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ABSTRACT

Meta-learning enables algorithms to quickly learn a newly encountered task with
just a few labeled examples by transferring previously learned knowledge. How-
ever, the bottleneck of current meta-learning algorithms is the requirement of a
large number of meta-training tasks, which may not be accessible in real-world
scenarios. To address the challenge that available tasks may not densely sam-
ple the space of tasks, we propose to augment the task set through interpolation.
By meta-learning with task interpolation (MLTI), our approach effectively gener-
ates additional tasks by randomly sampling a pair of tasks and interpolating the
corresponding features and labels. Under both gradient-based and metric-based
meta-learning settings, our theoretical analysis shows MLTI corresponds to a
data-adaptive meta-regularization and further improves the generalization. Empiri-
cally, in our experiments on eight datasets from diverse domains including image
recognition, pose prediction, molecule property prediction, and medical image
classification, we find that the proposed general MLTI framework is compatible
with representative meta-learning algorithms and consistently outperforms other
state-of-the-art strategies.

1 INTRODUCTION

Meta-learning has powered machine learning systems to learn new tasks with only a few examples,
by learning how to learn across a set of meta-training tasks. While existing algorithms are remarkably
efficient at adapting to new tasks at meta-test time, the meta-training process itself is not efficient.
Analogous to the training process in supervised learning, the meta-training process treats tasks as
data samples and the superior performance of these meta-learning algorithms relies on having a large
number of diverse meta-training tasks. However, sufficient meta-training tasks may not always be
available in real-world. Take medical image classification as an example: due to concerns of privacy,
it is impractical to collect large amounts of data from various diseases and construct the meta-training
tasks. Under the task-insufficient scenario, the meta-learner can easily memorize these meta-training
tasks, limiting its generalization ability on the meta-testing tasks. To address this limitation, we aim
to develop a strategy to regularize meta-learning algorithms and improve their generalization when
the meta-training tasks are limited and only sparsely cover the space of relevant tasks.

Recently, a variety of regularization methods for meta-learning have been proposed, including
techniques that impose explicit regularization to the meta-learning model (Jamal and Qi, 2019; Yin
et al., 2020) and methods that augment tasks by making modifications to individual training tasks
through noise (Lee et al., 2020) or mixup (Ni et al., 2021; Yao et al., 2021). However, these methods
are largely designed to either tackle only the memorization problem (Yin et al., 2020) or to improve
performance of meta-learning (Yao et al., 2021) when plenty of meta-training tasks are provided.
Instead, we aim to target the task distribution directly, leading to an approach that is particularly
well-suited to settings with limited meta-training tasks.

Concretely, as illustrated in Figure 1, we aim to densify the task distribution by providing interpolated
tasks across meta-training tasks, resulting in a new task interpolation algorithm named MLTI (Meta-
Learning with Task Interpolation). The key idea behind MLTI is to generate new tasks by interpolating
between pairs of randomly sampled meta-training tasks. This interpolation can be instantiated in a
variety of ways, and we present two variants that we find to be particularly effective. The first label-
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class r and the number of this subset is Nr. Then, given a query data sample x
q
k in the query set, the

probability of assigning it to the r-th class is measured by the distance d between its representation
fPN
θ (xq

k) and prototype representation cr, and the cross-entropy loss of ProtoNet is formulated as:

L = ET ∼p(T )



−
∑

k,r

log p(yq
k = r|xq

k)



 = ET ∼p(T )



−
∑

k,r

log
exp(−d(fPN

θ (xq
k), cr))

∑

r′ exp(−d(f
PN
θ (xq

k), cr′))



 . (2)

At the meta-testing stage, the predicted label of each query samples is assigned to the class with
maximal probability (i.e., ŷq

k = argmaxr p(y
q
k = r|xq

k)).

The estimation of the expected loss in Eqn. (1) or (2) is challenging since the distribution p(T ) is
unknown in practical situations. A common way of estimation is to approximate the expected risk in

Eqn. (1) by a set of meta-training tasks {Ti}
|I|
i=1 (use MAML as an example):

θ∗ ←
1

|I|
argmin

θ

|I|
∑

i=1

L(fMAML
ϕi

;Dq
i ), where ϕi = θ − α∇θL(f

MAML
θ ;Ds

i ). (3)

However, this approximation method still faces the challenge: optimizing Eqn. (3), as suggested
in (Rajendran et al., 2020; Yin et al., 2020), can result in memorization of the meta-training tasks,
thus limiting the generalization of the meta-learning model to new tasks, especially in domains with
limited meta-training tasks.

3 META-LEARNING WITH TASK INTERPOLATION

To address the memorization issue described in the last section, we aim to develop a framework
that allows meta-learning methods to generalize well to new few-shot learning tasks, even when the
provided meta-training tasks are only sparsely sampled from the task distribution. To accomplish this,
we introduce meta-learning with task interpolation (MLTI). The key idea behind MLTI is to densify
the task distribution by generating new tasks that interpolate between provided meta-training tasks.
This approach requires no additional task data or supervision, and can be combined with any base
meta-learning algorithm, including MAML and ProtoNet.

Before detailing the proposed strategy, we first discuss two scenarios of meta-training task dis-
tributions, label-sharing and non-label-sharing tasks, which have distinct implications for task
interpolation. Formally, we define these two scenarios as:

Definition 1 (label-sharing tasks) If the labels of all tasks share the same label space, we refer it
as the label-sharing (LS) scenario. Take Pascal3D pose prediction (Yin et al., 2020) as an example,
each task is to predict the current orientation of the object relative to its canonical orientation, and
the range of canonical orientation is shared across all tasks.

Definition 2 (non-label-sharing tasks) The non-label-sharing (NLS) scenario assumes that different
semantic meanings of labels across tasks. For example, the piano class in the miniImagenet dataset
may correspond to a class label of 0 for one task and 1 for another task.

MLTI for label-sharing tasks. First, we will discuss MLTI under the label-sharing scenario, where
it applies the same interpolation strategy on both features/hidden representations and label spaces.
Concretely, let’s say that a model f consists of L layers and the hidden representation of samples
X at the l-th layer is denoted as Hl = fθl(X) (0 ≤ l≤ Ls), where H0 = X and Ls represents the
number of layers shared across all tasks. In gradient-based methods, as suggested in (Yin et al., 2020),
only part of the layers are shared (i.e., Ls < L). In metric-based methods, all layers are shared (i.e.,
Ls = L). Given a pair of tasks with their sampled support and query sets (i.e., Ti = {D

s
i ,D

q
i } and

Tj = {Ds
j ,D

q
j}) under the same label space, MLTI first randomly selects one layer l and then applies

the task interpolation separately on the hidden representations (H
s(q),l
i , H

s(q),l
j ) and corresponding

labels (Y
s(q)
i , Y

s(q)
j ) of the support (query) sets as:

H̃
s,l
cr = λHs,l

i + (1− λ)Hs,l
j , Ỹ

s,l
cr = λYs

i + (1− λ)Ys
j ,

H̃
q,l
cr = λHq,l

i + (1− λ)Hq,l
j , Ỹ

q,l
cr = λYq

i + (1− λ)Yq
j ,

(4)

where λ ∈ [0, 1] is sampled from a Beta distribution Beta(α, β) and the subscript "cr" represents
"cross". Notice that both the support and query sets will be replaced by the interpolated ones in
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MLTI, while only the query set is replaced in approaches like Yao et al. (2021). Besides, Manifold
Mixup (Verma et al., 2019) in Eqn. (4) can be replaced by different task interpolation methods (e.g.,
Mixup (Zhang et al., 2018), CutMix (Yun et al., 2019)).

MLTI for non-label-sharing tasks. Under non-label-sharing scenarios, tasks have different label
spaces, making it infeasible to directly interpolate the labels. Instead, we generate the new task
by performing the feature-level interpolation and re-assign a new label to the interpolated class.
Specifically, given samples from class r in task Ti and class r′ in task Tj , we denote the interpolated
features as Intrpl(r, r′), which are formally defined as:

H̃
s,l
cr;r = λHs,l

i;r + (1− λ)Hs,l
j;r′ , H̃

q,l
cr;r = λHq,l

i;r + (1− λ)Hq,l
j;r′ . (5)

The interpolated samples are regarded as a new class in the interpolated task. After randomly
selecting N class pairs, we can construct an N -way interpolated task. Take a 3-way classification as
an example, assume task Ti has classes (i1, i2, i3) and task Tj has classes (j1, j2, j3). One potential
interpolated task could be a 3-way task with classes (e1, e2, e3), where the labels are associated
with interpolated features (Intrpl(i1, j2), Intrpl(i2, j3), Intrpl(i3, j1)). Note that, for ProtoNet and its
variants, we apply the interpolation strategies of Eqn. (5) on both LS and NLS scenarios since it is
intractable to calculate prototypes with mixed labels.

Finally, we note that MLTI supports both inter-task and intra-task interpolation, as we allow the case
when i = j. As we will find in Sec. 6, intra-task interpolation can be complementary to cross-task
interpolation and further improve the generalization. Under this case, the intra-task interpolation can
also be replaced by any existing intra-task augmentation strategies (e.g., MetaMix (Yao et al., 2021)).

After generating the interpolated support setDs
i,cr = (H̃s,l

i,cr, Ỹ
s
i,cr) and query setDq

i,cr = (H̃q,l
i,cr, Ỹ

q
i,cr),

we replace the original support and query sets with the interpolated ones. With MAML as an example,
we reformulate the optimization process in Eqn. (3) as:

θ∗ ←
1

|I|
argmin

θ

|I|
∑

i=1

L(fMAML

ϕL−l
i,cr

;Dq
i,cr), where ϕL−l

i,cr = θL−l − α∇θL−lL(f
MAML
θL−l ;Ds

i,cr), (6)

where the superscript L− l represents the rest of layers after the selected layer l. Detailed pseudocode
of MAML and ProtoNet is shown in Alg. 1 and Alg. 2 in Appendix A, respectively.

4 THEORETICAL ANALYSIS

We now theoretically investigate how MLTI improves the generalization performance with both
gradient-based and the metric-based meta-learning methods. Specifically, we theoretically prove that
MLTI essentially induces a data-dependent regularizer on both categories of meta-learning methods
and controls the Rademacher complexity, leading to greater generalization. Here, we only discuss the
non-label-sharing (NLS) scenario (see detailed proof in Appendix B.1) and leave the analysis of the
label-sharing scenario in Appendix B.2.

4.1 GRADIENT-BASED META-LEARNING WITH MLTI

In gradient-based meta-learning, we analyze the generalization ability by considering the two-layer
neural network with binary classification. For the simplicity of presentation, we assume the sam-
ple size of different task are the same and equal to N . Suppose there are |I| tasks. For each
task Ti, we consider the logistic loss ℓ(fMAML(x),y) = log(1 + exp(fMAML(x))) − yfMAML(x)
with fMAML modeled by fMAML

ϕi
(xi,k) = ϕ⊤

i σ(Wxi,k) := ϕ⊤
i h

1
i,k, where h1

i,k represents the hid-
den representation on the first layer of sample xi,k. Under the NLS setting, the interpolated task
is constructed by Eqn. (5). We assume the interpolation performs on the hidden layer (follow-
ing Eqn. (5) with l = 1) and denote the interpolated query set as Dq

i,cr = (H̃q,1
i,cr, Ỹ

q
i,cr). For

simplicity, in this subsection, we omit the superscript q and define the empirical training loss

as Lt({Di,cr}
|I|
i=1) = |I|−1 ∑|I|

i=1 L(Di,cr) = (N |I|)−1 ∑|I|
i=1

∑N
k=1 L(fϕi

(xi,k,cr),yi,k,cr). We first

present a lemma showing that the loss Lt({Di,cr}
|I|
i=1) induced by MLTI has a regularization effect.

Lemma 1. Consider the MLTI with λ ∼ Beta(α, β). Let ψ(u) = eu/(1 + eu)2 and Ni,r denotes
the number of samples from the class r in task Ti. There exists a constant c > 0, such that the
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second-order approximation of Lt({Di,cr}
|I|
i=1) is given by

Lt(λ̄ · {Di}
|I|
i=1) + c

1

N |I|

|I|
∑

i=1

N
∑

k=1

ψ(h1⊤
i,kϕi) · ϕ

⊤
i (

1

|I|

|I|
∑

i=1

1

2

2
∑

r=1

1

Ni,r

|I|
∑

i=1

Ni,r
∑

k=1

h
1
i,k;rh

1⊤
i,k;r)ϕi, (7)

where λ̄ = EDλ
[λ], with Dλ ∼

α
α+β

Beta(α+ 1, β) + β
α+β

Beta(β + 1, α).

This lemma suggests that MLTI induces an (implicit) regularization term on ϕi’s through task
interpolation and therefore will lead to a better generalization bound, as we will show in Section 6.2
with extensive numerical experiments. To study the improved generalization more explicitly, we
consider the population version of the regularization term in Eqn. (7) by considering the function
class Fγ = {H1⊤ϕ : E[ψ(H1⊤ϕ)]ϕ⊤Σϕ ≤ γ}, where Σ = ET ∼p(T )ET [H1H1⊤]. We also define
µT = ET [H1] and assume the following condition of the individual task distribution T as: for all
T ∼ p(T ), T satisfies

rank(Σ) ≤ R, ∥Σ†/2µT ∥ ≤ U, (8)

where Σ† denotes the generalized inverse of Σ. Further, we assume that the distribution of H1

is ρ-retentive for some ρ ∈ (0, 1/2], that is, if for any non-zero vector v ∈ R
d,

[

E[ψ(v⊤H1)]
]2
≥

ρ ·min{1,E(v⊤H1)2}. Such an assumption has been similarly assumed in (Arora et al., 2020; Zhang
et al., 2021) and is satisfied when the weights has bounded ℓ2 norm.

We also regard Lt({Di}
|I|
i=1) of tasks {Ti}

|I|
i=1 as the empirical (training) loss R({Di}

|I|
i=1) and its corre-

sponding population loss (on the test data) is defined as R = ETi∼p(T )E(Xi,Yi)∼Ti
[L(fϕi

(Xi),Yi)].
We then have the following theorem showing the improved generalization gap brought by MLTI.

Theorem 1. Suppose Xi’s, Y
′
is and ϕ are bounded in spectral norm and assumption (8) holds. There

exist constants A1, A2, A3 > 0, such that for all fT ∈ Fγ , δ ∈ (0, 1), with probability at least 1 − δ
(over randomness of training sample), we have the following generalization bound

|R({Di}
|I|
i=1)−R| ≤ A1 max{(

γ

ρ
)1/4, (

γ

ρ
)1/2}(

√

R+ U

N
+

√

R+ U

|I|
)+A2

√

log(|I|/δ)

N
+A3

√

log(1/δ)

|I|
.

Based on Lemma 1 and Theorem 1, MLTI regularizes on ϕ⊤Σϕ (implying a small γ) and therefore
achieves a tighter generalization bound than the vanilla gradient-based method (where γ is uncon-
strained). Compared with the individual task augmentation (see Figure 1(b)), the regularization effect
in Eqn. (7) induced by MLTI is larger (i.e., smaller γ) since the total variance is generally larger
than the within-group variance (see more details in the Appendix B.3). Therefore, MLTI reduces the
generalization error, which we also empirically validate in the experiments.

4.2 METRIC-BASED META-LEARNING WITH MLTI

In the metric-based meta-learning, we consider the ProtoNet with linear representation in the binary
classification, which has been commonly considered in other theoretical analysis of meta-learning,
see, e.g., (Du et al., 2020; Tripuraneni et al., 2020). Specifically, we assume fPN

θ (x) = θ⊤x and
d(·, ·) represents the squared Euclidean distance, then the loss of ProtoNet can be simplified as

argmin
θ

|I|
∑

i=1

N
∑

k=1

log p(yi,k = r|xi,k) = argmin
θ

|I|
∑

i=1

N
∑

k=1

1

1 + exp(⟨(xi,k − (c1 + c2)/2, θ⟩)
, (9)

where c1 and c2 are defined as the prototypes of class 1 and 2, respectively. Under this setting, the
interpolation performs on the feature (i.e., l = 0 in Eqn. (5)).

We now present the following lemma showing that MLTI induces a regularization on the parameter θ.

Lemma 2. Considering the interpolated tasks {Di,cr}
|I|
i=1 with λ ∼ Beta(α, β), we de-

fine Lt({Di}
|I|
i=1) = (N |I|)−1 ∑

i,k(1 + exp(⟨(xi,k − (c1 + c2)/2, θ⟩))
−1 and Lt({Di,cr}

|I|
i=1) =

(N |I|)−1 ∑

i,k(1 + exp(⟨(xi,k,cr − (c1,cr + c2,cr)/2, θ⟩))
−1. Recall ψ(u) = eu/(1 + eu)2. The second-

order approximation of Lt({Di,cr}
|I|
i=1) is given by, for some constant c > 0,

Lt(λ̄{Di}
|I|
i=1)+c ·

1

N |I|

∑

i∈I,k∈[N ]

ψ(⟨xi,k− (c1+c2)/2, θ⟩) ·θ
⊤(

1

|I|

|I|
∑

i=1

1

2

2
∑

r=1

1

Nr

|I|
∑

i=1

Nr
∑

k=1

xi,k;rx
⊤
i,k;r)θ.

(10)
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Similar to the last section, we assume that the distribution of x is ρ-retentive for some ρ ∈ (0, 1/2],
and investigate the following function class: let ΣX = E[xx⊤],

Wγ := {x→ θ⊤x, such that θ satisfying Ex [ψ(⟨x− (c1 + c2)/2, θ⟩)] · θ
⊤ΣXθ ≤ γ}. (11)

We then have the following theorem on the explicit generalization bound of ProtoNet.

Theorem 2. Suppose Xi’s, Yi’s and θ are both bounded in spectral norm, and the distribution of x
is ρ-retentive and mean zero. Let rΣ = rank(ΣX), then there exist constants B1, B2, B3 > 0, for any
f ∈ Wγ , δ ∈ (0, 1), with probability at least 1− δ (over the training sample), such that

|R({Di}
|I|
i=1)−R| ≤ 2B1 ·max{(

γ

ρ
)1/4, (

γ

ρ
)1/2} ·

(
√

rΣ
|I|

+

√

rΣ
N

)

+B2

√

log(1/δ)

2|I|
+B3

√

log(|I|/δ)

N
.

By Theorem 2, adding MLTI into ProtoNet would induce a small value of γ and thus improve the
generalization compared to the vanilla ProtoNet. Similarly, MLTI achieves tighter generalization
bound than the individual task augmentation with a larger regularization term (i.e., smaller γ).

5 RELATED WORK

The goal of meta-learning is to enable few-shot generalization of machine learning algorithms
by transferring the knowledge acquired from related tasks. One approach is gradient-based meta-
learning (Finn and Levine, 2018; Finn et al., 2017; 2018; Grant et al., 2018; Flennerhag et al.,
2020; Lee and Choi, 2018; Li et al., 2017; Oh et al., 2021; Nichol and Schulman, 2018; Rajeswaran
et al., 2019; Rusu et al., 2018), where the meta-knowledge is formulated to be optimization-related
parameters (e.g., model initial parameters, learning rate, pre-conditioning matrix). During the meta-
training stage, the model is first adapted to each task via a truncated optimization and then the
optimization-related parameters are optimized by maximizing the generalization performance of
the model. Another line of research is metric-based meta-learning (Cao et al., 2021; Garcia and
Bruna, 2018; Liu et al., 2019; Mishra et al., 2018; Snell et al., 2017; Vinyals et al., 2016; Sung
et al., 2018; Yoon et al., 2019), which meta-learns an embedding space and uses a non-parametric
learner to classify samples. Unlike prior works that propose new meta-learning algorithms, this work
aims to improve the task-level generalization of these algorithms and reduce the negative effect of
memorization, especially when the number of meta-training tasks is limited.

To mitigate the influence of memorization and improve the generalization, one line of research
focuses on directly imposing regularization on meta-learning algorithms (Guiroy et al., 2019; Jamal
and Qi, 2019; Tseng et al., 2020; Yin et al., 2020). Another line of research reduces the number
of adapted parameters for gradient-based meta-learning (Raghu et al., 2020; Zintgraf et al., 2019).
Instead of imposing regularization strategies (i.e., objectives, dropout, less adapted parameters),
our approach focuses on augmenting the set of tasks for meta-training. Prior works have proposed
domain-specific techniques to generate more data by augmenting images (Chen et al., 2019) or
by reconstructing tasks with latent reasoning categories for NLP-related tasks (Murty et al., 2021).
Recent domain-agnostic techniques have augmented tasks by imposing label noise (Rajendran et al.,
2020) or applying Mixup (Zhang et al., 2018) and its variants (e.g., Manifold Mixup (Verma et al.,
2019)) to each task (Ni et al., 2021; Yao et al., 2021). Unlike these domain-agnostic augmentation
strategies that applying data augmentation on each task individually (Figure 1(b)), we directly densify
the task distribution by generating additional tasks from pairs of existing tasks (Figure 1(c)). More
discussions with individual task augmentation are provided in Appendix C. Empirically, we find that
MLTI outperforms all of these above strategies in Section 6.

6 EXPERIMENTS

In this section, we conduct experiments to test and understand the effectiveness of MLTI. Specifically,
we aim to answer the following research questions under both label-sharing and non-label-sharing
settings: Q1: Compared with prior methods for regularizing meta-learning, how does the MLTI
perform? Q2: Is MLTI compatible with different backbone meta-learning algorithms and does it
improve their performance? Q3: How does MLTI perform compared with only applying intra- or
cross-task interpolation? Q4: How does the number of tasks affect the performance of MLTI?
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Table 1: Overall performance (averaged accuracy/MSE (Pose) ± 95% confidence interval) under
label-sharing scenario. MLTI consistently improves the performance under the label-sharing scenario.

Backbone Strategies Pose (15-shot) RMNIST (1-shot) NCI (5-shot) Metabolism (5-shot)

MAML

Vanilla 2.383 ± 0.087 57.34 ± 1.25% 77.09 ± 0.85% 57.22 ± 1.01%
Meta-Reg 2.358 ± 0.089 58.10 ± 1.15% 77.34 ± 0.87% 58.00 ± 0.96%
TAML 2.208 ± 0.091 56.21 ± 1.46% 76.50 ± 0.87% 57.87 ± 1.05%
Meta-Dropout 2.501 ± 0.090 56.19 ± 1.39% 77.21 ± 0.82% 57.53 ± 1.02%
MetaAug 2.296 ± 0.080 55.58 ± 0.97% 76.31 ± 0.98% 56.65 ± 1.00%
MetaMix 2.064 ± 0.075 64.60 ± 1.14% 76.88 ± 0.73% 58.61 ± 1.03%
Meta-Maxup 2.107 ± 0.077 62.13 ± 1.08% 77.90 ± 0.79% 58.43 ± 0.99%

MLTI (ours) 1.976 ± 0.073 65.92 ± 1.17% 79.14 ± 0.73% 60.28 ± 1.00%

ProtoNet

MetaAug n/a 65.41 ± 1.10% 74.84 ± 0.87% 61.06 ± 0.94%
MetaMix n/a 67.80 ± 0.97% 75.84 ± 0.85% 62.04 ± 0.93%
Meta-Maxup n/a 66.18 ± 1.08% 75.65 ± 0.84% 61.36 ± 0.91%

MLTI (ours) n/a 70.14 ± 0.92% 76.90 ± 0.81% 63.47 ± 0.96%

Table 2: Ablation Studies under label-sharing scenario. The results are reported by the averaged
accuracy/MSE ± 95% confidence interval.

Backbone Strategies Pose (15-shot) RMNIST (1-shot) NCI (5-shot) Metabolism (5-shot)

MAML

Vanilla 2.383 ± 0.087 57.34 ± 1.25% 77.09 ± 0.85% 57.22 ± 1.01%
Intra-Intrpl 2.072 ± 0.077 62.57 ± 1.70% 78.23 ± 0.78% 58.70 ± 0.97%
Cross-Intrpl 2.017 ± 0.072 65.34 ± 1.78% 78.64 ± 0.80% 59.60 ± 1.00%

MLTI 1.976 ± 0.073 65.92 ± 1.17% 79.14 ± 0.73% 60.28 ± 1.00%

ProtoNet

Vanilla n/a 65.41 ± 1.10% 74.84 ± 0.87% 61.06 ± 0.94%
Intra-Intrpl n/a 67.32 ± 0.94% 75.26 ± 0.87% 61.66 ± 0.88%
Cross-Intrpl n/a 69.97 ± 0.85% 76.32 ± 0.85% 62.48 ± 0.91%

MLTI n/a 70.14 ± 0.92% 76.90 ± 0.81% 63.47 ± 0.96%

We compare MLTI with the following two representative domain-agnostic strategies: (1) directly
imposing regularization into the meta-learning framework, including Meta-Reg (Yin et al., 2020),
TAML (Jamal and Qi, 2019), and Meta-dropout (Lee et al., 2020); and (2) individual task aug-
mentation methods, including Meta-Augmentation (Rajendran et al., 2020), MetaMix (Yao et al.,
2021), and Meta-Maxup (Ni et al., 2021). We select MAML and ProtoNet as backbone methods and
apply the corresponding meta-learning strategies to them according to their applicable scopes. Note
that we also extend MetaMix and Meta-Maxup to ProtoNet, even though the methods only focus
on gradient-based meta-learning in the original papers. To further test the compatibility of MLTI,
we additionally apply MLTI to other meta-learning backbone algorithms, including MetaSGD (Li
et al., 2017), ANIL (Raghu et al., 2020), Meta-Curvature (MC) (Park and Oliva, 2019), and Match-
ingNet (Vinyals et al., 2016). To provide a fair comparison, all methods use the same architecture of
the base model as MLTI and all interpolation-based methods use the same interpolation strategies
(see Appendix D.1 and E.1 for details).

6.1 LABEL-SHARING SCENARIO

Datasets and experimental setup. Under the label-sharing scenario, we perform experiments on
four datasets to evaluate the performance of MLTI: (1) PASCAL3D Pose regression (Pose) (Yin et al.,
2020): it aims to predict the object pose of a grey-scale image relative to the canonical orientation.
Following Yin et al. (2020), we select 50 objects for meta-training and 15 objects for meta-testing; (2)
RainbowMNIST (RMNIST) (Finn et al., 2019): it is a 10-way classification dataset wherein each task
is constructed by applying a combination of image transformation operators on the original MNIST
dataset (e.g., scaling, coloring, rotation). We here use 14 and 10 combinations for meta-training and
meta-testing, respectively. (3)&(4) NCI (NCI, 2018) and TDC Metabolism (Metabolism) (Huang
et al., 2021): both are 2-way chemical classification datasets, which aim to predict the property of
a set of chemical compounds. We use six data sources for meta-training, and the remaining three
sources for meta-testing. The number of shots for the above four datasets are set as 15, 1, 5, and 5,
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Table 3: Overall performance (averaged accuracy) under the non-label-sharing scenario. MLTI
outperforms other strategies and improves the generalization ability.

Backbone Strategies
miniImagenet-S ISIC DermNet-S Tabular Murris
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

MAML

Vanilla 38.27% 52.14% 57.59% 65.24% 43.47% 60.56% 79.08% 88.55%
Meta-Reg 38.35% 51.74% 58.57% 68.45% 45.01% 60.92% 79.18% 89.08%
TAML 38.70% 52.75% 58.39% 66.09% 45.73% 61.14% 79.82% 89.11%
Meta-Dropout 38.32% 52.53% 58.40% 67.32% 44.30% 60.86% 78.18% 89.25%
MetaMix 39.43% 54.14% 60.34% 69.47% 46.81% 63.52% 81.06% 89.75%
Meta-Maxup 39.28% 53.02% 58.68% 69.16% 46.10% 62.64% 79.56% 88.88%

MLTI (ours) 41.58% 55.22% 61.79% 70.69% 48.03% 64.55% 81.73% 91.08%

ProtoNet

Vanilla 36.26% 50.72% 58.56% 66.25% 44.21% 60.33% 80.03% 89.20%
MetaMix 39.67% 53.10% 60.58% 70.12% 47.71% 62.68% 80.72% 89.30%
Meta-Maxup 39.80% 53.35% 59.66% 68.97% 46.06% 62.97% 80.87% 89.42%

MLTI (ours) 41.36% 55.34% 62.82% 71.52% 49.38% 65.19% 81.89% 90.12%

respectively. More details on the datasets and set-up are provided in Appendix D.1. We adopt MSE to
measure the performance for the Pose regression dataset and accuracy for the classification datasets.

Results. Under the label-sharing scenario, we report the overall performance and analyze the
compatibility of MLTI in Table 1 and Appendix D.2, respectively. According to Table 1, we
observe that MLTI outperforms other regularization strategies across the board, including passively
adding regularization (i.e., Meta-Reg, TAML, Meta-Dropout) and augmenting tasks individually
(i.e., Meta-Aug, MetaMix, Meta-Maxup). These results indicate that MLTI consistently improves
generalization through interpolation on the task distribution. The claim is further be strengthened
by the compatibility analysis (Appendix D.2), where MLTI boosts the performance of a variety of
meta-learning algorithms. We also investigate the effect of the number of meta-training tasks and
report the performance in Appendix D.3. We observe that the improvements from MLTI are robust
under different settings but that the greatest improvements come when the number of tasks is limited.

Ablation study. In Table 2, we conduct an ablation study under the label-sharing scenario. Here, we
investigate how MLTI performs compared with only applying intra-task interpolation (i.e., Ti = Tj)
and cross-task interpolation (i.e., Ti ̸= Tj), which are denoted as Intra-Intrpl and Cross-Intrpl,
respectively. We observe that both Intra-Intrpl and Cross-Intrpl outperform the vanilla approach
without task augmentation and that MLTI achieves the best performance, indicating that the strategies
are complementary to some degree. In addition, cross-interpolation outperforms the intra-interpolation
in most datasets. The results corroborate the effectiveness of cross-task interpolation when tasks are
sparsely sampled from the data distribution.

6.2 NON-LABEL-SHARING SCENARIO

Datasets and experimental setup. Under the non-label-sharing scenario, we conduct experiments
on four datasets: (1) general image classification on miniImagenet (Vinyals et al., 2016); (2)&(3)
medical image classification on ISIC (Milton, 2019) and DermNet (Der, 2016); and (4) cell type
classification across organs on Tabular Murris (Cao et al., 2021). Since a task in meta-learning is
defined to correspond to a particular data-generating distribution (Finn et al., 2017; Rajeswaran et al.,
2019), the number of distinct meta-training tasks in N -way classification is actually the number
of ways to choose N from all base classes. Thus, for miniImagenet and Dermnet, we reduce the
number tasks by limiting the number of meta-training classes (a.k.a., base classes) and obtain the
miniImagenet-S, ISIC, DermNet-S, Tabular Murris benchmarks, whose base classes are 12, 4, 30,
57, respectively (see the experiments on full-size miniImagenet and DermNet in Appendix E.2).
The experiments are performed under the N -way K-shot setting (Finn and Levine, 2018), where
N = 2 for ISIC and N = 5 for the rest datasets. Note that, Meta-Aug (Rajendran et al., 2020)
under the non-label-sharing scenario is exactly the same as the label shuffling, which is already
adopted in vanilla MAML and ProtoNet. Due to space limitations, we report only the accuracy
for the non-label-sharing scenario here and provide the full table with 95% confidence intervals in
Appendix E.9. More details about the datasets and set-up are in Appendix E.1.
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REPRODUCIBILITY STATEMENT

For our theoretical results, a complete proof of all claims and the discussion of assumptions are
provided in Appendix B. For our empirical results, we discuss the details of datasets and list all
hyperparameters under the label-sharing scenario and non-label-sharing scenario in Appendix D.1
and E.1, respectively. Code: https://github.com/huaxiuyao/MLTI.
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A PSEUDOCODES

In this section, we show the pseudocodes for MLTI with MAML (meta-training process: Alg. 1,
meta-testing process: Alg. 2) and ProtoNet (meta-training process: Alg. 3, meta-testing process:
Alg. 4).

Algorithm 1 Meta-training Process of MAML with MLTI

Require: p(T ): task distribution; η, γ: inner- and outer-loop learning rate; Ls: the number of shared
layers; Beta distribution

1: Randomly initialize the model initial parameters θ
2: while not converge do

3: Randomly sample a batch of tasks {Ti}
|I|
i=1 with dataset

4: for each task Ti do
5: Sample a support set Ds

i = (Xs
i ,Y

s
i ) and a query set Dq

i = (Xq
i ,Y

q
i ) from Di

6: Sample another task Tj (allow i = j) from {Ti}
|I|
i=1 with corresponding support set Ds

j =
(Xs

j ,Y
s
j ) and query set Dq

j = (Xq
j ,Y

q
j )

7: Random sample one layer l from the shared layers
8: Obtain the hidden representations H

s,l
i , Hq,l

i , Hs,l
j , Hq,l

j of the support/query sets of task Ti
and Tj

9: Apply task interpolation between task Ti and Tj via Eqn. (5) (label-sharing tasks) or Eqn.
(6) (non-label-sharing tasks), and obtain the interpolated support set Ds

i,cr = (H̃s,l
i,cr, Ỹ

s
i,cr)

and query set Dq
i,cr = (H̃q,l

i,cr, Ỹ
q
i,cr)

10: Calculate the task-specific parameters ϕL−l
i,cr by the inner-loop adaptation, i.e., ϕL−l

i,cr =

θL−l − η∇θL−lL(fMAML
θL−l ;Ds

i,cr)
11: end for
12: Optimize the model initial parameters as θ ← θ − γ 1

|I|

∑|I|
i=1 L(f

MAML

ϕL−l
i,cr

;Dq
i,cr)

13: end while

Algorithm 2 Meta-testing Process of MAML with MLTI

Require: p(T ): task distribution; η: inner-loop learning rate; θ∗: learned model initial parameters
1: Randomly initialize the model initial parameters θ
2: for each task Tt with support set Ds

t and query set Dq
t do

3: Calculate the task-specific parameters ϕi by the inner-loop adaptation, i.e., ϕi = θ∗ −
η∇θ∗L(f

MAML
θ∗ ;Ds

i )
4: Obtain the predicted labels of the query set by fMAML

ϕi
(Dq

i ) and evaluate the performance
5: end for

B ADDITIONAL THEORETICAL ANALYSIS

B.1 PROOFS OF NON-LABEL-SHARING SCENARIO

B.1.1 PROOF OF LEMMA 1

Proof. Recall that the interpolated dataset is Dq
i,cr = (H̃q,1

i,cr, Ỹ
q
i,cr) := {(h

1
i,k,cr,yi,k,cr)}

N
k=1, where

h1
i,k,cr;r = λh1

i,k;r + (1− λ)h1
j,k′;r′ , yi,k,cr = Lb(r, r′).
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Algorithm 3 Meta-training Process of ProtoNet with MLTI

Require: p(T ): task distribution; γ: learning rate; Beta distribution
1: Randomly initialize the model initial parameters θ
2: while not converge do

3: Randomly sample a batch of tasks {Ti}
|I|
i=1 with dataset

4: for each task Ti do
5: Sample a support set Ds

i = (Xs
i ,Y

s
i ) and a query set Dq

i = (Xq
i ,Y

q
i ) from Di

6: Sample another task Tj (allow i = j) from {Ti}
|I|
i=1 with corresponding support set Ds

j =
(Xs

j ,Y
s
j ) and query set Dq

j = (Xq
j ,Y

q
j )

7: Random sample one layer l from the shared layers
8: Obtain the hidden representations H

s,l
i , Hq,l

i , Hs,l
j , Hq,l

j of the support/query sets of task Ti
and Tj

9: Apply task interpolation between task Ti and Tj , and obtain the interpolated support set
Ds

i,cr = (H̃s,l
i,cr, Ỹ

s
i,cr) and query set Dq

i,cr = (H̃q,l
i,cr, Ỹ

q
i,cr)

10: Calculate the prototypes {cr}
R
r=1 (Nr represents the number of samples in class r) by

cr = 1
Nr

∑

(hs
i,k,cr;r

,ys
i,k,cr;r

)∈Ds
i,cr;r

fPN
θL−l(h

s
i,k,cr;r)

11: Calculate the loss of task Ti as Li = −
∑

k log
exp(−d(fPN

θL−l (h
q
i,k,cr

),cr))
∑

r′ exp(−d(fPN

θL−l
(h

q
i,k,cr

),cr′ ))

12: end for
13: Update θ ← θ − γ 1

|I|

∑|I|
i=1 Li

14: end while

Algorithm 4 Meta-testing Process of ProtoNet with MLTI

Require: p(T ): task distribution; θ∗: learned parameter of the base model
1: for each task Tt with support set Ds

t and query set Dq
t do

2: Calculate the prototypes {cr}
R
r=1 (Nr represents the number of samples in class r) by cr =

1
Nr

∑

(hs
i,k;r

,ys
i,k;r

)∈Ds
i;r
fPN
θ (hs

i,k;r)

3: Calculate the probability of each sample being assigned to class r as p(yq
i,k = r|xq

i,k) =
exp(−d(fPN

θ (h
q
i,k,cr

),cr))
∑

r′ exp(−d(fPN
θ

(h
q
i,k,cr

),cr′ ))

4: Obtain the predicted class as ŷ
q
i,k = argmaxr p(y

q
i,k = r|xq

i,k) and evaluate the performance
5: end for

Here, r = yi,k, λ ∼ Beta(α, β), j ∼ U([|I|]), r ∼ U([Ri]), where Ri represents the number of classes
in task Ti, and Lb(r, r′) denotes the label uniquely determined by the pair (r, r′). The superscript
q is also omitted in the whole section. Since for a give set of r′, r and (r, r′) has a one-to-one
correspondence, without loss of generality, we assume r = (r, r′) in this classification setting.

Recall that Lt({Di,cr}
|I|
i=1) = 1

|I|

∑|I|
i=1 L(Di,cr) = 1

|I|

∑|I|
i=1

1
N

∑N
k=1 L(fϕi

(xi,k,cr),yi,k,cr) =
1
|I|

∑n
i=1

1
N

∑N
k=1 L(h

1
i,k,cr,yi,k,cr). Then let us compute the second-order Taylor expansion on

Lt({Di,cr}
|I|
i=1) = 1

|I|

∑|I|
i=1

1
N

∑N
k=1 L(h

1
i,k,cr,yi,k,cr) with respect to the first argument around

1
λ̄
E[h1

i,k,cr | h
1
i,k] = h1

i,k,cr, we have the Taylor expansion of Lt({Di,cr}
|I|
i=1) up to the second-order

equals to

1

|I|

|I|
∑

i=1

L(λ̄Di) + c
1

|I|

|I|
∑

i=1

1

N

N∑

k=1

ψ(h1⊤
i,k;rϕi)ϕ

⊤
i Cov(h

1
i,k,cr | h1

i,k)ϕi (12)

=
1

|I|

|I|
∑

i=1

L(λ̄Di) + c
1

|I|

|I|
∑

i=1

1

N

N∑

k=1

ψ(h1⊤
i,k;rϕi) · ϕ

⊤
i (

1

|I|

|I|
∑

i=1

1

2

2∑

r=1

1

Ni,r

Ni,r∑

k=1

hi,k;rh
1⊤
i,k;r)ϕi

(13)

=Lt(λ̄{Di}
|I|
i=1) + c

1

N |I|

|I|
∑

i=1

N∑

k=1

ψ(h1⊤
i,k;rϕi) · ϕ

⊤
i (

1

|I|

|I|
∑

i=1

1

2

2∑

r=1

1

Ni,r

|I|
∑

i=1

Ni,r∑

k=1

h1
i,k;rh

1⊤
i,k;r)ϕi,
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where c = E[ (1−λ)2

λ2 ] and the second equality (13) uses the fact that the data is pre-processed so that
1
|I|

∑|I|
i=1

1
2

∑2
r=1

1
Ni,r

∑|I|
i=1

∑Ni,r

k=1 hi,k;r = 0.

B.1.2 PROOF OF THEOREM 1

We first state a standard uniform deviation bound based on Rademacher complexity (c.f. (Bartlett and
Mendelson, 2002)).

Lemma 3. Assume {z1, ..., zN} are drawn i.i.d. from a distribution P over Z , and G denotes function
class on Z with members mapping from Z to [a, b]. With probability at least 1− δ over the draw of
the sample and δ > 0, we have the following bound:

sup
g∼G

∥EP̂ g(z)− EP g(z)∥ ≤ 2R(G; z1, ..., zN ) +

√

log(1/δ)

N
,

where R(G; z1, ..., zN ) represents the Rademacher complexity of the function class G.

Proof. We now formulate R({Di}
|I|
i=1)−R as

R({Di}
|I|
i=1)−R =ETi∼p̂(T )E(Xi,Yi)∼p̂(Ti)L(fϕi

(Xi),Yi)− ETi∼p(T )E(Xi,Yi)∼Ti
[L(fϕi

(Xi),Yi)]

=ETi∼p̂(T )E(Xi,Yi)∼p̂(Ti)L(fϕi
(Xi),Yi)− ETi∼p̂(T )E(Xi,Yi)∼Ti

[L(fϕi
(Xi),Yi)]

︸ ︷︷ ︸

(i)

+ ETi∼p̂(T )E(Xi,Yi)∼Ti
L(fϕi

(Xi),Yi)− ETi∼p(T )E(Xi,Yi)∼Ti
[L(fϕi

(Xi),Yi)]
︸ ︷︷ ︸

(ii)

.

(14)

Recall that we consider the function fMAML
ϕi

(Xi) = ϕ⊤i σ(WXi) := ϕ⊤i H
1
i and the function class

Fγ = {H1⊤ϕ : E[ψ(H1⊤ϕ)]ϕ⊤Σϕ ≤ γ}.

For each Ti, let us consider fϕi
(·) ∈ Fγ . Combining Theorem 3.4 and Theorem A.1 in Zhang et al.

(2021), we have the following result for the Rademacher complexity:

R(Fγ ; z1, ..., zn) ≤2max{(
γ

ρ
)1/4, (

γ

ρ
)1/2}

√

(rank(Σσ,T ) + ∥Σ
W†/2
T µσ,T ∥)

N

≤2max{(
γ

ρ
)1/4, (

γ

ρ
)1/2} ·

√

R+ U

N
.

(15)

Then, we bound the first term (i) in Eqn. (14) can be as below.

ETi∼p̂(T )E(Xi,Yi)∼p̂(Ti)L(fϕi
(Xi),Yi)− ETi∼p̂(T )E(Xi,Yi)∼Ti

[L(fϕi
(Xi),Yi)]

≤ETi∼p̂(T )|E(Xi,Yi)∼p̂(Ti)L(fϕi
(Xi),Yi)− E(Xi,Yi)∼Ti

[L(fϕi
(Xi),Yi)]

≤C1 max{(
γ

ρ
)1/4, (

γ

ρ
)1/2}

√

(R+ U)

N
+ C2

√

log(|I|/δ)

N
,

where C1 and C2 are constants, and the additional log(|I|) term in the last inequality above is caused
by taking the union bound on |I| tasks.

Denote function g : T → R such that g(T ) = E(X,Y)∼D(L(fϕ(X),Y)). Denote

G = {g(T ) : g(T ) = E(X,Y)∼D(L(fϕ(X),Y)), fϕ ∈ Fγ}.
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Let A(x) = 1/(1 + ex). The second term (ii) in Eqn. (14) requires computing the Rademacher
complexity for the function class over distributions

R(G; T1, ..., T|I|) =E sup
g∈G

1

|I|
|

|I|
∑

i=1

σig(Ti)| = E sup
g∈G

1

|I|
|

|I|
∑

i=1

σiE(X,Y)∼Ti
(A(fϕi

(X))−XY|

≲E sup
g∈G

1

|I|
|

|I|
∑

i=1

σiE(X,Y)∼Ti
fϕi

(X)|+ E sup
g∈G

1

|I|
|

|I|
∑

i=1

σiE(X,Y)∼Ti
Y|

≤E sup
g∈G

1

|I|
|

|I|
∑

i=1

σi(Σ
1/2ϕi)

⊤Σ†/2µσ,T |+

√

1

|I|

≤max{(
γ

ρ
)1/4, (

γ

ρ
)1/2}

√

R+ U

|I|
+

√

1

|I|
.

Then we have the following bound on (ii):

ETi∼p̂(T )E(Xi,Yi)∼Ti
L(fϕi

(Xi),Yi)− ETi∼p(T )E(Xi,Yi)∼Ti
[L(fϕi

(Xi),Yi)]

≤C3 max{(
γ

ρ
)1/4, (

γ

ρ
)1/2

√

U

|I|
+ C4

√

log(1/δ)

|I|
.

Combining the pieces, we obtain the desired result. With probability at least 1− δ,

|R({Di}
|I|
i=1)−R| ≤ A1 max{(

γ

ρ
)1/4, (

γ

ρ
)1/2}(

√

R+ U

N
+

√

R+ U

|I|
)

+A2

√

log(|I|/δ)

N
+A3

√

log(1/δ)

|I|
.

B.1.3 PROOF OF LEMMA 2

Recall that we apply MLTI in the feature space for theoretical analysis, the interpolated dataset is
then denoted as Dq

i,cr = (X̃q
i,cr, Ỹ

q
i,cr) := {(xi,k,cr,yi,k,cr)}

N
k=1, where

xi,k,cr;r = λxi,k;r + (1− λ)xj,k′;r′ , yi,k,cr = Lb(r, r′).

where r = yi,k, λ ∼ Beta(α, β), j ∼ U([|I|]), r ∼ U([2]), and Lb(r, r′) denotes the label uniquely
determined by the pair (r, r′). Since for a give set of r′, r and (r, r′) has a one-to-one correspondence,
without loss of generality, we assume r = (r, r′) in this classification setting.

Proof. To prove Lemma 2, first, we would like to note that since the overall sample mean
1
|I|

∑|I|
i=1

1
2

∑2
r=1

1
Ni,r

∑Ni,r

k=1 xi,k;r = 0, we then have

E[xi,k,cr;r | xi,k;r] = xi,k;r.

Then let us compute the second-order Taylor expansion on Lt({Di,cr}
|I|
i=1) =

1
|I|

∑|I|
i=1

1
N

∑N
k=1 L(xi,k,cr,yi,k,cr) = (N |I|)−1 ∑

i,k(1 + exp(⟨(xi,k,cr − (c1,cr + c2,cr)/2, θ⟩))
−1

with respect to the first argument around 1
λ̄
E[xi,k,cr | xi,k] = xi,k,cr, we have that the Taylor
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expansion of Lt({Di,cr}
|I|
i=1) up to the second-order equals to

1

|I|

|I|
∑

i=1

L(λ̄Di) + c
1

|I|

|I|
∑

i=1

1

N

N∑

k=1

ψ(x⊤
i,kθ)θ

⊤Cov(xi,k,cr | xi,k)θ

=
1

|I|

|I|
∑

i=1

L(λ̄Di) + c
1

|I|

|I|
∑

i=1

1

N

N∑

k=1

ψ(x⊤
i,kθ) · θ

⊤(
1

|I|

|I|
∑

i=1

1

2

2∑

r=1

1

Nr

Nr∑

k=1

xi,k;rx
⊤
i,k;r)θ

=Lt(λ̄{Di}
|I|
i=1) + c

1

N |I|

|I|
∑

i=1

N∑

k=1

ψ(x⊤
i,kθ) · θ

⊤(
1

|I|

|I|
∑

i=1

1

2

2∑

r=1

1

Nr

|I|
∑

i=1

Nr∑

k=1

xi,k;rx
⊤
i,k;r)θ,

=Lt(λ̄{Di}
|I|
i=1)

+ c
1

N |I|

∑

i∈I,k∈[N ]

ψ(⟨xi,k − (c1 + c2)/2, θ⟩) · θ
⊤(

1

|I|

|I|
∑

i=1

1

2

2∑

r=1

1

Nr

|I|
∑

i=1

Nr∑

k=1

xi,k;rx
⊤
i,k;r)θ

where c = E[ (1−λ)2

λ2 ].

B.1.4 PROOF OF THEOREM 2

Similar to the proof of Theorem 1, we use Lemma 3 in the proof of Theorem 2.

Proof. We first write R({Di}
|I|
i=1)−R as

R({Di}
|I|
i=1)−R =ETi∼p̂(T )E(Xi,Yi)∼p̂(Ti)L(fθ(Xi),Yi)− ETi∼p(T )E(Xi,Yi)∼Ti

[L(fθ(Xi),Yi)]

=ETi∼p̂(T )E(Xi,Yi)∼p̂(Ti)L(fθ(Xi),Yi)− ETi∼p̂(T )E(Xi,Yi)∼Ti
[L(fθ(Xi),Yi)]

︸ ︷︷ ︸

(i)

+ ETi∼p̂(T )E(Xi,Yi)∼Ti
L(fθ(Xi),Yi)− ETi∼p(T )E(Xi,Yi)∼Ti

[L(fθ(Xi),Yi)]
︸ ︷︷ ︸

(ii)

.

(16)

Recall that we consider the function fθ(x) = θ⊤x and the function class

Wγ := {x → θ⊤x, such that θ satisfying Ex [ψ(⟨x− (c1 + c2)/2, θ⟩)] · θ
⊤ΣXθ ≤ γ}, (17)

For each Ti, let us consider fθ(·) ∈ Wγ . Combining Theorem 3.4 and Theorem A.1 in Zhang et al.
(2021), we have the following result for the Rademacher complexity:

R(FT ; z1, ..., zn) ≤2max{(
γ

ρ
)1/4, (

γ

ρ
)1/2}

√

rank(ΣX)

N

≤2max{(
γ

ρ
)1/4, (

γ

ρ
)1/2} ·

√
rΣ
N
.

Then the first term (i) in Eqn. (16) can be bounded as below.

ETi∼p̂(T )E(Xi,Yi)∼p̂(Ti)L(fθ(Xi),Yi)− ETi∼p̂(T )E(Xi,Yi)∼Ti
[L(fθ(Xi),Yi)]

≤ETi∼p̂(T )|E(Xi,Yi)∼p̂(Ti)L(fθ(Xi),Yi)− E(Xi,Yi)∼Ti
[L(fθ(Xi),Yi)]

≤C1 max{(
γ

ρ
)1/4, (

γ

ρ
)1/2}

√
rΣ
N

+ C2

√

log(|I|/δ)

N
,

where C1 and C2 are constants, and the additional log(|I|) term in the last inequality above since we
take union bound on |I| tasks.

Denote function g : T → R such that g(T ) = E(X,Y)∼D(L(fθ(X),Y)). Denote

G = {g(T ) : g(T ) = E(X,Y)∼D(L(fθ(X),Y)), fθ ∈ Wγ}.
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Recall thatA(x) = 1/(1+ex). The second term (ii) in Eqn. (16) requires computing the Rademacher
complexity for the function class over distributions

R(G; T1, ..., T|I|) =E sup
g∈G

1

|I|
|

|I|
∑

i=1

σig(Ti)| = E sup
g∈G

1

|I|
|

|I|
∑

i=1

σiE(X,Y)∼Ti
(A(θ⊤X)−XY|

≲E sup
g∈G

1

|I|
|

|I|
∑

i=1

σiE(X,Y)∼Ti
|θ⊤X||+ E sup

g∈G

1

|I|
|

|I|
∑

i=1

σiE(X,Y)∼Ti
Y|

≲max{(
γ

ρ
)1/4, (

γ

ρ
)1/2}

√
rΣ
|I|

+

√

1

|I|
.

Then we have the following bound on (ii) in Eqn. (16):

ETi∼p̂(T )E(Xi,Yi)∼Ti
L(fθ(Xi),Yi)− ETi∼p(T )E(Xi,Yi)∼Ti

[L(fθ(Xi),Yi)]

≤C3 max{(
γ

ρ
)1/4, (

γ

ρ
)1/2}

√
rΣ
|I|

+ C4

√

log(1/δ)

|I|
.

(18)

Combining the above pieces, we obtain the desired result. With probability at least 1− δ,

|R({Di}
|I|
i=1)−R| ≤2B1 ·max{(

γ

ρ
)1/4, (

γ

ρ
)1/2} ·

(√
rΣ
|I|

+

√
rΣ
N

)

+B2

√

log(1/δ)

2|I|
+B3

√

log(|I|/δ)

N
.

B.2 THEORETICAL RESULTS UNDER THE LABEL-SHARING SCENARIO

As discussed in Line 131-133 of the main paper, for protonet, it is impractical to calculate the proto-
types with mixed labels. Thus, under the label-sharing scenario, we only analyze the generalization
ability of gradient-based meta-learning. Follow the assumptions under the non-label-sharing scenario,
we first present the counterpart of Lemma 1 of the main paper.

Lemma 4. Consider the MLTI with λ ∼ Beta(α, β) . Let ψ(u) = eu/(1 + eu)2 and Ni,r denote
the number of samples from the class r in task Ti . There exists a constant c > 0, such that the

second-order approximation of Lt({Di,cr}
|I|
i=1) is given by

Lt(λ̄ · {Di}
|I|
i=1) + c

1

N |I|

|I|
∑

i=1

N∑

k=1

ψ(h1⊤
i,kϕi) · ϕ

⊤
i (

1

|I|

|I|
∑

i=1

1

N |I|

|I|
∑

i=1

N |I|
∑

k=1

h1
i,kh

1⊤
i,k )ϕi, (19)

Proof. Under the label-sharing scenario, the interpolated dataset Dq
i,cr = (H̃q,1

i,cr, Ỹ
q
i,cr) :=

{(h1
i,k,cr,yi,k,cr)}

N
k=1 is constructed as

h1
i,k,cr = λh1

i,k + (1− λ)h1
j,k′ , yi,k,cr = λYi,k + (1− λ)yj,k′ ,

where λ ∼ Beta(α, β), j ∼ U([|I|]).

By Lemma 3.1 in Zhang et al. (2021) (with proof on page 13), the data augmentation equals in
distribution with the following augmentation

h1
i,k,cr = λh1

i,k + (1− λ)h1
j,k′ ,

with λ ∼ α
α+βBeta(α+ 1, β) + α

α+βBeta(α+ 1, β), j ∼ U([|I|]).
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Then we apply the same proof technique as the proof of Lemma 1 and obtain that the Taylor expansion

of Lt({Di,cr}
|I|
i=1) up to the second-order equals to

1

|I|

|I|
∑

i=1

L(λ̄Di) + c
1

|I|

|I|
∑

i=1

1

N

N∑

k=1

ψ(h1⊤
i,kϕi)ϕ

⊤
i Cov(h

1
i,k,cr | h1

i,k)ϕi

=
1

|I|

|I|
∑

i=1

L(λ̄Di) + c
1

|I|

|I|
∑

i=1

1

N

N∑

k=1

ψ(h1⊤
i,kϕi) · ϕ

⊤
i (

1

|I|

|I|
∑

i=1

1

N |I|

N∑

k=1

h1
i,kh

1⊤
i,k )ϕi

=Lt(λ̄{Di}
|I|
i=1) + c

1

N |I|

|I|
∑

i=1

N∑

k=1

ψ(h1⊤
i,kϕi) · ϕ

⊤
i (

1

|I|

|I|
∑

i=1

1

N |I|

|I|
∑

i=1

N∑

k=1

h1
i,kh

1⊤
i,k )ϕi,

where c = EDλ
[ (1−λ)2

λ2 ] and Dλ = α
α+βBeta(α+ 1, β) + α

α+βBeta(α+ 1, β).

Given Lemma 4, the population version of the regularization term can be defined in the same form of
Eq. (14) and therefore the generalization theorem and its corresponding conclusions are the same as
Theorem 1 and conclusions in the main paper.

Besides, in this work, the regression setting is only well-defined under the label-sharing scenario. The
theoretical analysis under the label-sharing scenario (i.e., Lemma 4) in Section B.2 are not specific to
the classification setting and still hold in the regression setting.

B.3 DISCUSSION ABOUT THE VARIANCE OF MLTI

From the above analysis, we can see that the second order of regularization depends on Cov(h1
i,k,cr |

h1
i,k) in Eqn. (1) (gradient-based meta-learning) or Cov(xi,k,cr | xi,k) in Eqn. (14) (metric-based

meta-learning). Let G denote the random variable which takes a uniform distribution on the indices
of the tasks. By using the law of total variance, we have Cov(h1

i,k,cr | h
1
i,k) = E[Cov(h1

i,k,cr |
G,h1

i,k)] + Cov(E[h1
i,k,cr | G,h

1
i,k]) ≥ E[Cov(h1

i,k,cr | G,h
1
i,k)], where the later is the covariance

matrix induced by the individual task interpolation, i.e., i = j in the interpolation process.

C ADDITIONAL DISCUSSIONS BETWEEN MLTI AND INDIVIDUAL TASK

AUGMENTATION

As shown in Figure 1, MLTI directly densifies task distributions by generating more tasks rather than
apply augmentation strategies to each individual tasks. Compared with individual task augmentation
(e.g., (Yao et al., 2021; Ni et al., 2021)), the reasons why MLTI leads to more dense task distributions
are summarized under both label-sharing and non-label-sharing settings.

• Label-sharing Setting. MLTI densifies the task distribution by enabling cross-task interpolation.
For example, in Pose prediction, we not only interpolate samples within each object, but cross-task
interpolation significantly increases the number of tasks. Assume we have two objects (O1 and
O2), individual task interpolation approaches (e.g., Meta-Maxup) only generate more samples in
O1 or O2, where only one object information is covered. However, MLTI further allows generating
tasks with both O1 and O2 information by interpolating data samples from O1 and O2.

• Non-label-sharing Setting. MLTI also leads to more dense task distribution under the non-label-
sharing setting. For example, in 2-way classification with 3 training classes (C0, C1, C2), there
are three original tasks, i.e., three classification pairs (C0, C1), (C0, C2), (C1, C2). Individual task
interpolation increases the number of samples for each classification pair by enabling data from
mix(C0, C1), mix(C0, C2), mix(C1, C2). However, it does not distinguish pairs like (mix(C0, C1),
mix(C0, C2)), whereas MLTI does by allowing cross-tasks interpolation.
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D ADDITIONAL EXPERIMENTAL SETUP AND RESULTS UNDER

LABEL-SHARING SCENARIO

D.1 DETAILED DESCRIPTIONS OF DATASETS AND EXPERIMENTAL SETUP

Under the label-sharing scenario, We detail the four datasets as well as their corresponding base
models. All hyperparameters are listed in Table 5, which are selected by the cross-validation.
Notice that all baselines use the same base models and interpolation-based methods (i.e., MetaMix,
Meta-Maxup, MLTI) use the same interpolation strategies.

RainbowMNIST (RMNIST). Follow Finn et al. (2019), we create the RainbowMNIST dataset
by changing the size (full/half), color (red/orange/yellow/green/blue/indigo/violet) and angle (0◦,
90◦, 180◦, 270◦) of the original MNIST dataset. Specifically, we combine training and test set of
original MNIST data and randomly select 5,600 samples for each class. We then split the combined
dataset and create a series of subdatasets, where each subdataset corresponds to one combination
of image transformations and has 1,000 samples, where each class has 100 samples. Each task
in RainbowMNIST is randomly sampled from one subdataset. We use 16/6/10 subdatasets for
meta-training/validation/testing and list their corresponding combinations of image transformations
as follows:

Meta-training combinations:

(red, full, 90◦), (indigo, full, 0◦), (blue, full, 270◦), (orange, half,

270◦), (green, full, 90◦), (green, full, 270◦), (orange, full, 180◦),

(red, full, 180◦), (green, full, 0◦), (orange, full, 0◦), (violet, full,

270◦), (orange, half, 90◦), (violet, half, 180◦), (orange, full, 90◦),

(violet, full, 180◦), (blue, full, 90◦)

Meta-validation combinations:

(indigo, half, 270◦), (blue, full, 0◦), (yellow, half, 180◦), (yellow,

half, 0◦), (yellow, half, 90◦), (violet, half, 0◦)

Meta-testing combinations:

(yellow, full, 270◦), (red, full, 0◦), (blue, half, 270◦), (blue, half,

0◦), (blue, half, 180◦), (red, half, 270◦), (violet, full, 90◦), (blue,

half, 90◦), (green, half, 270◦), (red, half, 90◦)

To analyze the effect of task number, we sequentially add more combinations, which are listed as
follows:

(indigo, half, 180◦), (indigo, full, 180◦), (violet, half, 90◦), (green,

full, 180◦), (indigo, half, 0◦), (yellow, full, 90◦), (indigo, 0, 90◦),

(indigo, full, 270◦), (yellow, full, 0◦), (red, half, 180◦), (green,

half, 0◦), (violet, half, 270◦), (yellow, half, 270◦), (red, full, 270◦),

(orange, half, 180◦), (orange, half, 0◦), (green, half, 180◦), (indigo,

half, 90◦), (blue, full, 180◦), (violet, full, 0◦), (yellow, full, 180◦),

(orange, full, 270◦), (red, half, 0◦), (green, half, 90◦)

In RainbowMNIST, we apply the standard convolutional neural network with four convolutional
blocks as the base learner, where each block contains 32 output channels. For MAML, we apply
the task adaptation process on both the last convolutional block and the classifier. We further use
CutMix (Yun et al., 2019) for task interpolation.

Pose prediction. Follow Yin et al. (2020), pose prediction aims to to predict the pose of each object
relative to its canonical orientation. We use the released dataset from Yin et al. (2020) to evaluate the
performance of MLTI, where 50 and 15 objects are used for meta-training and meta-testing. Each
category includes 100 gray-scale images, and the size of each image is 128× 128.

As for the base model, we follow Yin et al. (2020) and define the base model with three fixed blocks
and four adaptive blocks, where MAML only performs task-specific adaptation on the adapted blocks.
Each fixed block contains one convolutional layer and one batch normalization layer, where the
number of the output channels in the three convolutional layers are set as 32, 48, 64, respectively.
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After the second fixed block, we add one max pooling layer, where both the kernel size and stride are
set as 2. The output of the fixed blocks is fed into a fixed Linear layer and reshaped to 14× 14× 1,
which is further treated as the input of adapted blocks. Each adapted block includes one convolutional
layer and one batch normalization layer, where the number of output channels of all convolutional
layer is set as 64. ReLU function is used as the activation layer for all blocks in this experiment.
Manifold Mixup (Verma et al., 2019) is used for feature interpolation. All baselines are rerun under
the same environment.

NCI. We use the "NCI balanced" dataset released in (NCI, 2018), where 9 subdatasets are included
(i.e., NCI 1, 33, 41, 47, 81, 83, 109, 123, 145). Each NCI subdataset is a complete bioassay for
an binary anticancer activity classification (i.e., positive/negative), where each assay contains a
set of chemical compounds. We randomly sample 1000 data samples for each subdataset. In our
experiments, we represent each drug compound through the 1024 bit fingerprint features extracted by
RDKit (Landrum, 2016), where each fingerprint bit corresponds to a fragment of the molecule. We
select NCI 41, 47, 81, 83, 109, 145 for meta-training and NCI 1, 33, 123 for meta-testing, where each
task is sampled from one subdataset.

The extracted 1024 bit fingerprint features are fed into an neural network with two fully connected
blocks and one linear regressor. Each fully connected block contains one linear layer, one batch
normalization layer and one Leakyrelu function (negative slope: 0.01) as activation layer, where the
number of output neurons of each fully connected block is set as 500. In our experiments, for MAML,
the parameters in the first fully connected block is globally shared across all tasks, and the rest layers
are set as adapted layers. We adopt Manifold Mixup (Verma et al., 2019) as the interpolation strategy.

TDC Metabolism. Similar to NCI dataset, we create another bio-related dataset ± TDC
Metabolism. In TDC Metabolism, we select 8 subdatasets related to drug metabolism from the
whole TDC dataset (Huang et al., 2021), including CYP P450 2C19/2D6/3A4/1A2/2C9 Inhibition,
CYP2C9/CYP2D6/CYP3A4 Substrate. The aim of each dataset is to predict whether each drug
compound has the corresponding property. We use P450 1A2/3A4/2D6 and CYP2C9/CYP2D6
substrate for meta-training, and CYP2C19/2C9 and CYP3A4 substrate for meta-testing. We balance
each subdataset by randomly selecting at most 1000 data samples and each task is randomly sampled
from one subdataset. Analogy to the NCI dataset, we use the same neural network architecture and
features (i.e., 1024 bit fingerprint) for TDC Metabolism. Manifold Mixup (Verma et al., 2019) is used
as the interpolation strategy.

Table 5: Hyperparameters under the label-sharing scenario.

Hyperparameters (MAML) Pose RMNIST NCI Metabolism

inner-loop learning rate 0.01 0.01 0.01 0.01
outer-loop learning rate 0.001 0.001 0.001 0.001
Beta(α, β), α = β 0.5 (i = j), 0.1 (i ̸= j) 2.0 2.0 0.5
num updates 5 5 5 5
batch size 10 4 4 4
query size for meta-training 15 1 10 10
maximum training iterations 10,000 30,000 10,000 10,000

Hyperparameters (ProtoNet) Pose RMNIST NCI Metabolism

learning rate n/a 0.001 0.001 0.001
Beta(α, β), α = β n/a 2.0 0.5 0.5
batch size n/a 4 4 4
query size for meta-training n/a 1 10 10
maximum training iterations n/a 30,000 10,000 10,000

D.2 COMPATIBILITY ANALYSIS UNDER LABEL-SHARING SCENARIO

In Table 6, we show the additional compatibility analysis under the label-sharing scenario. We
observe that MLTI achieves the best performance under different backbone meta-learning algorithms,
indicating the compatibility and effectiveness of MLTI in improving the generalization ability.
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n04443257, n02101006, n02823428, n03047690, n04275548, n04604644,

n02091831, n01843383, n02165456, n03676483, n04243546, n03527444,

n01770081, n02687172, n09246464, n03998194, n02105505, n01749939,

n04251144, n07584110, n07747607, n04612504, n01558993, n03062245,

n04296562, n04596742, n03838899, n02457408, n13054560, n03924679,

n03854065, n01704323, n04515003, n03207743

We apply the same base learner as Finn et al. (2017) in our experiments, which contains four
convolutional blocks and a classifier layer. Each convolutional block includes a convolutional layer,
a batch normalization layer and a ReLU activation layer. For MAML, we apply the task-specific
adaptation on the last convolutional block and the classifier layer, which yields the best empirical
performance.

ISIC. In ISIC dataset, we select task 3 in ªISIC 2018: Skin Lesion Analysis Towards Melanoma
Detection" challenge (Milton, 2019), where 10,015 medical images are labeled by seven lesion
categories: Nevus, Dermatofibroma, Melanoma, Pigmented Bowen’s, Benign Keratoses, Basal Cell
Carcinoma, Vascular. Follow Li et al. (2020), we use four categories with the largest number of
categories as meta-training classes, including Nevus, Melanoma, Benign Keratoses, Basal Cell
Carcinoma. The rest three categories are treated as meta-testing classes. We apply N-way, K-shot
settings in ISIC and set N = 2 in our experiments. Thus, there are only six class combinations for
the meta-training process. Each medical image in ISIC are re-scaled to the size of 84× 84× 3 and
the base model as well as other settings are the same as miniImagenet-S.

DermNet-S. We construct the Dermnet-S dataset from the public Dermnet Skin Disease Atlas (Der,
2016), which includes more than 22,000 across 625 fine-grained classes after removing duplicated
images/classes. Similar to (Prabhu et al., 2018), we focus on the classes with no less than 30 images,
resulting in 203 selected classes. The base model and other settings are the same as miniImagenet-S
and ISIC. The selected classes has a long-tail and we use the top-30 classes for meta-training and the
bottom-53 classes for meta-testing. The detailed meta-training and meta-testing classes are listed as
follows.

Meta-training classes:
Seborrheic Keratoses Ruff, Herpes Zoster, Atopic Dermatitis Adult

Phase, Psoriasis Chronic Plaque, Eczema Hand, Seborrheic Dermatitis,

Keratoacanthoma, Lichen Planus, Epidermal Cyst, Eczema Nummular, Tinea

(Ringworm) Versicolor, Tinea (Ringworm) Body, Lichen Simplex Chronicus,

Scabies, Psoriasis Palms Soles, Malignant Melanoma, Candidiasis large

Skin Folds, Pityriasis Rosea, Granuloma Annulare, Erythema Multiforme,

Seborrheic Keratosis Irritated, Stasis Dermatitis and Ulcers, Distal

Subungual Onychomycosis, Allergic Contact Dermatitis, Psoriasis,

Molluscum Contagiosum, Acne Cystic, Perioral Dermatitis, Vasculitis,

Eczema Fingertips

Meta-testing classes:
Warts, Ichthyosis Sex Linked, Atypical Nevi, Venous Lake, Erythema

Nodosum, Granulation Tissue, Basal Cell Carcinoma Face, Acne Closed

Comedo, Scleroderma, Crest Syndrome, Ichthyosis Other Forms, Psoriasis

Inversus, Kaposi Sarcoma, Trauma, Polymorphous Light Eruption,

Dermagraphism, Lichen Sclerosis Vulva, Pseudomonas, Cutaneous Larva

Migrans, Psoriasis Nails, Corns, Lichen Sclerosus Penis, Staphylococcal

Folliculitis, Chilblains Perniosis, Psoriasis Erythrodermic, Squamous

Cell Carcinoma Ear, Basal Cell Carcinoma Ear, Ichthyosis Dominant,

Erythema Infectiosum, Actinic Keratosis Hand, Basal Cell Carcinoma Lid,

Amyloidosis, Spiders, Erosio Interdigitalis Blastomycetica, Scarlet

Fever, Pompholyx, Melasma, Eczema Trunk Generalized, Metastasis, Warts

Cryotherapy, Nevus Spilus, Basal Cell Carcinoma Lip, Enterovirus,

Pseudomonas Cellulitis, Benign Familial Chronic Pemphigus, Pressure

Urticaria, Halo Nevus, Pityriasis Alba, Pemphigus Foliaceous, Cherry

Angioma, Chapped Fissured Feet, Herpes Buttocks, Ridging Beading
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To further analyze the effect of task number, similar to miniImagenet, we incrementally add more
classes for meta-training by the following sequence:

Lupus Chronic Cutaneous, Rosacea, Genital Warts, Dermatofibroma,

Seborrheic Keratoses Smooth, Basal Cell Carcinoma Lesion, Sun Damaged

Skin, Tinea (Ringworm) Groin, Lichen Sclerosus Skin, Atopic Dermatitis

Childhood Phase, Psoriasis Guttate, Warts Common, Warts Plantar,

Herpes Cutaneous, Eczema Subacute, Psoriasis Scalp, Bullous Pemphigoid,

Sebaceous Hyperplasia, Pyogenic Granuloma, Phototoxic Reactions,

Urticaria Acute, CTCL Cutaneous T-Cell Lymphoma, Drug Eruptions,

Mucous Cyst, Alopecia Areata, Hidradenitis Suppurativa, Herpes Type

1 Recurrent, Viral Exanthems, Skin Tags Polyps, Melanocytic Nevi,

Dermatitis Herpetiformis, Eczema Foot, Morphea, Intertrigo, Atopic

Dermatitis Infant phase, Bowen Disease, Necrobiosis Lipoidica, Lentigo

Adults, Xanthomas, Rhus Dermatitis, Keratosis Pilaris, Schamberg Disease,

Rosacea Nose, Chondrodermatitis Nodularis, Keloids, Tinea (Ringworm) Foot

Webs, Tinea (Ringworm) Laboratory, Porokeratosis, Impetigo, Basal Cell

Carcinoma Pigmented, Porphyrias, Epidermal Nevus, Fixed Drug Eruption,

Venous Malformations, Acne Open Comedo, Perlèche, Acne Pustular, Herpes

Type 1 Primary, Tinea (Ringworm) Scalp, Neurofibromatosis, Warts Flat,

Pityriasis Rubra Pilaris, Hemangioma, Herpes Type 2 Primary, Tinea

(Ringworm) Hand Dorsum, Neurotic Excoriations, Tinea (Ringworm) Primary

Lesion, Basal Cell Carcinoma Nose, Dariers disease, Tinea (Ringworm) Foot

Dorsum, Tinea (Ringworm) Face, Tinea (Ringworm) Incognito, Acanthosis

Nigricans, Onycholysis, Warts Digitate, Psoriasis Pustular Generalized,

Varicella, Basal Cell Carcinoma Superficial, Herpes Simplex, Nevus

Sebaceous, Actinic Keratosis 5 FU, Acne Keloidalis, Hemangioma Infancy,

Candida Penis, Tuberous Sclerosis, Stucco Keratoses, Eczema Herpeticum,

Dyshidrosis, Epidermolysis Bullosa, Actinic Cheilitis Squamous Cell

Lip, Ticks, Actinic Keratosis Face, Chronic Paronychia, Biting Insects,

Dermatomyositis, Grovers Disease, Atypical Nevi Dermoscopy, Patch

Testing, Telangiectasias, Pityriasis Lichenoides, Psoriasis Hand, Actinic

Keratosis Lesion, Lichen Planus Oral, Tinea (Ringworm) Foot Plantar,

Eczema Chronic, Herpes Type 2 Recurrent, Lupus Acute, Eczema Asteatotic,

Pilar Cyst, Pemphigus, Vitiligo, Keratolysis Exfoliativa, AIDS (Acquired

Immunodeficiency Syndrome), Syringoma, Habit Tic Deformity, Congenital

Nevus, Angiokeratomas, Prurigo Nodularis, Pediculosis Pubic, Tinea

(Ringworm) Palm

We use CutMix (Yun et al., 2019) to interpolate samples in the above three image classification
datasets. Besides, the interpolation strategy is applied on the query set when i = j, which empirically
achieves better performance.

Tabular Murris. Follow (Cao et al., 2021), the Tabular Murris dataset is collected from 23 organs,
which contains 105,960 cells of 124 cell types. We aim to classify the cell type of each cell, which is
represented by 2,866 genes (i.e, the dimension of features is 2,866). We use the code of Cao et al.
(2021) to construct tasks, where 15/4/4 organs are selected for meta-training/validation/testing. The
selected organs are detailed as follows:

Meta-training organs:
BAT, MAT, Limb Muscle, Trachea, Heart, Spleen, GAT, SCAT, Mammary Gland,

Liver, Kidney, Bladder, Brain Myeloid, Brain Non-Myeloid, Diaphragm.

Meta-validation organs:
Skin, Lung, Thymus, Aorta

Meta-testing organs:
Large Intestine, Marrow, Pancreas, Tongue

In Tabular Murris, the base model contains two fully connected blocks and a linear regressor, where
each fully connected block contains a linear layer, a batch normalization layer, a ReLU activation
layer, and a dropout layer. Follow Cao et al. (2021), the default dropout ratio and the output channels
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of the linear layer are set as 0.2, 64, respectively. We apply Mainfold Mixup (Verma et al., 2019)
as the interpolation strategy. It also worthwhile to mention that the performance of gradient-based
methods (e.g., MAML) significantly outperforms the reported results in Cao et al. (2021) since
they only apply 1-step inner-loop gradient descent in their released code. In addition, during the
whole meta-testing process, we change the mode from training to evaluation, resulting in the better
performance of metric-based methods (e.g., Protonet).

Table 7: Hyperparameters under the non-label-sharing scenario.

Hyperparameters (MAML) miniImagenet-S ISIC DermNet-S Tabular Murris

inner-loop learning rate 0.01 0.01 0.01 0.01
outer-loop learning rate 0.001 0.001 0.001 0.001
Beta(α, β), α = β 2.0 2.0 2.0 2.0
num updates 5 5 5 5
batch size 4 4 4 4
query size for meta-training 15 15 15 15
maximum training iterations 50,000 50,000 50,000 10,000

Hyperparameters (ProtoNet) Pose RMNIST NCI Metabolism

learning rate 0.001 0.001 0.001 0.001
Beta(α, β), α = β 2.0 2.0 0.5 0.5
batch size 4 4 4 4
query size for meta-training 15 15 15 15
maximum training iterations 50,000 50,000 50,000 10,000

E.2 RESULTS ON FULL-SIZE FEW-SHOT IMAGE CLASSIFICATION DATASETS

In this subsection, we provide the results of MLTI and other strategies on full-size miniImagenet
and DermNet in Table 8, where 64 and 150 training classes are used in the meta-training process,
respectively. Under the full-size miniImagenet and DermNet settings, the original meta-training tasks
are sufficient to obtain satisfying performance. Nevertheless, applying MLTI also outperforms other
strategies, demonstrating its effectiveness in improving generalization ability in meta-learning.

E.3 COMPATIBILITY ANALYSIS UNDER NON-LABEL-SHARING SCENARIO

In Table 9, we report the results of additional compatibility analysis under the non-label-sharing
scenario. The results validate the effectiveness and compatibility of the proposed MLTI.

E.4 RESULTS OF ABLATION STUDY UNDER NON-LABEL-SHARING SCENARIO

In Table 10, we report the ablation study under the non-label-sharing scenario. The results indicate
that MLTI outperforms all other ablation strategies and achieves better generalization ability.

E.5 ADDITIONAL ANALYSIS ABOUT MODEL CAPACITY AND HYPERPARAMETERS

E.5.1 MODEL CAPACITY ANALYSIS

Here, we investigate the performance of MLTI with a heavier backbone model. To increase the model
capacity, we use ResNet-12 as the base model. The results on miniImagenet-S and Dermnet-S are
reported in Table 11. Here, the results of Meta-Maxup and MetaMix are also reported for comparison.
According to the results, MLTI outperforms vanilla MAML/ProtoNet, Meta-Maxup and MetaMix,
verifying its effectiveness even with a larger base model.

E.5.2 ANALYSIS OF THE INTERPOLATION LAYERS

We further conduct experiments on Metabolism and Tabular Murris to analyze the performance with
different interpolation layers when Manifold Mixup (i.e., interpolating features) is used for data
interpolation. Here, ProtoNet is used as backbone. We report the results in Table 12. The results
indicate (1) fixing the interpolation layer can also boost the performance; (2) randomly selecting
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Table 8: Results (averaged accuracy ± 95% confidence interval) of full-size miniImagenet and
DermNet.

Backbone Strategies
miniImagenet-full DermNet-full

1-shot 5-shot 1-shot 5-shot

MAML

Vanilla 46.90 ± 0.79% 63.02 ± 0.68% 49.58 ± 0.83% 69.15 ± 0.69%
Meta-Reg 47.02 ± 0.77% 63.19 ± 0.69% 50.10 ± 0.86% 69.73 ± 0.70%
TAML 46.40 ± 0.82% 63.26 ± 0.68% 50.26 ± 0.85% 69.40 ± 0.75%
Meta-Dropout 47.47 ± 0.81% 64.11 ± 0.71% 51.10 ± 0.84% 69.08 ± 0.69%
MetaMix 47.81 ± 0.78% 64.22 ± 0.68% 51.83 ± 0.83% 71.57 ± 0.67%
Meta-Maxup 47.68 ± 0.79% 63.51 ± 0.75% 51.95 ± 0.88% 70.84 ± 0.68%

MLTI (ours) 48.62 ± 0.76% 64.65 ± 0.70% 52.32 ± 0.88% 71.77 ± 0.67%

ProtoNet

Vanilla 47.05 ± 0.79% 64.03 ± 0.68% 49.91 ± 0.79% 67.45 ± 0.70%
MetaMix 47.21 ± 0.76% 64.38 ± 0.67% 51.50 ± 0.76% 69.55 ± 0.68%
Meta-Maxup 47.33 ± 0.79% 64.43 ± 0.69% 51.18 ± 0.83% 69.07 ± 0.72%

MLTI (ours) 48.11 ± 0.81% 65.22 ± 0.70% 52.91 ± 0.81% 71.30 ± 0.69%

Table 9: Additional compatibility analysis under the setting of the non-label-sharing scenario. We
show averaged accuracy ± 95% confidence interval.

Model miniImagenet-S ISIC DermNet-S Tabular Muris

1-shot

MatchingNet
39.40 ± 0.70% 61.01 ± 1.00% 46.50 ± 0.84% 80.37 ± 0.90%

+MLTI 42.09 ± 0.81% 63.87 ± 1.08% 49.11 ± 0.86% 81.72 ± 0.89%

MetaSGD
37.98 ± 0.75% 58.03 ± 0.79% 41.56 ± 0.80% 81.55 ± 0.91%

+MLTI 39.58 ± 0.76% 61.57 ± 1.10% 45.49 ± 0.83% 83.31 ± 0.87%

ANIL
37.66 ± 0.77% 59.08 ± 1.04% 43.88 ± 0.82% 75.67 ± 0.99%

+MLTI 39.15 ± 0.73% 61.78 ± 1.24% 46.79 ± 0.77% 77.11 ± 1.00%

MC
37.43 ± 0.75% 58.77 ± 1.06% 43.09 ± 0.86% 80.47 ± 0.91%

+MLTI 40.22 ± 0.77% 61.53 ± 0.79% 47.40 ± 0.83% 82.44 ± 0.88%

5-shot

MatchingNet
50.21 ± 0.68% 70.16 ± 0.72% 62.56 ± 0.71% 85.99 ± 0.76%

+MLTI 54.59 ± 0.72% 73.62 ± 0.84% 65.65 ± 0.71% 87.75 ± 0.60%

MetaSGD
49.52 ± 0.73% 68.01 ± 0.87% 58.97 ± 0.73% 91.03 ± 0.55%

+MLTI 53.19 ± 0.69% 70.44 ± 0.65% 63.86 ± 0.71% 92.05 ± 0.51%

ANIL
49.21 ± 0.70% 69.48 ± 0.66% 60.54 ± 0.76% 81.32 ± 0.89%

+MLTI 52.76 ± 0.72% 72.01 ± 0.68% 63.07 ± 0.71% 82.75 ± 0.89%

MC
49.66 ± 0.69% 68.29 ± 0.85% 60.03 ± 0.72% 89.30 ± 0.56%

+MLTI 53.42 ± 0.71% 70.58 ± 0.82% 63.10 ± 0.68% 91.23 ± 0.52%

the interpolation layer achieves the best performance; (3) interpolating at the lower layer performs
similarly as interpolating at the higher layer, indicating the robustness of MLTI with different selected
layers.

E.6 ADDITIONAL RESULTS OF ANALYSIS ABOUT THE NUMBER OF TASKS

Besides the results in the main paper, we further provide the 1-shot results for miniImagenet and
Dermnet in Figure 5a and 5b, respectively. The results corroborate our findings in the main paper that
MLTI consistently improves the performance, especially when the number of tasks is limited.

E.7 MLTI WITH EXTREMELY LIMITED TASKS

In this section, we investigate how MLTI performs when we only have extremely limited tasks.
Here, we decrease the number of distinct meta-training tasks of miniImagenet and DermNet to 56

by reducing the number of base classes to 8 since
(
8
5

)
= 56. Under this setting, two additional

baselines with supervised training process (SL) (Dhillon et al., 2020) and multi-task training process
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Table 10: Ablation study under the non-label-sharing scenario. We find that MLTI performs best.

Backbone Strategies miniImagenet-S ISIC DermNet-S Tabular Murris

MAML (1-shot)

Vanilla 38.27 ± 0.74% 57.59 ± 0.79% 43.47 ± 0.83% 79.08 ± 0.91%
Intra-Intrpl 39.31 ± 0.75% 60.39 ± 0.93% 47.16 ± 0.86% 81.49 ± 0.91%
Cross-Intrpl 39.91 ± 0.74% 61.06 ± 1.23% 46.21 ± 0.79% 80.65 ± 0.92%

MLTI (ours) 41.58 ± 0.72% 61.79 ± 1.00% 48.03 ± 0.79% 81.73 ± 0.89%

MAML (5-shot)

Vanilla 52.14 ± 0.65% 65.24 ± 0.77% 60.56 ± 0.74% 88.55 ± 0.60%
Intra-Intrpl 52.74 ± 0.74% 68.96 ± 0.74% 63.65 ± 0.70% 89.89 ± 0.62%
Cross-Intrpl 53.34 ± 0.77% 70.20 ± 0.70% 62.59 ± 0.76% 89.97 ± 0.56%

MLTI (ours) 55.22 ± 0.76% 70.69 ± 0.68% 64.55 ± 0.74% 91.08 ± 0.54%

ProtoNet (1-shot)

Vanilla 36.26 ± 0.70% 58.56 ± 1.01% 44.21 ± 0.75% 80.03 ± 0.90%
Intra-Intrpl 39.31 ± 0.75% 60.70 ± 1.16% 46.97 ± 0.81% 80.56 ± 0.94%
Cross-Intrpl 40.95 ± 0.76% 62.22 ± 1.19% 48.68 ± 0.85% 81.22 ± 0.90%

MLTI (ours) 41.36 ± 0.75% 62.82 ± 1.13% 49.38 ± 0.85% 81.89 ± 0.88%

ProtoNet (5-shot)

Vanilla 50.72 ± 0.70% 66.25 ± 0.96% 60.33 ± 0.70% 89.20 ± 0.56%
Intra-Intrpl 53.33 ± 0.68% 70.12 ± 0.88% 62.91 ± 0.75% 89.78 ± 0.58%
Cross-Intrpl 54.62 ± 0.72% 71.47 ± 0.89% 64.32 ± 0.71% 90.05 ± 0.57%

MLTI (ours) 55.34 ± 0.74% 71.52 ± 0.89% 65.19 ± 0.73% 90.12 ± 0.59%

Table 11: Analysis on the heavier base model (ResNet-12) under 1-shot miniImagenet-S and DermNet-
S settings.

Backbone Strategies miniImagenet-S DermNet-S

MAML

Vanilla 40.02 ± 0.78% 47.58 ± 0.93%
MetaMix 42.26 ± 0.75% 51.40 ± 0.89%
Meta-Maxup 41.97 ± 0.78% 50.82 ± 0.85%

MLTI (ours) 43.35 ± 0.80% 52.03 ± 0.90%

ProtoNet

Vanilla 40.96 ± 0.75% 48.65 ± 0.85%
MetaMix 42.95 ± 0.87% 51.18 ± 0.90%
Meta-Maxup 42.68 ± 0.78% 50.96 ± 0.88%

MLTI (ours) 44.08 ± 0.83% 52.01 ± 0.93%

(MTL) (Wang et al., 2021) are also used for comparison. We also report the results of the best
baseline ± MetaMix. All results are listed in Table 13 and corroborate the effectiveness of MLTI even
with extremely limited meta-training tasks.

E.8 RESULTS ON ADDITIONAL DATASETS

We further provided two additional datasets under the non-label-sharing setting to show the effective-
ness of MLTI ± tieredImageNet-S and Huffpost. Both datasets are non-label-sharing datasets. We
detail the data descriptions and hyperparameters in the following.

• tieredImageNet-S. tieredImageNet (Ren et al., 2018) is a few-shot image classification dataset,
which consists of 351/97/160 images for meta-training/validation/testing. Following miniImagenet-
S and DermNet-S, we use 35 original meta-training classes in tieredImageNet. All hyperparameters,
base model and interpolation strategies are set as the same as miniImagenet-S.

• Huffpost. Huffpost (Misra, 2018) aims to classify the category for each sentence. We fol-
low Bao et al. (2020) to preprocess Huffpost data, where 25/6/10 classes are used for meta-
training/validation/testing. In our experiments, to construct the base model, we use ALBERT (Lan
et al., 2019) as the encoder and use two fully connected layers as the classifier. The query set size
for training and testing is set as 5. Due to the memory limitation, we set the batch size as 1 and
the learning rate (outer-loop learning rate) for MAML as 2e-5. The inner-loop learning rate for
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Table 13: Results of MLTI with extremely limited tasks. SL and MTL represent methods with
supervised and multi-task training process, respectively.

Model
miniImagenet-S (8 classes) DermNet-S (8 classes)

1-shot 5-shot 1-shot 5-shot

SL 32.37 ± 0.60% 45.57 ± 0.69% 35.69 ± 0.58% 53.38 ± 0.60%
MTL 33.01 ± 0.64% 46.79 ± 0.65% 36.20 ± 0.64% 54.53 ± 0.63%

MAML
Vanilla 36.09 ± 0.75% 50.01 ± 0.67% 37.98 ± 0.66% 54.35 ± 0.67%
MetaMix 37.74 ± 0.77% 51.79 ± 0.68% 40.36 ± 0.73% 55.75 ± 0.69%

MLTI (ours) 38.13 ± 0.70% 53.53 ± 0.72% 41.32 ± 0.71% 56.95 ± 0.64%

ProtoNet
Vanilla 35.07 ± 0.73% 45.10 ± 0.63% 37.72 ± 0.67% 53.18 ± 0.66%
MetaMix 38.12 ± 0.71% 50.25 ± 0.69% 40.07 ± 0.69% 55.07 ± 0.68%

MLTI (ours) 39.64 ± 0.77% 51.64 ± 0.65% 41.31 ± 0.71% 56.09 ± 0.67%

Table 14: Results on Huffpost and tieredImageNet-S. Here, averaged accuracies ± 95% confidence
intervals are reported.

Backbone Strategies
tieredImageNet-S NLP: Huffpost

1-shot 5-shot 1-shot 5-shot

MAML

Vanilla 42.20 ± 0.84% 58.23 ± 0.77% 39.51 ± 1.07% 50.68 ± 0.90%
Meta-Reg 42.87 ± 0.86% 59.16 ± 0.79% 40.32 ± 1.05% 50.96 ± 0.98%
TAML 42.86 ± 0.84% 59.33 ± 0.76% 40.03 ± 1.00% 50.89 ± 0.88%
Meta-Dropout 41.94 ± 0.82% 58.37 ± 0.77% 39.89 ± 0.98% 51.03 ± 0.91%
MetaMix 43.40 ± 0.85% 61.92 ± 0.80% 40.64 ± 1.02% 51.65 ± 0.92%
Meta-Maxup 43.69 ± 0.88% 60.00 ± 0.82% 40.39 ± 1.01% 51.80 ± 0.91%

MLTI (ours) 44.32 ± 0.82% 62.22 ± 0.79% 41.06 ± 1.04% 52.53 ± 0.90%

ProtoNet

Vanilla 43.35 ± 0.82% 59.98 ± 0.77% 41.85 ± 1.01% 58.98 ± 0.92%
MetaMix 44.14 ± 0.83% 60.97 ± 0.81% 42.27 ± 0.98% 60.43 ± 0.90%
Meta-Maxup 44.40 ± 0.83% 61.79 ± 0.78% 42.39 ± 1.01% 60.27 ± 0.88%

MLTI (ours) 45.47 ± 0.86% 62.35 ± 0.80% 42.74 ± 0.96% 61.09 ± 0.91%
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Table 15: Full table of the overall performance (averaged accuracy ± 95% confidence interval) under
the non-label-sharing scenario.

Backbone Strategies miniImagenet-S ISIC DermNet-S Tabular Murris

MAML (1-shot)

Vanilla 38.27 ± 0.74% 57.59 ± 0.79% 43.47 ± 0.83% 79.08 ± 0.91%
Meta-Reg 38.35 ± 0.76% 58.57 ± 0.94% 45.01 ± 0.83% 79.18 ± 0.87%
TAML 38.70 ± 0.77% 58.39 ± 1.00% 45.73 ± 0.84% 79.82 ± 0.87%
Meta-Dropout 38.32 ± 0.75% 58.40 ± 1.02% 44.30 ± 0.84% 78.18 ± 0.93%
MetaMix 39.43 ± 0.77% 60.34 ± 1.03% 46.81 ± 0.81% 81.06 ± 0.86%
Meta-Maxup 39.28 ± 0.77% 58.68 ± 0.86% 46.10 ± 0.82% 79.56 ± 0.89%

MLTI (ours) 41.58 ± 0.72% 61.79 ± 1.00% 48.03 ± 0.79% 81.73 ± 0.89%

MAML (5-shot)

Vanilla 52.14 ± 0.65% 65.24 ± 0.77% 60.56 ± 0.74% 88.55 ± 0.60%
Meta-Reg 51.74 ± 0.68% 68.45 ± 0.81% 60.92 ± 0.69% 89.08 ± 0.61%
TAML 52.75 ± 0.70% 66.09 ± 0.71% 61.14 ± 0.72% 89.11 ± 0.59%
Meta-Dropout 52.53 ± 0.69% 67.32 ± 0.92% 60.86 ± 0.73% 89.25 ± 0.59%
MetaMix 54.14 ± 0.73% 69.47 ± 0.60% 63.52 ± 0.73% 89.75 ± 0.58%
Meta-Maxup 53.02 ± 0.72% 69.16 ± 0.61% 62.64 ± 0.72% 88.88 ± 0.57%

MLTI (ours) 55.22 ± 0.76% 70.69 ± 0.68% 64.55 ± 0.74% 91.08 ± 0.54%

ProtoNet

Vanilla 36.26 ± 0.70% 58.56 ± 1.01% 44.21 ± 0.75% 80.03 ± 0.90%
MetaMix 39.67 ± 0.71% 60.58 ± 1.17% 47.71 ± 0.83% 80.72 ± 0.90%
Meta-Maxup 39.80 ± 0.73% 59.66 ± 1.13% 46.06 ± 0.78% 80.87 ± 0.95%

MLTI (ours) 41.36 ± 0.75% 62.82 ± 1.13% 49.38 ± 0.85% 81.89 ± 0.88%

ProtoNet

Vanilla 50.72 ± 0.70% 66.25 ± 0.96% 60.33 ± 0.70% 89.20 ± 0.56%
MetaMix 53.10 ± 0.74% 70.12 ± 0.94% 62.68 ± 0.71% 89.30 ± 0.61%
Meta-Maxup 53.35 ± 0.68% 68.97 ± 0.83% 62.97 ± 0.74% 89.42 ± 0.64%

MLTI (ours) 55.34 ± 0.74% 71.52 ± 0.89% 65.19 ± 0.73% 90.12 ± 0.59%

Table 16: Full table (accuracy ± 95% confidence interval) of the cross-domain adaptation under
the non-label-sharing scenario. A → B represents that the model is meta-trained on A and then is
meta-tested on B.

Model
miniImagenet-S→ Dermnet-S Dermnet-S→ miniImagenet-S

1-shot 5-shot 1-shot 5-shot

MAML
33.67 ± 0.61% 50.40 ± 0.63% 28.40 ± 0.55% 40.93 ± 0.63%

+MLTI 36.74 ± 0.64% 52.56 ± 0.62% 30.03 ± 0.58% 42.25 ± 0.64%

ProtoNet
33.12 ± 0.60% 50.13 ±0.65% 28.11 ± 0.53% 40.35 ± 0.61%

+MLTI 35.46 ± 0.63% 51.79 ± 0.62% 30.06 ± 0.56% 42.23 ± 0.61%
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