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ABSTRACT
Matrix low rank approximation is an effective method to reduce or

eliminate the statistical redundancy of its components. Compared

with the traditional global low rank methods such as singular value

decomposition (SVD), local low rank approximation methods are

more advantageous to uncover interpretable data structures when

clear duality exists between the rows and columns of the matrix.

Local low rank approximation is equivalent to low rank submatrix

detection. Unfortunately, existing local low rank approximation

methods can detect only submatrices of specific mean structure,

which may miss a substantial amount of true and interesting pat-

terns. In this work, we develop a novel matrix computational frame-

work called RPSP (Random Probing based submatrix Propagation)
1

that provides an effective solution for the general matrix local low

rank representation problem. RPSP detects local low rank patterns

that grow from small submatrices of low rank property, which are

determined by a random projection approach. RPSP is supported

by theories of random projection. Experiments on synthetic data

demonstrate that RPSP outperforms all state-of-the-art methods,

with the capacity to robustly and correctly identify the low rank

matrices when the pattern has a similar mean as the background,

background noise is heteroscedastic and multiple patterns present

∗
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in the data. On real-world datasets, RPSP also demonstrates its

effectiveness in identifying interpretable local low rank matrices.
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1 INTRODUCTION
Low rank representation of a matrix can reduce or eliminate

the statistical redundancy among its components, and enable

a lower dimensional representation without significant loss of

information[18]. It has found wide-range utilities in the field of

data mining including recommendation systems [22, 47], computer

vision[4, 37], and signal processing [27, 36]. Mathematically, for a

target matrix 𝑋 ∈ R𝑀×𝑁 , the goal of low rank approximation is to

find a low rankmatrix𝑋 , such that the residual matrix 𝐸 = 𝑋−𝑋 fol-

lows certain tolerance criteria. Singular value decomposition (SVD)

is the best-known method which provides the true matrix rank and

gives the optimal approximation based on the Eckart-Young Theo-

rem [8, 13, 34]. Many algorithms have been proposed to find matrix

low-rank approximation, including randomization techniques such

as randomized SVD [14, 24, 28], and rank regularization methods

such as nuclear norm-based methods [17, 30]. However, all these

methods assume that the whole matrix is low-rank, or known as

https://doi.org/10.1145/3580305.3599361
https://doi.org/10.1145/3580305.3599361
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Figure 1: One example of the Matrix Local Low Rank Representation (MLLRR) Problem.

global low-rank, which often fails to detect local data structures,

such as the local low-rank patterns suggested by [20, 25].

As illustrated in Fig 1, a locally low-rank matrix can be gener-

ally understood as the superposition of multiple matrices, or sum

of a series of sparse and low-rank matrices, each consisting of a

sparse set of rows and columns. In the example of movie rating

data, global methods will decompose the rating matrix into a user

factor matrix and a movie factor matrix. However, these approaches

doesn’t reveal the specific genres of movies that various groups of

users are interested in. For example, a user shares similar tastes in

drama movies with a certain group of users, while having similar

preferences with a distinct group of users in horror movies. An-

other example of such ‘locality’ property is the online purchase

behavior data, where a subset of items was purchased under a com-

mon reason by a subset of customers, while the identities of neither

the items nor the users are known [7]. The locality of patterns

also exists in biological single-cell RNA-sequencing data, where a

subgroup of genes may be regulated by an unknown signal that is

activated only in a subset of cells, forming a local low-rank gene

co-regulation module [5, 42, 46]. In addition, shapes, numbers, and

words in imaging data also carry strong locality characteristics

[20]. In all these situations,Matrix Local LowRankRepresentation
(MLLRR) is more advantageous to uncover more informative and

interpretable patterns hidden in the data with its locality assump-

tion.

Formally, for a given matrix 𝑋 ∈ R𝑀×𝑁 , the MLLRR problem

aims to identify submatrices 𝑋𝐼𝑘× 𝐽𝑘 , 𝑘 = 1...𝐾 , each being low-rank,

with 𝐼𝑘 and 𝐽𝑘 representing row and column indices of 𝑋 . The

low-rankness of 𝑋𝐼𝑘× 𝐽𝑘 means that the number of its calculated

singular values greater than a certain threshold is low, and could

be further decomposed as the sum of a pattern submatrix and back-

ground submatrix, corresponding to the large singular values and

negligible singular values respectively. The total number of pos-

sible 𝐼𝑘 × 𝐽𝑘 combinations is 2
𝑁+𝑀

, making the MLLRR problem

NP-hard [40]. Existing methods for MLLRR fall into three cate-

gories: (1) co-clustering approaches that identify submatrices with

distinct mean compared to background [2, 10, 19]; (2) Sparse matrix

decomposition-based methods that penalize the number of non-

zero entries in the factor/singular matrices [16, 21, 38, 39, 43, 48];

and (3) Anchor-based methods that randomly selects some anchor-

points, and then estimate local low-rank matrix approximation

for each neighborhood of the anchor-point [20, 25, 49]. Although

these methods have improved upon global low-rank methods to

some extent, they can only identify the submatrices with a pat-

tern mean that differs from the background [48]. For example, the

following types of local structures cannot be detected: (1) a low

rank submatrix having a similar pattern mean compared to its back-

ground; (2) the background submatrix having heterogeneous and

even contaminated distributions, and (3) the submatrices are of

small size.

In this study, we aim to solve the general MLLRR problem

with a computationally efficient algorithm, namely RPSP (Random
Probing-based Sub-matrix Propagation). RPSP first evaluates low-

rankness of a large set of randomly sampled small submatrices,

and gradually grows these low rank submatrices. RPSP adopts a

random projection-based approach to approximate the singular val-

ues of submatrices, which drastically improved the computational

efficiency compared to the conventional QR decomposition-based

computation [18]. The approximated singular values are further

used to evaluate the low-rankness of the submatrices. We systemat-

ically benchmarked RPSP with state-of-the-art (SOTA) methods on

simulated data and four real-world datasets. RPSP outperformed

all SOTA methods in different scenarios. RPSP is shown to have

the unique capability to handle heteroscedastic error distributions,

and distinguish a true local low matrix from background noise

with or without spiked mean structure. Application of RPSP on

real-world datasets demonstrated its capability in detecting context-

meaningful local low-rank matrices.

The major contributions of this work include:

(1) RPSP is the first solution for the general MLLRR prob-
lems: Compared to existing methods, RPSP is the only method that

can robustly solve the general MLLRR problem, especially when (i)

the patterns are small, (ii) the mean of patterns is not necessarily

distinct compared to the background, (iii) the background error is

non-Gaussian or heterogeneous, and (iv) there are a large number

of low-rank submatrices of different sizes and ranks.

(2)Anew perspective in detecting and embedding local low
rankmatrices: RPSP is the first method that adopts random projec-

tion to solve the MLLRR problem. A new computational framework

and mathematical formulation to efficiently compute, embed, and

propagate local low-rankness of submatrices were developed.

(3) A theoretical framework is developed by adopting the
mathematical theories of random projection and random
covering of unit R-sphere that support: (i) the identifiability of

local low-rankness, (ii) bound of sensitivity and specificity, and (iii)

impact of errors and pattern sizes with respect to the setting of

hyperparameters of RPSP.
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2 PRELIMINARIES
2.1 Notations and Mathematical Backgrounds
We utilized the notation of matrix operation, matrix rank, and low-

rankness by following [25, 31].

General notations of matrix and operations. Denote a real
matrix of𝑀 rows and 𝑁 columns as 𝑋𝑀×𝑁 ∈ R𝑀×𝑁 , and its (𝑖, 𝑗)-
th entry as 𝑋𝑖 𝑗 . We use 𝐼𝑘 ⊂ {1, ..., 𝑀} and 𝐽𝑘 ⊂ {1, ..., 𝑁 } to denote
row and column indices of the 𝑘th submatrix and 𝑋𝐼𝑘× 𝐽𝑘 as the

submatrix indexed by 𝐼𝑘 × 𝐽𝑘 . Here 𝐼𝑘 and 𝐽𝑘 can be any subset

of the row and column indices, and different submatrices 𝑋𝐼𝑘× 𝐽𝑘
can be overlapped. Denote | |𝑋 | |𝑝 , | |𝑋 | |∗ as the L𝑝 and nuclear

norm of a matrix, respectively. The nuclear norm is the sum of

all singular values of 𝑋 . Denote 𝑅𝑎𝑛𝑘 (𝑋 ) as the rank of 𝑋𝑀×𝑁 .
𝑅𝑎𝑛𝑘 (𝑋 ) = 𝑟 if and only if 𝑋 has 𝑟 non-zero singular values; and

this is also equivalent to that the rows (or columns) of𝑋 are spanned

by an 𝑟 dimension vector space, which is called the row space (or

column space) of 𝑋 . To say that 𝑋 has a low-rank property, we

mean 𝑟 ≪𝑚𝑖𝑛(𝑀, 𝑁 ).
Low-rankness of real-world matrix. Random noise is in-

evitable in real-world data. Intuitively, the rank of a random noise-

added real-world data matrix 𝑋𝑀×𝑁 is𝑚𝑖𝑛(𝑀, 𝑁 ), due to the ex-

istence of many small and close-to-zero singular values. To char-

acterize the low-rankness of a real-world matrix, we introduce

numerical rank. Let 𝑈𝑀×𝑀 and 𝑉𝑁×𝑁 be the left and right singu-

lar vector matrices of 𝑋𝑀×𝑁 , and Σ𝑁×𝑁 be the diagonal matrix of

singular values. The numerical rank of 𝑋 is defined as the number

of singular values that are greater than a certain threshold asso-

ciated with a tolerance parameter 𝜖 , denoted as 𝑅𝑎𝑛𝑘 (𝑋, 𝜖), i.e.,
𝑅𝑎𝑛𝑘 (𝑋, 𝜖) =𝑚𝑖𝑛 ∥𝑋−𝑋̂ ∥2≤𝜖𝑅𝑎𝑛𝑘 (𝑋 ) [13].

The global low-rank approximation of 𝑋 is formulated as

𝑋 = 𝑋 + 𝐸 (2.1)

where 𝑋 is a low rank matrix and 𝐸 represents background noises.

The low-rank property of 𝑋 could be characterized by
| |𝑋̂ | |∗
| |𝑋 | |∗ . Here

a large ratio suggests that 𝑋 can be well fitted by 𝑋 . When 𝑋

is unknown, an alternative measure to characterize the low-rank

property of 𝑋 is by

∑𝑘
𝑛=1 Σ𝑖𝑖
| |𝑋 | |∗ (∀𝑘 ≤ 𝑟

∗), here 𝑟∗ is the numerical

rank of 𝑋 or any other estimated rank of 𝑋 [31, 44].

2.2 Problem statement
Global low-rank methods are generally effective in detecting global

data structures, which relate each column to all rows, or vice versa.

However, the global low-rank structure may not be informative

when there exists a clear duality of the rows and columns. In other

words, subsets of rows and columns within a matrix may be gen-

erated from distinct sparse subspace structures. To better capture

the subspace structures in a matrix generation process, the local

low-rank approximation of a matrix is defined as

𝑋𝑀×𝑁 =

𝐾∑︁
𝑘=1

𝑋𝑀×𝑁
𝑘

+ 𝐸𝑀×𝑁 (2.2)

where 𝑋𝑀×𝑁
𝑘

corresponds to the 𝑘-th low-rank pattern, and takes

zero values outside of 𝐼𝑘 × 𝐽𝑘 , and 𝐸 represents noises.

Compared to (2.1), (2.2) flexibly characterizes the subspace struc-

tures in 𝑋 . Based on (2.2), we formally define the MLLRR problem

from the perspective of local pattern detection.

Definition 1. Matrix Local Low Rank Representation
(MLLRR). For a given matrix 𝑋𝑀×𝑁 , MLLRR identifies 𝐾 low rank

submatrices 𝑋𝑘 := 𝑋𝐼𝑘× 𝐽𝑘 , 𝐼𝑘 ⊂ {1...𝑀}, 𝐽𝑘 ⊂ {1...𝑁 }, 𝑘 = 1, ..., 𝐾 ,

s.t. 𝑋𝑘 are low rank matrices with small numerical ranks.

In Definition 1, 𝐾 does need to be pre-given, and 𝐼𝑘 and 𝐽𝑘 do

not need to be disjoint. One advantage of this definition is that the

MLLRR problem does not rely on a specific distribution of back-

ground noise. In this study, we utilize the low-rankness measure

given in section 2.1,
Σ11
| |𝑋𝑘 | |∗ , i.e., the largest singular value divided by

the nuclear norm of 𝑋𝑘 . We further define a special case of MLLRR.

Definition 2. Local Constant Variation (LCV) LCV considers

that the low rank submatrices are with spiked expected means (E)
compared to the background, i.e. E(𝑋𝑖 𝑗 ) = 𝑢𝑘 ,∀(𝑖, 𝑗) ∈ 𝐼𝑘 × 𝐽𝑘 ,
E(𝑋𝑖 𝑗 ) = 𝑢0,∀(𝑖, 𝑗) ∉ {𝐼𝑘 × 𝐽𝑘 }𝐾𝑘=1.

Noted, LCV is a special case of MLLRR as by definition, each sub-

matrix of LCV pattern, 𝑋𝐼𝑘× 𝐽𝑘 , is generated by a rank-1 matrix. We

separate LCV from the general MLLRR problem because most exist-

ing methods only solve the LCV problem. In this study, we focus on

solving the general MLLRR problem when local low rank matrices

do not have a distinct mean difference from the background.

Let 𝐸𝑘 := 𝑋𝑘 − 𝑋𝑘,𝐼𝑘× 𝐽𝑘 be the background noise of the 𝑘th

submatrix, where𝑋𝑘,𝐼𝑘× 𝐽𝑘 denotes a submatrix of𝑋𝑘 indexed by 𝐼𝑘×
𝐽𝑘 . Importantly, real-world data is often noisy and heteroscedastic,

meaning (1) the distribution for different entries in 𝐸𝑘 may not be

identical; (2) for (𝑖, 𝑗) ∉ {𝐼𝑘 × 𝐽𝑘 }𝐾𝑘=1 , 𝑋𝑖 𝑗 may not be identically

distributed; and (3) certain entries in 𝑋𝑘 may be outliers that could

corrupt its low rank structure. Of note, in this study, we do not

restrict the form of the background noise distribution.

2.3 Related works
Existing approaches of the MLLRR problem. Currently, there
exist three types of methods for the MLLRR problem, namely

co-clustering, sparse matrix decomposition, and anchor-based ap-

proaches. The main goal of co-clustering is to find a matrix partition

such that the intra-co-cluster distance could be minimized, where

the distance measure is defined as the Kullback–Leibler divergence

in Bregman co-clustering [2], and Euclidean distance in the plaid

model [19]. For matrix decomposition-based methods, they identify

local low rank matrices by imposing sparsity constraints to the fac-

tor or singular matrices𝑈 ,𝑉 [21, 38, 39, 43, 48]. For anchor-based

methods, Lee et al. proposed the LLORMA method by using prior

knowledge to select anchors of local low rank patterns and their

nearby points with a smooth kernel function [20], and subsequently

along the same line, more methods were proposed for anchor se-

lection [25, 49]; Chen et al. proposed the WEMAREC method that

builds upon the submatrices identified by co-clustering methods [6].

More details on the existing method formulations were provided

in APPENDIX. Among the three types of methods, co-clustering

only solves the LCV problem. Although both matrix decomposi-

tion and anchor-based methods focus on detecting local low rank

submatrices, they can only detect those submatrices with a distinct

spiked mean. In other words, only the local low rank submatrices

exhibiting the LCV property could be detected. In addition, sparse
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Figure 2: Mathematical considerations of random projection-based singular value computation.

matrix decomposition tends to detect large submatrix that may ex-

plain better the variance of the entire matrix, while sacrificing the

locality of the submatrices [38, 48], and the high computational cost

of anchor-based methods are not scalable to large matrix [6, 20].

And none of the existing methods is capable of handling outliers or

heteroscedastic errors. In summary, there is lack of an effective and

scalable solution for the general MLLRR problem, especially when

the mean of the target pattern is not different from its background

and the data contains outliers and/or heteroscedastic errors.

Random projection-based computation of SVD for global
low-rank approximation. Singular value decomposition (SVD)

is the best-known method for providing the true matrix rank and

the optimal approximation based on the Eckart-Young Theorem

[8, 13, 34]. Due to the computational limitations of classical SVD for

large-scale matrices, numerous non-deterministic algorithms have

been developed to address the low-rank approximation problem.

Among them, randomized methods based on random projection [1,

3], which combine probability theory with numerical linear algebra

to find a good approximation of the target matrix, achieve good

theoretical guarantees and high computational efficiency [11, 12,

14, 23, 26, 35, 35]. These works underpin the theoretical foundation

of our method. However, to the best of our knowledge, random

projection has not been previously used to address the MLLRR

problem.

3 RPSP AND ITS MATHEMATICAL BASIS
The biggest challenge with local low rank submatrix detection lies

in the fact that neither the row nor column indices of the submatrix

are known. As given in Definition 1, the low-rankness property of

a submatrix is evaluated through the computation of its numerical

rank, which, apparently, can’t be evaluated until the submatrix

has been revealed. However, it is computationally impossible to go

through all the submatrices of an input matrix.

To overcome this challenge, RPSP considers the MLLRR problem

from a different angle by identifying small low rank matrices and

gradually growing them into larger patterns. Firstly, for a low rank

matrix 𝑋𝑀×𝑁 of rank 𝑟 ≪ 𝑚𝑖𝑛(𝑀, 𝑁 ), the self consistency prop-

erty suggests that any𝑀0 × 𝑁0 submatrix (𝑀0, 𝑁0 ≥ 𝑟 ) randomly

sample from 𝑋 is most likely to have a rank of 𝑟 (Lemma 1 in [31]).

Secondly, for a given matrix, the total number of square submatri-

ces of dimension 𝑀0 grows exponentially with 𝑀0. The first fact

indicates that any submatrix of low rank is a collage or complete

coverage of its own (smaller) submatrices, which are also of low

rank. The second fact indicates that the only way for us to grow

a local low rank submatrix is to start from the much smaller sub-

matrices. In fact, for𝑀0 as small as 2, it is computationally feasible

for us to obtain a full collection of 𝑀0 ×𝑀0 submatrices that could

densely cover 𝑋𝑀×𝑁 . By teasing out all the𝑀0 ×𝑀0 submatrices

of low rank, we could then gradually build them up into larger low

rank submatrices. The evaluation of the low-rankness for a large

number of submatrices now becomes computationally expensive.

In RPSP, our key contribution is the development of a new strat-

egy to tackle the MLLRR problem by integrating two approaches,

namely (1) a random projection-based assessment of low-rank sub-

matrices and (2) a submatrix propagation approach to merge low

rank submatrices into larger ones. Specifically, random projection

can efficiently compute the low-rankness for a large set of small

matrices. While the computational cost of random projection in-

creases when the submatrices grow to larger ones, the number of

submatrices that need to be assessed will substantially decrease

because the ones without low-rankness are filtered out during the

computation. The trade-off between the size and number of the

to-be-evaluated submatrices ensures the efficiency of RPSP.

3.1 Efficient computation of singular values for
a large set of small matrices

Conventionally, singular values are computed by QR decomposition

of 𝑂 (𝑛3) complexity. In this study, we utilized an alternative ap-

proach to drastically increase the efficiency of computing singular

values for a large amount of small matrices from the perspective

of random projection. Without loss of generality, we illustrate our

mathematical bases and the computation of singular values on

square matrices. The efficient singular value computation is sup-

ported by the following three lemmas in the theory of Random

Projection and Random Covering of Unit R-Sphere.

Lemma 1. Let 𝜎1, ..., 𝜎𝑅 denote the singular values of 𝑋 ∈ R𝑅×𝑅
in descending order. Let 𝑃 ∈ R𝑅×𝑁 be a random projection matrix
whose columns consist of 𝑁 randomly generated unit vectors, with
the 𝑗-th column dented by 𝑃 · 𝑗 . Then lim

𝑁→∞
max

1≤ 𝑗≤𝑁
∥𝑋𝑃 · 𝑗 ∥2 = 𝜎1 and

lim

𝑁→∞
min

1≤ 𝑗≤𝑁
∥𝑋𝑃 · 𝑗 ∥2 = 𝜎𝑅 .

Lemma 1 indicates that the largest and smallest singular val-

ues of 𝑋 could be computed through simple matrix multiplication

operations between 𝑋 and randomly generated projection vectors,

and the computed values will converge to true ones as long as
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the number of projection vectors is big enough. Noted, Lemma
1 is commonly used in random projection-based singular value

estimation [29].

Lemma 2. Let v𝑗 be the singular vector corresponding to 𝜎𝑟 , 𝑟 =
1, ..., 𝑅. Then lim

𝑁→∞
max

𝑃 ·, 𝑗 ∈𝑆𝑝 (v1,...,v𝑟−1 )⊥
𝑗∈1,...,𝑁

∥𝑋𝑃 · 𝑗 ∥2 = 𝜎𝑟 , for 𝑟 ∈ 2, ..., 𝑅.

Here, 𝑆𝑝 (v1, ..., v𝑟−1)⊥ denotes the null (or complemented) space of
the linear span of v1, ..., v𝑟−1.

Lemma 2 illustrates an approximation methods for calculating

subsequent singular values and singular vectors. Together, all the

singular values and singular vectors could be well approximated by

sampling a large number of projection vectors. We next show that

our projection vectors are not arbitrarily selected, but rather de-

signed to uniformly cover the space ofR𝑅×1, such that the sampling

process could be highly efficient.

Lemma 3. The minimum number of caps of half angle 𝜃

required to cover the unit Euclidean R-sphere is called the
𝑅𝑎𝑛𝑑𝑜𝑚 𝐶𝑜𝑣𝑒𝑟𝑖𝑛𝑔 𝑜 𝑓 𝑡ℎ𝑒 𝑈𝑛𝑖𝑡 𝑅 − 𝑆𝑝ℎ𝑒𝑟𝑒 . Then

𝑁𝑐 (𝑅, 𝜃 ) = 𝑒𝑥𝑝 (𝑅 · 𝑓𝑐 (𝜃 ) (1 + 𝜖𝑅 (𝜃 ))) (3.1)

, where 𝜖𝑅 −→ 0 as 𝑅 −→ ∞ and 𝑓𝑐 (𝜃 ) = −𝑙𝑜𝑔 sin𝜃 . Here
𝑁𝑐 (𝑅, 𝜃 ) is the minimum number of caps with the given dimension R
and half angle 𝜃 . This means, when 𝑅 is large enough, if we randomly
choose 𝑒𝑥𝑝 (−𝑅𝑙𝑜𝑔𝑠𝑖𝑛𝜃 ) caps, then the area of the uncovered surface
of the 𝑅-sphere will be almost negligible[41, 45].

In Lemma 1 and 2, we first proved that the singular values of

𝑋 can be estimated via simple operations against a set of randomly

sampled unit vectors, including inner products, sum of squares, and

max pooling, which can be efficiently computed on GPU. Lemma 3
is derived from the theories in Random Covering of Unit R-Sphere

and suggests theminimal requirement for densely covering a Unit R-

dimensional Sphere. Lemma 3 provides a bound of the cardinality

of the random unit vectors to ensure that for any vector in R𝑅 there

almost surely exists at least one random unit vector, whose cosine

similarity to the vector is larger than cos 2𝜃 . The proof of Lemma
1 and Lemma 2 are given in APPENDIX and the Lemma 3 was

proven as a Corollary in the section 𝐼 𝐼 of [45].

Lemma 1, 2, and 3 together suggest that for a given matrix

and the level of error to be tolerated, its singular values could be

estimated by simple operations against a set of randomly generated

unit vectors with a bounded size. Here we do not claim the math-

ematical novelty of the lemmas. However, they form important

theoretical bases of Algorithm 1 for an efficient approximation

of singular values. Fig 2 illustrates the idea of Algorithm 1: Sin-
gular Value Approximation. Its input includes a matrix 𝑋 (Fig
2a illustrates a 2D example) and a set of randomly generated unit

vectors 𝑃 (Fig 2b, a 2D example). It projects𝑋 onto 𝑃 and iteratively

estimates top singular values (Fig 2c red line) and the null space

(Fig 2c green line) of the approximated left singular vectors.

In Algorithm 1, 𝑃 (𝑟 ) and P
𝑛𝑢𝑙𝑙𝑠𝑝
𝑟 are estimated 𝑟 th left singu-

lar vector and the null space of the linear space spanned by the

first 𝑟 left singular vectors, respectively. As randomly generated

vectors cannot be stringently orthogonal, 𝜃 is a hyper-parameter

that determines the randomly generated vectors that are in the null

Algorithm 1: Singular Value Approximation (Based on

Random Projection)

Inputs: 𝑋𝑅×𝑅 , 𝑁𝑅 randomly generated unit vectors

denoted as 𝑃 ∈ R𝑅×𝑁𝑅
, cutoff 𝜃

Outputs: Estimated singular values 𝜎1, 𝜎2, ..., 𝜎𝑅
Singular Value Approximation(𝑋, 𝑃, 𝜃 ):
𝑄 ← 𝑋𝑃

Generate vector 𝐺 , 𝐺 𝑗 ←
√︃∑𝑅

𝑖=1𝑄
2

𝑖 𝑗

𝜎1 ← max {𝐺 𝑗 |1 ≤ 𝑗 ≤ 𝑁𝑅}; 𝜎𝑅 ← min {𝐺 𝑗 |1 ≤ 𝑗 ≤ 𝑁𝑅}
𝑃 (1) ← argmax

𝑃 𝑗

𝐺 𝑗 ; P𝑛𝑢𝑙𝑙𝑠𝑝
0

← {𝑃 𝑗 |𝑃 𝑗 are columns of 𝑃}

for r in 1,...,𝑅 − 1 do
P𝑛𝑢𝑙𝑙𝑠𝑝𝑟 ← {𝑃 𝑗 |𝑃 𝑗 ∈ P𝑛𝑢𝑙𝑙𝑠𝑝𝑟−1 ,

max{cos(𝑃 𝑗 , 𝑃 (1) ), ..., cos(𝑃 𝑗 , 𝑃 (𝑟 ) )} < cos(2𝜃 )}
𝜎𝑟+1 ← max {𝐺 𝑗 | the corresponding 𝑃 𝑗 of
𝐺 𝑗 ∈ P𝑛𝑢𝑙𝑙𝑠𝑝𝑟 }
𝑃 (𝑟+1) ← argmax

𝑃 𝑗

{𝐺 𝑗 |𝑃 𝑗 ∈ P𝑛𝑢𝑙𝑙𝑠𝑝𝑟 }

end
return {𝜎1, 𝜎2, ..., 𝜎𝑅}

space of 𝑃 (𝑟 ) . Noted, the null space of the linear space spanned

by each 𝑃 𝑗 does not rely on 𝑋 that can be computed before the

random projection. Thus, the random projection and iterative com-

puting of 𝜎𝑟 and 𝑃 (𝑟 ) only involve inner product, max, and sum of

squares, which can be efficiently and parallelly computed on GPU

for a very large set of small matrices. The max pooling step can

be further optimized by first clustering the random unit vectors

into groups of high cosine similarities (Fig 2d) and then computing

random projection to the central vector of each group, as detailed

in APPENDIX.

3.2 The RPSP framework
Algorithm 2 and Fig 3 illustrate the main framework of RPSP.

The inputs of RPSP include a matrix 𝑋𝑀×𝑁 and hyper-parameters.

The output are identified local low rank matrices, denoted as

{𝑋𝐼𝑘× 𝐽𝑘 }, 𝑘 = 1, ..., 𝐾 . The initialization step of RPSP generates

random unit vectors for estimating singular values of small ma-

trices. Specifically, 𝑁𝑡 random vectors of length 2
𝑡
, denoted as 𝑃𝑡 ,

𝑡 = 1...𝑇 will be generated, where 𝑇 is the number of layers for

submatrices propagation.

RPSP first randomly samples 𝐿1 number of 2×2 submatrices from

𝑋 , whose singular values are estimated by Algorithm 1 against

𝑃1, as described in 3.1. Noted, 2 × 2 is the smallest unit submatrix

that possess a low rank structure. The value
𝜎1
| |𝑃 | |∗ characterizes

the low rank property of a 2 × 2 matrix 𝑃 , where 𝜎1 and | |𝑃 | |∗
denote the first singular value and nuclear norm of 𝑃 . The low rank

property of the 2×2 submatrices is further propagated by aweighted

sampling to generate 𝐿2 number of 4 × 4 submatrices. Specifically,

a pair of none overlapped 2 × 2 matrices were randomly sampled

by a probability weighted by the average of their
𝜎1
| |𝑃 | |∗ values.

The row and column indices of the two samples matrices form a

new 4 × 4 submatrix. The singular values of the 4 × 4 submatrices

will be estimated by random projection and orthogonal pooling
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Figure 3: The framework of the RPSP algorithm.

against 𝑃2. This procedure will be iteratively conducted 𝑇 times,

by which 𝐿𝑇 number of 2
𝑇 × 2

𝑇
submatrices will be randomly

sampled weighted by the low-rankness propagated through the 𝑇

layers, whose singular values will be estimated. For each 𝑡 = 1, ...,𝑇 ,

RPSP also computes a𝑀 ×𝑁 scoring matrix 𝑆𝑡 , in which 𝑆𝑡
𝑖 𝑗
stores

the frequency of observing a large value of
𝜎1
| |𝑃 | |∗ among all the

sampled 2
𝑡 × 2

𝑡
submatrices that hits to 𝑋𝑖 𝑗 . 𝑆

𝑇
𝑖 𝑗

can be viewed

as an approximation of the probability that 𝑋𝑖 𝑗 is contained by a

MLLRR submatrix with a size of 2
𝑇 ×2𝑇 or larger. The local low rank

submatrices in 𝑋 can be further identified by a co-clustering over

𝑆𝑇 . RPSP (Algorithm 2) consists the following sub algorithms:

(i) Singular Value Approximation (Algorithm 1) computes

singular values for the 2
𝑡 × 2𝑡 submatrices, as described in 3.1.

(ii) Submatrix Propagation generates 2
𝑡+1 × 2𝑡+1 submatrices

by randomly sample pairs of non-overlapped 2
𝑡 × 2𝑡 submatrices

with a probability weighted by the average of the low-rankness

score. This approach enable the propagation of the low-rankness of

two small submatrices to a larger one if the two small submatrices

truly hit one local low rank submatrix (Detailed in APPENDIX).

(iii) Local Low Rank Prediction reconstructs the local low

rank matrices in 𝑋 based on the scoring matrix 𝑆𝑇 (Detailed in

APPENDIX).

In the Algorithm 2, 𝑃𝑡 denote the sets of randomly generated

unit vectors; R𝑡 denote the sets of the 2𝑡 ×2𝑡 submatrices randomly

sampled (𝑡 = 1) or weighted sampled (𝑡 = 2, ...,𝑇 ) by Submatrix
Propagation; R𝑡 [ 𝑗] denotes the 𝑗 th submatrix in R𝑡 ; 𝐷𝑡,𝑡×𝐿𝑡 store
the estimated singular values; 𝐿𝑜𝑤𝑅𝑎𝑛𝑘𝑆𝑐𝑜𝑟𝑒𝑇 is a vector storing

the top singular value divided by the nuclear norm of each 2
𝑇 × 2𝑇

submatrix; and 𝑆𝑇 denotes the scoring matrix, where 𝑆𝑇
𝑖 𝑗

is the

frequency of observing 𝐿𝑜𝑤𝑅𝑎𝑛𝑘𝑆𝑐𝑜𝑟𝑒𝑇 > 𝐶 for all the submatrices

that contain𝑋𝑖 𝑗 . Noted, the hyper-parameters𝑇 and 𝐿𝑡 can be easily

determined based on the computational capability while 𝐶 and 𝑁𝑡
can be determined based on the level of errors that can be tolerated

(see details in APPENDIX).

3.3 Computational cost
RPSP contains four major steps, namely (1) randomly generating

unit vectors, (2) Singular Value Approximation, (3) Submatrix
Propagation, and (4) Local Low Rank Prediction. The computa-

tional cost of Submatrix Propagation is determined by the num-

ber of sampled submatrix pairs, which could be optimized based on

Algorithm 2: RPSP

Inputs: 𝑋𝑀×𝑁 , hyper-parameters

𝑇, 𝑁𝑡 , 𝐿𝑡 ,𝐶, 𝐾, 𝑡 = 1, ...,𝑇 , 𝑘 = 1, ..., 𝐾

Outputs: The indices set {I × J}, where 𝐼𝑘 ∈ I, 𝐽𝑘 ∈ J ,

𝑋𝐼𝑘× 𝐽𝑘 is a local low rank matrix.

RPSP(𝑋,𝑇 , 𝑁𝑡 , 𝐿𝑡 ,𝐶, 𝐾):
for t in 1,...,T do

𝑃𝑡 ←{𝑁𝑡 randomly generated unit vectors of length 2
𝑡
}

end
R1 ← {𝐿1 2 × 2 submatrices randomly sampled from 𝑋 }
𝐷1,2×𝐿1 ← Singular Value Approximation(R1, 𝑃1)
for t in 2,...,T do
R𝑡 ← Submatrix Propagation(𝑋,R𝑡−1, 𝐷𝑡−1, 𝐿𝑡 )
𝐷𝑡,2

𝑡×𝐿𝑡 ← Singular Value Approximation(R𝑡 , 𝑃𝑡 )
end
for j in 1,...,𝐿𝑇 do

𝐿𝑜𝑤𝑅𝑎𝑛𝑘𝑆𝑐𝑜𝑟𝑒𝑇 [ 𝑗] ←
𝐷𝑇

1, 𝑗∑𝑇
𝑖=1 𝐷

𝑇
𝑖,𝑗

end
for i in 1,...,M do

for j in 1,...,N do
𝑆𝑇
𝑖 𝑗
← frequency of 𝐿𝑜𝑤𝑅𝑎𝑛𝑘𝑆𝑐𝑜𝑟𝑒𝑇 [𝑘] > 𝐶 for all

R𝑡 [𝑘] contains 𝑋𝑖 𝑗
end

end
I × J ← Local Low Rank Prediction(𝑆𝑇 )
return I × J

the computational resource. The computational complexity of Lo-
cal Low-Rank Prediction is 𝑂 (𝑚𝑎𝑥{𝑀, 𝑁 }3). The most time and

computationally consuming part is the generation of random unit

vectors and the Algorithm 1: Singular Value Approximation,
which takes more than 95% running time of RPSP.

We further evaluated the computational efficiency and the accu-

racy of Algorithm 1 versus conventional QR decomposition-based

SVD on both GPU and CPU servers (see details in APPENDIX
2
). We

tested the two methods 50 times on 10
5, 106, 107 and 10

8
number

of 2× 2, 105 number of 4× 4, and 105 number of 8× 8matrices. The

averaged normalized root mean squared error between estimated

and true singular values is 0.07. We observed that Algorithm 1
2
Full APPENDIX at https://github.com/ptdang1001/RPSP
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used 10
−5 − 10−2 seconds, which is consistently about 10

5
times

faster than QR decomposition-based SVD (see details in APPENDIX

and APPENDIX Table 2
2
).

Based on the parameters of GPU machine, the computational

cost of RPSP could be optimized by changing its hyperparameters

to control the running time within a few seconds to a few minutes,

which is comparable to SOTA methods (see EXPERIMENTS).

4 EXPERIMENTS ON SYNTHETIC DATA
We evaluated the overall performance and computational cost of

RPSP in different scenarios of MLLRR problem and compared RPSP

with SOTAmethods on a comprehensive setup of synthetic datasets.

4.1 Experimental setup
We simulate 𝑋 ∈ R𝑀×𝑁 as 𝑋 =

∑𝐾
𝑘=1

𝑋𝑘 +𝐸. Here, entries in 𝑋𝑘 is

padded by zero except for those indexed by 𝐼𝑘 and 𝐽𝑘 , corresponding

to a local low rank submatrix with𝑚𝑘 rows and 𝑛𝑘 columns. 𝐸 is

background noise simulated by 𝐸𝑖, 𝑗 ∼ 𝑁 (0, 𝛼𝑘 ∗ 𝑠𝑑),∀𝑖 ∈ 𝐼𝑘 , 𝑗 ∈ 𝐽𝑘 ;
and the rest of the entries in 𝐸 follows 𝑁 (0, 𝑠𝑑). In evaluating the

algorithm’s scalability, we allow 𝑀 and 𝑁 to have three different

values. Otherwise, we let 𝑀 = 𝑁 = 1000. To simulate 𝑋𝑘
𝐼𝑘× 𝐽𝑘 ,

we first simulated 𝑌𝑘 as 𝑌𝑘 = 𝑈𝑘𝑉
𝑇
𝑘
, where 𝑈𝑘 ∈ R𝑚𝑘×𝑟𝑘

and

𝑉𝑘 ∈ R𝑛𝑘×𝑟𝑘 , and entries in 𝑈𝑘 ,𝑉𝑘 all follow 𝑈 (0, 1). Then 𝑋𝑘
𝐼𝑘 ,𝐽𝑘

is simulated as 𝑌𝑘 − 𝑌𝑘 + 𝜇𝑘 . Here, 𝑌𝑘 denotes the element-wise

mean of matrix 𝑌𝑘 , and hence 𝜇𝑘 mimics the overall mean of the

𝑘-th pattern matrix, and 𝛼𝑘 mimics the relative noise level of the

local low rank matrix to the overall background noise matrix. In

total, we obtained 284 different simulation scenarios, each has 5

repetitions, which include:

(1) Perturbed pattern mean: pattern mean 𝜇𝑘 = 𝛽𝑘 ∗ 𝑠𝑑 , where
𝛽𝑘 is a sequence from 0 to 3 with step size 0.1; relative noise level

𝛼𝑘 = {0, 0.1}; pattern size𝑚𝑘 = 𝑛𝑘 = {200, 500}.
(2) Perturbed background error: pattern mean 𝜇𝑘 = 𝛽𝑘 ∗ 𝑠𝑑 ,

where 𝛽𝑘 = {0, 0.1}; relative noise level 𝛼𝑘 is a sequence from 0 to

3 with step size 0.1; pattern size𝑚𝑘 = 𝑛𝑘 = {200, 500}.
(3) Perturbed pattern size: pattern mean 𝜇𝑘 = 𝛽𝑘 ∗ 𝑠𝑑 , where

𝛽𝑘 = {0, 0.1}; relative noise level 𝛼𝑘 = {0, 0.1}; pattern size𝑚𝑘 = 𝑛𝑘
is a sequence from 100 to 500 with step size of 20.

We evaluated the method performance of RPSP and selected

SOTA methods on these synthetic datasets, based on how well the

identified patterns hit the true ones, and avoid the background

noise. We label the entries hitting true patterns as "positive" and

the rest as "negative", and the True Positive (TP), False Negative

(FP), False Positive (FP), and True Negative (TN) occurrences are

defined as the number of "positive" entries that are identified as

pattern (TP) or background (FP), or the number of "negative" entries

that are identified as pattern (FP) or background (TN). The overall

prediction accuracy is defined as
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁 .

4.2 Performance evaluation of RPSP
We benchmarked RPSP with five SOTA methods, namely Bregman

co-clustering (CC) [2] and Plaid [19], two sparse matrix decompo-

sition methods (SSVD [48] and SPCA [50]), and one anchor-based

method LLORMA [20]. Detailed parameter settings of RPSP and

other methods are provided in APPENDIX
2
.

Accuracy in solving the MLLRR problem under different
scenarios. Fig 4a-c illustrated the accuracy (𝑦-axis) of RPSP (red)

and other methods for solving the MLLRR problem with and with-

out LCV property in different scenarios. Overall, RPSP achieved

higher than 0.8 accuracies under most settings, which is consis-

tently higher than all baseline methods. On the dense data, SPCA

failed to identify any pattern while CC detects the whole matrix as

one pattern, hence these two methods were excluded from further

analysis. RPSP is the only method that can identify local low rank

patterns when its mean is close to the background mean (Fig 4a),
i.e., the MLLRR problem without the LCV property. As expected,

we observed the prediction accuracy of the baseline methods to

increase as the mean difference becomes larger (Fig 4a), and all

methods to have decreased performance with the increase of the

noise level (Fig 4b). RPSP and LLORMA are more robust to high

noise levels compared to SSVD and Plaid. The size test suggested

that RPSP can accurately identify the pattern when its size is even

smaller than 100 × 100 in a 1000 × 1000 matrix (Fig 4c). When

the pattern size increases, the prediction accuracy of RPSP and

LLORMA also increases, but not SSVD or Plaid. An explanation is

that a larger pattern is easier to be hit by the randomly sampled

submatrices in RPSP or the anchoring in LLORMA, while SSVD and

Plaid rely on the pattern sparsity assumption and are less sensitive

to large patterns.

Power in detecting multiple patterns and the submatrices
of different ranks.Where there exists more than 1 local rank-1

sub matrices, RPSP again achieved high performance (Fig 4d1-2).
The way RPSP detects local low rank matrices is from the scoring

matrices, which are less impacted by the number of patterns. It

is noteworthy that we focus on the general MLLRR problem in

a dense matrix, especially when the LCV property does not hold,

while LLORMA and Plaid are more efficient on the LCV problem in

a sparse matrix. On the dense matrix, all the baseline methods failed

to identify the local low rank pattern when the mean difference

between the pattern and the background is low. We also evaluated

RPSP on identifying local low rank patterns of different dimensions

(Fig 4d4). Our results demonstrated that RPSP has a high robustness

in detecting patterns of different dimensions. Noted, the specificity

of RPSP is always bounded by 1 − 𝑎, where 𝑎 is the probability of

the presence of a local low rank matrix in a noise matrix.

Running time.We evaluated the time consumption of the meth-

ods on dense matrices of three sizes, 𝑀 = 𝑁 = 10
2, 103, 104 (Fig

4d3). The running time of RPSP, Plaid and LLORMA are at a similar

level. Detailed experimental results and parameters of the GPU and

CPU server for the experiment are provided in APPENDIX
2
.

Robustness of sub-algorithms. As each sub-algorithm is nec-

essary for RPSP, no ablation experiment can be conducted. We

evaluated the robustness of sub-algorithms with respect to their

hyperparameters, including the cutoff 𝜃 in Algorithm 1, the low-
rankness cutoff 𝐶 , the dimension of submatrices 𝑇 , the number of

randomly sampled unit vectors 𝑁𝑡 , and the number of randomly

generated or propagated submatrices 𝐿𝑡 in RPSP. We found the

performance of Algorithm 1 is highly robust if 𝑐𝑜𝑠 (2𝜃 ) is larger
than 0.6 (APPENDIX

2
, Table 4 and 5). Our experiment also sug-

gested that 𝑅𝑃𝑆𝑃 is robust if 𝐶 > 0.75 is set. Perturbing 𝐶 in our

synthetic data-based experiment suggested 𝐶 = 0.95 for 𝑇 = 2 and

𝐶 = 0.8 for 𝑇 = 4, 8, 16 achieved optimal detection accuracy, which
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Figure 4: Benchmark of RPSP on Synthetic Data.

was used in both synthetic and real-world experiments. Changing

𝑇 = {2, 4, 8, 16} to {3, 6, 12, 24} or {3, 9, 27} drastically increased the

computational consumption but did not improve the algorithm per-

formance. 𝑁𝑡 is determined by Lemma 3. 𝐿𝑡 is determined by input

matrix size and computational capacity. A larger 𝐿𝑡 will achieve

better performance. Here we set 𝐿1 = 10
7
and 𝐿𝑡 = 𝐿𝑡−1/10.

5 EXPERIMENTS ON REAL-WORLD DATA
We benchmarked RPSP on four real-world datasets of different

density rates (proportion of non-zero entities in the overall input

matrix), error distributions, and local low rank patterns, namely

(1) the MovieLens data, (2) two single-cell RNA-seq data, and (3) a

spatial transcriptomics data. Details of data processing and algo-

rithm settings are given in APPENDIX
2
. Four metrics were utilized

to evaluate the performance of each method, namely (1) the low-

rankness, calculated as the averaged
𝜎1
| |𝑃 | |∗ , (2) the averaged Size

of the identified submatrices 𝑃 , (3) the total Coverage Rate(CR),

defined as the total number of entries in the top-𝑘 patterns divided

by the size of the input matrix, and (4) the Running Time. Strong
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Figure 5: Experiment on real-world data.

low-rankness, high averaged size and coverage rate, and short run-

ning time suggest high performance. We refrained from using the

F-1 score and accuracy metrics because the accurate pattern in

real-world data remains unknown. In addition, the context-specific

meanings of detected local low rank patterns were evaluated based

on prior knowledge. Table 62 and Fig 5 summarize the major re-

sults. Complete discussions of the real-world data experiments are

given in APPENDIX
2
.

In summary, RPSP outperforms baseline methods on the four real-

world datasets, MovidLens data[15], single cell RNA-seq data[33]

and spatial transcriptomics data, in terms of the low-rankness, size,

coverage rate, and contextual interpretability of detected local low

rank matrices. The running time of RPSP is at a similar level to base-

line methods. For a deeper dive into the real-world datasets used

and further experimental details, please refer to the APPENDIX
2
.

6 CONCLUSION
In this work, we provided a new computational framework, namely

RPSP, to detect local low rank matrices. RPSP is supported by rig-

orously derived mathematical theories. While existing methods

mainly solve the LCV sub-problem of MLLRR, our developed RPSP

is the first method capable of handling the general MLLRR problem.

RPSP utilizes a random projection and GPU-based method to effi-

ciently compute singular values and low-rankness for a large set of

small matrices. RPSP further propagates the low-rankness identi-

fied from small matrices to identify larger local low rank matrices

of coherent patterns. In both synthetic and real-world experiments,

we demonstrated that RPSP outperforms all baseline methods on

the general MLLRR problems for data of different sparsity levels and

error distributions. Particularly, RPSP could detect low rank subma-

trices even when its mean structure is not distinguishable from the

background, or when the error distribution is heteroscedastic. The

source code, analysis, testing data and a comprehensive supplemen-

tary of RPSP are available via https://github.com/ptdang1001/RPSP.
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A APPENDIX
A.1 Sub-Algorithms of RPSP
A.1.1 submatrix Propagation. TheAlgorithm 3 submatrix Prop-
agation conductsweighted sampling to generate 2

𝑡×2𝑡 submatrices

based on the low-rankness of 2
𝑡−1 × 2𝑡−1 submatrices. The input of

Algorithm 3 submatrix Propagation include the input matrix

𝑋 , sampled 2
𝑡−1 × 2𝑡−1 submatrices, their singular values 𝐷𝑡 , and

the number of to be generated 2
𝑡 × 2𝑡 submatrices 𝐿𝑡 .

A.1.2 Local Low Rank Prediction. RPSP further utilizes

Algorithm 4 Local Low Rank Prediction to identify and
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Algorithm 3: Submatrix Propagation

Inputs: 𝑋,R𝑡−1, 𝐷𝑡−1, 𝐿𝑡
Outputs: R𝑡
submatrix Propagation(𝑋,R𝑡−1, 𝐷𝑡−1, 𝐿𝑡 ):
R𝑡 ← ∅
while |𝑅𝑡 | < 𝐿𝑡 do

𝑃𝑟𝑜𝑏 ∼ 𝑈 (0, 1)
Randomly pick two non-overlapping submatrices from

R𝑡−1, denoted as R𝑡−1 [𝑖] and R𝑡−1 [ 𝑗]
𝑊 ←

𝐷𝑡−1
1,𝑖
𝐷𝑡−1

1, 𝑗∑
2
𝑡−1
𝑘=1

𝐷𝑡−1
𝑘,𝑖

∑
2
𝑡−1
𝑘=1

𝐷𝑡−1
𝑘,𝑗

if Prob<W then
𝐼 ←Row indices of R𝑡−1 [𝑖] and R𝑡−1 [ 𝑗]
𝐽 ←Column indices of R𝑡−1 [𝑖] and R𝑡−1 [ 𝑗]
𝑎𝑝𝑝𝑒𝑛𝑑 (R𝑡 , 𝑋𝐼× 𝐽 )

end
return R𝑡

reconstruct the local low rank matrices. RPSP computes a𝑀 × 𝑁
scoring matrix 𝑆𝑇 , in which 𝑆𝑇

𝑖 𝑗
stores the frequency of observing a

large value of
𝜎1
| |𝑃 | |∗ among all the sampled 2

𝑇 × 2𝑇 submatrices

that hits to 𝑋𝑖 𝑗 . Hence, 𝑆
𝑇
𝑖 𝑗

can be viewed as an approximation

of the probability that 𝑋𝑖 𝑗 is contained by a MLLRR submatrix

with a size of 2
𝑇 × 2

𝑇
or larger. Here we applied the Spectral

Co-Clustering method developed by Dhillon et al [9] and the

python library provided by scikit-learn [32] on 𝑆𝑇 to identify local

low rank submatrices. With the indices of each possible local

low rank matrix identified, the local patterns were ranked by the

level of their top singular values normalized by the sum of all

singular values. Here the local patterns of the top K significant low

rank property or with the top singular values large than a certain

threshold form the final output of RPSP.

Algorithm 4: Local Low Rank Prediction

Inputs: 𝑆𝑇,𝑀×𝑁

Outputs: I × J
Local Low Rank Prediction(𝑆𝑇,𝑀×𝑁 ):
I × J ← Spectral Co-Clustering(𝑆𝑇 )
return I × J

A.1.3 Optimize the max pooling with respect to null space in Algo-
rithm 1. The max pooling with respect to null space can be further

optimized by clustering the random unit vectors into groups of

high cosine similarities. Specifically, the randomly sampled unit

vectors were first clustered by using the K-mean of their cosine

distance (1-cosine similarity). Then after 𝑃 (1) , ..., 𝑃 (𝑟 ) were iden-
tified, the null space of the linear span of {𝑃 (1) , ..., 𝑃 (𝑟 ) } was es-
timated by the union of the clusters whose center 𝑃𝐶 satisfies

max{cos(𝑃𝐶 , 𝑃 (1) ), ..., cos(𝑃𝐶 , 𝑃 (𝑟 ) )} < cos(𝜃 )}. This approach ef-

fectively reduces the number of cosine distances needed to be com-

puted.

A.1.4 Assessment of hyper-parameters of RPSP. RPSP has five

hyper-parameters 𝑇 , 𝐶 , 𝐿𝑡 , 𝐾 , and 𝑁𝑡 . 𝐿𝑡 (number of randomly

sampled or propagated submatrices) can be determined based on

the input matrix size and computational capacity. 𝑇 (number of

layers for submatrix propagation) is set as 4 for efficient computa-

tion.𝐶 (threshold of 𝐿𝑜𝑤𝑅𝑎𝑛𝑘𝑆𝑐𝑜𝑟𝑒) can be computed by randomly

sampling 2
𝑇 ×2𝑇 submatrices of pure noise from randomly shuffled

𝑋 and generating an empirical null distribution of 𝐿𝑜𝑤𝑅𝑎𝑛𝑘𝑆𝑐𝑜𝑟𝑒 .

𝑁𝑡 (number of random unit vectors) can be determined by Lemma
2.

A.2 Mathematical Derivations And
Considerations

A.2.1 Truncated SVD. Let 𝑋𝑀×𝑁 = 𝑈 Σ𝑉𝑇 (𝑀 ≥ 𝑁 ) be the SVD
of 𝑋 , where 𝑈𝑀×𝑁 and 𝑉𝑁×𝑁 are left and right singular vector

matrices, Σ𝑁×𝑁 is a diagonal matrix of singular values. Define Σ(𝑟 )

such that Σ
(𝑟 )
𝑖𝑖

= Σ𝑖𝑖 , 𝑖 ≤ 𝑟 ; Σ
(𝑟 )
𝑖𝑖

= 0, 𝑖 > 𝑟 , i.e., only keeps the

top 𝑟 singular values > 0. The truncated SVD of 𝑋 of rank 𝑟 is

defined as 𝑡𝑆𝑉𝐷 (𝑋, 𝑟 ) = 𝑈 Σ(𝑟 )𝑉𝑇 . Noted, 𝑅𝑎𝑛𝑘 (𝑋 ) ≤ 𝑟 if and only
if 𝑋 = 𝑡𝑆𝑉𝐷 (𝑋, 𝑟 ).

A.2.2 Mathematical considerations of the MLLRR problem. The
biggest challenge with local low rank submatrix detection lies in

that neither the row or column indices of the submatrix are known.

As given in Definition 2, the low-rankness property of a subma-

trix is evaluated through the computation of its singular values,

which apparently can’t be evaluated until the submatrix has been

presented. However, it is computationally impossible to go through

all the submatrices of an input matrix. RPSP grows a submatrix of

low rank from smaller ones, which utilizes two facts. Firstly, for

a low rank matrix 𝑋𝑀×𝑁 of rank 𝑟 ≪𝑚𝑖𝑛(𝑀, 𝑁 ), the self consis-
tency property suggests that any𝑀0 × 𝑁0 submatrix (𝑀0, 𝑁0 ≥ 𝑟 )
randomly sample from 𝑋 is most likely to have a rank of 𝑟 (Lemma

1 in [31]). Secondly, for a given matrix, the total number of square

submatrices of dimension 𝑀0 grows exponentially with 𝑀0. The

first fact indicates that any submatrix of low rank is a collage or

complete coverage of its own (smaller) submatrices, which are also

of low rank. The second fact indicates that the only way for us to

grow a local low rank submatrix is to start from the much smaller

submatrices. In fact, for 𝑀0 as small as 2, it is computationally fea-

sible for us to obtain a full collection of𝑀0 ×𝑀0 submatrices that

could densely cover 𝑋𝑀×𝑁 . By teasing out all the𝑀0 ×𝑀0 subma-

trices of low rank, we could then gradually build them up into larger

low rank submatrices. The evaluation of the low-rankness for a

large number of submatrices now becomes computationally expen-

sive. In RPSP, our biggest contribution is that we have developed

a singular value approximation method using random projection

to efficiently evaluate the low-rankness of any given submatrix,

making it possible for us to build a submatrix from its parts.

A few examples can illustrate why a global search cannot effec-

tively solve the MLLRR problem. We consider the following square

matrices:

(1) 𝑋𝑀×𝑀 in which 𝑋𝑖 𝑗 ∼ 𝑁 (0, 1) 𝑖 .𝑖 .𝑑 .. Here 𝑋 is a matrix of

standard Gaussian error. The largest singular value of 𝑋 is about

2

√
𝑀 .

(2) 𝑌𝑀×𝑀 in which 𝑌𝑖,· ≡ 𝑌 ′, 𝑌 ′ [𝑖] ∼ 𝑁 (0, 1) 𝑖 .𝑖 .𝑑 .. Here 𝑌 is a

matrix of rank=1 that has the same level of mean and standard

deviation as 𝑋 . Noted, the largest singular value of 𝑌 is about𝑀 .
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Table 1: Existing methods of MLLRR

Methods Examples Formulation Tasks Assumption

Co-clustering

Bregman;

min𝐼𝑘 ,𝐽𝑘 ,𝜇𝑘

∑
𝑘

∑
𝑖∈𝐼𝑘 , 𝑗∈ 𝐽𝑘 𝑑 (𝑥𝑖 𝑗 , 𝜇𝑘 ) LCV

Matrix

Plaid partition

Matrix SSVD;
min

𝑈 ,𝑉
( | |𝑋 −𝑈𝑉𝑇 | |2𝐹 + 𝜆𝑢 | |𝑈 | |1 + 𝜆𝑣 | |𝑉 | |1),

LCV Sparse

decomposition SPCA MLLRR with LCV patterns

Anchor based LLORMA
min

𝐼 ,𝐽 ,𝑋̂

(𝐾
𝑋 [𝐼 ,𝐽 ] ⊙ 𝑃𝑋 [𝐼 ,𝐽 ] (𝑋 − 𝑋 )) MLLRR with LCV

submatrix

methods WEMAREC detection

(3)𝑍𝑀×𝑀 in which𝑍𝑖 𝑗 ≡ 𝑎. The largest singular value of𝑌 is𝑀×𝑎.

Hence for a low rank sub-matrix of size

√
2𝑀 ×

√
2𝑀 or smaller,

whose mean and the standard deviation are not different from

the background’s, it is less likely to be identified by a global SVD

as the largest singular value of the sub-matrix is about the same

level of the largest singular value of the background noise matrix.

However, if the low rank sub-matrix has a spiked mean, its largest

singular value will be amplified by the spiked mean and the top

singular vector of the whole matrix is naturally sparse. Hence, an

LCV problem is more likely to be solved by a global search while

the MLLRR problem of the insignificant mean difference between

pattern and background is less likely to be detected by a global

search. So, it is necessary to think of an alternative approach to

solving the general MLLRR problem. Noted, the idea of screening

a large set of small submatrices and propagating the low rank

property of smaller ones to bigger submatrices only involves the

computing of singular values of local patterns. Hence, we do not

expect that the RPSP method may have disparate performances in

solving LCV and LRR problems.

A.2.3 Mathematical formulations of SOTA methods. Co-clustering
methods simultaneously cluster rows and columns of a two-

dimensional data matrix. The general assumption is that the tar-

geted submatrix has a larger or small mean value compared to

the background noise. The Bregman co-clustering method gener-

ates a matrix partition 𝐼𝑘 , 𝐽𝑘 by preserving the maximum infor-

mation of data 𝑋 within the partitions. The approximation error

𝑀 (𝐼 , 𝐽 ) −𝑀 (𝐼 , 𝐽 ) represents the difference between the preserved

information and original data, here𝑀 (𝐼 , 𝐽 ) is the mutual informa-

tion and 𝑀 (𝐼 , 𝐽 ) − 𝑀 (𝐼 − 𝐽 ) = 𝐾𝐿(𝑑𝑖𝑠𝑡1 (𝐼 , 𝐽 ) | |𝑑𝑖𝑠𝑡2 (𝐼 , 𝐽 )). Laura
et al. proposed the Plaid model to detect the submatrix by fitting

each entry 𝑋𝑖 𝑗 with 𝐾 layers and make sure the summation of all

layers

∑𝐾
𝑘=1

𝜇𝑘 𝐼𝑘 𝐽𝑘 approximate the original value. Sparse SVD-

based methods identify local low rank matrices by adding L1 sparse

penalty to a global truncated SVD fitting. However, this type of

method still demands distinct mean differences between pattern

and background and trend to detect large low rank patterns that

may explain the variance of the whole matrix. Lee et al. proposed

the LLORMA method by using prior knowledge to select anchors

of local low rank patterns. As listed in table 1, 𝐾ℎΩ is the kernel

function with bandwidth ℎ to smooth the projection value 𝑃Ω (·)
near the anchor points Ω. However, this type of method, highly

depends on prior knowledge that cannot solve the general MLLRR

problem.

A.2.4 Proofs of Lemma 1 and Lemma 2. Lemma 1 and 2 can be

expressed and proved together. The two lemmas describe the fol-

lowing properties of random projection. For a given dimension

𝑅, denote 𝑋𝑅×𝑅 as an input matrix and 𝑃 ∈ R𝑅×𝑁𝑅
as a matrix

of 𝑁𝑅 randomly generated unit vectors in R𝑅 . 𝑌 = 𝑋𝑃 denotes a

random projection of 𝑋 , then lim

𝑁𝑅→∞
max

1≤ 𝑗≤𝑁𝑅

√︃∑𝑅
𝑖=1 𝑌

2

𝑖 𝑗
= 𝜎1 and

lim

𝑁𝑅→∞
min

1≤ 𝑗≤𝑁𝑅

√︃∑𝑅
𝑖=1 𝑌

2

𝑖 𝑗
= 𝜎𝑅 , here 𝜎1 and 𝜎𝑅 are the largest and

smallest singular values of 𝑋 . Denote 𝑃 (1) = argmax

𝑃 ·, 𝑗

√︃∑𝑅
𝑖=1 𝑌

2

𝑖 𝑗
,

lim

𝑁𝑅→∞
max

𝑃 ·, 𝑗 ∈𝑆𝑝 (𝑃 (1) )⊥

√︃∑𝑅
𝑖=1 𝑌

2

𝑖 𝑗
= 𝜎2, where 𝑆𝑝 (𝑃 (1) )⊥ denotes

the null (or complemented) space of the linear space spanned

by 𝑃 (1) . Similarly, define 𝑃 (𝑟 ) = argmax

𝑃 ·, 𝑗 ∈𝑆𝑝 (𝑃 (1) ,...,𝑃 (𝑟−1) )⊥

√︃∑𝑅
𝑖=1 𝑌

2

𝑖 𝑗
,

lim

𝑁𝑅→∞
max

𝑃 ·, 𝑗 ∈𝑆𝑝 (𝑃 (1) ,...,𝑃 (𝑟−1) )⊥

√︃∑𝑅
𝑖=1 𝑌

2

𝑖 𝑗
= 𝜎𝑟 , for 𝑟 ∈ 3, ..., 𝑅 − 1.

Proof. Noted,

∑𝑅
𝑖=1 𝑌

2

𝑖 𝑗
is the norm of the projection of 𝑋

onto 𝑌·, 𝑗 . 𝑌·, 𝑗 = 𝑋𝑃 ·, 𝑗 = 𝑈 Σ𝑉𝑇 𝑃 ·, 𝑗 =
∑𝑅
𝑘=1

𝑈 ·,𝑘Σ𝑘𝑘𝑉
𝑇
𝑘,·𝑃 ·, 𝑗 ,

here 𝑈 Σ𝑉𝑇 is the SVD of 𝑋 . Then we have

∑𝑅
𝑖=1 𝑌

2

𝑖 𝑗
=∑𝑅

𝑖=1 (
∑𝑅
𝑘=1

𝑈𝑖𝑘Σ𝑘𝑘𝑉
𝑇
𝑘,·𝑃 ·, 𝑗 )

2
=

∑𝑅
𝑘=1

∑𝑅
𝑖=1 (𝑈𝑖𝑘 )2 (Σ𝑘𝑘 )2 (𝑉𝑇𝑘,·𝑃 ·, 𝑗 )

2
=∑𝑅

𝑘=1
(Σ𝑘𝑘 )2 (𝑉𝑇𝑘,·𝑃 ·, 𝑗 )

2
as 𝑈 is orthogonal, both Σ𝑘𝑘 and 𝑉𝑇

𝑘,·𝑃 ·, 𝑗
are scalars. Hence the largest and smallest

∑𝑅
𝑖=1 𝑌

2

𝑖 𝑗
is Σ11 and

Σ𝑅𝑅 , which are achieved when 𝑃 ·, 𝑗 is 𝑉𝑇
1,· and 𝑉

𝑇
𝑅,· , respectively.

As 𝑆𝑝 (𝑌(1) , ..., 𝑌(𝑟−1) )⊥ is the null space of the linear span of

𝑌(1) , ..., 𝑌(𝑟−1) , the largest projection of 𝑋 onto this space is 𝜎𝑟

when 𝑃 ·, 𝑗 is 𝑉𝑇𝑟,· □

For more detailed information about our experiments, please

refer to the comprehensive appendix available at https://github.

com/ptdang1001/RPSP.

https://github.com/ptdang1001/RPSP
https://github.com/ptdang1001/RPSP
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