Generalized Matrix Local Low Rank Representation by Random
Projection and Submatrix Propagation

Pengtao Dang Haiqi Zhu Tingbo Guo
Purdue University Indiana University School of Medicine, Indiana
Indianapolis, IN, USA Bloomington, IN, USA University
dangp@purdue.edu haiqzhu@indiana.edu Indianapolis, IN, USA
guoti@iu.edu
Changlin Wan Tong Zhao Paul Salama
Purdue University Uber, Inc Purdue University
West Lafayette, IN, USA Seattle, WA, USA Indianapolis, IN, USA
wan82@purdue.edu tongz@uber.com psalama@purdue.edu
Yijie Wang Sha Cao* Chi Zhang®
Indiana University School of Medicine, Indiana School of Medicine, Indiana
Bloomington, IN, USA University University
yijwang@iu.edu Indianapolis, IN, USA Indianapolis, IN, USA
shacao@iu.edu czhang87@iu.edu
ABSTRACT in the data. On real-world datasets, RPSP also demonstrates its

Matrix low rank approximation is an effective method to reduce or
eliminate the statistical redundancy of its components. Compared
with the traditional global low rank methods such as singular value
decomposition (SVD), local low rank approximation methods are
more advantageous to uncover interpretable data structures when
clear duality exists between the rows and columns of the matrix.
Local low rank approximation is equivalent to low rank submatrix
detection. Unfortunately, existing local low rank approximation
methods can detect only submatrices of specific mean structure,
which may miss a substantial amount of true and interesting pat-
terns. In this work, we develop a novel matrix computational frame-
work called RPSP (Random Probing based submatrix Propagation)!
that provides an effective solution for the general matrix local low
rank representation problem. RPSP detects local low rank patterns
that grow from small submatrices of low rank property, which are
determined by a random projection approach. RPSP is supported
by theories of random projection. Experiments on synthetic data
demonstrate that RPSP outperforms all state-of-the-art methods,
with the capacity to robustly and correctly identify the low rank
matrices when the pattern has a similar mean as the background,
background noise is heteroscedastic and multiple patterns present
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effectiveness in identifying interpretable local low rank matrices.
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1 INTRODUCTION

Low rank representation of a matrix can reduce or eliminate
the statistical redundancy among its components, and enable
a lower dimensional representation without significant loss of
information[18]. It has found wide-range utilities in the field of
data mining including recommendation systems [22, 47], computer
vision[4, 37], and signal processing [27, 36]. Mathematically, for a
target matrix X € RM*N  the goal of low rank approximation is to
find a low rank matrix X , such that the residual matrix E = X —X fol-
lows certain tolerance criteria. Singular value decomposition (SVD)
is the best-known method which provides the true matrix rank and
gives the optimal approximation based on the Eckart-Young Theo-
rem [8, 13, 34]. Many algorithms have been proposed to find matrix
low-rank approximation, including randomization techniques such
as randomized SVD [14, 24, 28], and rank regularization methods
such as nuclear norm-based methods [17, 30]. However, all these
methods assume that the whole matrix is low-rank, or known as
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Figure 1: One example of the Matrix Local Low Rank Representation (MLLRR) Problem.

global low-rank, which often fails to detect local data structures,
such as the local low-rank patterns suggested by [20, 25].

As illustrated in Fig 1, a locally low-rank matrix can be gener-
ally understood as the superposition of multiple matrices, or sum
of a series of sparse and low-rank matrices, each consisting of a
sparse set of rows and columns. In the example of movie rating
data, global methods will decompose the rating matrix into a user
factor matrix and a movie factor matrix. However, these approaches
doesn’t reveal the specific genres of movies that various groups of
users are interested in. For example, a user shares similar tastes in
drama movies with a certain group of users, while having similar
preferences with a distinct group of users in horror movies. An-
other example of such ‘locality’ property is the online purchase
behavior data, where a subset of items was purchased under a com-
mon reason by a subset of customers, while the identities of neither
the items nor the users are known [7]. The locality of patterns
also exists in biological single-cell RNA-sequencing data, where a
subgroup of genes may be regulated by an unknown signal that is
activated only in a subset of cells, forming a local low-rank gene
co-regulation module [5, 42, 46]. In addition, shapes, numbers, and
words in imaging data also carry strong locality characteristics
[20]. In all these situations, Matrix Local Low Rank Representation
(MLLRR) is more advantageous to uncover more informative and
interpretable patterns hidden in the data with its locality assump-
tion.

Formally, for a given matrix X € RM*N the MLLRR problem
aims to identify submatrices Xp, » j., k = 1...K, each being low-rank,
with I and J; representing row and column indices of X. The
low-rankness of Xj, » ;. means that the number of its calculated
singular values greater than a certain threshold is low, and could
be further decomposed as the sum of a pattern submatrix and back-
ground submatrix, corresponding to the large singular values and
negligible singular values respectively. The total number of pos-
sible I;. X Ji. combinations is 2N*M, making the MLLRR problem
NP-hard [40]. Existing methods for MLLRR fall into three cate-
gories: (1) co-clustering approaches that identify submatrices with
distinct mean compared to background [2, 10, 19]; (2) Sparse matrix
decomposition-based methods that penalize the number of non-
zero entries in the factor/singular matrices [16, 21, 38, 39, 43, 48];
and (3) Anchor-based methods that randomly selects some anchor-
points, and then estimate local low-rank matrix approximation
for each neighborhood of the anchor-point [20, 25, 49]. Although
these methods have improved upon global low-rank methods to

some extent, they can only identify the submatrices with a pat-
tern mean that differs from the background [48]. For example, the
following types of local structures cannot be detected: (1) a low
rank submatrix having a similar pattern mean compared to its back-
ground; (2) the background submatrix having heterogeneous and
even contaminated distributions, and (3) the submatrices are of
small size.

In this study, we aim to solve the general MLLRR problem
with a computationally efficient algorithm, namely RPSP (Random
Probing-based Sub-matrix Propagation). RPSP first evaluates low-
rankness of a large set of randomly sampled small submatrices,
and gradually grows these low rank submatrices. RPSP adopts a
random projection-based approach to approximate the singular val-
ues of submatrices, which drastically improved the computational
efficiency compared to the conventional QR decomposition-based
computation [18]. The approximated singular values are further
used to evaluate the low-rankness of the submatrices. We systemat-
ically benchmarked RPSP with state-of-the-art (SOTA) methods on
simulated data and four real-world datasets. RPSP outperformed
all SOTA methods in different scenarios. RPSP is shown to have
the unique capability to handle heteroscedastic error distributions,
and distinguish a true local low matrix from background noise
with or without spiked mean structure. Application of RPSP on
real-world datasets demonstrated its capability in detecting context-
meaningful local low-rank matrices.

The major contributions of this work include:

(1) RPSP is the first solution for the general MLLRR prob-
lems: Compared to existing methods, RPSP is the only method that
can robustly solve the general MLLRR problem, especially when (i)
the patterns are small, (ii) the mean of patterns is not necessarily
distinct compared to the background, (iii) the background error is
non-Gaussian or heterogeneous, and (iv) there are a large number
of low-rank submatrices of different sizes and ranks.

(2) A new perspective in detecting and embedding local low
rank matrices: RPSP is the first method that adopts random projec-
tion to solve the MLLRR problem. A new computational framework
and mathematical formulation to efficiently compute, embed, and
propagate local low-rankness of submatrices were developed.

(3) A theoretical framework is developed by adopting the
mathematical theories of random projection and random
covering of unit R-sphere that support: (i) the identifiability of
local low-rankness, (ii) bound of sensitivity and specificity, and (iii)
impact of errors and pattern sizes with respect to the setting of
hyperparameters of RPSP.
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2 PRELIMINARIES
2.1 Notations and Mathematical Backgrounds

We utilized the notation of matrix operation, matrix rank, and low-
rankness by following [25, 31].

General notations of matrix and operations. Denote a real
matrix of M rows and N columns as XM*N ¢ RMXN ‘and its (i, j)-
th entry as X;;. We use I, C {1,..., M} and Ji C {1,..., N} to denote
row and column indices of the kth submatrix and Xj, »j, as the
submatrix indexed by I X Ji. Here I and Ji can be any subset
of the row and column indices, and different submatrices Xj, » 5.
can be overlapped. Denote ||X||p, ||X||. as the £, and nuclear
norm of a matrix, respectively. The nuclear norm is the sum of
all singular values of X. Denote Rank(X) as the rank of XMxN
Rank(X) = r if and only if X has r non-zero singular values; and
this is also equivalent to that the rows (or columns) of X are spanned
by an r dimension vector space, which is called the row space (or
column space) of X. To say that X has a low-rank property, we
mean r < min(M, N).

Low-rankness of real-world matrix. Random noise is in-
evitable in real-world data. Intuitively, the rank of a random noise-
added real-world data matrix XM*N is min(M, N), due to the ex-
istence of many small and close-to-zero singular values. To char-
acterize the low-rankness of a real-world matrix, we introduce
numerical rank. Let UM*M and VNXN be the left and right singu-
lar vector matrices of XM*N and 2N*N be the diagonal matrix of
singular values. The numerical rank of X is defined as the number
of singular values that are greater than a certain threshold asso-
ciated with a tolerance parameter €, denoted as Rank(X, ¢), i.e.,
Rank(X,€) = min||X7X||ZSERank(X) [13].

The global low-rank approximation of X is formulated as

X=X+E (2.1)

where X is a low rank matrix and E represents background noises.

[1X11s
11Xl N
a large ratio suggests that X can be well fitted by X. When X
is unknown, an alternative measure to characterize the low-rank

k "
property of X is by erll?:(l\lzu (Vk < r*), here r* is the numerical
rank of X or any other estimated rank of X [31, 44].

. Here

The low-rank property of X could be characterized by

2.2 Problem statement

Global low-rank methods are generally effective in detecting global
data structures, which relate each column to all rows, or vice versa.
However, the global low-rank structure may not be informative
when there exists a clear duality of the rows and columns. In other
words, subsets of rows and columns within a matrix may be gen-
erated from distinct sparse subspace structures. To better capture
the subspace structures in a matrix generation process, the local
low-rank approximation of a matrix is defined as

K
XMXN — Z)*(I}(VIXN + EMXN (2.2)
k=1

where X ]]CVI XN corresponds to the k-th low-rank pattern, and takes
zero values outside of [ X Ji, and E represents noises.
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Compared to (2.1), (2.2) flexibly characterizes the subspace struc-
tures in X. Based on (2.2), we formally define the MLLRR problem
from the perspective of local pattern detection.

Definition 1. Matrix Local Low Rank Representation
(MLLRR). For a given matrix X*N MLLRR identifies K low rank
submatrices Xy := Xy xj.,Ix € {1..M}, i C {1..N}L,k=1,..K,
s.t. Xj. are low rank matrices with small numerical ranks.

In Definition 1, K does need to be pre-given, and I and Ji do
not need to be disjoint. One advantage of this definition is that the
MLLRR problem does not rely on a specific distribution of back-
ground noise. In this study, we utilize the low-rankness measure
given in section 2.1, H)Z(ﬁ i.e., the largest singular value divided by
the nuclear norm of Xj.. We further define a special case of MLLRR.

Definition 2. Local Constant Variation (LCV) LCV considers
that the low rank submatrices are with spiked expected means (E)
compared to the background, i.e. E(X;j) = u,V(i,j) € Ix X Ji,
E(Xij) = u0, V(0. ) & {Ik X Jih,-

Noted, LCV is a special case of MLLRR as by definition, each sub-
matrix of LCV pattern, Xj, » j, , is generated by a rank-1 matrix. We
separate LCV from the general MLLRR problem because most exist-
ing methods only solve the LCV problem. In this study, we focus on
solving the general MLLRR problem when local low rank matrices
do not have a distinct mean difference from the background.

Let Ep == X — Xk,Ik xJ. be the background noise of the kth
submatrix, where X; kI x . denotes a submatrix of Xy indexed by I, x
Ji.- Importantly, real-world data is often noisy and heteroscedastic,
meaning (1) the distribution for different entries in E;. may not be
identical; (2) for (i, j) ¢ {I X ]k}llle , Xij may not be identically
distributed; and (3) certain entries in X; may be outliers that could
corrupt its low rank structure. Of note, in this study, we do not
restrict the form of the background noise distribution.

2.3 Related works

Existing approaches of the MLLRR problem. Currently, there
exist three types of methods for the MLLRR problem, namely
co-clustering, sparse matrix decomposition, and anchor-based ap-
proaches. The main goal of co-clustering is to find a matrix partition
such that the intra-co-cluster distance could be minimized, where
the distance measure is defined as the Kullback-Leibler divergence
in Bregman co-clustering [2], and Euclidean distance in the plaid
model [19]. For matrix decomposition-based methods, they identify
local low rank matrices by imposing sparsity constraints to the fac-
tor or singular matrices U, V [21, 38, 39, 43, 48]. For anchor-based
methods, Lee et al. proposed the LLORMA method by using prior
knowledge to select anchors of local low rank patterns and their
nearby points with a smooth kernel function [20], and subsequently
along the same line, more methods were proposed for anchor se-
lection [25, 49]; Chen et al. proposed the WEMAREC method that
builds upon the submatrices identified by co-clustering methods [6].
More details on the existing method formulations were provided
in APPENDIX. Among the three types of methods, co-clustering
only solves the LCV problem. Although both matrix decomposi-
tion and anchor-based methods focus on detecting local low rank
submatrices, they can only detect those submatrices with a distinct
spiked mean. In other words, only the local low rank submatrices
exhibiting the LCV property could be detected. In addition, sparse
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Figure 2: Mathematical considerations of random projection-based singular value computation.

matrix decomposition tends to detect large submatrix that may ex-
plain better the variance of the entire matrix, while sacrificing the
locality of the submatrices [38, 48], and the high computational cost
of anchor-based methods are not scalable to large matrix [6, 20].
And none of the existing methods is capable of handling outliers or
heteroscedastic errors. In summary, there is lack of an effective and
scalable solution for the general MLLRR problem, especially when
the mean of the target pattern is not different from its background
and the data contains outliers and/or heteroscedastic errors.

Random projection-based computation of SVD for global
low-rank approximation. Singular value decomposition (SVD)
is the best-known method for providing the true matrix rank and
the optimal approximation based on the Eckart-Young Theorem
[8, 13, 34]. Due to the computational limitations of classical SVD for
large-scale matrices, numerous non-deterministic algorithms have
been developed to address the low-rank approximation problem.
Among them, randomized methods based on random projection [1,
3], which combine probability theory with numerical linear algebra
to find a good approximation of the target matrix, achieve good
theoretical guarantees and high computational efficiency [11, 12,
14, 23, 26, 35, 35]. These works underpin the theoretical foundation
of our method. However, to the best of our knowledge, random
projection has not been previously used to address the MLLRR
problem.

3 RPSP AND ITS MATHEMATICAL BASIS

The biggest challenge with local low rank submatrix detection lies
in the fact that neither the row nor column indices of the submatrix
are known. As given in Definition 1, the low-rankness property of
a submatrix is evaluated through the computation of its numerical
rank, which, apparently, can’t be evaluated until the submatrix
has been revealed. However, it is computationally impossible to go
through all the submatrices of an input matrix.

To overcome this challenge, RPSP considers the MLLRR problem
from a different angle by identifying small low rank matrices and
gradually growing them into larger patterns. Firstly, for a low rank
matrix XM*N of rank r < min(M, N), the self consistency prop-
erty suggests that any My X Ny submatrix (Mo, Ny > r) randomly
sample from X is most likely to have a rank of r (Lemma 1 in [31]).
Secondly, for a given matrix, the total number of square submatri-
ces of dimension M grows exponentially with My. The first fact
indicates that any submatrix of low rank is a collage or complete
coverage of its own (smaller) submatrices, which are also of low

rank. The second fact indicates that the only way for us to grow
a local low rank submatrix is to start from the much smaller sub-
matrices. In fact, for My as small as 2, it is computationally feasible
for us to obtain a full collection of My X My submatrices that could
densely cover XM*N By teasing out all the My x My submatrices
of low rank, we could then gradually build them up into larger low
rank submatrices. The evaluation of the low-rankness for a large
number of submatrices now becomes computationally expensive.
In RPSP, our key contribution is the development of a new strat-
egy to tackle the MLLRR problem by integrating two approaches,
namely (1) a random projection-based assessment of low-rank sub-
matrices and (2) a submatrix propagation approach to merge low
rank submatrices into larger ones. Specifically, random projection
can efficiently compute the low-rankness for a large set of small
matrices. While the computational cost of random projection in-
creases when the submatrices grow to larger ones, the number of
submatrices that need to be assessed will substantially decrease
because the ones without low-rankness are filtered out during the
computation. The trade-off between the size and number of the
to-be-evaluated submatrices ensures the efficiency of RPSP.

3.1 Efficient computation of singular values for
a large set of small matrices

Conventionally, singular values are computed by QR decomposition
of O(n?) complexity. In this study, we utilized an alternative ap-
proach to drastically increase the efficiency of computing singular
values for a large amount of small matrices from the perspective
of random projection. Without loss of generality, we illustrate our
mathematical bases and the computation of singular values on
square matrices. The efficient singular value computation is sup-
ported by the following three lemmas in the theory of Random
Projection and Random Covering of Unit R-Sphere.

LEMMA 1. Let 01, ..., or denote the singular values of X € RRXR

in descending order. Let P € RN be g random projection matrix
whose columns consist of N randomly generated unit vectors, with
the j-th column dented by P.;. Then lim max ||XP.j|2 = o1 and
N—->o1<j<N

lim min || XP.j||2 = og.

NHoolSjSN” ]”2 R
Lemma 1 indicates that the largest and smallest singular val-
ues of X could be computed through simple matrix multiplication
operations between X and randomly generated projection vectors,
and the computed values will converge to true ones as long as
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the number of projection vectors is big enough. Noted, Lemma
1 is commonly used in random projection-based singular value
estimation [29].

LEMMA 2. Let vj be the singular vector corresponding to oy, r =

1,..,R. Then lim max IXP.jll2 = oy, forr € 2,..,R.
N—ooo P ;eSp(vi,...,vro1)*
jel,..,N

Here, Sp(v1, ..., vr—1)* denotes the null (or complemented) space of
the linear span of v, ..., Vr_1.

Lemma 2 illustrates an approximation methods for calculating
subsequent singular values and singular vectors. Together, all the
singular values and singular vectors could be well approximated by
sampling a large number of projection vectors. We next show that
our projection vectors are not arbitrarily selected, but rather de-
signed to uniformly cover the space of RR*1, such that the sampling
process could be highly efficient.

LEMMA 3. The minimum number of caps of half angle 0
required to cover the unit Euclidean R-sphere is called the
Random Covering of the Unit R — Sphere. Then

Ne(R,0) = exp(R - fe(0)(1 +€r(6))) (3.1)

, where eg — 0 as R — oo and f.(0) = —logsin6. Here

N¢(R, 0) is the minimum number of caps with the given dimension R

and half angle 0. This means, when R is large enough, if we randomly

choose exp(—Rlogsinf) caps, then the area of the uncovered surface
of the R-sphere will be almost negligible[41, 45].

In Lemma 1 and 2, we first proved that the singular values of
X can be estimated via simple operations against a set of randomly
sampled unit vectors, including inner products, sum of squares, and
max pooling, which can be efficiently computed on GPU. Lemma 3
is derived from the theories in Random Covering of Unit R-Sphere
and suggests the minimal requirement for densely covering a Unit R-
dimensional Sphere. Lemma 3 provides a bound of the cardinality
of the random unit vectors to ensure that for any vector in RX there
almost surely exists at least one random unit vector, whose cosine
similarity to the vector is larger than cos 260. The proof of Lemma
1 and Lemma 2 are given in APPENDIX and the Lemma 3 was
proven as a Corollary in the section IT of [45].

Lemma 1, 2, and 3 together suggest that for a given matrix
and the level of error to be tolerated, its singular values could be
estimated by simple operations against a set of randomly generated
unit vectors with a bounded size. Here we do not claim the math-
ematical novelty of the lemmas. However, they form important
theoretical bases of Algorithm 1 for an efficient approximation
of singular values. Fig 2 illustrates the idea of Algorithm 1: Sin-
gular Value Approximation. Its input includes a matrix X (Fig
2a illustrates a 2D example) and a set of randomly generated unit
vectors P (Fig 2b, a 2D example). It projects X onto P and iteratively
estimates top singular values (Fig 2c red line) and the null space
(Fig 2c green line) of the approximated left singular vectors.

In Algorithm 1, P(,) and Py “ISP are estimated rth left singu-
lar vector and the null space of the linear space spanned by the
first r left singular vectors, respectively. As randomly generated
vectors cannot be stringently orthogonal, 0 is a hyper-parameter
that determines the randomly generated vectors that are in the null
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Algorithm 1: Singular Value Approximation (Based on
Random Projection)

Inputs: X®*R NR randomly generated unit vectors
denoted as P € RRXNR, cutoff

Outputs: Estimated singular values o1, 09, ..., o

Singular Value Approximation(X, P, 6):

Q «— XP

, R 2
Generate vector G, Gj « /¥, Q5

o) «— max{Gj|1<j < NR}; op min {Gj[1 < j < NRy

P(q) < argmax Gj; SD(;WHSP
i

forrini..R—1do

nulls nulls
Pr p<—{Pj|Pj€Pr_1 p,

max{cos(Pj, P(1)), ...,cos(Pj, P(r))} < cos(20)}
or+1 < max {Gj| the corresponding P; of

nulls
GjeP, p}

P(r+1) < arg max {Gj|Pj eP
Pj

« {Pj|P; are columns of P}

nulls
Py

end
return {01, 09, ..., 0R}

space of P(,). Noted, the null space of the linear space spanned
by each P; does not rely on X that can be computed before the
random projection. Thus, the random projection and iterative com-
puting of o; and P,y only involve inner product, max, and sum of
squares, which can be efficiently and parallelly computed on GPU
for a very large set of small matrices. The max pooling step can
be further optimized by first clustering the random unit vectors
into groups of high cosine similarities (Fig 2d) and then computing
random projection to the central vector of each group, as detailed
in APPENDIX.

3.2 The RPSP framework

Algorithm 2 and Fig 3 illustrate the main framework of RPSP.
The inputs of RPSP include a matrix X™*N and hyper-parameters.
The output are identified local low rank matrices, denoted as
{Xpxp 1,k = 1,..,K. The initialization step of RPSP generates
random unit vectors for estimating singular values of small ma-
trices. Specifically, N; random vectors of length 2!, denoted as Py,
t = 1..T will be generated, where T is the number of layers for
submatrices propagation.

RPSP first randomly samples L; number of 2X2 submatrices from
X, whose singular values are estimated by Algorithm 1 against
P1, as described in 3.1. Noted, 2 X 2 is the smallest unit submatrix
that possess a low rank structure. The value ﬁ characterizes
the low rank property of a 2 X 2 matrix P, where o7 and ||P]|«
denote the first singular value and nuclear norm of P. The low rank
property of the 2x2 submatrices is further propagated by a weighted
sampling to generate L, number of 4 X 4 submatrices. Specifically,
a pair of none overlapped 2 X 2 matrices were randomly sampled
by a probability weighted by the average of their ﬁ values.
The row and column indices of the two samples matrices form a
new 4 X 4 submatrix. The singular values of the 4 X 4 submatrices
will be estimated by random projection and orthogonal pooling
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Figure 3: The framework of the RPSP algorithm.

against Pp. This procedure will be iteratively conducted T times,
by which Lt number of 27 x 2T submatrices will be randomly
sampled weighted by the low-rankness propagated through the T
layers, whose singular values will be estimated. Foreacht = 1,..., T,

RPSP also computes a M X N scoring matrix St in which Sit : stores

o1
[1P]]-

sampled 2/ x 2! submatrices that hits to X;;. SiTj can be viewed

the frequency of observing a large value of among all the

as an approximation of the probability that X;; is contained by a
MLLRR submatrix with a size of 27 x27 or larger. The local low rank
submatrices in X can be further identified by a co-clustering over
ST, RPSP (Algorithm 2) consists the following sub algorithms:

(i) Singular Value Approximation (Algorithm 1) computes
singular values for the 2t x 2t submatrices, as described in 3.1.

(ii) Submatrix Propagation generates 2/*! x 2/*1 submatrices
by randomly sample pairs of non-overlapped 27 x 2! submatrices
with a probability weighted by the average of the low-rankness
score. This approach enable the propagation of the low-rankness of
two small submatrices to a larger one if the two small submatrices
truly hit one local low rank submatrix (Detailed in APPENDIX).

(iii) Local Low Rank Prediction reconstructs the local low
rank matrices in X based on the scoring matrix ST (Detailed in
APPENDIX).

In the Algorithm 2, P; denote the sets of randomly generated
unit vectors; R; denote the sets of the 2 x 2! submatrices randomly
sampled (¢t = 1) or weighted sampled (t = 2,..., T) by Submatrix
Propagation; R;[j] denotes the jth submatrix in Ry; DXL gtore
the estimated singular values; LowRankScore! is a vector storing
the top singular value divided by the nuclear norm of each 27 x 2T
submatrix; and ST denotes the scoring matrix, where Sl.Tj is the

frequency of observing LowRankScoreT > C for all the submatrices
that contain X;;. Noted, the hyper-parameters T and L; can be easily
determined based on the computational capability while C and N;
can be determined based on the level of errors that can be tolerated
(see details in APPENDIX).

3.3 Computational cost

RPSP contains four major steps, namely (1) randomly generating
unit vectors, (2) Singular Value Approximation, (3) Submatrix
Propagation, and (4) Local Low Rank Prediction. The computa-
tional cost of Submatrix Propagation is determined by the num-
ber of sampled submatrix pairs, which could be optimized based on

Algorithm 2: RPSP

Inputs: X MXN hyper-parameters
T,N;, Ly, C,K,t=1,..,.T)k=1,..,.K
Outputs: The indices set {7 X T}, where I € I, Jp € J,
X1 xJ, is alocal low rank matrix.
RPSP(X, T, Ny, Ly, C, K):
for tin 1,..,T do
| Py «{N; randomly generated unit vectors of length 27}
end
R1 < {Lj 2 X 2 submatrices randomly sampled from X}
DY2Xl1  Singular Value Approximation(Ri, P;)
for tin 2,...,T do
R; < Submatrix Propagation(X, R;_1, D'~1, L;)
Dh2xLe Singular Value Approximation(R;, P;)

end
forjin 1,.,L7 do
Tr: DlT,j
LowRankScore® [j] « m

end
foriin1,..Mdo
forjin 1,.,.N do
SiTj « frequency of LowRankScore® [k] > C for all
R [k] contains X;;
end

end
I x J « Local Low Rank Prediction(sT)
return 7 X J

the computational resource. The computational complexity of Lo-
cal Low-Rank Prediction is O(max{M, N}?). The most time and
computationally consuming part is the generation of random unit
vectors and the Algorithm 1: Singular Value Approximation,
which takes more than 95% running time of RPSP.

We further evaluated the computational efficiency and the accu-
racy of Algorithm 1 versus conventional QR decomposition-based
SVD on both GPU and CPU servers (see details in APPENDIX?). We
tested the two methods 50 times on 10°, 10, 107 and 108 number
of 2x 2, 10° number of 4 X 4, and 10° number of 8 X 8 matrices. The
averaged normalized root mean squared error between estimated
and true singular values is 0.07. We observed that Algorithm 1

2Full APPENDIX at https://github.com/ptdang1001/RPSP
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used 1075 = 10~2 seconds, which is consistently about 10° times
faster than QR decomposition-based SVD (see details in APPENDIX
and APPENDIX Table 22).

Based on the parameters of GPU machine, the computational
cost of RPSP could be optimized by changing its hyperparameters
to control the running time within a few seconds to a few minutes,
which is comparable to SOTA methods (see EXPERIMENTS).

4 EXPERIMENTS ON SYNTHETIC DATA

We evaluated the overall performance and computational cost of
RPSP in different scenarios of MLLRR problem and compared RPSP
with SOTA methods on a comprehensive setup of synthetic datasets.

4.1 Experimental setup

We simulate X € RMXN a5 X = ZKzl X* + E. Here, entries in X is
padded by zero except for those indexed by Iy and Ji, corresponding
to a local low rank submatrix with m; rows and ng columns. E is
background noise simulated by E; j ~ N (0, ay * sd),Vi € I, j € Ji;
and the rest of the entries in E follows N (0, sd). In evaluating the
algorithm’s scalability, we allow M and N to have three different

values. Otherwise, we let M = N = 1000. To simulate XIchX]k’

we first simulated Y as Y = UkaT , where Uy € R™k*"% and
Vi € R™*7"k and entries in Uy, Vj all follow U(0, 1). Then X}; I

is simulated as Y}, — Yi + .. Here, Y denotes the element-wise
mean of matrix Y, and hence p mimics the overall mean of the
k-th pattern matrix, and a; mimics the relative noise level of the
local low rank matrix to the overall background noise matrix. In
total, we obtained 284 different simulation scenarios, each has 5
repetitions, which include:

(1) Perturbed pattern mean: pattern mean p. = fii * sd, where
Pr is a sequence from 0 to 3 with step size 0.1; relative noise level
ay. = {0,0.1}; pattern size my = nj = {200, 500}.

(2) Perturbed background error: pattern mean . = Sy * sd,
where . = {0, 0.1}; relative noise level oy is a sequence from 0 to
3 with step size 0.1; pattern size my = ng = {200, 500}.

(3) Perturbed pattern size: pattern mean . = S * sd, where
Br = {0,0.1}; relative noise level o = {0, 0.1}; pattern size my = ny
is a sequence from 100 to 500 with step size of 20.

We evaluated the method performance of RPSP and selected
SOTA methods on these synthetic datasets, based on how well the
identified patterns hit the true ones, and avoid the background
noise. We label the entries hitting true patterns as "positive" and
the rest as "negative", and the True Positive (TP), False Negative
(FP), False Positive (FP), and True Negative (TN) occurrences are
defined as the number of "positive" entries that are identified as
pattern (TP) or background (FP), or the number of "negative" entries
that are identified as pattern (FP) or background (TN). The overall

P : TP+TN
prediction accuracy is defined as 7pNyFPsEN -

4.2 Performance evaluation of RPSP

We benchmarked RPSP with five SOTA methods, namely Bregman
co-clustering (CC) [2] and Plaid [19], two sparse matrix decompo-
sition methods (SSVD [48] and SPCA [50]), and one anchor-based
method LLORMA [20]. Detailed parameter settings of RPSP and
other methods are provided in APPENDIX?.

KDD ’23, August 6-10, 2023, Long Beach, CA, USA

Accuracy in solving the MLLRR problem under different
scenarios. Fig 4a-c illustrated the accuracy (y-axis) of RPSP (red)
and other methods for solving the MLLRR problem with and with-
out LCV property in different scenarios. Overall, RPSP achieved
higher than 0.8 accuracies under most settings, which is consis-
tently higher than all baseline methods. On the dense data, SPCA
failed to identify any pattern while CC detects the whole matrix as
one pattern, hence these two methods were excluded from further
analysis. RPSP is the only method that can identify local low rank
patterns when its mean is close to the background mean (Fig 4a),
i.e., the MLLRR problem without the LCV property. As expected,
we observed the prediction accuracy of the baseline methods to
increase as the mean difference becomes larger (Fig 4a), and all
methods to have decreased performance with the increase of the
noise level (Fig 4b). RPSP and LLORMA are more robust to high
noise levels compared to SSVD and Plaid. The size test suggested
that RPSP can accurately identify the pattern when its size is even
smaller than 100 X 100 in a 1000 X 1000 matrix (Fig 4c). When
the pattern size increases, the prediction accuracy of RPSP and
LLORMA also increases, but not SSVD or Plaid. An explanation is
that a larger pattern is easier to be hit by the randomly sampled
submatrices in RPSP or the anchoring in LLORMA, while SSVD and
Plaid rely on the pattern sparsity assumption and are less sensitive
to large patterns.

Power in detecting multiple patterns and the submatrices
of different ranks. Where there exists more than 1 local rank-1
sub matrices, RPSP again achieved high performance (Fig 4d1-2).
The way RPSP detects local low rank matrices is from the scoring
matrices, which are less impacted by the number of patterns. It
is noteworthy that we focus on the general MLLRR problem in
a dense matrix, especially when the LCV property does not hold,
while LLORMA and Plaid are more efficient on the LCV problem in
a sparse matrix. On the dense matrix, all the baseline methods failed
to identify the local low rank pattern when the mean difference
between the pattern and the background is low. We also evaluated
RPSP on identifying local low rank patterns of different dimensions
(Fig 4d4). Our results demonstrated that RPSP has a high robustness
in detecting patterns of different dimensions. Noted, the specificity
of RPSP is always bounded by 1 — g, where a is the probability of
the presence of a local low rank matrix in a noise matrix.

Running time. We evaluated the time consumption of the meth-
ods on dense matrices of three sizes, M = N = 102, 103, 10* (Fig
4d3). The running time of RPSP, Plaid and LLORMA are at a similar
level. Detailed experimental results and parameters of the GPU and
CPU server for the experiment are provided in APPENDIX?.

Robustness of sub-algorithms. As each sub-algorithm is nec-
essary for RPSP, no ablation experiment can be conducted. We
evaluated the robustness of sub-algorithms with respect to their
hyperparameters, including the cutoff § in Algorithm 1, the low-
rankness cutoff C, the dimension of submatrices T, the number of
randomly sampled unit vectors N, and the number of randomly
generated or propagated submatrices L; in RPSP. We found the
performance of Algorithm 1 is highly robust if cos(26) is larger
than 0.6 (APPENDIX?, Table 4 and 5). Our experiment also sug-
gested that RPSP is robust if C > 0.75 is set. Perturbing C in our
synthetic data-based experiment suggested C = 0.95 for T = 2 and
C =0.8for T = 4, 8,16 achieved optimal detection accuracy, which
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Figure 4: Benchmark of RPSP on Synthetic Data.

was used in both synthetic and real-world experiments. Changing
T =1{2,4,8,16} to {3,6,12,24} or {3, 9, 27} drastically increased the
computational consumption but did not improve the algorithm per-
formance. N; is determined by Lemma 3. L; is determined by input
matrix size and computational capacity. A larger L; will achieve
better performance. Here we set L1 = 107 and L; = L;_1/10.

5 EXPERIMENTS ON REAL-WORLD DATA

We benchmarked RPSP on four real-world datasets of different
density rates (proportion of non-zero entities in the overall input

matrix), error distributions, and local low rank patterns, namely
(1) the MovieLens data, (2) two single-cell RNA-seq data, and (3) a
spatial transcriptomics data. Details of data processing and algo-
rithm settings are given in APPENDIX?. Four metrics were utilized
to evaluate the performance of each method, namely (1) the low-
rankness, calculated as the averaged ﬁ (2) the averaged Size
of the identified submatrices P, (3) the total Coverage Rate(CR),
defined as the total number of entries in the top-k patterns divided
by the size of the input matrix, and (4) the Running Time. Strong



Generalized Matrix Local Low Rank Representation by Random Projection and Submatrix Propagation

KDD ’23, August 6-10, 2023, Long Beach, CA, USA

(a)° MovielLens © GSE72056 . GSE103322 (d) Spatial Data
a) = © o P
3 2 |
©n o
Qo
C ©1
< 3 <]
S ° S
o S
2 o
Syl o1 i
) o
oLl 1B B W 3
°TH T2 3 4 5 6 1 2 3 4 5 6 : 1 2 3 4 5 6
n
(b) &7z ST d T (e
3] |Il! | g 3
& = o Poap
HLA-DRA
& n
(V2] <
("J 81 < w’”
O o 4 I
\ 4 < | [l HLA-DRB1
3 Iy bk ores
&1 '|'| '|'| [ 1
| H HLA-DPA1
ol MM Ul Bl | o I i 1 ° Il M
T2 3 4 5 6 T2 3 4 5 T2 3 4 5 6
o ____Time ° o Time ° Time (f)
(c)d =) Second S 8 second o) (8 second _
B o 8 ] 8 e
S]] o © o @®
& a ° S
ke g ¢ 9 S
g g ° s ©
@ <] 8 3 g o
[ o o ) O.
> 3 ] <
8 8] Q ] «q o
3 o P <} 8
° o «
[ g 1
° F e 0 C TS Mooy T oS Oee olmJn_gll
Q N L <z N & S S VLR E L QX9 & QO
SFe LT 8oL T IFOIT T ST T ST eSS
mmm RPSP LLORMA SSVD SPCA PLAID CcC

Figure 5: Experiment on real-world data.

low-rankness, high averaged size and coverage rate, and short run-
ning time suggest high performance. We refrained from using the
F-1 score and accuracy metrics because the accurate pattern in
real-world data remains unknown. In addition, the context-specific
meanings of detected local low rank patterns were evaluated based
on prior knowledge. Table 62 and Fig 5 summarize the major re-
sults. Complete discussions of the real-world data experiments are
given in APPENDIX?.

In summary, RPSP outperforms baseline methods on the four real-
world datasets, MovidLens data[15], single cell RNA-seq data[33]
and spatial transcriptomics data, in terms of the low-rankness, size,
coverage rate, and contextual interpretability of detected local low
rank matrices. The running time of RPSP is at a similar level to base-
line methods. For a deeper dive into the real-world datasets used
and further experimental details, please refer to the APPENDIX?.

6 CONCLUSION

In this work, we provided a new computational framework, namely
RPSP, to detect local low rank matrices. RPSP is supported by rig-
orously derived mathematical theories. While existing methods
mainly solve the LCV sub-problem of MLLRR, our developed RPSP

is the first method capable of handling the general MLLRR problem.
RPSP utilizes a random projection and GPU-based method to effi-
ciently compute singular values and low-rankness for a large set of
small matrices. RPSP further propagates the low-rankness identi-
fied from small matrices to identify larger local low rank matrices
of coherent patterns. In both synthetic and real-world experiments,
we demonstrated that RPSP outperforms all baseline methods on
the general MLLRR problems for data of different sparsity levels and
error distributions. Particularly, RPSP could detect low rank subma-
trices even when its mean structure is not distinguishable from the
background, or when the error distribution is heteroscedastic. The
source code, analysis, testing data and a comprehensive supplemen-
tary of RPSP are available via https://github.com/ptdang1001/RPSP.
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Algorithm 3: Submatrix Propagation

Inputs: X, R;_1, D!, L;

Outputs: R;

submatrix Propagation(X, R;—1, D' 71, L;):

Rt —

while |R;| < L; do

Prob ~U(0,1)

Randomly pick two non-overlapping submatrices from
Ri—1, denoted as Ry—1[i] and Ry—1[j]

Dt-1pt-1
1,i 1,j
W sz*I pi-1 22’*1 pi-1
k=1 k,i k=1 k.j
if Prob<W then

I «Row indices of Ry_1[i] and R;_1[j]
J «Column indices of R;—1[i] and Rs—1[j]
append(Ry, Xrx )

end
return R;

reconstruct the local low rank matrices. RPSP computes a M X N
scoring matrix ST, in which Sl.Tj stores the frequency of observing a

large value of ﬁ among all the sampled 27 x 2T submatrices

that hits to X;;. Hence, SiTj can be viewed as an approximation
of the probability that Xj; is contained by a MLLRR submatrix
with a size of 27 x 2T or larger. Here we applied the Spectral
Co-Clustering method developed by Dhillon et al [9] and the
python library provided by scikit-learn [32] on ST to identify local
low rank submatrices. With the indices of each possible local
low rank matrix identified, the local patterns were ranked by the
level of their top singular values normalized by the sum of all
singular values. Here the local patterns of the top K significant low
rank property or with the top singular values large than a certain
threshold form the final output of RPSP.

Algorithm 4: Local Low Rank Prediction

Inputs: ST-M*XN

Outputs: 7 X J

Local Low Rank Prediction (ST-M*N):
I x J < Spectral Co-Clustering(ST)
return 7 X J

A.1.3  Optimize the max pooling with respect to null space in Algo-
rithm 1. The max pooling with respect to null space can be further
optimized by clustering the random unit vectors into groups of
high cosine similarities. Specifically, the randomly sampled unit
vectors were first clustered by using the K-mean of their cosine
distance (1-cosine similarity). Then after Py), ..., P, were iden-
tified, the null space of the linear span of {P(l), e P(r)} was es-
timated by the union of the clusters whose center PC satisfies
max{cos(PC, Pay)s s cos(PC, P(ry)} < cos(0)}. This approach ef-
fectively reduces the number of cosine distances needed to be com-
puted.

A.1.4 Assessment of hyper-parameters of RPSP. RPSP has five
hyper-parameters T, C, L;, K, and N;. L; (number of randomly
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sampled or propagated submatrices) can be determined based on
the input matrix size and computational capacity. T (number of
layers for submatrix propagation) is set as 4 for efficient computa-
tion. C (threshold of LowRankScore) can be computed by randomly
sampling 27 x 27 submatrices of pure noise from randomly shuffled
X and generating an empirical null distribution of LowRankScore.
N; (number of random unit vectors) can be determined by Lemma
2.

A.2 Mathematical Derivations And
Considerations

A.2.1 Truncated SVD. Let X*N = UsvT(M > N) be the SVD
of X, where UMXN and VNN are left and right singular vector
matrices, N*N is a diagonal matrix of singular values. Define 5 (")
such that Zl(ir) =Y, <13 Zgl.r) = 0,i > r, ie., only keeps the
top r singular values > 0. The truncated SVD of X of rank r is
defined as tSVD(X, r) = US(MVT. Noted, Rank(X) < r ifand only
if X = tSVD(X, r).

A.2.2  Mathematical considerations of the MLLRR problem. The
biggest challenge with local low rank submatrix detection lies in
that neither the row or column indices of the submatrix are known.
As given in Definition 2, the low-rankness property of a subma-
trix is evaluated through the computation of its singular values,
which apparently can’t be evaluated until the submatrix has been
presented. However, it is computationally impossible to go through
all the submatrices of an input matrix. RPSP grows a submatrix of
low rank from smaller ones, which utilizes two facts. Firstly, for
a low rank matrix XM*N of rank r < min(M, N), the self consis-
tency property suggests that any My X Ny submatrix (My, No > r)
randomly sample from X is most likely to have a rank of r (Lemma
1in [31]). Secondly, for a given matrix, the total number of square
submatrices of dimension Mj grows exponentially with My. The
first fact indicates that any submatrix of low rank is a collage or
complete coverage of its own (smaller) submatrices, which are also
of low rank. The second fact indicates that the only way for us to
grow a local low rank submatrix is to start from the much smaller
submatrices. In fact, for My as small as 2, it is computationally fea-
sible for us to obtain a full collection of My X M, submatrices that
could densely cover XM*N By teasing out all the My x My subma-
trices of low rank, we could then gradually build them up into larger
low rank submatrices. The evaluation of the low-rankness for a
large number of submatrices now becomes computationally expen-
sive. In RPSP, our biggest contribution is that we have developed
a singular value approximation method using random projection
to efficiently evaluate the low-rankness of any given submatrix,
making it possible for us to build a submatrix from its parts.

A few examples can illustrate why a global search cannot effec-
tively solve the MLLRR problem. We consider the following square
matrices:

(1) XM*M in which Xjj ~ N(0,1) i.i.d.. Here X is a matrix of
standard Gaussian error. The largest singular value of X is about
2VM.

(2) YM*M in which ;. = Y’, Y’[i] ~ N(0,1) i.i.d.. Here Y is a
matrix of rank=1 that has the same level of mean and standard
deviation as X. Noted, the largest singular value of Y is about M.
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Table 1: Existing methods of MLLRR

Methods Examples Formulation Tasks Assumption
. Bregman; . Matrix
Co-clustering Plaid ming g 2k Zieljef 4(Xijs f) LCV partition
Matrix SSVD, mln(||X—UVT||%+/1u||U||1 +/10||V||1), LCV Sparse
decomposition SPCA uv MLLRR with LCV patterns
Anchor based | LLORMA min(Ky 3 3 ® Pyys 31 (X = X)) . submatrix
methods WEMAREC pjx o XUV XL MLLRR with LCV detection

(3) ZM*M in which Z;; = a. The largest singular value of Y is M X a.

Hence for a low rank sub-matrix of size W x V2M or smaller,
whose mean and the standard deviation are not different from
the background’s, it is less likely to be identified by a global SVD
as the largest singular value of the sub-matrix is about the same
level of the largest singular value of the background noise matrix.
However, if the low rank sub-matrix has a spiked mean, its largest
singular value will be amplified by the spiked mean and the top
singular vector of the whole matrix is naturally sparse. Hence, an
LCV problem is more likely to be solved by a global search while
the MLLRR problem of the insignificant mean difference between
pattern and background is less likely to be detected by a global
search. So, it is necessary to think of an alternative approach to
solving the general MLLRR problem. Noted, the idea of screening
a large set of small submatrices and propagating the low rank
property of smaller ones to bigger submatrices only involves the
computing of singular values of local patterns. Hence, we do not
expect that the RPSP method may have disparate performances in
solving LCV and LRR problems.

A.2.3  Mathematical formulations of SOTA methods. Co-clustering
methods simultaneously cluster rows and columns of a two-
dimensional data matrix. The general assumption is that the tar-
geted submatrix has a larger or small mean value compared to
the background noise. The Bregman co-clustering method gener-
ates a matrix partition Iy, Ji by preserving the maximum infor-
mation of data X within the partitions. The approximation error
M(I, J) — M(I, J) represents the difference between the preserved
information and original data, here M(Z, J) is the mutual informa-
tion and M(I,J) - M(I — J) = KL(dist1(I, J)||dist2(1, J)). Laura
et al. proposed the Plaid model to detect the submatrix by fitting
each entry X;; with K layers and make sure the summation of all
layers ZIk(=1 Urlr Ji approximate the original value. Sparse SVD-
based methods identify local low rank matrices by adding L1 sparse
penalty to a global truncated SVD fitting. However, this type of
method still demands distinct mean differences between pattern
and background and trend to detect large low rank patterns that
may explain the variance of the whole matrix. Lee et al. proposed
the LLORMA method by using prior knowledge to select anchors
of local low rank patterns. As listed in table 1, Kg is the kernel
function with bandwidth A to smooth the projection value Pg(-)
near the anchor points Q. However, this type of method, highly
depends on prior knowledge that cannot solve the general MLLRR
problem.

A.2.4  Proofs of Lemma 1 and Lemma 2. Lemma 1 and 2 can be
expressed and proved together. The two lemmas describe the fol-
lowing properties of random projection. For a given dimension
R, denote X®*R a5 an input matrix and P € RR*N R as a matrix
of NR randomly generated unit vectors in RR. Y = XP denotes a

random projection of X, then lim  max 25:1 Y% = o1 and

2
NR oo 1<j<NR Y

lim  min Z?: 1 Yl.z. = OR, here 01 and op are the largest and
NR 00 1< j<NR 7

smallest singular values of X. Denote P(q) = argmax , [Zle lej
P.

~J

lim max Zliil YIZJ = oy, where Sp(P(l))J' denotes

NRHOO P.’j ESp(P(l) )J'
the null (or complemented) space of the linear space spanned
arg max

Y, Z‘452:1 Yizj’
P je€Sp(P1),....Pr-1))*

lim max ‘/Zil le] =oy,forre3 ..,R—1.
l\/vR—M)oP.'jES})(P(I),...,P(r,l))L

Proor. Noted, 25:1 lej is the norm of the projection of X
— — T — R T

onto Y.;. Y.; = XP.;j = UXV'P; = Zk:l U.’kzkak,'P.,j,
here USVT is the SVD of X. Then we have Zfil lej =
SRR U S VE PP = 2R T8 (Un)? Cre)* (V] P )%=
Zle(zkk)z(VkT;P.,j)z as U is orthogonal, both ¥ and VkT"P.,j
are scalars. Hence the largest and smallest 25:1 Yli is 211 and
YRR, which are achieved when P. ; is VE. and VRT’ ., respectively.

by P(l) . Similarly, define P(r) =

As Sp(Y(1), s Y(,,l))l is the null space of the linear span of
Y(1)s -+ Y(r-1), the largest projection of X onto this space is or
when P. j is VrT, O

For more detailed information about our experiments, please

refer to the comprehensive appendix available at https://github.
com/ptdang1001/RPSP.
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