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Abstract

Meta-learning has proven to be a powerful
paradigm for transferring the knowledge from
previous tasks to facilitate the learning of a novel
task. Current dominant algorithms train a well-
generalized model initialization which is adapted
to each task via the support set. The crux lies
in optimizing the generalization capability of the
initialization, which is measured by the perfor-
mance of the adapted model on the query set of
each task. Unfortunately, this generalization mea-
sure, evidenced by empirical results, pushes the
initialization to overfit the meta-training tasks,
which significantly impairs the generalization and
adaptation to novel tasks. To address this issue,
we actively augment a meta-training task with
“more data” when evaluating the generalization.
Concretely, we propose two task augmentation
methods, including MetaMix and Channel Shuffle.
MetaMix linearly combines features and labels of
samples from both the support and query sets. For
each class of samples, Channel Shuffle randomly
replaces a subset of their channels with the corre-
sponding ones from a different class. Theoretical
studies show how task augmentation improves
the generalization of meta-learning. Moreover,
both MetaMix and Channel Shuffle outperform
state-of-the-art results by a large margin across
many datasets and are compatible with existing
meta-learning algorithms.

1. Introduction

Meta-learning, or learning to learn (Thrun & Pratt, 1998),
empowers agents with the core aspect of intelligence—
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quickly learning a new task with as little as a few examples
by drawing upon the knowledge learned from prior tasks.
The resurgence of meta-learning recently pushes ahead with
more effective algorithms that have been deployed in ar-
eas such as computer vision (Kang et al., 2019; Liu et al.,
2019; Sung et al., 2018), natural language processing (Dou
et al., 2019; Gu et al., 2018; Madotto et al., 2019), and
robotics (Xie et al., 2018; Yu et al., 2018). Some of the
dominant algorithms learn a transferable metric space from
previous tasks (Snell et al., 2017; Vinyals et al., 2016), un-
fortunately being only applicable to classification problems.
Instead, gradient-based algorithms (Finn et al., 2017; 2018)
framing meta-learning as a bi-level optimization problem
are flexible and general enough to be independent of prob-
lem types, which we focus on in this work.

The bi-level optimization procedure of gradient-based al-
gorithms is illustrated in Figure la. In the inner-loop, the
initialization of a base model (a.k.a., base learner) globally
shared across tasks (i.e., 6o) is adapted to each task (e.g., &1
for the first task) via gradient descent over the support set
of the task. To reach the desired goal that optimizing from
this initialization leads to fast adaptation and generaliza-
tion, a meta-training objective evaluating the generalization
capability of the initialization on all meta-training tasks is
optimized in the outer-loop. Specifically, the generalization
capability on each task is measured by the performance of
the adapted model on a set distinguished from the support,
namely the query set.

The learned initialization, however, is at high risk of two
forms of overfitting: (1) memorization overfitting (Yin et al.,
2020) (Figure 1b) where it solves meta-training tasks via
rote memorization and does not rely on support sets for
inner-loop adaptation and (2) learner overfitting (Rajen-
dran et al., 2020) (Figure 1c) where it overfits to the meta-
training tasks and fails to generalize to the meta-testing
tasks though support sets come into play during inner-loop
adaptation. Both types of overfitting hurt the generaliza-
tion from meta-training to meta-testing tasks, which we
call meta-generalization in Figure 1a. Improving the meta-
generalization is especially challenging — standard regular-
izers like weight decay lose their power as they limit the
flexibility of fast adaptation in the inner-loop.
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Figure 1. (a) Illustration of the gradient-based meta-learning process and two types of generalization; (b)&(c) Two forms of overfitting in
gradient-based meta-learning. The red cross represents where the learned knowledge can not be well-generalized.

To this end, the few existing solutions attempt to regularize
the search space of the initialization (Yin et al., 2020) or
enforce a fair performance of the initialization across all
meta-training tasks (Jamal & Qi, 2019) while preserving
the expressive power for adaptation. Rather than passively
imposing regularization on the initialization, recently, Ra-
jendran et al. (2020) turned towards an active data augmen-
tation way, aiming to anticipate more data to meta-train the
initialization by injecting the same noise to the labels of both
support and query sets (i.e., label shift). Though the label
shift with a random constant increases the dependence of the
base learner on the support set, learning the constant is as
easy as modifying a bias. Therefore, little extra knowledge
is introduced to meta-train the initialization.

This paper sets out to investigate more flexible and powerful
ways to produce “more” data via task augmentation. The
goal for task augmentation is to increase the dependence
of target predictions on the support set and provide addi-
tional knowledge to optimize the model initialization. To
meet the goal, we propose two task augmentation strategies
— MetaMix and Channel Shuffle. MetaMix linearly com-
bines either original features or hidden representations of
the support and query sets, and performs the same linear
interpolation between their corresponding labels. For clas-
sification problems, MetaMix is further enhanced by the
strategy of Channel Shuffle, which is named as MMCEF. For
samples of each class, Channel Shuffle randomly selects a
subset of channels to replace with corresponding ones of
samples from a different class. These additional signals for
the meta-training objective improve the meta-generalization
of the learned initialization as expected.

We would highlight the primary contributions of this work.
(1) We identify and formalize effective task augmentation
that is sufficient for alleviating both memorization overfit-
ting and learner overfitting and thereby improving meta-
generalization, resulting in two task augmentation methods.
(2) Both task augmentation strategies have been theoreti-
cally proved to indeed improve the meta-generalization. (3)
Throughout comprehensive experiments, we demonstrate

two significant benefits of the two augmentation strategies.
First, in various real-world datasets, the performances are
substantially improved over state-of-the-art meta-learning al-
gorithms and other strategies for overcoming overfitting (Ja-
mal & Qi, 2019; Yin et al., 2020). Second, both MetaMix
and MMCF are compatible with existing and advanced meta-
learning algorithms and ready to boost their performances.

2. Preliminaries

Gradient-based meta-learning algorithms assume a set of
tasks to be sampled from a distribution p(7). Each task
T consists of a support sample set D] = {(x; ;, yf,j)}ﬁl
and a query sample set D} = {(xgmyf’j)}f:ql, where K*
and K? denote the number of source and query samples,
respectively. The objective of meta-learning is to master
new tasks quickly by adapting a well-generalized model
learned over the task distribution p(7). Specifically, the
model f parameterized by 6 is trained on massive tasks
sampled from p(7T") during meta-training. When it comes to
meta-testing, f is adapted to a new task 7; with the help of
the support set D; and evaluated on the query set Df.

Take model-agnostic meta-learning (MAML) (Finn et al.,
2017) as an example. The well-generalized model is
grounded to an initialization for f, i.e., 6, which is adapted
to each i-th task in a few gradient steps by its support set D;.
The generalization performance of the adapted model, i.e.,
¢, is measured on the query set Dy, and in turn used to op-
timize the initialization 6y during meta-training. Let £ and
1 denote the loss function and the inner-loop learning rate,
respectively. The above interleaved process is formulated as
a bi-level optimization problem,

03 = Hﬂl(l)n ]ET,in(T) [‘C’(f¢q (Xg)v Yf)] ’

s.t. ¢77, = 00 — ,LLVGO['(fGO (Xf)an)a

()]

where X:(? and Y:? represent the collection of samples
and their corresponding labels for the support (query) set,
respectively. The predicted value fg, (Xf<")) is denoted as
Yf @ Tn the meta-testing phase, to solve the new task 7Tz,
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the optimal initialization 65 is fine-tuned on its support set
D; to the resulting task-specific parameters ¢;.

3. Task Augmentation

In practical situations, the distribution p(7") is unknown for
estimation of the expected performance in Eqn. (1). Instead,
the common practice is to approximate it with the empirical
performance, i.e.,

nr

1
05 = min — > [L(fs,(X7), Y
0 H;(l)nnT izl[ (fd%( 1)3 z)]’

s.t. ¢; = 0o — MVggﬁ(fgo (Xf),Yf)

(€5

Unfortunately, this empirical risk observes the generaliza-
tion ability of the initialization 6, only at a finite set of nr
tasks. When the function f is sufficiently powerful, a trivial
solution of 6, is to overfit all tasks. Compared to standard su-
pervised learning, the overfitting is more complicated with
two cases: memorization overfitting and learner overfitting
which differ primarily in whether the support set contributes
to inner-loop adaptation. In memorization overfitting, 6;
memorizes all tasks, so that the adaptation to each task via
its support set is even futile (Yin et al., 2020). In learner
overfitting, 0 fails to generalize to new tasks, though it
adapts to solve each meta-training task sufficiently with the
corresponding support set (Rajendran et al., 2020). Both
overfitting lead to poor meta-generalization (see Figure 1a).

Inspired by data augmentation (Cubuk et al., 2019; Zhang
et al., 2018; Zhong et al., 2020; Zhang et al., 2021) which is
used to mitigate the overfitting of training samples in con-
ventional supervised learning, we propose to alleviate the
problem of task overfitting via task augmentation. Before
proceeding to our solutions, we first formally define two
criteria for an effective task augmentation as:

Definition 1 (Criteria of Effective Task Augmentation)
An effective task augmentation for meta-learning is an aug-
mentation function g(-) that transforms a task T; = {D;, D!}
to an augmentated task T, = {9(D3), g(D)}, so that the
following two criteria are met:

(1) I(g(X{); g(D5)|00, g(X1)) — I(Y ;D |00, X7) > 0,
(2) I(60; g(DY)|DE) > 0.

The augmented task satisfying the first criterion is expected
to alleviate the memorization overfitting, as the model more
heavily relies on the support set D; to make predictions, i.e.,
increasing the mutual information between g(Y?) and ¢(D5).
The second criterion guarantees that the augmented task
contributes additional knowledge to update the initialization
in the outer-loop. With more augmented meta-training tasks
satisfying this criterion, the meta-generalization ability of
the initialization to meta-testing tasks improves. Building

on this, we will introduce the proposed task augmentation
strategies.

MetaMix. One of the most immediate choices for task
augmentation is directly incorporating support sets in the
outer-loop, while it is far from enough. The support sets con-
tribute little to the value and gradients of the meta-training
objective, as the meta-training objective is formulated as
the performance of the adapted model which is exactly opti-
mized via support sets. Thus, we are motivated to produce
“more” data out of the accessible support and query sets,
resulting in MetaMix, which meta-trains 6y by mixing sam-
ples from both the query set and the support set.

In detail, the strategy of mixing follows Manifold
Mixup (Verma et al., 2019) where not only inputs but also
hidden representations are mixed up. Assume that the model
f consists of L layers. The hidden representation of a sam-
ple set X at the /-th layer is denoted as f,: (X) (0 <I< L—1),
where fy0(X) = X. For a pair of support and query sets
with their corresponding labels in the i-th task 7;, i.e.,
(X$,Y7) and (X?,Y]), we randomly sample a value of
leC={0,1,---,L — 1} and compute the mixed batch of
data for meta-training as,

zmlm = )\f¢§ (Xf) + (I - )‘)f¢§ (Xg)7

, 3)
Y =AY + (I-NY],

where A = diag({)\j}fjl) and each coefficient \; ~
Beta(a, ). Here, we assume that the size of the support set
and that of the query are equal, i.e., K° =K If K° < K9,
for each sample in the query set, we randomly select one
sample from the support set for mixup. The similar sam-
pling applies to K* > K. In Appendix B.1, we illustrate the
Beta distribution in both symmetric (i.e., « = 3) and skewed
shapes (i.e., a # ). Using the mixed batch by MetaMix,
we reformulate the outer-loop optimization problem as,

5 . 1 - mix mix
b0 = H;(l)na;EA~Beta<a,B)EZ~C[£(f¢5—l( o), Y],

(C))
where f -1 Tepresents the rest of layers after the mixed
layer [. MetaMix is flexible enough to be compatible with
off-the-shelf gradient-based meta-learning algorithms, by re-
placing the query set with the mixed batch for meta-training.
Further, to verify the effectiveness of MetaMix, we examine
whether the criteria in Definition 1 are met in the follows.

Corollary 1 Assume that the support set is sampled inde-
pendently from the query set. Then the following two equa-
tions hold:
IOV (X3, Y7 00, X077 —
=H(Y;|60,X7) > 0;
I(00; XM, Y |X2, YY) = H(6) — H(60|X;,Y).

i

(&)
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The first criterion is easily satisfied — H(Y$|6o, X3) hardly
equals zero as 6y unlikely fits the support set in meta-
learning. The second criterion indicates that MetaMix con-
tributes a novel task as long as the support set of the task
being augmented is capable of reducing the uncertainty of
the initialization 6, which is often the case. We provide the
detailed proof of Corollary 1 in Appendix A.1.

MetaMix enhanced with Channel Shuffle. In classifica-
tion, the proposed MetaMix can be further enhanced by
another task augmentation strategy named Channel Shuffle
(CF). Channel Shuffle aims to randomly replace a subset of
channels through samples of each class by the corresponding
ones in a different class. Assume that the hidden represen-
tation f, ot (x (x S(q)) of each sample consists of p channels, i.e.,
For(x b<q>) = f<1>( Sy f@)( $)]. Provided with
1) a pair of classes cand ¢ W1th corresponding sample
sets (Xfff), YZ(C”), (X! cq,>, Ys(q)) and 2) a random variable
R. . = diag(ri,...,mp) with r; ~ Bernoulli(é) and 6 > 0.5
for ¢ € [p], the channel shuffle process is formulated as:

X5 = Reo fot (XU + (L= Reen) ft (X319,

6
sz‘(q). ©

Y s(q),cf
The channel shuffle strategy is then applied in both sup-
port and query sets, with R_, shared between the two
sets. We denote the shuffled support set and query set as
(X2 yoefy and (X2 Y2eT), respectively. Then, in the
outer-loop, the channel shuffled samples will be integrated
into the MetaMix and the Eqn. (4) is reformulated as:

Xyl - nXe,

—NYPS,

=X+ (1

P @)
=AY+ (I

Y;mmcf

We name the MetaMix enhanced with channel shuffle as
MMCE. In Appendix A.2, we prove that MMCEF not only
meets the first criterion in Definition 1, but also outperforms
MetaMix regarding the second criterion. Taking MAML as
an example, we show MetaMix and MMCF in Alg. 1 and
Appendix B.2, respectively.

4. Theoretic Analysis

In this section, we theoretically investigate how the pro-
posed task augmentation methods improve generalization,
by analyzing the following two-layer neural network model.
For each task 7;, we consider minimizing the squared loss
L(f4:(X3),Yi) = (fo,(Xi) = Y:)? with fs, modeled by

fo:(Xi) = ¢ 0 (WX,), ®)

where ¢; is the task adapted parameters and W is the global
shared parameter. Note that, the formulation of function f is
the equivalent to ANIL (Raghu et al., 2020) under the two-
layer neural network scenario, where only the head layer

Algorithm 1 Meta-training Process of MAML-MetaMix

Require: Task distribution p(7"); Learning rate y, 7; Beta
distribution parameters «, §; MetaMix candidate layer
set C
Randomly initialize parameter 6,
while not converge do
Sample a batch of tasks {7;};-,
for all 7; do
Sample support set D] = {(x;j;, yfﬁj)}ﬁl and
query set Df = {(x?,y{ )} from 7
6: Compute the task-specific parameter ¢; via the

AN

inner-loop gradient descent, i.e., ¢; = 6y —
1V oo L£(foo (X7), Y7)

7: Sample MetaMix parameter A ~ Beta(«, 3) and
mixed layer [ from C

8: Forward both support and query sets and mixed
them at layer [ as: X[/* = Afr(X5) + (I -

A) fo (XT), YT = XYS 4+ (I - A)Y?
9: Continual forward X}* to the rest of layers and
compute the loss as £(f¢L LX), Y
10:  end for
11:  Update 0o —
M 21 Eapeta(a, g Bine [L(f,r-1(
12: end while

0o -
m), Y]

is adapted during the inner-loop. In the following, we will
detail the analysis of MetaMix and Channel Shuffle.

Analysis of MetaMix. In the analysis of MetaMix, we
consider a symmetric version of MetaMix algorithm for
technical reasons. Empirically we find that this symmet-
ric version and the proposed MetaMix algorithm generate
mostly identical results (see Appendix C for details). Specif-
ically, for each task 7;, we denote Z; = {xij,yi;}"1 =
{xi;¥i; }3:1 U{xi,; i, }_7:1’ and K™ = K* + K. Fur-
ther, we consider the following MetaMix algorithm trains
the second layer parameter ¢; by minimizing the squared
loss on the mixed batch of data Z7"** = {x}"/", y/"/*}j=1,
where Z** is constructed as

X7 = Ao (Wx ;) + (1 = N)a(Wx, j1),

&)
)‘)Yi,j’v

mix

Yig =Ayij+(1-
where j is a uniform sample from [K™] and A ~ Beta(a, 3).

Extending the analysis in (Zhang et al., 2021), we have the
following theorem on the second-order approximation of
L(ZT).

Lemma 1 Consider the model set-up described above with
mixup distribution A ~ Beta(«, 8). Then the second-order
approximation of L(ZT*") is given by

™

> o(Wxij)o(Wxij) )¢, (10)

j=1

1
. <o
L(Z) + ¢ 0 (=
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where ¢ = Ep, [U37] with Dy ~ 2;Beta(a + 1,5) +

%Beta(ﬁ + 1, ).

This result suggests that the MetaMix algorithm is imposing
a quadratic regularization on ¢; for the ¢-th task, and there-
fore reduces the complexity of the solution space and leads
to a better generalization.

To quantify the improvement of the generalization, let us
denote the population meta-risk by

R = ETiNP(T)E(Xin)'VTi [[’(f¢>i (Xl)sz)L (11)

and the empirical version by

. 1 &1 &
R({Z:}2) or > o D L(foi(%i),¥i5)
i—1 =1

=E7imnr B, v mnm £(fo: (Xa), Yi)-
(12)
According to Theorem 1, we study the generalization prob-
lem by considering the following function class that is
closely related to the dual problem of Eqn. (10)

Fr={¢'0c(WX):¢ 5,70 <}, (13)

where ¥, 7 = E7[0c(WX)o(WX)T]. Notation-wise, let us
also define o7 = E7[0c(WX)]. Further, we also assume
the condition of the task distribution 7 for all 7 ~ p(T), T
satisfies

rank(So.7) < 1, |EV4  po 7| < B, (14)

where p(T) is the distribution of the task distribution.

We then have the following theorem showing the im-
provement on the meta-generalization gap induced by the
MetaMix algorithm.

Theorem 1 Suppose X, Y and ¢ are all bounded, and also
assume assumption Eqn. (14) holds. Then there exists con-
stants C1,C2,Cs,Cs > 0, such that for all f+ € Fr, we
have, with probability at least 1 — ¢,

RU(Z:}IT,) — R| <Oy \/ v (r+B), cz\/ log(nr/3)

K™ Km

-B+1 log(1/6
R e L)

nrt nr

15)

According to Lemma 1, Mixup is regularizing ¢ " 3, 7¢ and
making v small. With this interpretation, Theorem 2 then
suggests that a smaller value of + induced by Mixup will
help reduce the generalization error, and therefore mitigate
the overfitting.

Analysis of Channel Shuffle. We then analyze the channel
shuffle strategy under the same two-layer neural network

model considered above, with binary class y; ; € {0,1}.
Instead of applying the mixup on Z; = {x; ;,yi ; }f!{ =
{xi,5:0, OH1° U {xi.5:1, 117", we now apply the channel
shuffle strategy. Specifically, we consider the shuffled data
fo = {Xffgzyz,]}le = {X'L?,fj;07 O}leo U {X§£;17 1}§;11 : AC-
cording to Eqn. (6), {xf,fj;k} (k € {0,1}) is constructed as
D=5 - (RoO(Wxi ) + (T = R)o (Wi 1)

forj € [K™*], k € {0,1}.

X

| =

(16)

<

Let us denote such randomness by £. Recall that R =
diag(r1, ..., 7p) With r, ~ Bernoulli(d), the scaling  is added
for technical convenience. Since the last layer is linear, the
scaling } will not affect the training and prediction results.

We now define £(Z;7) = 24 S5 £(¢: " (x{%),y:,,). For
a generic vector v € R?, we denote v°® = (v{,...,v7) and
diag(v°?) = diag(vi,...,v}) as the diagonal matrix with
diagonal elements (v7, ..., v2). We then have the following
theorem on the second-order approximation of £(Z<7).

Theorem 2 Consider the model set-up described above
and recall that £ is the randomness involved in the data
argumentation. Assume the training data is preprocessed
as s S0 0(Wki jio) = e S0 (Wi 1) = 0.
There exists a constant ¢ > 0, such that the second-order
approximation of B¢ L(ZS') is given by

16,1 X ez,
L(Z) + —5—6] (7 ;dwg(a(wxz,g) )it
K™0
> o(Wxij0)o(Wxij0) | (17)

Jj=1

1-6 +, 1
+T¢i(KmO

K™l

Z U(Wxi,j;l)ﬂ(wxi,j;l)T)¢i'

j=1

+ K77L1

Theorem 2 suggests that the Channel Shuffle algorithm will
also impose a quadratic data-adaptive regularization on ¢;,
and the second quadratic term resembles the one induced
by MetaMix in Lemma 1. As a result, it will make the 7 in
Theorem 2 smaller and further reduce the overfitting. We
provide more details and the full proof about theoretical
analysis in Appendix C.

5. Discussion with Related Works

One influential line of meta-learning algorithms is learning
a transferable metric space between samples from previous
tasks (Mishra et al., 2018; Oreshkin et al., 2018; Snell et al.,
2017; Vinyals et al., 2016), which classify samples via lazy
learning with the learned distance metric (e.g., Euclidean
distance (Snell et al., 2017), cosine distance (Vinyals et al.,
2016)). However, their applications are limited to classifi-
cation problems, being infeasible in other problems (e.g.,
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regression). In this work, we focus on gradient-based meta-
learning algorithms that learn a well-generalized model ini-
tialization from meta-training tasks (Finn & Levine, 2018;
Finn et al., 2017; 2018; Flennerhag et al., 2020; Grant et al.,
2018; Lee & Choi, 2018; Li et al., 2017; Park & Oliva,
2019), being agnostic to problems. This initialization is
adapted to each task via the support set, and in turn the
initialization is updated by maximizing the generalization
performance on the query set. These approaches are at high
risk of overfitting the meta-training tasks and generalizing
poorly to meta-testing tasks.

Common techniques increase the generalization capability
via regularizations such as weight decay (Krogh & Hertz,
1992), dropout (Gal & Ghahramani, 2016; Srivastava et al.,
2014), and incorporating noise (Achille & Soatto, 2018;
Alemi et al., 2017; Tishby & Zaslavsky, 2015). However,
the adapted model by only a few steps on the support set
in the inner-loop likely performs poorly on the query set.
To improve such generalization for better adaptation, either
the number of parameters to adapt is reduced (Raghu et al.,
2020; Zintgraf et al., 2019; Oh et al., 2021) or adpative noise
is added (Lee et al., 2020). The contribution of address-
ing this inner-loop overfitting towards meta-regularization,
though positive, is limited.

Until very recently, two regularizers were proposed to
specifically improve meta-generalization, including MR-
MAML (Yin et al., 2020) which regularizes the search space
of the initialization while meanwhile allows it to be suffi-
ciently adapted in the inner-loop, and TAML (Jamal & Qi,
2019) enforcing the initialization to behave similarly across
tasks. Instead of imposing regularizers on the initializa-
tion, Rajendran et al. (2020) proposed to inject a random
constant noise to labels of both support and query sets. The
shared noise, however, is easy to be learned in the inner-loop.
Besides, as we prove in Appendix A.3, this augmentation
fails to meet the second criterion in Definition 1 and there-
fore little additional information is provided to meta-train
the initialization. Our work takes sufficiently powerful ways
actively soliciting more data to meta-train the initializa-
tion. Note that our task augmentation strategies are more
than just a simple application of conventional data augmen-
tation strategies (Cubuk et al., 2019; Verma et al., 2019;
Zhang et al., 2018), which have been proved in both (Lee
et al., 2020) and our experiments to have a very limited
role. We initiate to include more query data that satisfy the
proposed Criterion 1 in the meta-training phase, so that the
dependence on support sets during inner-loop adaptation is
increased and the meta-generalization is improved.

6. Experiments

To show the effectiveness of MetaMix, we conduct ex-
periments on three meta-learning problems, namely: (1)

drug activity prediction, (2) pose prediction, and (3) image
classification. We apply MetaMix on four gradient-based
meta-learning algorithms, including MAML (Finn et al.,
2017), MetaSGD (Li et al., 2017), T-Net (Lee & Choi,
2018), and ANIL (Raghu et al., 2020). For comparison,
we consider the following regularizers: Weight Decay as the
traditional regularizer, CAVIA (Zintgraf et al., 2019) and
Meta-dropout (Lee et al., 2020) which regularize the inner-
loop, and MR-MAML (Yin et al., 2020), TAML (Jamal &
Qi, 2019), and Meta-Aug (Rajendran et al., 2020), all of
which handle meta-generalization.

6.1. Drug Activity Prediction

Experimental Setup. We solve a real-world application of
drug activity prediction (Martin et al., 2019) where there
are 4,276 target assays (i.e., tasks) each of which consists
of a few drug compounds with tested activities against the
target protein. We randomly selected 100 assays for meta-
testing, 76 for meta-validation and the rest for meta-training.
We repeat the random process four times and construct
four groups of meta-testing assays for evaluation. Follow-
ing (Martin et al., 2019), we evaluate the square of Pearson
coefficient R? between the predicted y¢ and the groundtruth
y! of all query samples for each i-th task, and report the
mean and median R? values over all meta-testing assays
as well as the number of assays with R > 0.3 which is
deemed as an indicator of reliability in pharmacology. We
use a base model of two fully connected layers with 500 hid-
den units. In Beta(a, 8), we set « = 8= 0.5. More details
on the dataset and settings are discussed in Appendix D.1.

Performance. In practice, we notice that only updating the
final layer in the inner-loop achieves the best performance,
which is equivalent to ANIL. Thus, we apply this inner-loop
update strategy to all baselines. For stability, here we also
use ANIL++ (Antoniou et al., 2019) which stabilizes ANIL
for comparison. In Table 1, we compare MetaMix with the
baselines on the four drug evaluation groups. We observe
that MetaMix consistently improves the performance de-
spite of the backbone meta-learning algorithms (i.e., ANIL,
ANIL++, MetaSGD, T-Net) in all scenarios. In addition,
ANIL-MetaMix outperforms other anti-overfitting strate-
gies. Particularly, compared to Meta-Aug, the better perfor-
mance of ANIL-MetaMix indicates that additional informa-
tion provided by MetaMix benefits the meta-generalization.
In summary, the consistent superior performance, even sig-
nificantly better than the state-of-the-art pQSAR-max for
this dataset, demonstrates that (1) MetaMix is compatible
with existing meta-learning algorithms; (2) MetaMix is ca-
pable of improving the meta-generalization ability. Besides,
in Appendix E.1, we investigate the influence of different
hyperparameter settings (e.g., « in Beta(a, «)), and demon-
strate the robustness of MetaMix under different settings.
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Table 1. Performance of drug activity prediction.

Model Group 1 Group 2 Group 3 Group 4
Mean Med. >0.3| Mean Med. >0.3| Mean Med. >0.3| Mean Med. >0.3
PQSAR-max (Martin et al., 2019)\ 0.390 0.335 51 \ 0.335 0.280 44 \ 0.373 0.315 50 \ 0.362 0.260 46
Weight Decay 0.307 0.228 40 |0.243 0.157 34 |0.259 0.171 38 |0.290 0.241 47
CAVIA 0.300 0.232 42 |0.234 0.132 35 |0.260 0.184 39 |0.317 0.292 46
Meta-dropout 0.319 0.203 41 |0.250 0.172 35 |0.281 0.214 39 |0.316 0.275 47
Meta-Aug 0.317 0.201 43 |0.253 0.193 38 | 0.286 0.220 41 |0.303 0.224 42
MR-ANIL 0.297 0.202 41 |0.232 0.152 32 |0.289 0.217 40 |0.293 0.249 43
TAML 0.296 0.200 41 |0.260 0.203 36 | 0.260 0.227 40 | 0.308 0.281 46
MetaSGD 0.331 0.224 45 |0.249 0.187 33 |0.282 0.226 40 |0.312 0.287 48
T-Net 0.323 0.264 46 |0.236 0.170 29 | 0.285 0.220 43 |0.285 0.239 42
ANIL 0.299 0.184 41 |0.226 0.143 30 | 0.268 0.199 37 |0.304 0.282 48
ANIL++ 0.367 0.299 50 |0.315 0.252 43 |0.335 0.289 48 |0.362 0.324 51
MetaSGD-MetaMix 0.364 0.296 49 |0.271 0.230 45 | 0.312 0.267 48 |0.338 0.319 51
T-Net-MetaMix 0.352 0.291 50 |0.276 0.229 42 |0.310 0.285 47 |0.336 0.298 50
ANIL-MetaMix 0.347 0.292 49 |0.301 0.282 47 | 0.302 0.258 45 |0.348 0.303 51
ANIL++-MetaMix 0.413 0.393 59 |0.337 0.301 51 [0.381 0.362 55 |0.380 0.348 55

Analysis of Overfitting. In Figure 2, we visualize the meta-
training and meta-testing performance of ANIL, ANIL-
MetaMix and other two representative anti-overfitting strate-
gies (i.e., MR-ANIL, Meta-Aug) with respect to the training
iteration. Interestingly, we find (1) in the meta-testing phase,
applying MetaMix significantly increases the performance
gap between pre-update (6) and post-update (¢;), indicat-
ing that MetaMix improves the dependence of target predic-
tion on support sets, and therefore alleviates memorization
overfitting; (2) compared to Meta-Aug and MR-ANIL, the
worse pre-update meta-training performance but better post-
update meta-testing performance of MetaMix demonstrates
its superiority to mitigate the learner overfitting.

Effect of Data Mixture Strategy in MetaMix. To further
investigate where the improvement stems from, we adopt
five different mixup strategies for meta-training. The results
are reported in Table 2. We use Mixup(D™, D) to denote
the mixup of data D™ and D" (e.g., Mixup(D?, D?) in our
case). D°? =D*®D? represents the concatenation of D* and
DA. In drug activity prediction, since the support and query
sets are pre-split based on the biological domain knowledge,
we also introduce set shuffle as another ablation model by
randomly shuffling the pre-split sets. In Table 2, we find
that (1) MetaMix achieves the best performance compared
with other ablation models; (2) the fact that MetaMix en-
joys better performance than Mixup(D?, D7) suggests that
MetaMix is much more than simple data augmentation —
it increases the dependency of the learner on support sets
and thereby minimizes the memorization; (3) involving the
support set only is insufficient for meta-generalization due
to its relative small gradient norm, which is further verified
by the unsatisfactory performance of D° & D? compared
with MetaMix .

Analysis of Criteria. We further analyze augmentation

methods on drug data (Group 1) with respect to the two cri-
teria (C1, C2) we propose and the CE-increasing criterion
H(Y|X)1 proposed by Meta-Aug. We report the results in
Table 3, where Mix-all applies Mixup to the whole dataset
without differentiating different tasks. We observe that C1
and C2 are qualified to guide the design of task augmen-
tation methods, as evidenced in Table 3 where methods
satisfying more of C1 and C2 tend to perform better.

6.2. Pose Prediction

Experimental Setup. Following (Yin et al., 2020), we use
the regression dataset created from Pascal 3D data (Xiang
et al., 2014), where a 128 x 128 grey-scale image is used as
input and the orientation relative to a fixed pose labels each
image. 50 and 15 objects are randomly selected for meta-
training and meta-testing, respectively. Following (Yin et al.,
2020), the base model consists of an encoder with three
convolutional blocks and a decoder with four convolutional
blocks. For MetaMix, we set a==0.5 in Beta(c, ) and
only perform Mainfold Mixup on the decoder (see Appendix
D.2 for detailed settings).

Results. Table 4 shows the performance (averaged MSE
with 95% confidence interval) of baselines and MetaMix
under 10/15-shot scenarios. The inner-loop regularizers
are not as effective as MR-MAML, TAML and Meta-Aug
in improving meta-generalization; MAML-MetaMix and
Meta-Aug significantly improve MR-MAML, suggesting
the effectiveness of bringing more data in than imposing
meta-regularizers only. The better performance of MAML-
MetaMix than Meta-Aug further verifies the effectiveness of
introducing additional knowledge to learn the initialization.
We also investigate the influence of mixup strategies and
hyperparameters on pose prediction in Appendix F.1 and F.2,
respectively. The results again advocate the effectiveness
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Table 2. Effect of mixture strategies on drug activity prediction. All strategies are applied on ANIL++.

Strategics Group 1 Group 2 Group 3 Group 4
g Mean Med. >0.3| Mean Med. >0.3| Mean Med. >0.3| Mean Med. >0.3
D1 0.367 0.299 50 |0.315 0.252 43 |0.335 0.289 48 |0.362 0.324 51
Set Shuffle 0.371 0.352 55 [0.293 0.224 42 [0.339 0.297 50 |0.360 0.300 50
Mixup(D?®, D%) |0.224 0.164 33 |0.210 0.164 31 |0.214 0.154 29 |0.191 0.141 22
Mixup(D?, D?) |0.388 0.354 55 |0.322 0.264 46 |0.341 0.306 50 |0.358 0.325 53
D =D @D 0.376 0.324 52 |0.301 0.242 44 [0.333 0.329 51 |0.336 0.281 48
MetaMix \0.413 0.393 59 \0.337 0.301 51 \0.381 0.362 55 \0.380 0.348 55
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Figure 2. Overfitting analysis on Group 1 of drug activity prediction. All models use the same inner-loop update strategy as ANIL.

Table 3. Criteria analysis on Group 1 of drug activity prediction.

Table 4. Performance (MSE + 95% confidence interval) of pose

All models use ANIL as the backbone meta-learning algorithm. prediction.
Aug. Method | C1 | C2 | H(Y[X)? | Mean R? Model \ 10-shot 15-shot
Mix-All 0.292 Weight Decay 2.772 £ 0.259 2.307 £ 0.226
Mixup(D?, DY) \/ Vv 0.322 CAVIA 3.021 £ 0.248 2.397 +0.191
Meta-Aug Vv v 0.317 Meta-dropout 3.236 £0.257  2.425 4+ 0.209
B Meta-Aug 2.553 + 0.265 2.152 + 0.227
ANILMeaMix | v | vV | Vv | 0347 MR-MAML 2.907 + 0.255  2.276 + 0.169
TAML 2.785 £ 0.261 2.196 +0.163
. A . ANIL 6.746 + 0.416 6.513 £ 0.384
and robustness of the. propo.s?d mixup strategy in improving MAML 3098 L 0.942 9413 £ 0.177
the meta-generalization ability. MetaSGD 2.803+0.239  2.331 +0.182
T-Net 2.835 4+ 0.189 2.609 +0.213
6.3. Image Classification ANIL-MetaMix 6.354+0.393  6.112 +0.381
E . tal Set For i lassificati bl MAML-MetaMix 2.438 +0.196 2.003 +0.147
xperimental Setup. For image classihcalion problems, MetaSGD-MetaMix | 2.390 £ 0.191 1.952 + 0.154
standard benchmarks (e.g., Omniglot (Lake et al., 2011) T-Net-MetaMix 2.563 4+ 0.201 2.418 + 0.182

and Minilmagenet (Vinyals et al., 2016)) are considered
as mutually-exclusive tasks by introducing the shuffling
mechanism of labels, which significantly alleviates the meta-
overfitting issue (Yin et al., 2020). To show the power of pro-
posed augmentation strategies, following (Yin et al., 2020),
we adopt the non-mutually-exclusive setting for each image
classification benchmark: each class with its classification
label remains unchanged across different meta-training tasks
during meta-training. Besides, we study image classifica-
tion for heterogeneous tasks in Appendix G.1. We use the
multi-dataset in (Yao et al., 2019) which consists of four
subdatasets, i.e., Bird, Texture, Aircraft, and Fungi. The
non-mutually-exclusive setting is also applied to this multi-
dataset. Three representative heterogeneous meta-learning
algorithms (i.e., MMAML (Vuorio et al., 2019), HSML (Yao
et al., 2019), ARML (Yao et al., 2020)) are taken as base-
lines and applied with task augmentation stategies. For each

task, the classical N-way, K-shot setting is used to evaluate
the performance. We use the standard four-block convolu-
tional neural network as the base model. We set a=£3=2.0
for all datasets. Detailed descriptions of experiment settings
and hyperparameters are discussed in Appendix D.3.

Results. In Table 5 and Appendix G.1, we report the perfor-
mance (accuracy with 95% confidence interval) on homoge-
neous datasets (i.e., Omniglot, Minilmagenet) and heteroge-
neous datasets, respectively. As described in Section 3, we
will use Channel Shuffle enhanced MetaMix (MMCF) in
image classification problems. Aligned with other problems,
in all non-mutually-exclusive datasets, applying the MMCF
consistently improves existing meta-learning algorithms.
For example, MAML-MMCEF significantly boosts MAML
and most importantly outperforms MR-MAML, substanti-
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Table 5. Performance (accuracy £ 95% confidence interval) of image classification on Omniglot and Minilmagenet.

20-way 5-shot

Minilmagenet

5-way 1-shot

5-way 5-shot

96.20 £ 0.17%
94.16 £+ 0.20%
96.66 £+ 0.18%
95.56 £ 0.17%
95.78 £ 0.19%

33.19 £ 1.76%
34.27 +£1.79%
35.00 £+ 1.60%
34.32 +1.78%
33.16 £ 1.68%

52.27 £ 0.96%
50.23 £ 0.98%
54.39 +£0.97%
52.40 £ 0.96%
52.78 £ 0.97%

93.51 £ 0.25%
95.52 £ 0.18%
95.67 £ 0.20%
95.85 £ 0.19%

32.93 + 1.70%
33.70 + 1.63%
33.73+1.72%
34.13+ 1.67%

51.95+0.97%
52.14 £ 0.92%
54.04 £ 0.99%
52.59 £+ 0.96%

97.95+0.17%
98.24 £ 0.16%
98.09 £ 0.15%

Omniglot

Model 20-way 1-shot

Weight Decay 86.81 & 0.64%
CAVIA 87.63 + 0.58%
MR-MAML 89.28 + 0.59%
Meta-dropout 85.60 + 0.63%
TAML 87.50 + 0.63%
MAML 87.40 + 0.59%
MetaSGD 87.72 +0.61%
T-Net 87.71 + 0.62%
ANIL 88.35 + 0.56%
MAML-MMCF 92.06 + 0.51%
MetaSGD-MMCF | 93.59 + 0.45%
T-Net-MMCF 93.27 + 0.46%
ANIL-MMCF 92.24 4+ 0.48%

98.36 +£0.13%

39.26 £ 1.79%
40.06 +1.76%
38.33 £ 1.73%
37.94 +1.75%

58.96 £ 0.95%
60.19 £+ 0.96%
59.13 £ 0.99%
59.03 £ 0.93%

Table 6. Performance (accuracy £ 95%
applied on MAML.

confidence interval) of Minilmagenet and Omniglot w.r.t. different data augmentation strategies

Strate Omniglot Minilmagenet
&y 20-way 1-shot 20-way 5-shot 5-way 1-shot 5-way 5-shot
D1 87.40 £ 0.59% 93.51 £ 0.25% 32.93 £ 1.70% 51.95+0.97%

Mixup(D?, D?)
Mixup(D?, D?)
Dcob — DS @ DA

46.98 + 0.92%
90.65 £+ 0.56%
86.74 + 0.54%

85.56 + 0.28%
96.90 £ 0.16%
95.54 £+ 0.19%

24.39 + 1.48%
34.56 £ 1.77%
33.33 £ 1.70%

33.18 £ 0.82%
55.80 £ 0.97%
51.97 £ 0.96%

97.63 £0.15%
97.10 £0.17%

38.53 £ 1.79%
35.50 + 1.73%

57.55 +£1.01%
54.52 + 0.96%

MetaMix 91.53 £ 0.53%
Channel Shuffle 89.81 + 0.55%
MMCF | 92.06 £ 0.51%

97.95+0.17% | 39.26 £1.79%

58.96 + 0.95%

ating the effectiveness of MMCEF in improving the meta-
generalization ability. It is worth mentioning that we also
conduct the experiments on the standard mutually-exclusive
setting of Minilmagenet in Appendix G.2. Though the label
shuffling has significantly mitigated meta-overfitting, apply-
ing MMCEF still improves the meta-generalization to some
extent. Besides, under the Minilmagenet 5-shot scenario,
we investigate the influence of different hyperparameters, in-
cluding sampling A from the Beta distribution with different
values of « and §3, varying different fixed values of A, and
adjusting the layer to mixup (i.e., C in Eqn. (4)) in Appendix
G.3. All these studies indicate the robustness of MetaMix
and Channel Shuffle in improving the meta-generalization.

Ablation Study. To align with other problems, for MMCEF,
we vary the mixup and data augmentation strategies (i.e.,
MetaMix, Channel Shuffle) in image classification in Ta-
ble 6. First, comparing MetaMix to other data mixup strate-
gies, we again corroborate the effectiveness of MetaMix
in improving meta-generalization. Second, we compare
MMCEF with MetaMix and Channel Shuffle, the better per-
formance of MMCEF indicates the additional effects of Chan-
nel Shuffle to enhance MetaMix in classification problems,
as our theoretic analyses suggest.

7. Conclusion

Current gradient-based meta-learning algorithms are at high
risk of overfitting on meta-training tasks but poorly gen-
eralizing to meta-testing tasks. To address this issue, we
propose two novel data augmentation strategies — MetaMix
and Channel Shuffle, which actively involve more data in
the outer-loop optimization process. Specifically, MetaMix
linearly interpolates the features and labels of support and
target sets. In classification problems, MetaMix is further
enhanced by Channel Shuffle, which randomly replaces a
subset of channels with the corresponding ones from another
class. We theoretically demonstrate that all strategies can
improve the meta-generalization capability. The state-of-the-
art results on different real-world datasets demonstrate the
effectiveness and compatibility of the proposed methods.
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