled output (i.e., logits) of the model as

gi,d. We use two metrics to measure the invariance (see Ap-

pendix A.5.1 for additional metrics and the corresponding

results):

• Accuracy of domain prediction (IPadp). In the first

metric, we use the unscaled output to predict the domain.

Concretely, the entire dataset is re-split into training, vali-

dation, and test sets, where logits are used as features and

labels represent the corresponding domain ID. A logistic

regression model is trained to predict the domain.

• Pairwise divergence of prediction (IPkl). We calculate

the KL divergence of the distribution of logits among all

domains, where kernel density estimation is used to esti-

mate the probability density function P (gyd) of logits from

domain d with label y. The pairwise divergence of the pre-

dictions is defined as 1
|Y||D|2

∑
y∈Y

∑
d′,d∈D KL(P (gyD |

D = d)|P (gyD | D = d′)).

Small values of IPadp and IPkl represent strong function-

level invariance. In Table 7, we report the results of LISA

and other approaches on CMNIST, Waterbirds, Camelyon17
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Table 5. Compared LISA with substitute mixup strategies in domain shifts.

Camelyon17 FMoW RxRx1 Amazon MetaShift

Avg. Acc. Worst Acc. Avg. Acc. 10-th Per. Acc. Worst Acc.

ERM 70.3 ± 6.4% 32.8 ± 0.45% 29.9 ± 0.4% 53.8 ± 0.8% 52.1 ± 0.4%
Vanilla mixup 71.2 ± 5.3% 34.2 ± 0.45% 26.5 ± 0.5% 53.3 ± 0.0% 51.3 ± 0.7%
In-group mixup 75.5 ± 6.7% 32.2 ± 1.18% 24.4 ± 0.2% 53.8 ± 0.6% 52.7 ± 0.5%

LISA (ours) 77.1 ± 6.5% 35.5 ± 0.65% 31.9 ± 0.8% 54.7 ± 0.0% 54.2 ± 0.7%

Table 6. Compared LISA with substitute mixup strategies in subpopulation shifts. UW represents upweighting. Full results with standard

deviation is listed in Table 11.

CMNIST Waterbirds CelebA CivilComments
Avg. Worst Avg. Worst Avg. Worst Avg. Worst

ERM 27.8% 0.0% 97.0% 63.7% 94.9% 47.8% 92.2% 56.0%
Vanilla mixup 32.6% 3.1% 81.0% 56.2% 95.8% 46.4% 90.8% 67.2%
Vanilla mixup + UW 72.2% 71.8% 92.1% 85.6% 91.5% 88.0% 87.8% 66.1%
In-group mixup 33.6% 24.0% 88.7% 68.0% 95.2% 58.3% 90.8% 69.2%
In-group mixup + UW 72.6% 71.6% 91.4% 87.1% 92.4% 87.8% 84.8% 69.3%

LISA (ours) 74.0% 73.3% 91.8% 89.2% 92.4% 89.3% 89.2% 72.6%

and MetaShift. The results verify that LISA learns predic-

tors with greater domain invariance. Besides having more in-

variant predictors, we observe that LISA also leads to more

invariant representations, as detailed in Appendix A.5.2.

4.5. Effect of the Degree of Distribution Shifts

We investigate the performance of LISA with respect to

the degree of distribution shifts. Here, we use MetaShift

to evaluate performance, where the distance between train-

ing and test domains is measured as the node similarity on

a meta-graph (Liang & Zou, 2021). To vary the distance

between training and test domains, we change the back-

grounds of training objects (see full experimental details in

Appendix A.2.1). The performance with varied distances is

illustrated in Table 8, where the top four best methods (i.e.,

ERM, IRM, IB-IRM, GroupDRO) are reported for compari-

son. We observe that LISA consistently outperforms other

methods under all scenarios. Another interesting finding is

that LISA achieves more substantial improvements with the

increases of distance. A potential reason is that the effects

of eliminating domain information is more obvious when

there is a larger distance between training and test domains.

5. Theoretical Analysis

In this section, we provide some theoretical understandings

that explain several of the empirical phenomena from the

previous experiments and theoretically compare the worst-

group errors of three methods: the proposed LISA, ERM,

and vanilla mixup. Specifically, we consider a Gaussian

mixture model with subpopulation and domain shifts, which

has been widely adopted in theory to shed light upon com-

plex machine learning phenomenon such as in (Montanari

et al., 2019; Zhang et al., 2021c; Liu et al., 2021b). We

note here that despite the popularity of mixup in practice,

the theoretical analysis of how mixup (w/ or w/o the selec-

tive augmentation strategies) affects the misclassification

error is still largely unexplored in the literature even in the

simple models. As discussed in Section 2, here, we define

y ∈ {0, 1} as the label, and d ∈ {R,G} as the domain in-

formation. For y ∈ {0, 1} and d ∈ {R,G}, we consider the

following model:

xi|yi = y, di = d ∼ N(µ(y,d),Σ(d)), i = 1, . . . , n(y,d), (4)

where µ(y,d) ∈ ❘
p is the conditional mean vector and

Σ(d) ∈ ❘
p×p is the covariance matrix. Let n =∑

y∈{0,1},d∈{R,G} n
(y,d). Let π(y,d) = P(yi = y, di = d),

π(y) = P(yi = y), and π(d) = P(di = d).

To account for the spurious correlation brought by domains,

we consider µ(y,R) ̸= µ(y,G) in general for y ∈ {0, 1} and

the imbalanced case where π(0,R), π(1,G) < 1/4. Moreover,

we assume there exists some invariance across different

domains. Specifically, we assume

µ(1,R) − µ(0,R) = µ(1,G) − µ(0,G) := ∆ and Σ(G) = Σ(R) := Σ.

According to Fisher’s linear discriminant analysis (Ander-

son, 1962; Tony Cai & Zhang, 2019; Cai & Zhang, 2021),

the optimal classification rule is linear with slope Σ−1∆.

The assumption above implies that (Σ−1∆)⊤x is the (un-

known) invariant prediction rule for model (4).

Suppose we use some method A and obtain a linear classifier

xT b+ b0 > 0 from a training data, we will apply it to a test

data and compute the worst-group misclassification error,
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Table 7. Results of the analysis of learned invariant predictors. Accuracy of domain prediction (IPadp) and pairwise divergence of

prediction among all domains (IPkl) are used to measure the invariance. Smaller values denote stronger invariance.

IPadp ↓ IPkl ↓

CMNIST Waterbirds Camelyon17 MetaShift CMNIST Waterbirds Camelyon17 MetaShift

ERM 82.85% 94.99% 49.43% 67.98% 6.286 1.888 1.536 1.205
Vanilla mixup 92.34% 94.49% 52.79% 69.36% 4.737 2.912 0.790 1.171
IRM 69.42% 95.12% 47.96% 67.59% 7.755 1.122 0.875 1.148
IB-IRM 74.72% 94.78% 48.37% 67.39% 1.004 3.563 0.756 1.115
V-REx 63.58% 93.32% 61.38% 68.38% 3.190 3.791 1.281 1.094

LISA (ours) 58.42% 90.28% 45.15% 66.01% 0.567 0.134 0.723 1.001

Table 8. Effects of the degree of distribution shifts w.r.t. the per-

formance on the MetaShift benchmark. Distance represents the

distribution distance between training and test domains. Best B/L

represents best baseline.

Distance 0.44 0.71 1.12 1.43

ERM 80.1% 68.4% 52.1% 33.2%
IRM 79.5% 67.4% 51.8% 32.0%
IB-IRM 79.7% 66.9% 52.3% 33.6%
GroupDRO 77.0% 68.9% 51.9% 34.2%
LISA (ours) 81.3% 69.7% 54.2% 37.5%

LISA v.s. Best B/L +1.5% +1.2% +3.6% +9.6%

where the mis-classification error for domain d and class y
is E(y,d)(b, b0) := P(✶(xT

i b + b0 > 1
2
) ̸= y|di = d, yi = y),

and we denote the worst-group error with the method A as

E
(wst)
A = max

d∈{R,G},y∈{0,1}
E(y,d)(bA, b0,A),

where bA and b0,A are the slope and intercept based on the

method A. Specifically, A = ERM denotes the ERM method

(by minimizing the sum of squares loss on the training data

altogether), A = mix denotes the vanilla mixup method

(without any selective augmentation strategy), and A =

LISA denotes the mixup strategy for LISA. We also denote

its finite sample version by Ê
(wst)
A .

Let ∆̃ = ❊[xi|yi = 1]−❊[xi|yi = 0] denote the marginal dif-

ference and ξ = ∆TΣ−1∆̃

∥∆∥Σ∥∆̃∥Σ
denote the correlation operator

between the domain-specific difference ∆ and the marginal

difference ∆̃ with respect to Σ. We see that smaller ξ indi-

cates larger discrepancy between the marginal difference

and the domain-specific difference and therefore implies

stronger spurious correlation between the domains and la-

bels. We present the following theorem showing that our

proposed LISA algorithm outperforms the ERM and vanilla

mixup in the subpopulation shifts setting.

Theorem 1 (Error comparison with subpopulation shifts)
Consider n independent samples generated from model

(4), π(R) = π(1) = 1/2, π(0,R) = π(1,G) = α < 1/4,

maxy,d ∥µ
(y,d)∥2 ≤ C, and Σ is positive definite. Suppose

(ξ, α) satisfies that ξ < min{ ∥∆̃∥Σ
∥∆∥Σ

, ∥∆∥Σ
∥∆̃∥Σ

} − Cα for some

large enough constant C and ❊[λ2
i ]/max{var(λi), 1/4} ≥

∥∆̃∥2Σ + ∥∆̃∥Σ∥∆∥Σ. Then for any psel ∈ [0, 1],

Ê
(wst)
LISA < min{Ê

(wst)
ERM , Ê

(wst)
mix }+OP

(
p log n

n
+

p

αn

)
.

In Theorem 1, λi is the random mixup coefficient for the i-th
sample. If λi = λ are the same for all the samples in a mini-

batch, the results still hold. Theorem 1 implies that when

ξ is small (indicating that the domain has strong spurious

correlation with the label) and p = o(αn), the worst-group

classification errors of LISA are asymptotically smaller than

that of ERM and vanilla mixup. In fact, our analysis shows

that LISA yields a classification rule closer to the invariant

classification rules by leveraging the domain information.

In the next theorem, we present the mis-classification error

comparisons with domain shifts. That is, consider samples

from a new unseen domain:

x
(0,∗)
i ∼ N(µ(0,∗),Σ), x

(1,∗)
i ∼ N(µ(1,∗),Σ). (5)

Let ∆̃∗ = 2(µ(0,∗) −❊[xi]), where ❊[xi] is the mean of the

training distribution, and assume µ(1,∗) − µ(0,∗) = ∆. Let

ξ∗ = ∆̃TΣ−1∆̃∗

∥∆̃∥Σ∥∆∥Σ
and γ = ∆TΣ−1∆̃∗

∥∆̃∥Σ∥∆∥Σ
denote the correlation

for (∆̃∗, ∆̃) and for (∆̃∗,∆), respectively, with respect to

Σ−1. Let E
(wst∗)
A = maxy∈{0,1} E

(y,∗)(bA, b0,A) and its sam-

ple version be Ê
(wst∗)
A .

Theorem 2 (Error comparison with domain shifts)
Suppose n samples are independently generated from

model (4), π(R) = π(1) = 1/2, π(0,R) = π(1,G) = α < 1/4,

maxy,d ∥µ
(y,d)∥2 ≤ C and Σ is positive definite. Sup-

pose that (ξ, ξ∗, γ) satisfy that 0 ≤ ξ∗ ≤ γξ and ξ <

min{ γ

2
∥∆̃∥Σ
∥∆∥Σ

, ∥∆∥Σ
∥∆̃∥Σ

} − Cα for some large enough constant

C and ❊[λ2
i ]/max{var(λi), 1/4} ≥ ∥∆̃∥2Σ + ∥∆̃∥Σ∥∆∥Σ.

Then for any psel ∈ [0, 1],

Ê
(wst∗)
LISA < min{Ê

(wst∗)
ERM , Ê

(wst∗)
mix }+OP

(
p log n

n
+

p

αn

)
.

Similar to Theorem 1, this result shows that when domain

has strong spurious correlation with the label (correspond-

ing to small ξ), such a spurious correlation leads to the

downgraded performance of ERM and vanilla mixup, while
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our proposed LISA method is able to mitigate such an issue

by selective data interpolation. Proofs of Theorem 1 and

Theorem 2 are provided in Appendix B.

6. Related Work and Discussion

In this paper, we focus on improving the robustness of ma-

chine learning models to subpopulation shifts and domain

shifts. Here, we discuss related approaches from the follow-

ing three categories:

Learning Invariant Representations. Motivated by unsu-

pervised domain adaptation (Ben-David et al., 2010; Ganin

et al., 2016), the first category of works learns invariant

representations by aligning representations across domains.

The major research line of this category aims to eliminate

the domain dependency by minimizing the divergence of

feature distributions with different distance metrics, e.g.,

maximum mean discrepancy (Tzeng et al., 2014; Long et al.,

2015), an adversarial loss (Ganin et al., 2016; Li et al., 2018),

Wassertein distance (Zhou et al., 2020a). Follow-up works

applied data augmentation to (1) generate more domains

and enhance the consistency of representations during train-

ing (Yue et al., 2019; Zhou et al., 2020b; Xu et al., 2020; Yan

et al., 2020; Shu et al., 2021; Wang et al., 2020; Yao et al.,

2021) or (2) generate new domains in an adversarial way to

imitate the challenging domains without using training do-

main information (Zhao et al., 2020; Qiao et al., 2020; Volpi

et al., 2018). Unlike these latter methods, LISA instead

focuses on learning invariant predictors without restricting

the internal representations, leading to stronger empirical

performance.

Learning Invariant Predictors. Beyond using domain

alignment to learning invariant representations, recent work

aims to further enhance the correlations between the invari-

ant representations and the labels (Koyama & Yamaguchi,

2020), leading to invariant predictors. Representatively,

motivated by casual inference, invariant risk minimization

(IRM) (Arjovsky et al., 2019) and its variants (Guo et al.,

2021; Khezeli et al., 2021; Ahuja et al., 2021) aim to find a

predictor that performs well across all domains through reg-

ularizations. Other follow-up works leverage regularizers to

penalize the variance of risks across all domains (Krueger

et al., 2021), to align the gradient across domains (Koyama

& Yamaguchi, 2020), to smooth the cross-domain inter-

polation paths (Chuang & Mroueh, 2021), or to involve

game-theoretic invariant rationalization criterion (Chang

et al., 2020). Instead of using regularizers, LISA instead

learns domain-invariant predictors via data interpolation.

Group Robustness. The last category of methods combat-

ing spurious correlations and are particularly suitable for

subpopulation shifts. These approaches include directly op-

timizing the worst-group performance with Distributionally

Robust Optimization (Sagawa et al., 2020a; Zhang et al.,

2021a; Zhou et al., 2021), generating samples around the

minority groups (Goel et al., 2021), and balancing the ma-

jority and minority groups via reweighting (Sagawa et al.,

2020b) or regularizing (Cao et al., 2019; 2020). A few re-

cent approaches in this category target on subpopulation

shifts without annotated group labels (Nam et al., 2020; Liu

et al., 2021a; Zhang et al., 2021d; Creager et al., 2021; Lee

et al., 2022). LISA proposes a more general strategy that is

suitable for both domain shifts and subpopulation shifts.

7. Conclusion

To tackle distribution shifts, we propose LISA, a simple

and efficient algorithm, to improve the out-of-distribution

robustness. LISA aims to eliminate the domain-related

spurious correlations among the training set with selective

interpolation. We evaluate the effectiveness of LISA on

nine datasets under subpopulation shifts and domain shifts

settings, demonstrating its promise. Besides, detailed analy-

ses verify that the performance gains caused by LISA result

from encouraging learning invariant predictors and represen-

tations. Theoretical results further strengthen the superiority

of LISA by showing smaller worst-group mis-classification

error compared with ERM and vanilla data interpolation.

While we have made progress in learning invariant predic-

tors with selective augmentation, a limitation of LISA is

how to make it compatible with problems in which it is

difficult to obtain examples with the same label (e.g., object

detection, generative modeling). It would be interesting to

explore more general selective augmentation strategies in

the future. Additionally, we empirically find that intra-label

LISA works without domain information in some domain

shift situations. Systematically exploring domain-free intra-

label LISA with a theoretical guarantee would be another

interesting future direction.
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A. Additional Experiments

A.1. Additional Experiments on Subpopulation Shifts

A.1.1. DATASET DETAILS

Colored MNIST (CMNIST): We classify MNIST digits from 2 classes, where classes 0 and 1 indicate original digits

(0,1,2,3,4) and (5,6,7,8,9). The color is treated as a spurious attribute. Concretely, in the training set, the proportion between

red samples and green samples is 8:2 in class 0, while the proportion is set as 2:8 in class 1. In the validation set, the

proportion between green and red samples is 1:1 for all classes. In the test set, the proportion between green and red samples

is 1:9 in class 0, while the ratio is 9:1 in class 1. The data sizes of train, validation, and test sets are 30000, 10000, and

20000, respectively. Follow (Arjovsky et al., 2019), we flip labels with probability 0.25.

Waterbirds (Sagawa et al., 2020a): The Waterbirds dataset aims to classify birds as ªwaterbirdº or ªlandbirdº, where each

bird image is spuriously associated with the background ªwaterº or ªlandº. Waterbirds is a synthetic dataset where each

image is composed by pasting a bird image sampled from CUB dataset (Wah et al., 2011) to a background drawn from the

Places dataset (Zhou et al., 2017). The bird categories in CUB are stratified as land birds or water birds. Specifically, the

following bird species are selected to construct the waterbird class: albatross, auklet, cormorant, frigatebird, fulmar, gull,

jaeger, kittiwake, pelican, puffin, tern, gadwall, grebe, mallard, merganser, guillemot, or Pacific loon. All other bird species

are combined as the landbird class. We define (land background, waterbird) and (water background, landbird) are minority

groups. There are 4,795 training samples while only 56 samples are ªwaterbirds on landº and 184 samples are ªlandbirds on

waterº. The remaining training data include 3,498 samples from ªlandbirds on landº, and 1,057 samples from ªwaterbirds

on waterº.

CelebA (Liu et al., 2015; Sagawa et al., 2020a): For the CelebA data (Liu et al., 2015), we follow the data preprocess

procedure from (Sagawa et al., 2020a). CelebA defines a image classification task where the input is a face image of

celebrities and the classification label is its corresponding hair color ± ªblondº or ªnot blond.º The label is spuriously

correlated with gender, i.e., male or female. In CelebA, the minority groups are (blond, male) and (not blond, female). The

number of samples for each group are 71,629 ªdark hair, femaleº, 66,874 ªdark hair, maleº, 22,880 ªblond hair, femaleº,

1,387 ªblond hair, maleº.

CivilComments (Borkan et al., 2019; Koh et al., 2021): We use CivilComments from the WILDS benchmark (Koh et al.,

2021). CivilComments is a text classification task, aiming to predict whether an online comment is toxic or non-toxic.

The spurious domain identifications are defined as the demographic features, including male, female, LGBTQ, Christian,

Muslim, other religion, Black, and White. CivilComments contains 450,000 comments collected from online articles. The

number of samples for training, validation, and test are 269,038, 45,180, and 133,782, respectively. The readers may kindly

refer to Table 17 in (Koh et al., 2021) for the detailed group information.

A.1.2. TRAINING DETAILS

We adopt pre-trained ResNet-50 (He et al., 2016) and BERT (Sanh et al., 2019) as the model for image data (i.e., CMNIST,

Waterbirds, CelebA) and text data (i.e., CivilComments), respectively. In each training iteration, we sample a batch of

data per group. For intra-label LISA, we randomly apply mixup on sample batches with the same labels but different

domains. For intra-domain LISA, we instead apply mixup on sample batches with the same domain but different labels. The

interpolation ratio λ is sampled from the distribution Beta(2, 2). All hyperparameters are selected via cross-validation and

are listed in Table 9.

A.1.3. ADDITIONAL RESULTS

In this section, we have added the full results of subpopulation shifts in Table 10 and Table 11.

A.2. Additional Experimental Settings on Domain Shifts

A.2.1. DATASET DETAILS

In this section, we provide detailed descriptions of datasets used in the experiments of domain shifts and report the data

statistics in Table 4.
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Table 9. Hyperparameter settings for the subpopulation shifts.

Dataset CMNIST Waterbirds CelebA CivilComments

Learning rate 1e-3 1e-3 1e-4 1e-5
Weight decay 1e-4 1e-4 1e-4 0
Scheduler n/a n/a n/a n/a
Batch size 16 16 16 8
Type of mixup mixup mixup CutMix ManifoldMix
Architecture ResNet50 ResNet50 ResNet50 DistilBert
Optimizer SGD SGD SGD Adam
Maximum Epoch 300 300 50 3
Strategy sel. prob. psel 0.5 0.5 0.5 1.0

Table 10. Full results of subpopulation shifts with standard deviation. All the results are performed with three random seed.

CMNIST Waterbirds
Avg. Worst Avg. Worst

ERM 27.8 ± 1.9% 0.0 ± 0.0% 97.0 ± 0.2% 63.7 ± 1.9%
UW 72.2 ± 1.1% 66.0 ± 0.7% 95.1 ± 0.3% 88.0 ± 1.3%
IRM 72.1 ± 1.2% 70.3 ± 0.8% 87.5 ± 0.7% 75.6 ± 3.1%
IB-IRM 72.2 ± 1.3% 70.7 ± 1.2% 88.5 ± 0.6% 76.5 ± 1.2 %
V-REx 71.7 ± 1.2% 70.2 ± 0.9% 88.0 ± 1.0% 73.6 ± 0.2%
Coral 71.8 ± 1.7% 69.5 ± 0.9% 90.3 ± 1.1% 79.8 ± 1.8%
GroupDRO 72.3 ± 1.2% 68.6 ± 0.8% 91.8 ± 0.3% 90.6 ± 1.1%
DomainMix 51.4 ± 1.3% 48.0 ± 1.3% 76.4 ± 0.3% 53.0 ± 1.3%
Fish 46.9 ± 1.4% 35.6 ± 1.7% 85.6 ± 0.4% 64.0 ± 0.3%

LISA 74.0 ± 0.1% 73.3 ± 0.2% 91.8 ± 0.3% 89.2 ± 0.6%

CelebA CivilComments
Avg. Worst Avg. Worst

ERM 94.9 ± 0.2% 47.8 ± 3.7% 92.2 ± 0.1% 56.0 ± 3.6%
UW 92.9 ± 0.2% 83.3 ± 2.8% 89.8 ± 0.5% 69.2 ± 0.9%
IRM 94.0 ± 0.4% 77.8 ± 3.9% 88.8 ± 0.7% 66.3 ± 2.1%
IB-IRM 93.6 ± 0.3% 85.0 ± 1.8% 89.1 ± 0.3% 65.3 ± 1.5%
V-REx 92.2 ± 0.1% 86.7 ± 1.0% 90.2 ± 0.3% 64.9 ± 1.2%
Coral 93.8 ± 0.3% 76.9 ± 3.6% 88.7 ± 0.5% 65.6 ± 1.3%
GroupDRO 92.1 ± 0.4% 87.2 ± 1.6% 89.9 ± 0.5% 70.0 ± 2.0%
DomainMix 93.4 ± 0.1% 65.6 ± 1.7% 90.9 ± 0.4% 63.6 ± 2.5%
Fish 93.1 ± 0.3% 61.2 ± 2.5% 89.8 ± 0.4% 71.1 ± 0.4%

LISA (ours) 92.4 ± 0.4% 89.3 ± 1.1% 89.2 ± 0.9% 72.6 ± 0.1%

Camelyon17 We use Camelyon17 from the WILDS benchmark (Koh et al., 2021; Bandi et al., 2018), which provides

450, 000 lymph-node scans sampled from 5 hospitals. Camelyon17 is a medical image classification task where the input x
is a 96× 96 image and the label y is whether there exists tumor tissue in the image. The domain d denotes the hospital that

the patch was taken from. The training dataset is drawn from the first 3 hospitals, while out-of-distribution validation and

out-of-distribution test datasets are sampled from the 4-th hospital and 5-th hospital respectively.

FMoW The FMoW dataset is from the WILDS benchmark (Koh et al., 2021; Christie et al., 2018) Ð a satellite image

classification task which includes 62 classes and 80 domains (16 years x 5 regions). Concretely, the input x is a 224× 224
RGB satellite image, the label y is one of the 62 building or land use categories, and the domain d represents the year that

the image was taken as well as its corresponding geographical region ± Africa, the Americas, Oceania, Asia, or Europe. The

train/test/validation splits are based on the time when the images are taken. Specifically, images taken before 2013 are used

as the training set. Images taken between 2013 and 2015 are used as the validation set. Images taken after 2015 are used for

testing.

RxRx1 RxRx1 (Koh et al., 2021; Taylor et al., 2019) from the WILDS benchmark is a cell image classification task.

In the dataset, some cells have been genetically perturbed by siRNA. The goal of RxRx1 is to predict which siRNA that
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Table 11. Full table of the comparison between LISA and other substitute mixup strategies in subpopulation shifts. UW represents

upweighting.
CMNIST Waterbirds

Avg. Worst Avg. Worst

ERM 27.8 ± 1.9% 0.0 ± 0.0% 97.0 ± 0.2% 63.7 ± 1.9%
Vanilla mixup 32.6 ± 3.1% 3.1 ± 2.4% 81.0 ± 0.2% 56.2 ± 0.2%
Vanilla mixup + UW 72.2 ± 0.7% 71.8 ± 0.1% 92.1 ± 0.1% 85.6 ± 1.0%
In-group Group 33.6 ± 1.9% 24.0 ± 1.1% 88.7 ± 0.3% 68.0 ± 0.4%
In-group + UW 72.6 ± 0.1% 71.6 ± 0.2% 91.4 ± 0.6% 87.1 ± 0.6%

LISA (ours) 74.0 ± 0.1% 73.3 ± 0.2% 91.8 ± 0.3% 89.2 ± 0.6%

CelebA CivilComments
Avg. Worst Avg. Worst

ERM 94.9 ± 0.2% 47.8 ± 3.7% 92.2 ± 0.1% 56.0 ± 3.6%
Vanilla mixup 95.8 ± 0.0% 46.4 ± 0.5% 90.8 ± 0.8% 67.2 ± 1.2%
Vanilla mixup + UW 91.5 ± 0.2% 88.0 ± 0.3% 87.8 ± 1.2% 66.1 ± 1.4%
Within Group 95.2 ± 0.3% 58.3 ± 0.9% 90.8 ± 0.6% 69.2 ± 0.8%
Within Group + UW 92.4 ± 0.4% 87.8 ± 0.6% 84.8 ± 0.7% 69.3 ± 1.1%

LISA (ours) 92.4 ± 0.4% 89.3 ± 1.1% 89.2 ± 0.9% 72.6 ± 0.1%

the cells have been treated with. Concretely, the input x is an image of cells obtained by fluorescent microscopy, the

label y indicates which of the 1, 139 genetic treatments the cells received, and the domain d denotes the experimental

batches. Here, 33 different batches of images are used for training, where each batch contains one sample for each class.

The out-of-distribution validation set has images from 4 experimental batches. The out-of-distribution test set has 14
experimental batches. The average accuracy on out-of-distribution test set is reported.

Amazon Each task in the Amazon benchmark (Koh et al., 2021; Ni et al., 2019) is a multi-class sentiment classification

task. The input x is the text of a review, the label y is the corresponding star rating ranging from 1 to 5, and the domain d
is the corresponding reviewer. The training set has 245, 502 reviews from 1, 252 reviewers, while the out-of-distribution

validation set has 100, 050 reviews from another 1, 334 reviewers. The out-of-distribution test set also has 100, 050 reviews

from the rest 1, 252 reviewers. We evaluate the models by the 10th percentile of per-user accuracies in the test set.

MetaShift We use the MetaShift (Liang & Zou, 2021), which is derived from Visual Genome (Krishna et al., 2016).

MetaShift leverages the natural heterogeneity of Visual Genome to provide many distinct data distributions for a given

class (e.g. ªcats with carsº or ªcats in bathroomº for the ªcatº class). A key feature of MetaShift is that it provides explicit

explanations of the dataset correlation and a distance score to measure the degree of distribution shift between any pair of

sets.

We adopt the ªCat vs. Dogº task in MetaShift, where we evaluate the model on the ªdog(shelf )º domain with 306 images,

and the ªcat(shelf )º domain with 235 images. The training data for the ªCatº class is the cat(sofa + bed), including cat(sofa)

domain and cat(bed) domain. MetaShift provides 4 different sets of training data for the ªDogº class in an increasingly

challenging order, i.e., increasing the amount of distribution shift. Specifically, dog(cabinet + bed), dog(bag + box),

dog(bench + bike), dog(boat + surfboard) are selected for training, where their corresponding distances to dog(shelf ) are

0.44, 0.71, 1.12, 1.43.

A.2.2. TRAINING DETAILS

Follow WILDS Koh et al. (2021), we adopt pre-trained DenseNet121 (Huang et al., 2017) for Camelyon17 and FMoW

datasets, ResNet-50 (He et al., 2016) for RxRx1 and MetaShift datasets, and DistilBert (Sanh et al., 2019) for Amazon

datasets.

In each training iteration, we first draw a batch of samples B1 from the training set. With B1, we then select another sample

batch B2 with same labels as B1 for data interpolation. The interpolation ratio λ is drawn from the distribution Beta(2, 2).
We use the same image transformers as Koh et al. (2021), and all other hyperparameters are selected via cross-validation and

are listed in Table 12.
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Table 12. Hyperparameter settings for the domain shifts.

Dataset Camelyon17 FMoW RxRx1 Amazon MetaShift

Learning rate 1e-4 1e-4 1e-3 2e-6 1e-3
Weight decay 0 0 1e-5 0 1e-4
Scheduler n/a n/a Cosine Warmup n/a n/a
Batch size 32 32 72 8 16
Type of mixup CutMix CutMix CutMix ManifoldMix CutMix
Architecture DenseNet121 DenseNet121 ResNet50 DistilBert ResNet50
Optimizer SGD Adam Adam Adam SGD
Maximum Epoch 2 5 90 3 100
Strategy sel. prob. psel 1.0 1.0 1.0 1.0 1.0

A.3. Strength of Spurious Correlation

In Section 2, the spurious correlation is defined as the association between the domain d and label y, measured by CramÂer’s

V (CramÂer, 2016). Specifically, let ky,d be the number of samples from domain d with label y. The CramÂer’s V is formulated

as

V =

√
χ2

N min(|Y − 1|, |D − 1|) =

√√√√
∑

y∈Y,d∈D
(ky,d−k̃y,d)2

k̃y,d

N min(|Y| − 1|, |D| − 1|) , (6)

where N represents the number of samples in the entire dataset and k̃y,d =
∑

y∈Y ky,d

∑
d∈D ky,d∑

y∈Y,d∈D ky,d
. CramÂer’s V varies from 0

to 1 and higher CramÂer’s V represents stronger correlation.

According to Eq. (6), we calculate the strength of spurious correlations on all datasets used in the experiments and report the

results in Table 13. Compared with other datasets, the CramÂer’s V on Camelyon17, FMoW and RxRx1 are significantly

smaller, indicating weaker spurious correlations.

Table 13. Analysis of the strength of spurious correlations on datasets with subpopulation shifts or domain shifts.

Subpopulation Shifts Domain Shifts
CMNIST Waterbirds CelebA CivilComments Camelyon17 FMoW RxRx1 Amazon MetaShift

0.6000 0.8672 0.3073 0.8723 0.0004 0.1114 0.0067 0.3377 0.4932

A.4. Results on Datasets without Spurious Correlations

In order to analyze the factors that lead to the performance gains of LISA, we conduct experiments on datasets without

spurious correlations. To be more specific, we balance the number of samples for each group under the subpopulation

shifts setting. The results of ERM, Vanilla mixup and LISA on CMNIST, Waterbirds and CelebA are reported in Table

14. The results show that LISA performs similarly compared with ERM when datasets do not have spurious correlations.

If there exists any spurious correlation, LISA significantly outperforms ERM. Another interesting finding is that Vanilla

mixup outperforms LISA and ERM without spurious correlations, while LISA achieves the best performance with spurious

correlations. This finding strengthens our conclusion that the performance gains of LISA are from eliminating spurious

correlations rather than simple data augmentation.

Table 14. Results on datasets without spurious correlations. LISA performs similarly to ERM when there are no spurious correlations.

However, Vanilla mixup outperforms LISA and ERM when there are no spurious correlations while underperforms LISA on datasets with

spurious correlations. The results further strengthen our claim that the performance gains of LISA are not from simple data augmentation.

Dataset CMNIST Waterbirds CelebA

ERM 73.67% 88.07% 86.11%
Vanilla mixup 74.28% 88.23% 88.89%
LISA 73.18% 87.05% 87.22%
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A.5. Additional Invariance Analysis

A.5.1. ADDITIONAL METRICS OF INVARIANT PREDICTOR ANALYSIS

In Table 15, we report two additional metrics to measure the invariance of predictors ± Risk Variance and Gradient Norm,

which is defined as:

• Risk Variance (IPvar). Motivated by Krueger et al. (2021), we use the variance of test risks across all domains to measure

the invariance, which is defined as IPvar = Var({R1(θ), . . . ,RD(θ)}), where D represents the number of test domains

andRd(θ) represents the risk of domain d.

• Gradient Norm (IPnorm). Follow IRMv1 (Arjovsky et al., 2019), we use the gradient norm of the classifier to measure

the optimality of the dummy classifier at each domain d. Assume the classifier is parameterized by w, IPnorm is defined

as: IPnorm = 1
|D|
∑

d∈D ∥∇w|w=1.0Rd(θ)∥2.

Table 15. Additional Invariance Metrics for Invariant Predictor Analysis. We report the results of risk variance (IPvar) and gradient norm

(IPnorm), where smaller values indicate stronger invariance.

IPvar ↓ IPnorm ↓

CMNIST Waterbirds Camelyon MetaShift CMNIST Waterbirds Camelyon MetaShift

ERM 12.0486 0.2456 0.0150 1.8824 1.1162 1.5780 1.2959 1.0914
Vanilla mixup 0.2769 0.1465 0.0180 0.2659 1.5347 1.8631 0.3993 0.1985
IRM 0.0112 0.1243 0.0201 0.8748 0.0908 0.9798 0.5266 0.2320
IB-IRM 0.0072 0.2069 0.0329 0.5680 0.6225 0.8814 0.6890 0.1683
V-REx 0.0056 0.1257 0.0106 0.4220 0.0290 0.8329 0.9641 0.3680

LISA (ours) 0.0012 0.0016 9.97e-5 0.2387 0.0039 0.0538 0.3081 0.1354

Comparing LISA to other invariant learning methods, the results of IPvar and IPnorm further confirm that LISA does

indeed improve predictor invariance.

A.5.2. ANALYSIS OF LEARNED INVARIANT REPRESENTATIONS

In this section, we use pairwise divergence of representations (IRkl) to measure representation-level invariance. Specifically,

assume the representation before classifier of each sample (xi, yi, d) is hi,d, we compute the KL divergence of the distribution

of representations. Similarly, kernel density estimation is also used to estimate the probability density function P (hy
d) of

representations from domain d with label y. Formally, IRkl is defined as IRkl =
1

|Y||D|2
∑

y∈Y
∑

d′,d∈D KL(P (hy
D | D =

d)|P (hy
D | D = d′)). Smaller IRkl values indicate more invariant representations with respect to the labels. We report the

results on CMNIST, Waterbirds, Camelyon17 and MetaShift in Table 16. Our key observations are: (1) Compared with ERM,

LISA learns stronger representation-level invariance. The potential reason is that a stronger invariant predictor implicitly

includes stronger invariance representation; (2) LISA provides more invariant representations than other regularization-based

invariant predictor learning methods, i.e., IRM, IB-IRM, V-REx, showing its capability in learning stronger invariance.

Table 16. Results of representation-level invariance IRkl (×108 for CMNIST), where smaller IRkl value denotes stronger invariance.

CMNIST Waterbirds Camelyon17 MetaShift

ERM 1.683 3.592 8.213 0.632
Vanilla mixup 4.392 3.935 7.786 0.634
IRM 1.905 2.413 8.169 0.627
IB-IRM 3.178 3.306 8.824 0.646
V-REx 3.169 3.414 8.838 0.617

LISA (ours) 0.421 1.912 7.570 0.585

Besides the quantitative analysis, follow Appendix C in Lee et al. (2019), we visualize the hidden representations for all

test samples and the decision boundary on Waterbirds and illustrate the results in Figure 3. Compared with other methods,

the representations of samples with the same label that learned by LISA are closer regardless of their domain information,

which further demonstrates the promise of LISA in producing invariant representations.
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(a): ERM (b): Vanilla mixup

(f): LISA

(c): IRM

Landbird in Land Waterbird in Land

Landbird in Water Waterbird in Water
Decision Boundary

(d): IB-IRM (e): V-REx

Figure 3. Visualization of sample representations and decision boundaries on Waterbirds dataset.

A.6. Full Results of WILDS data

Follow Koh et al. (2021), we reported more results on WILDS datasets in Table 17 - Table 20, including validation

performance and the results of other metrics. According to these additional results, we could see that LISA outperforms

other baseline approaches in all scenarios. Particularly, we here discuss two additional findings: (1) In Camelyon dataset, the

test data is much more visually distinctive compared with the validation data, resulting in the large gap (∼ 10%) between

validation and test performance of ERM (see Table 17). However, LISA significantly reduces the performance gap between

the validation and test sets, showing its promise in improving OOD robustness; (2) In Amazon dataset, though LISA

performs worse than ERM in average accuracy, it achieves the best accuracy at the 10th percentile, which is regarded as a

more common and important metric to evaluate whether models perform consistently well across all users (Koh et al., 2021).

Table 17. Full Results of Camelyon17. We report both validation accuracy and test accuracy.

Validation Acc. Test Acc.

ERM 84.9 ± 3.1% 70.3 ± 6.4%
IRM 86.2 ± 1.4% 64.2 ± 8.1%
IB-IRM 80.5 ± 0.4% 68.9 ± 6.1%
V-REx 82.3 ± 1.3% 71.5 ± 8.3%
Coral 86.2 ± 1.4% 59.5 ± 7.7%
GroupDRO 85.5 ± 2.2% 68.4 ± 7.3%
DomainMix 83.5 ± 1.1% 69.7 ± 5.5%
Fish 83.9 ± 1.2% 74.7 ± 7.1%

LISA (ours) 81.8 ± 1.3% 77.1 ± 6.5%

B. Proofs of Theorem 1 and Theorem 2

Outline of the proof. We will first find the mis-classification errors based on the population version of OLS with different

mixup strategies. Next, we will develop the convergence rate of the empirical OLS based on n samples towards its population

version. These two steps together give us the empirical mis-classification errors of different methods. We will separately

show that the upper bounds in Theorem 1 and Theorem 2 hold for two selective augmentation strategies of LISA and hence

hold for any psel ∈ [0, 1]. Let LL denote intra-label LISA and LD denote intra-domain LISA.

Let π1 = P(yi = 1) and π0 = P(yi = 0) denote the marginal class proportions in the training samples. Let πR = P(di =
R) and πG = P(di = G) denote the marginal subpopulation proportions in the training samples. Let πG|1 = P(di =
G|yi = 1) and define πG|0, πR|1, and πR|0 similarly.
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Table 18. Full Results of FMoW. Here, we report the average accuracy and the worst-domain accuracy on both validation and test sets.

Validation Test
Avg. Acc. Worst Acc. Avg. Acc. Worst Acc.

ERM 59.5 ± 0.37% 48.9 ± 0.62% 53.0 ± 0.55% 32.3 ± 1.25%
IRM 57.4 ± 0.37% 47.5 ± 1.57% 50.8 ± 0.13% 30.0 ± 1.37%
IB-IRM 56.1 ± 0.48% 45.0 ± 0.62% 49.5 ± 0.49% 28.4 ± 0.90%
V-REx 55.3 ± 1.75% 44.7 ± 1.31% 48.0 ± 0.64% 27.2 ± 0.78%
Coral 56.9 ± 0.25% 47.1 ± 0.43% 50.5 ± 0.36% 31.7 ± 1.24%
GroupDRO 58.8 ± 0.19% 46.5 ± 0.25% 52.1 ± 0.50% 30.8 ± 0.81%
DomainMix 58.6 ± 0.29% 48.9 ± 1.15% 51.6 ± 0.19% 34.2 ± 0.76%
Fish 57.8 ± 0.15% 49.5 ± 2.34% 51.8 ± 0.32% 34.6 ± 0.18%

LISA (ours) 58.7 ± 0.92% 48.7 ± 0.74% 52.8 ± 0.94% 35.5 ± 0.65%

Table 19. Full Results of RxRx1. ID: in-distribution; OOD: out-of-distribution

Validation Acc. Test ID Acc. Test OOD Acc.

ERM 19.4 ± 0.2% 35.9 ± 0.4% 29.9 ± 0.4%
IRM 5.6 ± 0.4% 9.9 ± 1.4% 8.2 ± 1.1%
IB-IRM 4.3 ± 0.7% 7.9 ± 0.5% 6.4 ± 0.6%
V-REx 5.2 ± 0.6% 9.3 ± 0.9% 7.5 ± 0.8%
Coral 18.5 ± 0.4% 34.0 ± 0.3% 28.4 ± 0.3%
GroupDRO 15.2 ± 0.1% 28.1 ± 0.3% 23.0 ± 0.3%
DomainMix 19.3 ± 0.7% 39.8 ± 0.2% 30.8 ± 0.4%
Fish 7.5 ± 0.6% 12.7 ± 1.9% 10.1 ± 1.5%

LISA (ours) 20.1 ± 0.4% 41.2 ± 1.0% 31.9 ± 0.8%

We consider the setting where α := π(1,G) = π(0,R) is relatively small and π(1) = π(0) = π(G) = π(R) = 1/2.

B.1. Decomposing the loss function

Recall that ∆ = µ(1,G) − µ(0,G) = µ(1,R) − µ(0,R). We further define ∆̃ = µ(1) − µ(0), θ(G) = µ(0,G) − ❊[xi], and

θ(R) = µ(0,R) −❊[xi].

For the mixup estimators, we will repeatedly use the fact that λi has a symmetric distribution with support [0, 1].

For ERM estimator based on (X, y), where b0 = 1
2 −❊[xi]

T b, we have

(µ(0,G))T b+ b0 = (µ(0,G) −❊[xi])
T b+

1

2

= (θ(G))T b+❊[yi]

(µ(1,G))T b+ b0 = (µ(1,G) −❊[xi])
T b+

1

2

= ∆T b+ (θ(G))T b+❊[yi],

Notice that based on the estimator b, b0, for d ∈ {G,R},

E(1,d)(b, b0) = Φ(
−∆T b− (θ(d))T b√

bTΣb
) and E(0,d)(b, b0) = Φ(

(θ(d))T b√
bTΣb

). (7)

In the extreme case where π0,R = π1,G = 0, we have

∆̃ = µ(1,R) − µ(0,G), θ(G) = −1

2
∆̃, θ(R) =

1

2
∆̃−∆, and ∆0 := µ(0,G) − µ(0,R) = ∆− ∆̃.
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Table 20. Full Results of Amazon. Both the average accuracy and the 10th Percentile accuracy are reported.

Validation Test
Avg. Acc. 10-th Per. Avg. Acc. 10-th Per. Acc.

ERM 72.7 ± 0.1% 55.2 ± 0.7% 71.9 ± 0.1% 53.8 ± 0.8%
IRM 71.5 ± 0.3% 54.2 ± 0.8% 70.5 ± 0.3% 52.4 ± 0.8%
IB-IRM 72.4 ± 0.4% 55.1 ± 0.6% 72.2 ± 0.3% 53.8 ± 0.7%
V-REx 72.7 ± 1.2% 53.8 ± 0.7% 71.4 ± 0.4% 53.3 ± 0.0%
Coral 72.0 ± 0.3% 54.7 ± 0.0% 70.0 ± 0.6% 52.9 ± 0.8%
GroupDRO 70.7 ± 0.6% 54.7 ± 0.0% 70.0 ± 0.6% 53.3 ± 0.0%
DomainMix 71.9 ± 0.2% 54.7 ± 0.0% 71.1 ± 0.1% 53.3 ± 0.0%
Fish 72.5 ± 0.0% 54.7 ± 0.0% 71.7 ± 0.1% 53.3 ± 0.0%

LISA (ours) 71.6 ± 0.4% 55.1 ± 0.6% 70.8 ± 0.3% 54.7 ± 0.0%

Hence,

E
(wst)
0 = max{Φ

(
( 12∆̃−∆)T b√

bTΣb

)
,Φ

(
− 1

2∆̃
T b√

bTΣb

)
}. (8)

B.2. Classification errors of four methods with infinite training samples

We first provide the limit of the classification errors when n→∞.

B.2.1. BASELINE METHOD: ERM

For the training data, it is easy to show that

var(x) = ❊[var(x|y)] + var(❊[x|y])
= Σ +❊[var(❊[x|y,D]|y)] + var((µ(1) − µ(0))y)

= Σ +❊[var(µ(0,R) − µ(0,G))✶(D = R)|y)] + ∆̃⊗2π(1)π(0)

= Σ+
1

2
(µ(0,R) − µ(0,G))⊗2(πR|1πG|1 + πR|0πG|0) + ∆̃⊗2π(1)π(0)

cov(x, y) = cov(❊[x|y], y)
= cov(µ(0) + ∆̃y, y)

= cov(∆̃y, y) = ∆̃π(1)π(0)

For a0 = 1
2 (πR|1πG|1 + πR|0πG|0) and ∆0 = µ(0,G) − µ(0,R), the ERM has slope and intercept being

b = var(x)−1cov(x, y)

∝ (Σ + a0∆
⊗2
0 )−1∆̃

= Σ−1∆̃− Σ−1∆0 ·
a0∆̃

TΣ−1∆0

1 + a0∆T
0 Σ

−1∆0

b0 = ❊[y]−❊[xT b].

B.2.2. BASELINE METHOD: VANILLA MIXUP

The vanilla mixup does not use the group information. Let i1 be a random draw from {1, . . . , n}. Let i2 be a random draw

from {1, . . . , n} independent of i1. Let

ỹi = λiyi1 + (1− λi)yi2

and

x̃i = λixi1 + (1− λi)xi2 .
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We can find that

cov(x̃i, ỹi) = cov(λixi1 + (1− λi)xi2 , λiyi1 + (1− λi)yi2)

= cov(λixi1 , λiyi1) + cov((1− λi)xi2 , (1− λi)yi2)

= (❊[λ2
i ] +❊[(1− λi)

2])cov(xi, yi).

cov(x̃i) = (❊[λ2
i ] +❊[(1− λi)

2])cov(xi).

Hence, the population-level slope is the same as the slope in the benchmark method. It is easy to show that the population-

level intercept is also the same. Hence,

E
(wst)
mix = E

(wst)
0 .

B.3. Intra-label LISA (LISA-L): mixup across domain

Define

x
(λ)
i = λix

(yi,G)
i1

+ (1− λi)x
(yi,R)
i2

,

where i1 is a random draw from {l : yl = yi, Dl = G} and i2 is a random draw from {l : yl = yi, Dl = R}. Then we

perform OLS based on (x
(λ)
i , yi), i = 1, . . . , n.

We can calculate that

cov(x
(λ)
i , yi) = cov(❊[x

(λ)
i |yi], yi) = cov(

1

2
µ(yi,G) +

1

2
µ(yi,R), yi)

= var(yi)∆ = π(1)π(0)∆

cov(x
(λ)
i ) = ❊[cov(x

(λ)
i |yi, λi)] + cov(❊[x

(λ)
i |yi, λi])

= 2❊[λ2
i ]Σ + cov(λi(µ

(0,G) − µ(0,R)) + ∆yi)

= 2❊[λ2
i ]Σ + var(λi)(µ

(0,G) − µ(0,R))⊗2 + π(1)π(0)∆⊗2.

B.4. Intra-domain LISA (LISA-D): mixup within each domain

The interpolated sample can be written as

(ỹi, x̃i) = (λi, λix
(1,G)
i1

+ (1− λi)x
(0,G)
i2

) if di = G

(ỹi, x̃i) = (λi, λix
(1,R)
i1

+ (1− λi)x
(0,R)
i2

) if di = R,

where i1 is a random draw from {l : dl = di, yi = 1} and i2 is a random draw from {l : dl = di, yi = 0}.
We consider regress ỹi on x̃i.

cov(x̃i, ỹi|di = G) = cov(❊[x̃i|ỹi, di = G], ỹi|di = G) = var(ỹi)(µ
(1,G) − µ(0,G))

var(x̃i|di = G) = ❊[var(x̃i|, λi, Di = G)|di = G] + var(❊[x̃i|, λi, di = G]|Di = G]

= 2❊[λ2
i ]Σ + var(λiµ

(1,G) + (1− λi)µ
(0,G)|di = G)

= 2❊[λ2
i ]Σ + var(ỹi)∆

⊗2.

We further have

cov(x̃i, ỹi) = ❊[cov(x̃i, ỹi|di)] + cov(❊[x̃i|di],❊[ỹi|di])
= cov(x̃

(G)
i , ỹ

(G)
i )π(G) + cov(x̃

(R)
i , ỹ

(R)
i )π(R)

= var(ỹi)(µ
(1,G) − µ(0,G))π(G) + var(ỹi)(µ

(1,R) − µ(0,R))π(R)

= var(ỹi)∆.
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Moreover,

var(x̃i) = ❊[var(x̃i|di)] + var(❊[x̃i|di])
= var(x̃

(G)
i )π(G) + var(x̃(R))π(R) + (❊[x̃(G)]−❊[x̃(R)])⊗2π(G)π(R)

= 2❊[λ2
i ]Σ + var(λi)∆

⊗2 + (µ(0,G) − µ(0,R))⊗2π(G)π(R).

Slope:

b = var(x̃i)
−1cov(x̃i, ỹi)

∝ (Σ + aLD∆
⊗2
0 )−1∆

= Σ−1∆− Σ−1∆0 ·
aLD(∆0)

TΣ−1∆

1 + aLD(∆0)TΣ−1∆0

∝ Σ−1∆̃ + cLDΣ
−1∆,

where aLD = π(R)π(G)

2❊[λ2
i
]

and

cLL =
1 + aLD∆

T
0 Σ

−1∆0 − aLD∆
TΣ−1∆0

aLD∆TΣ−1∆0
.

Moreover, b0 = ❊[ỹi]−❊[x̃i]
T b = 1

2 −❊[x̃i]
T b. Notice that

❊[x̃i] =
1

4
(µ(0,G) + µ(1,G) + µ(0,R) + µ(1,R))

=
1

4
(2µ(0,G) +∆+ 2µ(1,R) −∆)

=
1

2
(µ(0,G) + µ(1,R)) = ❊[xi].

Method comparison. We only need to compare E
(wst)
ERM , E

(wst)
LL , E

(wst)
LD .

For the ERM, 0 ≤ a0 ≤ 2α and

bERM = (1 +
a0∆̃

TΣ−1∆0

1 + a0∆T
0 Σ

−1∆0
)Σ−1∆̃− a0∆̃

TΣ−1∆0

1 + a0∆T
0 Σ

−1∆0
Σ−1∆

∝ Σ−1∆̃− a0∆̃
TΣ−1∆0

1 + a0∆T
0 Σ

−1∆0 + a0∆̃TΣ−1∆0

Σ−1∆

∝ Σ−1∆̃− a0∆̃
TΣ−1∆0

1 + a0∆TΣ−1∆0
Σ−1∆.

Let c0 = a0∆̃
TΣ−1∆0

1+a0∆TΣ−1∆0
and c1 = |c0|∥∆∥Σ/∥∆̃∥Σ. For simplicity, let ∥v∥Σ = vTΣ−1v. We first lower bound it via

cor(bERM, ∆̃) =
bT ∆̃

∥∆̃∥Σ
√
bTΣb

=
∆̃TΣ−1∆̃− c0∆

TΣ−1∆̃

∥∆̃∥Σ
√
bTΣb

≥ ∆̃TΣ−1∆̃

∥∆̃∥Σ(∥∆̃∥Σ + |c0|∥∆∥Σ)
− |c0∆

TΣ−1∆̃|
∥∆̃∥Σ

√
bTΣb

≥ 1

1 + |c0|∥∆∥Σ/∥∆̃∥Σ
− c0ξ∥∆∥Σ
∥∆̃∥Σ − c0∥∆∥Σ

≥ 1− (1 + ξ)c1 − c21
1− c21

= 1− Cα.
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Similarly, we have

cor(bERM,∆) =
bT∆

∥∆∥Σ
√
bTΣb

=
∆TΣ−1∆̃− c0∆

TΣ−1∆

∥∆∥Σ
√
bTΣb

≤ ∆̃TΣ−1∆

∥∆∥Σ(∥∆̃∥Σ ± c0∥∆∥Σ)
+

|c0∆TΣ−1∆|
(∥∆̃∥Σ − c0∥∆∥Σ)∥∆∥Σ

≤ 1

1± c0∥∆∥Σ/∥∆̃∥Σ
ξ +

c0∥∆∥Σ/∥∆̃∥Σ
1− c0∥∆∥Σ/∥∆̃∥Σ

≤ (
ξ

1± c1
− c1

1− c1
)∥∆∥Σ.

Hence,

E
(wst)
ERM ≥ max

{
Φ((

1

2
− Cα)∥∆̃∥Σ − (ξ + Cα)∥∆∥Σ),Φ((−

1

2
− Cα)∥∆̃∥Σ)

}
(9)

for some constant C depending on the true parameters.

For method LISA-L, using the fact that ∆0 = ∆− ∆̃, for aLL = var(λi)/(2❊[λ
2
i )]),

bLL ∝ Σ−1∆+
−aLL∆

TΣ−1∆0

1 + aLL∆T
0 Σ

−1∆0
Σ−1∆̃

∝ Σ−1∆̃ + cLLΣ
−1∆

for

cLL =
1 + aLL∆

T
0 Σ

−1∆0 − aLL∆
TΣ−1∆0

aLL∆TΣ−1∆0
=

1− aLL∆̃
TΣ−1∆0

aLL∆TΣ−1∆0
.

Hence,

cor(bLL, ∆̃) =
∆̃T bLL

∥∆̃∥Σ
√

bTLLΣbLL

=
∥∆̃∥Σ + cLLξ∥∆∥Σ
∥∆̃ + cLL∆∥Σ

cor(bLL,∆) =
bTLL∆

∥∆∥Σ
√
bTLLΣbLL

=
ξ∥∆̃∥Σ + cLL∥∆∥Σ
∥∆̃ + cLL∆∥Σ

.

To have E
(wst)
LL < E

(wst)
ERM , it suffices to require that (− 1

2 − Cα)∥∆̃∥Σ < ( 12 − Cα)∥∆̃∥Σ − (ξ + Cα)∥∆∥Σ and

1

2
cor(bLL, ∆̃)∥∆̃∥Σ − cor(bLL,∆)∥∆∥Σ ≤ (

1

2
− Cα)∥∆̃∥Σ − (ξ + Cα)∥∆∥Σ

− 1

2
cor(bLL, ∆̃)∥∆̃∥Σ ≤ (

1

2
− Cα)∥∆̃∥Σ − (ξ + Cα)∥∆∥Σ.

A sufficient condition is

ξ < (
1

2
+

1

2
cor(bLL, ∆̃))

∥∆̃∥Σ
∥∆∥Σ

− Cα, cor(bLL,∆) ≥ ξ + Cα, cor(bLL, ∆̃) ≤ 1− 2Cα.

We can find that a further sufficient condition is

ξ <
∥∆̃∥Σ
∥∆∥Σ

− Cα, cLL > 0, ξ ≤ ∥∆̃ + cLL∆∥Σ − ∥∆̃∥Σ
cLL∥∆∥Σ

− ϵ1α (10)

∥∆̃ + cLL∆∥Σ ≥ ∥∆̃∥Σ, ξ ≤
cLL∥∆∥Σ

∥∆̃ + cLL∆∥Σ − ∥∆̃∥Σ
− ϵ1α (11)

ξ ≤ (
1

2
+

1

2
cor(bLL, ∆̃))

∥∆̃∥Σ
∥∆∥Σ

− Cα. (12)
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We first find sufficient conditions for the statements in (10) and (11). Parameterizing t = cLL∥∆∥Σ/∥∆̃∥Σ, we further

simplify the condition in (10) and (11) as

ξ < min{∥∆̃∥Σ∥∆∥Σ
, 1} − Cα, t(t+ 2ξ) > 0

ξ ≤
√

1 + t2 + 2tξ − 1

t
− ϵ1α, ξ ≤ 1 +

√
1 + t2 + 2tξ

t+ 2ξ
− ϵ1α.

We only need to require

t ≥ max{0,−2ξ} and ξ ≤ min{∥∆̃∥Σ∥∆∥Σ
, 1} − Cα.

Some tedious calculation shows that t ≥ max{0,−2ξ} can be guaranteed by

aLL ≤
1

∥∆̃∥2Σ + ∥∆̃∥Σ∥∆∥Σ
and ξ ≤ ∥∆∥Σ

∥∆̃∥Σ
It is left to consider the constraint in (12). Notice that it holds for any ξ ≤ 0. When ξ > 0, we can see

cor(bLL, ∆̃) =
∥∆̃∥Σ + ξcLL∥∆∥Σ
∥∆̃ + cLL∆∥Σ

=
1 + tξ√

1 + t2 + 2tξ

≥ 1 + tξ

1 + t
≥ ξ.

Hence, it suffices to guarantee that

(1− 1

2

∥∆̃∥Σ
∥∆∥Σ

)ξ <
1

2

∥∆̃∥Σ
∥∆∥Σ

− Cα.

If ∥∆̃∥Σ/∥∆∥Σ ≥ 2, then LHS is negative and it holds. If 1 ≤ ∥∆̃∥Σ/∥∆∥Σ < 2, then the inequality becomes ξ < 1−Cα.

If ∥∆̃∥Σ/∥∆∥Σ < 1, then the inequality becomes ξ ≤ ∥∆̃∥Σ

∥∆∥Σ
−Cα. Because we have required ξ < min{∥∆̃∥Σ

∥∆∥Σ
, 1}−Cα for

some large enough C, the constraint (12) always holds. To summarize, ELL < EERM given that ξ ≤ min{∥∆̃∥Σ

∥∆∥Σ
, ∥∆∥Σ

∥∆̃∥Σ
}−Cα

for some large enough C and aLL ≤ 1/(∥∆̃∥2Σ + ∥∆̃∥Σ∥∆∥Σ).

For method LISA-D, we can similarly show that ELD ≤ EERM given that ξ < min{∥∆̃∥Σ

∥∆∥Σ
, ∥∆∥Σ

∥∆̃∥Σ
} − Cα for some large

enough C and aLD ≤ 1/(∥∆̃∥2Σ + ∥∆̃∥Σ∥∆∥Σ).

B.5. Finite sample analysis

The empirical loss can be written as

P(✶((x
G)
i )T b̂+ b̂0 >

1

2
) ̸= y

(G)
i ) (13)

=
1

2
P((x

G)
i )T b̂+ b̂0 >

1

2
|y(G)

i = 0) +
1

2
P((x

G)
i )T b̂+ b̂0 <

1

2
|y(G)

i = 1),

where

P((x
G)
i )T b̂+ b̂0 >

1

2
|y(G)

i = 0) = Φ(−
1
2 − (µ(0,G))T b̂− b̂0√

b̂TΣb̂
).

P((x
G)
i )T b̂+ b̂0 <

1

2
|y(G)

i = 1) = Φ(
1
2 − (µ(1,G))T b̂− b̂0√

b̂TΣb̂
).

First notice that

b̂0 = ȳ − x̄T b̂.
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We have

(µ(0,G))T b̂+ b̂0 = (µ(0,G) − x̄)T b̂+ ȳ

= (µ(0,G) −❊[xi])
T b̂+

1

2
+ {(ȳ − x̄T b̂)− (❊[yi]−❊[xi]

T b̂)}︸ ︷︷ ︸
R1

(µ(1,G))T b̂+ b̂0 = (µ(1,G) − x̄)T b̂+ ȳ

= ∆T b̂+ (µ(0,G) −❊[xi])
T b̂+

1

2
+R1.

Therefore, according to (13),

1

2
Φ(−

1
2 − (µ(0,G))T b̂− b̂0√

b̂TΣb̂
) +

1

2
Φ(

1
2 − (µ(1,G))T b̂− b̂0√

b̂TΣb̂
)

=
1

2
Φ(

(θ(G))T b̂+R1√
b̂TΣb̂

) +
1

2
Φ(−∆+ (θ(G))T b̂+R1√

b̂TΣb̂
)

=
1

2
Φ(

(θ(G))T b̂+R1√
b̂TΣb̂

) +
1

2
Φ(− (θ(G))T b̂+R1√

b̂TΣb̂
)

−
{
1

2
Φ(− (θ(G))T b̂+R1√

b̂TΣb̂
)− 1

2
Φ(−∆+ (Θ(G))T b̂+R1√

b̂TΣb̂
)

}

=
1

2
−
{
1

2
Φ(− (θ(G))T b̂+R1√

b̂TΣb̂
)− 1

2
Φ(−∆T b̂+ (θ(G))T b̂+R1√

b̂TΣb̂
)

}
.

Then the mis-classification error can be written as

1

2
− 1

2

{
Φ(

(θ(G))T b̂+R1√
b̂TΣb̂

)− Φ(
(θ(G))T b̂−∆T b̂+R1√

b̂TΣb̂
)

}

︸ ︷︷ ︸
L̂(b̂)

. (14)

Larger the L̂(b̂), smaller the mis-classification error.

We first find that

L̂(b̂)− L(b) ≤ C | (θ
(G))T b̂+R1√

b̂TΣb̂
− (θ(G))T b√

bTΣb
|

︸ ︷︷ ︸
T1

+C | (θ
(G))T b̂−∆T b̂+R1√

b̂TΣb̂
− (θ(G))T b−∆T b√

bTΣb
|

︸ ︷︷ ︸
T2

.

In the event that

∥Σ1/2(b̂− b)∥2 = o(1) max
y,d
∥µ(y,d)∥2 ≤ C, Σ is positive definite.

for the denominator, we have

|bTΣb− b̂TΣb̂| ≤ (2∥Σ1/2b∥2 + ∥Σ1/2(b̂− b)∥2)∥Σ1/2(b̂− b)∥2
≤ 2(1 + o(1))∥Σ1/2b∥2∥Σ1/2(b̂− b)∥2

|
√

b̂TΣb̂−
√
bTΣb| ≤ |b̂TΣb̂− bTΣb|√

b̂TΣb̂+
√
bTΣb

≤ 2(1 + o(1))∥Σ1/2(b̂− b)∥2.

For the numerator, we have

|1
2
∆̃T b̂+R1 −

1

2
∆̃T b| ≤ |R1|+

1

2
∥Σ−1/2∆̃∥2∥Σ1/2(b̂− b)∥2.
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We arrive at

T1 ≤ (1 + o(1))
|R1|+ 1

2∥Σ−1/2∆̃∥2∥Σ1/2(b̂− b)∥2
∥Σ1/2b∥2

+ (1 + o(1))
|∆̃T b|√
bTΣb

∥Σ1/2(b̂− b)∥2√
bTΣb

.

T2 ≤(1 + o(1))
|R1|+ 1

2 (∥Σ−1/2∆̃∥2 + ∥Σ−1/2∆∥2)∥Σ1/2(b̂− b)∥2
∥Σ1/2b∥2

+ (1 + o(1))
| 12∆̃T b−∆T b|√

bTΣb

∥b̂− b∥2√
bTΣb

.

Moreover R1 ≤ ∥b̂− b∥2 +OP (
1√
n
). To summarize,

|L̂(b̂)− L(b)| ≲ (1 + o(1))(∥b̂− b∥2 +
1√
n
).

In the following, we will upper bound ∥b̂− b∥2 for each method. For the ERM method,

b̂ = {(X − X̄)T (X − X̄)}−1(X − X̄)T (y − ȳ).

It is easy to show that

∥b̂− b∥22 = OP (
p
∑N

i=1 var(yi|xi)

N2
) = OP (

p

N
).

For the vanilla mixup method, we first see that

1

n

n∑

i=1

x̃i =
1

n

n∑

i=1

(λixi1 + (1− λi)xi2) = x̄+OP (n
−1/2) = µ+OP (n

−1/2)

1

n

n∑

i=1

ỹi = π(1) +OP (n
−1/2).

Next,

1

n

n∑

i=1

x̃iỹi =
1

n

n∑

i=1

{
λ2
ixi1yi1 + (1− λi)

2xi2yi2 + λi(1− λi)xi1yi2 + λi(1− λi)xi2yii
}

1

n

n∑

i=1

x̃iỹi −❊[x̃iỹi] =
1

n

n∑

i=1

x̃iỹi −❊[x̃iỹi|X, y]

︸ ︷︷ ︸
E1

+❊[x̃iỹi|X, y]−❊[x̃iỹi]︸ ︷︷ ︸
E2

.

For E2,

E2 =
2❊[λ2

i ]

n

n∑

i=1

xiyi −❊[x̃iỹi] = 2❊[λ2
i ]❊[xiyi].

Hence,

∥E2∥22 = OP (
p

n
).

For E1, conditioning on (X, y), λ2
ixi1yi1 − ❊[λ2

i ]
n

∑n
i=1 xiyi are independent sub-Gaussian vectors. The sub-Gaussian

norm of 1
N

∑n
i=1 λ

2
ixi1,jyi1 − ❊[λ2

i ]
n

∑n
i=1 xi,jyi (conditioning on (X, y)) can be upper bounded by cmaxi≤N |xi,j |/

√
n.

Hence

P(∥E1∥2 ≥ t|X, y) ≤ 2 exp{− c2nt
2

maxpj=1 maxi≤N x2
i,j

}.
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As xi,j are Gaussian distributed, we know that

P(

p∑

j=1

max
i≤n

x2
i,j ≥ p log n) ≤ exp{−c3 log n}.

Hence, with probability at least 1− exp(−c1 log n),

E1 ≤
Cp log n

n
.

To summarize, ∥∥∥∥∥
1

n

n∑

i=1

x̃iỹi − (
1

n

n∑

i=1

x̃i)(
1

n

n∑

i=1

ỹi)− cov(x̃i, ỹi)

∥∥∥∥∥

2

2

= OP (
p log n

n
).

Similarly, we can show that

∥∥∥∥∥
1

n

n∑

i=1

x̃ix̃
T
i − (

1

n

n∑

i=1

x̃i)(
1

n

n∑

i=1

x̃i)
T − cov(x̃i)

∥∥∥∥∥

2

2

= OP (
p log n

n
).

Hence,

∥b̂− b∥22 = OP (
p log n

n
).

For the LISA-L, we first see that

1

n

n∑

i=1

x
(λ)
i =

1

n

∑

yi=1

(λix
(1,G)
i1

+ (1− λi)x
(1,R)
i2

) +
1

n

∑

yi=0

(λix
(0,G)
i1

+ (1− λi)x
(0,R)
i2

)

=
1

2
(x̄(1,G) + x̄(1,R))π̂1 +

1

2
(x̄(0,G) + x̄(0,R))π̂0

We have

1

n
(X(λ))T y − ȳ

1

n

n∑

i=1

x
(λ)
i − cov(x

(λ)
i , yi) =

1

n
(X(λ))T y − ȳ

1

n

n∑

i=1

x
(λ)
i − cov(x

(λ)
i , yi|X, y)

︸ ︷︷ ︸
E1

+ cov(x
(λ)
i , yi|X, y)− cov(x

(λ)
i , yi)︸ ︷︷ ︸

E2

For E2,

E2 =
π̂1

2
(x̄(1,G) + x̄(1,R))− π̂1(

1

2
(x̄(1,G) + x̄(1,R))π̂1 +

1

2
(x̄(0,G) + x̄(0,R))π̂0)− cov(x

(λ)
i , yi)

=
1

2
(x̄(1,G) + x̄(1,R) − x̄(0,G) − x̄(0,R))π̂1π̂0 − π(1)π(0)∆.

It is easy to show that

∥E2∥22 = OP

(
p

miny,e n(y,e)

)
.

For E1, conditioning on X and y, x
(λ)
i yi − ❊[x(λ)

i yi|X, y] are independent sub-Gaussian vectors with mean zero. The

sub-Gaussian norm of 1
n

∑n
i=1 x

(λ)
i,j yi (conditioning on X and y) can be upper bounded by cmaxi≤n |xi,j |/

√
N .

P(∥E1∥2 ≥ t|X, y) = P




p∑

j=1

| 1
n

n∑

i=1

{x(λ)
i,j yi −❊[x

(λ)
i,j yi|X, y]}|2 ≥ t2|X, y




≤ 2 exp

{
− c2nt

2

∑p
j=1 maxi≤n x2

i,j

}
.
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Hence,

E1 = OP (

√∑p
j=1 maxi≤n x2

i,j

n
) = OP (

p log n

n
).

To summarize,

∥ 1
n
(X(λ))T y −❊[x(λ)

i yi]∥22 = OP (
p

miny,e n(y,e)
+

p log n

n
).

We can use similar analysis to bound

∥ 1
N

(X(λ))TX(λ) −❊[x(λ)
i (x

(λ)
i )T ]∥2.

The sub-exponential norm of 1
N

∑N
i=1 x

(λ)
i,j x

(λ)
i,k (conditioning on X) can be upper bounded by maxi≤N |xi,j ||xi,k|/

√
N .

We can show that

∥ 1
n
(X(λ))TX(λ) −❊[x(λ)

i (x
(λ)
i )T ]∥2 = OP (

p

miny,e n(y,e)
+

p log n

n
).

For the LISA-D, we first see that

1

n

n∑

i=1

x̃i =
1

n

∑

Di=G

(λix
(1,G)
i1

+ (1− λi)x
(0,G)
i2

) +
1

n

∑

Di=R

(λix
(1,R)
i1

+ (1− λi)x
(0,R)
i2

)

=
1

2
(x̄(1,G) + x̄(0,G))π̂G +

1

2
(x̄(1,R) + x̄(0,R))π̂R

¯̃y =
1

2
.

Next,

1

n

n∑

i=1

x̃iỹi =
1

n

∑

Di=G

{
λ2
ix

(1,G)
i1

+ λi(1− λi)x
(0,G)
i2

}
+

1

n

∑

Di=R

{
λ2
ix

(1,R)
i1

+ λi(1− λi)x
(0,R)
i2

}

1

n

n∑

i=1

x̃iỹi − ¯̃x¯̃y − cov(x̃, ỹ) =
1

n

n∑

i=1

x̃iỹi − ¯̃x¯̃y − cov(x̃i, ỹi|X, y)

︸ ︷︷ ︸
E1

+ cov(x̃i, ỹi|X, y)− cov(x̃i, ỹi)︸ ︷︷ ︸
E2

.

For E2,

E2 = π̂(G)(❊[λ2
i ](x̄

(1,G) − x̄(0,G)) +
1

2
x̄(0,G)) + π̂(R)(❊[λ2

i ](x̄
(1,R) − x̄(0,R)) +

1

2
x̄(0,R))−

1

4
(x̄(1,G) + x̄(0,G))π̂G −

1

4
(x̄(1,R) + x̄(0,R))π̂R − var(λi)∆

= π̂(G)var(λi)(x̄
(1,G) − x̄(0,G)) + π̂(R)var(λi)(x̄

(1,R) − x̄(0,R))− var(λi)∆.

Notice that E2 is a sub-Gaussian vector with sub-Gaussian norm upper bounded by

π̂2
G

n(1,G)
+

π̂2
G

n(0,G)
+

π̂2
R

n(1,R)
+

π̂2
R

n(0,R)
≤ 4

n
max
y,d

πd

πy|d
.

Using sub-Gaussian concentration, we can show that

E2 = OP (

√
p

n
max
y,d

πd

πy|d
).
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Notice that maxy,d
πd

πy|d
≥ 1. For E1, conditioning on X and y x̃iỹi −❊[x̃iỹi|X, y] are independent sub-Gaussian vectors

with mean zero. The sub-Gaussian norm of 1
n

∑n
i=1 x̃i,j ỹi conditioning on X and y can be upper bounded by cmaxi,j |xi,j |.

Similar analysis on E1 leads to

1

n

n∑

i=1

x̃iỹi − ¯̃x¯̃y − cov(x̃, ỹ) = OP (

√
p log n

n
+

√
p

n
max
y,d

πd

πy|d
).

For the sample covariance matrix, we can also show that

∥∥∥∥∥
1

n

n∑

i=1

x̃ix̃
T
i − (

1

n

n∑

i=1

x̃i)(
1

n

n∑

i=1

x̃i)
T − cov(x̃i)

∥∥∥∥∥

2

2

= OP (

√
p log n

n
+

√
p

n
max
y,d

πd

πy|d
).

B.6. A ξ-dependent lower bound for E
(wst)
ERM − E

(wst)
LL

Next, we provide a ξ-dependent lower bound for E
(wst)
ERM − E

(wst)
LL . Based on our previous analysis

E
(wst)
ERM − E

(wst)
LL ≥ c1 min

{
(
1

2
− Cα− 1

2
cor(bLL, ∆̃))∥∆̃∥Σ + (cor(bLL,∆)− ξ − Cα)∥∆∥Σ,

(
1

2
− Cα+

1

2
cor(bLL, ∆̃))∥∆̃∥Σ − (ξ + Cα)∥∆∥Σ

}
,

where c1 is a positive constant given by the derivative of Φ(·). Plugging in the expression of cor(bLL, ∆̃) and cor(bLL,∆),

we have for the first term of E
(wst)
ERM − E

(wst)
LL , it is no smaller than

1

2
(1− 2Cα− 1 + ξt√

1 + t2 + 2tξ
)∥∆̃∥Σ + (

ξ + t√
1 + t2 + 2tξ

− ξ − Cα)∥∆∥Σ

≥ 1

2

t2

(1 + t)2
(1− ξ2)∥∆̃∥Σ +

t2

(1 + t)2
(1− ξ)∥∆∥Σ − Cα(∥∆∥Σ + ∥∆̃∥Σ),

where the last step is due to the current constraint that t > max{0,−2ξ}. For the second term, it is no smaller than

∥∆̃∥Σ − ξ∥∆∥Σ − Cα(∥∆̃Σ + ∥∆∥Σ).

Notice that t2/(1 + t2) ≥ min{ t24 , 1
4}. We can show that t ≥ ∥∆̃∥Σ/∥∆∥Σ, then

E
(wst)
ERM − E

(wst)
LL ≥ c3 min{(∥∆̃∥Σ∥∆∥Σ

− ξ)∥∆∥Σ, (1− ξ)∥∆∥Σ, (1− ξ)∥∆̃∥2Σ/∥∆∥Σ} − c4α(∥∆∥Σ + ∥∆̃∥Σ).

B.7. Domain shifts: Proof of Theorem 2

It still holds that ∆̃∗ = 2(µ(0,∗) −❊[x(λ)
i ]) = 2(µ(0,∗) −❊[x̃i]). It is easy to show that the worst group mis-classification

error for this new environment is

E
(wst,∗)
A = max



Φ


−

1
2 (∆̃

∗)T bA√
bTAΣbA


 ,Φ




1
2 (∆̃

∗)T bA −∆T bA√
bTAΣbA





 , (15)

where A ∈ {ERM,mix,LL,LD}. Notice that

∆̃∗ = 2µ(0,∗) − (µ(0,G) + µ(1,R)) = ∆̃ + µ(0,∗) − µ(0,G)

We assume ∥∆̃∗∥2 = ∥∆̃∥2. Let ξ∗ = cor(∆, ∆̃∗) and γ = cor(∆̃, ∆̃∗). We have

cor(bERM, ∆̃∗) =
γ∥∆̃∥Σ∥∆̃∗∥Σ − c0ξ

∗∥∆∥Σ∥∆̃∗∥Σ
∥∆̃∗∥Σ∥∆̃ + c0∆∥Σ

=
γ∥∆̃∥Σ

∥∆̃∥Σ ± ∥c0∆∥Σ
± |c0ξ∗|∥∆∥Σ
∥∆̃∥Σ ± ∥c0∆∥Σ

= γ ± Cα.
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Hence,

E
(wst)
ERM ≥ max

{
Φ((

γ

2
− Cα)∥∆̃∥Σ − (ξ − Cα)∥∆∥Σ),Φ((−

γ

2
− Cα)∥∆̃∥Σ)

}
(16)

for some constant C depending on the true parameters.

Hence,

cor(bLL, ∆̃
∗) =

(∆̃∗)T bLL

∥∆̃∗∥Σ
√
bTLLΣbLL

=
γ∥∆̃∥Σ + cLLξ

∗∥∆∥Σ
∥∆̃ + cLL∆∥Σ

.

To have E
(wst∗)
LL < E

(wst∗)
ERM , it suffices to require that (−γ

2 − Cα)∥∆̃∥Σ < (γ2 − Cα)∥∆̃∥Σ − (ξ + Cα)∥∆∥Σ and

1

2
cor(bLL, ∆̃

∗)∥∆̃∥Σ − cor(bLL,∆)∥∆∥Σ ≤ (
γ

2
− Cα)∥∆̃∥Σ − (ξ + Cα)∥∆∥Σ

− 1

2
cor(bLL, ∆̃

∗)∥∆̃∥Σ ≤ (
γ

2
− Cα)∥∆̃∥Σ − (ξ + Cα)∥∆∥Σ.

A sufficient condition is

ξ < (
γ

2
+

1

2
cor(bLL, ∆̃

∗))
∥∆̃∥Σ
∥∆∥Σ

− Cα, cor(bLL,∆) ≥ ξ + Cα, cor(bLL, ∆̃
∗) ≤ γ − 2Cα.

We can find that a further sufficient condition is

ξ <
1 + γ

2

∥∆̃∥Σ
∥∆∥Σ

− Cα, cLL > 0, ξ∗ ≤ γ(∥∆̃ + cLL∆∥Σ − ∥∆̃∥Σ)
cLL∥∆∥Σ

− ϵ1α (17)

∥∆̃ + cLL∆∥Σ ≥ ∥∆̃∥Σ, ξ ≤
cLL∥∆∥Σ

∥∆̃ + cLL∆∥Σ − ∥∆̃∥Σ
− ϵ1α (18)

ξ ≤ (
γ

2
+

1

2
cor(bLL, ∆̃

∗))
∥∆̃∥Σ
∥∆∥Σ

− Cα. (19)

We first find sufficient conditions for the statements in (10) and (11). Parameterizing t = cLL∥∆∥Σ/∥∆̃∥Σ, we further

simplify the condition in (17) and (18) as

ξ <
1 + γ

2

∥∆̃∥Σ
∥∆∥Σ

− Cα, t > 0, ξ∗ ≤ γ(
√
1 + t2 + 2tξ − 1)

t
− ϵ1α,

− t

2
≤ ξ ≤ t, ξ ≤ 1 +

√
1 + t2 + 2tξ

t+ 2ξ
− ϵ1α.

We only need to require

t ≥ max{0,−2ξ} and ξ < min{1 + γ

2

∥∆̃∥Σ
∥∆∥Σ

, 1} − Cα, ξ∗ ≤ γξ.

Some tedious calculation shows that t ≥ max{0,−2ξ} can be guaranteed by

aLL ≤
1

∥∆̃∥2Σ + ∥∆̃∥Σ∥∆∥Σ
and ξ ≤ ∥∆∥Σ

∥∆̃∥Σ
It is left to consider the constraint in (19). Notice that it holds for any ξ ≤ 0. When ξ > 0, we can see

cor(bLL, ∆̃
∗) =

γ∥∆̃∥Σ + ξ∗cLL∥∆∥Σ
∥∆̃ + cLL∆∥Σ

=
γ + tξ∗√
1 + t2 + 2tξ

≥ γ + tξ∗

1 + t
.
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Hence, it suffices to guarantee that

ξ∗ + γ ≥ 2∥∆∥Σ
∥∆̃∥Σ

ξ + Cα.

To summarize, it suffices to require

aLL ≤
1

∥∆̃∥2Σ + ∥∆̃∥Σ∥∆∥Σ
, 0 ≤ ξ∗ ≤ γξ, ξ < min{γ

2

∥∆̃∥Σ
∥∆∥Σ

,
∥∆∥Σ
∥∆̃∥Σ

} − Cα.

For LISA-D, we can similarly show that E
(wst∗)
LD < E

(wst∗)
ERM given that

aLD ≤
1

∥∆̃∥2Σ + ∥∆̃∥Σ∥∆∥Σ
, 0 ≤ ξ∗ ≤ γξ, ξ < min{γ

2

∥∆̃∥Σ
∥∆∥Σ

,
∥∆∥Σ
∥∆̃∥Σ

} − Cα.


