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Abstract

We consider the problem of constructing asymptotically valid confidence intervals for the
change point in a high-dimensional covariance shift setting. A novel estimator for the
change point parameter is developed, and its asymptotic distribution under high dimen-
sional scaling obtained. We establish that the proposed estimator exhibits a sharp Op( �2)
rate of convergence, wherein  represents the jump size between model parameters before
and after the change point. Further, the form of the asymptotic distributions under both
a vanishing and a non-vanishing regime of the jump size are characterized. In the former
case, it corresponds to the argmax of an asymmetric Brownian motion, while in the latter
case to the argmax of an asymmetric random walk. We then obtain the relationship be-
tween these distributions, which allows construction of regime (vanishing vs non-vanishing)
adaptive confidence intervals. Easy to implement algorithms for the proposed methodology
are developed and their performance illustrated on synthetic and real data sets.

Keywords: High dimensional scaling, covariance/precision shift, dynamic graphical mod-
els, change point, inference, limiting distribution

1. Introduction

The study of change points in statistical models has a long history in the literature, including
both first order problems, such as mean shifts (Bai, 1994; Fryzlewicz, 2014; Wang and
Samworth, 2018) and regression models (Bai, 1997; Kaul et al., 2019; Wang et al., 2019a),
and second order problems such as covariance shifts Wang et al. (2021); Bai et al. (2020)
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and more recently network and graphical models (Keshavarz et al., 2020; Keshavarz and
Michailidis, 2020). This paper focuses on shifts in second order structure in an o✏ine
setting, where the entire data set is available prior to change point estimation and inference.

The main statistical tasks in change point analysis are the following: (i) whether change
point(s) exist in the data, (ii) assuming their existence, estimation of their location and (iii)
post-estimation inference. A brief literature review follows in context of these tasks. Aue
et al. (2009) considers the detection of change points problem in a fixed dimension p time
series model subject to temporal m-dependence. Johnstone (2001) and Birke and Dette
(2005) provide further results for the detection problem in a diverging p (p/T ! 0) setting
in the same covariance shift model. A high dimensional covariance setting is considered
in Avanesov et al. (2018). The online version of the detection problem for a graphical
model in a diverging p setting is considered in Keshavarz and Michailidis (2020), wherein
a regularized likelihood ratio type statistic is employed. The estimation of change point(s)
problem has also received a lot of attention. In a fixed p setting for the Gaussian graphical
model, Kolar et al. (2010) and Kolar and Xing (2012) consider a fused lasso regularization
approach with a squared loss and a likelihood based loss, respectively. The diverging p
framework under multiple change points is considered in Wang et al. (2021) and Gibberd
and Roy (2017). The former proposes a modified CUSUM estimator in conjunction with
binary segmentation and the latter a likelihood based estimator together with fused lasso
regularization. Estimation of change points under high dimensional scaling for a Markov
random field has been considered in Bybee and Atchadé (2018) and Roy et al. (2017).
Finally, Barigozzi et al. (2018) consider change point estimation in a factor model in the
diverging p setting, which is inherently related to the underlying second order structure.

The third problem of post-estimation inference on the change point in context of a
second order shift, is currently unexplored in the literature and constitutes the primary
objective of this work. To describe our objectives precisely, we first introduce the statistical
model of interest. Consider multivariate data collected for T time periods and at a certain
point during that time period, their covariance matrix exhibits a change. Specifically, let,

zt =

(
wt, t = 1, ..., ⌧0

xt, t = (⌧0 + 1), ...., T,
(1.1)

with zt 2 Rp, t = 1, ..., T. The variables wt, xt 2 Rp are independent and piecewise
identically distributed zero mean sub-Gaussian random variables (r.v.’s), with unknown
p ⇥ p covariances ⌃ and �, respectively, i.e., wt ⇠i.i.d subgaussian(0,⌃), t = 1, .., ⌧0, and
wt ⇠i.i.d subgaussian(0,�), t = ⌧0 +1, .., T. The change point ⌧0 2 {1, ..., (T � 1)} together
with the underlying covariance matrices are to be estimated from the available data. We al-
low p to diverge potentially at an exponentially rate, i.e., log p = o(T �), for some 0 < � < 1,
while imposing a sparsity assumption on the model parameters specified in Section 2.

Main contributions and related literature.

1. This work aims to develop methods and results that enable inference for the change
point ⌧0 of the second order shift model (1.1). Specifically, introduce an estimator ⌧̃ that
possesses well defined limiting distributions, thereby allowing construction of asymptotically
valid confidence intervals. The methodology should work under high dimensional scaling
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for the covariance matrices ⌃ and �, and also allow for diminishing jump size across the
pre- and post-change point covariances, measured by a suitable metric. To our knowledge,
there is no existing method/result in the literature that allows one to perform inference
on the change point estimator under a second order shift in a multivariate framework in a
diverging or a high dimensional p setting.

It is worth noting that there exists limited literature for post-estimation inference on
change point(s) involving high-dimensional models even for first order (mean) shifts. In a
fixed p setting, Bai (1994, 1997) provide limiting distributions for mean shift parameters and
regression coe�cients, respectively. The case of diverging p is considered in Bhattacharjee
et al. (2017, 2020) and Wang et al. (2019b). The high dimensional case is considered in
Kaul et al. (2021) and Kaul and Michailidis (2021). All listed articles also focus on a single
change point, with the last reference being a notable exception.

2. Existing work in first order settings establishes that the distributional behavior of change
point estimators is split into two distinct regimes, characterized by a vanishing or a non-
vanishing jump size. We obtain these distributions for the posited model (1.1) with an
analogous regime distinction. However, determining a priori the jump size regime is not
possible in practice. Hence, a new problem emerges, namely which of the two limiting
distributions should be used to construct confidence intervals for the estimated change point.
The traditional answer to this problem is that of implementing a regime adaptive bootstrap
procedure, proposed in Antoch et al. (1995) in a p = 1 setting and also considered in Cho
and Kirch (2021) for mean shift models and in Bhattacharjee et al. (2020) for stochastic
block network models. We address this question in a di↵erent manner. We establish a novel
result that illustrates the inherent asymptotic adaptivity of the limiting distribution under
the non-vanishing jump size regime to that under the vanishing jump regime. E↵ectively,
this result shows that if one always employs the former distribution to obtain confidence
intervals, then they remain asymptotically valid, even if the regime wasmis-specified. Hence,
it eliminates the need for implementing a computationally expensive bootstrap procedure.

The closest comparable articles are those of (Kaul et al., 2021; Kaul and Michailidis,
2021) who consider the first order problem of high dimensional inference on the change
point for a mean shift. In addition to novel methodology developed in this article for the
considered second order setting of a covariance shift, there are also several striking theoret-
ical distinctions with the mean shift setting described throughout the article. Specifically,
a fundamental distinction of a variance inflation between the vanishing and non-vanishing
regimes exists under the considered framework, a phenomenon that does not occur in the
mean shift setting (Remark 6). Further, a new result on regime adaptation is presented,
which has no existing counterpart in the literature. Finally, insightful distinctions in the
su�cient conditions required to obtain the established inferential properties are mentioned.

Proposed methodology and other preliminaries.

We shall estimate the change point in model (1.1) by instead approaching the problem
via the inverse (precision matrices) of the corresponding covariances ⌃ and �. In the static
setting without change points, this approach has been shown to be especially useful under
high dimensionality being analytically tractable and e�cient alternative, where sample co-
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variances are known to be inconsistent, see, for e.g. the methods of neighborhood selection
in Meinshausen et al. (2006) and graphical Lasso in Friedman et al. (2008); Yuan (2010).

The following notation is needed in the sequel. For any matrix Wp⇥p, define W�i,j as
the jth column of W with the ith entry removed, and similarly define Wi,�j . Also define the
submatrix W�i,�j with the ith row and the jth column of W removed. Next, define,

µ0

(j) = ⌃�1

�j,�j⌃�j,j , and �0
(j) = ��1

�j,�j��j,j , j = 1, ..., p. (1.2)

The vectors µ0

(j), �
0

(j), j = 1, ..., p are motivated by their direct relation to the un-

derlying precision matrices; specifically, letting ⌦ = ⌃�1, it is well known that (see, e.g.,
Yuan (2010)) µ0

(j) =
�
⌦�j,j

�
⌦j,j

�
. This relationship between the coe�cients in (1.2) and

underlying precision matrices constitute the main building blocks of graphical lasso.
The adjacency matrix (|sign(⌦)|) of a precision matrix ⌦ is also referred to as a graphical

model. These provide a visual interpretable network wherein edges represent conditional
dependencies amongst components (nodes) of the underlying random variables. A con-
siderable body of literature on such models has been developed owing to a wide variety of
applications in both static and dynamic frameworks. They have been extensively utilized in
genetics and genomics (Sinoquet, 2014), metabolomics (Basu et al., 2017) and neuroimaging
studies (Cribben et al., 2012). When µ0

(j)k = 0 (kth component of µ0

(j)) , the (j, k)th entry
of the corresponding precision matrix is zero, and thus indicates the absence of an edge
between these nodes in the corresponding graph.

Let ⌘0
(j) =

�
µ0

(j) � �0
(j)

�
, j = 1, ..., p, and define the jump size for model (1.1),

⇠2,2 =
⇣ pX

j=1

k⌘0
(j)k

2

2

⌘ 1
2
, and  = ⇠2,2

�p
p.1 (1.3)

The quantities ⇠2,2, and  reflect the magnitude of the di↵erence between the pre- and
post-change precision matrices, the latter being a normalized version that plays a central
role in subsequent analysis. Henceforth, we refer to  as the jump size. Note that ⇠2,2 or  
are non-zero, either if the conditional dependence structure (edges) exhibits changes, or the
magnitude of the model parameters changes. This definition of the jump size is somewhat
similar to that in Kolar and Xing (2012), who define it as minj k⌘0(j)k2. The advantage of

using  over minj k⌘0(j)k2 is that the latter requires changes in each and every row and
column of the precision matrix, whereas the former allows for sub-block changes of the
precision matrix pre- and post- the change point.

Next, define the following criterion function for estimating ⌧0. Let zt 2 Rp, t = 1, .., T be
the observed realizations, and µ, and � be the concatenation of µ(j), �(j)s. Then, consider
the aggregate squared loss,

Q(⌧, µ, �) =
1

T

h ⌧X

t=1

pX

j=1

(ztj � zTt,�jµ(j))
2 +

TX

t=(⌧+1)

pX

j=1

(ztj � zTt,�j�(j))
2

i
, (1.4)

1. The jump sizes ⇠2,2, and  depend on the sampling period T via the dimension p, as in this high-

dimensional setting p, is allowed to be sequence in T.
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with ⌧ 2 {1, ..., (T � 1)}. Suppose for the time being that estimates µ̂ and �̂, are available.
As a first task, we examine the estimation behavior of the following plug-in estimator ⌧̃ of
the change point, with respect to the properties of these preliminary coe�cient estimates,

⌧̃ := ⌧̃(µ̂, �̂) = argmin⌧2{1,...,(T�1)}Q(⌧, µ̂, �̂). (1.5)

The plug-in estimator (1.5) shall yield a sharp rate of estimation Op( �2), which in
turn provides su�cient regularity for limiting distributions to exist, despite the presence of
potential high dimensionality. The preliminary estimates µ̂, �̂ are required to satisfy the
following `2 bound,

max
1jp

⇣
kµ̂(j) � µ0

(j)k2 _ k�̂(j) � �0
(j)k2

⌘
 cu

p
(1 + ⌫2)

�2



ns log(p _ T )

T `T

o 1
2

(1.6)

with probability at least 1 � o(1). In Section 2, we establish the main results, under this
general condition. Section 3 discusses in detail how to construct such preliminary estimates
under the intuitive rate condition,

⇣ 1

 

⌘ns log3/2(p _ T )p
(T `T )

o
= O(1), (1.7)

with s being the sparsity of the precision matrices and T `T being the separation of the
change point from the parametric boundary, i.e.. T `T = ⌧0 ^ (T � ⌧0).

Notation : R denotes the real line. For any vector �, the norms k�k1, k�k2, k�k1 represent
the usual 1-norm, Euclidean norm, and sup-norm, respectively. For any set of indices
U ✓ {1, 2, ..., p}, let �U = (�j)j2U represent the subvector of � containing the components
corresponding to the indices in U. Let |U | and U c represent the cardinality and complement
of U. We denote by a ^ b = min{a, b}, and a _ b = max{a, b}, for any a, b 2 R. We use a
generic notation cu > 0 to represent universal constants that do not depend on T or any
other model parameter. In the following this constant cu may be di↵erent from one term to
the next. All limits are with respect to the sample size T ! 1, unless mentioned otherwise.
We use ) to represent convergence in distribution. For a positive sequence an, we say a
sequence of r.v.’ Xn = Op(an) if for any 0 < � < 1, we have |Xn|  C�an with probaility at
least 1� �, where the constant C� may depend on the �.

2. Theoretical properties of the change point estimator

Next, we state su�cient conditions required for the main theoretical results regarding ⌧̃ in
(1.5). These results include a sharp Op( �2) rate of estimation, its limiting distributions
in the two regimes together with the regime adaptation result previously mentioned.

2.1 Main assumptions

Condition A (assumption on the model parameters): Let S1j = {k; µ0

(j)k 6= 0}, and
S2j = {k; �0

(j)k 6= 0}, 1  j  p be sets of non-zero indices.

(i) Assume that max1jp |S1j | _ |S2j | = s � 1.
(ii) Assume a change point exists and is su�ciently separated from the boundaries {0, T},
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i.e., for some positive sequence `T ! 0, we have
�
⌧0 ^ (T � ⌧0)

�
� T `T ! 1

(iii) Let  be as defined in (1.3). Then, for an appropriately chosen small enough constant
cu1 > 0, the following relations hold,

(a) cu
p
(1 + ⌫2)

�2

 

ns log3/2(p _ T )p
(T `T )

o
 cu1, and

(b) cu
p
(1 + ⌫2)

�2

 

(
s log(p _ T )

T
�

1
2�b

�p
`T

)
 cu1,

for some 0 < b < (1/2). The parameters �2, ⌫, are defined in Condition B.
Condition A controls rate at which the sparsity level s of the precision matrices and its

dimension p diverge as a function of T . Further, it controls the jump size  and the distance
`T of the change point from the parametric boundary. Condition A(iii) encompasses the two
regimes of interest on the asymptotic behavior of the jump size. Specifically, it allows for a
potentially vanishing jump size,  ! 0, when s log3/2(p _ T ) = o

�p
(T `T )

�
. Alternatively,

s, p can diverge at an arbitrary rate provided the jump size is large enough to compensate
for the increasing dimensions s, p, so that Condition A(iii) holds.

To our knowledge, this is the weakest condition assumed on the jump size in the second
order shift literature. The constant b > 0 in A(iii)(b) is any fixed number between (0, 1/2).
The rate conditions (a) and (b) of A(iii) are stated in the given form to provide generality
and neither (a) or (b) implies the other without additional restrictions; for e.g., (b) implies
(a) if log p  cuT 2b, while (a) implies (b) if log p � cuT 2b. For fixed s, p, lT , the rate required

for the minimum jump size  in Part (iii) can be replaced with T
�

1
2�b

�
 ! 1. This

condition is identical to Assumption A7 in Bai (1997) and serves an analogous role.
Sparsity of µ0

(j) and �
0

(j) is equivalent to sparsity of precision matrices ⌃�1 and ��1. In
context of the associated graphical models, it assumes each node has at most s connecting
edges out of a total (p�1) possible edges. This is a direct extension of the same assumption
in (Meinshausen et al., 2006; Yuan, 2010).

Condition B (assumption on the underlying distributions):
(i) The vectors wt = (wt1, ..., wtp)T , t = 1, .., ⌧0, and xt = (xt1, ..., xtp)T , t = ⌧0+1, ...T, are
independent sub-Gaussian r.v’s with variance proxy �2  cu. (see Definition 38)
(ii) The p-dimensional matrices ⌃ := EwtwT

t and � := ExtxTt have bounded eigenvalues,
i.e., 0 <  

�
mineigen(⌃) ^ mineigen(�)

 

�
maxeigen(⌃) _ maxeigen(�)

 
 � < 1.

Consequently, the condition numbers of ⌃ and � are also bounded above by ⌫ = �/.
The sub-Gaussian assumption is a significant relaxation to the more typical Gaussian

assumption made in the literature for graphical models. It allows asymmetric distributions,
including centered mixtures of Gaussian distributions. Conditions B can be stated more
succinctly as boundedness of the Orlicz norm (see e.g., Wang et al. (2021)). We choose this
representation in favor of explicit clarity on underlying parametric assumptions, see, Ver-
shynin (2019) for several other equivalent characterizations of sub-Gaussian distributions.

For the remainder of this section, we are agnostic on the choice of the estimator for
nuisance parameters µ0

(j) and �
0

(j), j = 1, ..., p, and instead require the following condition.

Condition C (nuisance parameter estimates): Let ⇡T ! 0 be a positive sequence.
Then, with probability 1� ⇡T , the following relations are assumed to hold.
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(i) The vectors µ̂(j) and �̂(j), 1  j  p, satisfy the bound (1.6).
(ii) The vectors (µ̂(j)�µ0

(j)) 2 A1j , (�̂(j)��0(j)) 2 A2j , for each 1  j  p. Here Aij , i = 1, 2,

j = 1, ..., p, is a convex subset of Rp�1 defined as, Aij =
�
� 2 Rp�1; k�Sc

ij
k1  3k�Sijk1

 
,

with Sij being the set of indices defined in Condition A(i) and Sc
ij being its complement set.

This condition is a mild requirement and is known to hold in the static setting by com-
mon precision matrix estimation methods, including neighborhood selection and Graphical
Lasso. Condition C(ii) provides a restriction on the sparsity level of the estimated edge pa-
rameters and is common in the `1 regularization literature. In Section 3, the estimates of the
nuisance parameters developed satisfy this condition. Further, other common regularization
mechanisms, such as SCAD or the Dantzig selector are also applicable.

Feasibility of this condition is illustrated in detail in Section 3, where we show that it
can be eliminated and replaced by the intuitive rate restriction,

⇣ 1

 

⌘ns log3/2(p _ T )p
(T `T )

o
= O(1),

Further, a new estimator is proposed that satisfies the bound in (1.6). Finally, it is shown
how existing change point estimators in the literature -e.g., Lee et al. (2016), Bybee and
Atchadé (2018); Wang et al. (2021)- can serve towards the development of these preliminary
estimates, even though they do not possess the properties needed for inference; see, Corollary
11 and Algorithm 1 of Section 3.

2.2 Rate of Estimation of ⌧̃

We begin with our first result establishing the rate of convergence of the proposed estimator.

Theorem 1 Suppose Conditions A, B and C hold, and for any 0 < a < 1, let ca1, ca2 and
ca3 be as defined in Lemma 15. Then, for T su�ciently large, we have

(1 + ⌫2)�1(�2 _ �)�22 2|⌧̃ � ⌧0|  c2uc
2

a1, (2.1)

with probability at least 1� 3a� o(1). Equivalently, we have,
�
⌧̃ � ⌧0

�
= Op( �2).

Theorem 1 provides an Op( �2) rate of estimation, wherein the bounding constant ca
depends on the probability of the bound. This is sharper and in contrast to existing local-
izing bounds in the literature, for example an O

�
log(p _ T )

�
bound in Roy et al. (2017)

that holds with probability 1 � o(1); to observe this improvement note that the result in
Theorem 1 implies the latter, but the converse is not true. Moreover, its importance in
context of inference can be noted by observing that the bound of Theorem 1 traps the
sequence in  �2(⌧̃ � ⌧0) in a finite interval with a specific probability, thus providing the
feasibility of constructing a confidence interval. Also note that existing bounds as described
earlier do not yield this property, as their approach does not attempt to obtain a sharp
bound and instead conservatively bounds the sequence  �2(⌧̃ � ⌧0) under consideration, by
dominating the bounding constant by a diverging sequence (log p or similar). As a conse-
quence, these bounds do not provide a precise measure of probability and only guarantee
that the sequence converges to one. As such, it is the sharpest rate of estimation for a
change point estimator available in the literature that allows diverging or high dimensional
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p. For example, the corresponding estimation rate in Kolar and Xing (2012) and Gibberd
and Roy (2017) is O

�
 �2 log(p _ T )

�
, in Li et al. (2019) is O( �2 log4 T ), each holding

with probability 1 � o(1). Note that the jump size  appearing in the respective rates for
(Gibberd and Roy, 2017; Li et al., 2019; Roy et al., 2017) corresponds to the normalized
measure  = k⌃��kF /

p
p.

This result does not come at a price of stronger parametric assumptions. Specifically,
the jump size can potentially diminish to zero with the assumption (1.7) only requiring  
to be at least of order O

�
s log3/2(p _ T )

�p
(T `T )

�
. This is the weakest condition available

on the jump size in the literature for a graphical model; for example, Kolar and Xing (2012)
require it to be O(p log T

�
T )1/2, Gibberd and Roy (2017) require O

�
p
p
(log p�/2/T )

�
, while

several other articles also assume this jump size to be bounded below.

2.3 Asymptotic distributions of ⌧̃ and their relationship

Towards obtaining asymptotic distributions consider the following process, let W1(r), and
W2(r) be two independent Brownian motions defined on [0,1) and define,

Z(r) := Z
�
r,�2,�⇤2

�
=

8
>><

>>:

2W1(r)� |r| if r < 0,

0 if r = 0,
2�⇤

2
�⇤
1
W2(r)� �2

2
�2
1
|r| if r > 0,

(2.2)

where 0 < �1,�2,�⇤1,�
⇤
2
< 1, are estimable parameters that control both the variance and

the negative drift of the process Z(r). Next, assume the following mild technical conditions
that control the processes (2.2). For this purpose, define

"tj =

(
ztj � zTt,�jµ

0

(j), t = 1, ..., ⌧0

ztj � zTt,�j�
0

(j), t = ⌧0 + 1, ..., T.
(2.3)

Condition D: (i) Assume that the following limits exist,

⇠�2

2,2

pX

j=1

⌘0T
(j)⌃�j,�j⌘

0

(j) ! �21, and ⇠�2

2,2

pX

j=1

⌘0T
(j)��j,�j⌘

0

(j) ! �22, 0 < �21,�
2

2 < 1.

(ii) For "tj , for t = 1, ..., T, and j = 1, ..., p, as defined in (2.3), assume that,

⇠�2

2,2p
�1var

⇣ pX

j=1

"tjz
T
t,�j⌘

0

(j)

⌘
! �⇤21 , for t = 1, ..., ⌧0 and,

⇠�2

2,2p
�1var

⇣ pX

j=1

"tjz
T
t,�j⌘

0

(j)

⌘
! �⇤22 , for t = ⌧0 + 1, ..., T,

where 0 < �⇤2
1
,�⇤2

2
< 1.

All limits are with respect to T. The limits of Condition D are acting in T via the
dimension p and the jump size ⇠2,2. The limits �2

1
and �2

2
control the negative drift and �⇤2

1

and �⇤2
2

control the variance of the process (2.2).
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Note that finiteness of the limits appearing in Condition D is already guaranteed by prior
assumptions, and this condition only assumes their stability, i.e., we only assume here that
the sequence under consideration is not a bounded oscillating sequence such as {�1n}1n=1

.
Assumptions of this form are very commonly utilized in the literature to establish limiting
distributions. The most common one is the stability of the Gram matrix (X’X/n), assumed
in linear regression settings for inference on the regression coe�cients.

To see the described boundedness, first consider Condition D(i) and note that the as-
sumed convergence is on a sequence that is guaranteed to be bounded, i.e.,

⇠22,2 
pX

j=1

⌘0T
(j)⌃�j,�j⌘

0

(j)  �⇠22,2,

wherein the inequalities follow from the bounded eigenvalues assumption on the covari-
ance matrix ⌃

�
Condition B(ii)

�
, and analogous for the post-change covariance matrix �.

An easier to interpret, but stronger su�cient condition for the finiteness for the limits in
Condition D(i) is as follows. Let ⌃ =

⇥
�ij

⇤
i,j=1,...,p

, and � be symmetric matrices such that,

k⌃k1 = max
1jp

pX

i=1

|�ij | < 1,

and analogous for the matrix �. Then, we get

⇠�2

2,2

pX

j=1

⌘0T
(j)⌃�j,�j⌘

0

(j)  k⌃k1k⌃k1⇠�2

2,2

pX

j=1

k⌘(j)k22 = k⌃k1k⌃k1 < 1,

wherein the inequality follows from the relation k⌃k2
2
 k⌃k1k⌃k1, with k⌃k2 denoting the

operator norm. In other words, finiteness of the limits of D(i) are guaranteed by absolute
summability of components of each row (or column) of the underlying covariances, which
are in turn satisfied by large classes of such matrices, including Toeplitz and banded ones.

Next, finiteness of the assumed limits in Condition D(ii) can be illustrated by using
properties of sub-Gaussian distributions assumed earlier in Condition B. Specifically, let
⇣tj = "tjzTt,�j⌘

0 and ⇣t =
Pp

j=1
⇣tj , and note that E(⇣t) = 0. Further, using part (ii)

of Lemma 19 we get that ⇣t ⇠ subE(�), � = O(⇠2,1), with ⇠2,1 =
Pp

j=1
k⌘0

(j)k2. Hence,
⇠�1

2,2p
�1var(⇣t) = O

�
⇠2
2,1

�
p⇠2

2,2

�
= O(1) < 1, which follows by utilizing the elementary

relation ⇠2,1 
p
p⇠2,2 between the 1�norm and 2�norm.

Next, we state the result for the asymptotic distribution of the change point estimator
for the vanishing jump size regime  ! 0.

Theorem 2 (Vanishing jump size regime) Suppose Conditions A, B, C, and D hold. Fur-
ther, assume that  ! 0, while satisfying,

1

 

ns log3/2(p _ T )p
(T `T )

o
= o(1). (2.4)

Then, the estimator ⌧̃ of (1.5) has the following limiting distribution.

(�⇤1)
�2�41 

2(⌧̃ � ⌧0) ) argmaxr2RZ(r). (2.5)

where Z(r) is defined in (2.2).

9
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The cumulative distribution function of this limiting distribution is readily available in
Bai (1997), thereby allowing straightforward computation of its quantiles.

Remark 3 (On adaptation to nuisance estimates) The posited limit distribution is the
same as one would obtain when the nuisance parameters µ0, �0 were known. This is despite
⌧̃ utilizing 2p estimated vectors µ̂(j) and �̂(j), j = 1, ..., p, each of dimension (p� 1). This is
e↵ectively the adaptation property as described in Bickel (1982), but in a high dimensional
setting and within a change point parameter context.

Remark 4 (On the sparsity requirement and interplay with jump size) A note of interest
concerns the jump size scaling in Condition A and its relation to the inference properties. We
note that the scaling  �

�
cus log

3/2(p _ T )/
p
T `T

�
viewed from a sparsity (s) perspective

assumes a more sparse regime than the scaling  � cu
�
s log(p_T )/T `T

 
1/2

for which near
optimal estimation results have been established in context of other dynamic models such
as that of linear regression, see, e.g. Rinaldo et al. (2020). Assuming an increased sparsity
level is a key distinction that makes the inference results feasible. Some evidence pointing
to the sharpness of this assumption follows. In a linear regression framework, Lemma 4 in
Rinaldo et al. (2020) shows that the minimax optimal rate of estimation under a scaling

 � cu
�
s/T

 
1/2

is s �2, i.e., slower than Op( �2) obtained above and in turn disallowing
inference. Thus, at the very least, one may conclude that the sparsity level necessary for
being able to carry out inference should be diverging at a slower rate, as that assumed
in Condition A. Additional indirect evidence for the sharpness of this super-sparse scaling
arises from recent results on inference for a regression coe�cient in the presence of high
dimensionality. The debiased lasso (Van de Geer et al. (2014)) and orthogonalized moment
estimators (Belloni et al., 2014) and Ning et al. (2017) developed for this purpose, require
a similar super-sparsity assumption s log p/

p
T = o(1) for validity of inference results, over

an ordinary sparsity assumption.

Next, we obtain the limiting distribution in the non-vanishing jump size regime  !  1,
0 <  1 < 1. Let L represent the form of the distribution of the limiting random variable

of the sequence p�1
Pp

j=1

n
2"tjzTt,�j⌘

0

(j) � ⌘0T
(j)zt,�jzTt,�j⌘

0

(j)

o
. Then, define the following two

sided random walk with negative drift, initialized at the origin

C1(r) := C1
�
r, 1,�2, �̄2

�
=

8
><

>:

P�r
t=1

zt, r 2 N� = {�1,�2,�3, ...}
0, r = 0
Pr

t=1
z⇤t , r 2 N+ = {1, 2, 3, ...}.

(2.6)

Further, zt ⇠i.i.d L
�
�  2

1�
2

1
, �̄2

1

�
and z⇤t ⇠i.i.d L(� 2

1�
2

2
, �̄2

2
), and zt and z⇤t are also

independent of each other over all t. The notation in the arguments of L(· , · ) correspond
to the mean and variance of this distribution. The quantities 0 < �1,�2 < 1 are the same
as in the construction of the process Z(r). The parameters 0 < �̄2

1
, �̄2

2
< 1 are estimable

variance parameters of this limiting process which are related, but not identical to those
under the vanishing regime. To ensure regularity of this limiting process we require an
additional distributional assumption.

10



Change Point Inference in HD Covariances

Condition B0 (further distributional assumption): Suppose Conditions B and D hold.

Let �2
1
,�2

2
be as defined in Condition D and let �̄2

1
= limT var

h
p�1

Pp
j=1

n
2"tjzTt,�j⌘

0

(j) �

⌘0T
(j)zt,�jzTt,�j⌘

0

(j)

oi
, t  ⌧0, and similarly define �̄2

2
for t > ⌧0, such that 0 < �̄2

1
, �̄2

2
< 1.

Then, assume

p�1

pX

j=1

n
2"tjz

T
t,�j⌘

0

(j) � ⌘0T
(j)zt,�jz

T
t,�j⌘

0

(j)

o
) L

�
�  2

1�
2

1, �̄
2

1

�
, for t  ⌧0

p�1

pX

j=1

n
2"tjz

T
t,�j⌘

0

(j) � ⌘0T
(j)zt,�jz

T
t,�j⌘

0

(j)

o
) L

�
�  2

1�
2

2, �̄
2

2

�
, for t > ⌧0

for some distribution law L which is continuous and supported in R.
The only additional requirement imposed by Condition B0, in comparison to Conditions

B and D, is that the r.v.’s under consideration are continuously distributed; this is triv-
ially true in the typical Gaussian graphical model framework. The arguments in notation
L(µ,�2) are used to represent mean and variance of the distribution, i.e, EL(µ,�2) = µ,
and var

�
L(µ,�2)

�
= �2. The notation L(µ,�2) is only for ease of presentation and does not

imply that L is characterized by only its mean and variance.
To illustrate the mildness of Condition B0, consider the mean of the sequence of r.v.’s

under consideration for t  ⌧0,

Ep�1

pX

j=1

n
"tjz

T
t,�j⌘

0

(j) � ⌘0T
(j)zt,�jz

T
t,�j⌘

0

(j)

o
= �p�1

pX

j=1

⌘0T
(j)⌃⌘

0

(j) ! � 2

1�
2

1,

and analogously for t > ⌧0. The equality follows since E⌘0T
(j)zt,�jzTt,�j⌘

0

(j) = ⌘0T
(j)⌃⌘

0

(j), and

E"tj = EzTt,�j⌘
0

(j) = 0, and moreover, "tj and zt,�j are uncorrelated by construction in (2.3).

Then, convergence in expected value follows from Condition D(i) provided that  !  1.
Next, consider the variance of these r.v.’s. From the properties of sub-Gaussian and

sub-exponential distributions (also see, discussion after Condition D), we have,

var
h
p�1

pX

j=1

2"tjz
T
t,�j⌘

0

(j)

i
= O

�
⇠22,2/p

�
= O( 2

1) < 1, and

var
h
p�1

pX

j=1

⌘0T
(j)zt,�jz

T
t,�j⌘

0

(j)

i
= O

�
⇠42,2

�
p2
�
= O( 4

1) < 1, thus,

var
h
p�1

pX

j=1

n
2"tjz

T
t,�j⌘

0

(j) � ⌘0T
(j)zt,�jz

T
t,�j⌘

0

(j)

oi
= O( 2

1) +O( 4

1) < 1. (2.7)

Relation (2.7) implies the sequence of r.v.’s in Condition B0 have bounded variances, thereby
the distribution of the limiting random variable is well defined (L < 1, a.s.). Condition
B0 simply provides a notation L to whatever distribution this may be, with appropriate
variance notation �̄2

1
or �̄2

2
, respectively. One may observe that thus far in our discussion

no additional assumption has been made in Condition B0 in addition to Condition B and
Condition D and the change of regime to the non-vanishing jump size.

11
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The only additional assumption of Condition B0, of continuity of the distribution L is
assumed for the regularity of the argmax of this two sided random walk (see, Lemma 16).

Theorem 5 (Non-vanishing jump regime) Suppose Conditions A, B0, C, and D hold. Fur-
ther, assume that  !  1, 0 <  1 < 1, and that

�
s log3/2(p_T )

�p
(T lT )

 
= o(1). Then,

the estimator ⌧̃ in (1.5) has the following limiting distribution:

(⌧̃ � ⌧0) ) argmaxr2ZC1(r). (2.8)

where C1(r) is as defined in (2.6).

The process C1(r) is a two sided random walk with negative drift and continuously
distributed increments. Although the limit distribution is well defined, its distribution
function does not have any known characterization. Its quantiles can be approximated
numerically by first drawing sample path realizations of the given stochastic process, in
turn providing realizations of its argmax.

Remark 6 (Comparison of limiting distribution results obtained to those established for
mean shift models) An important observation distinguishing these processes is that the limit-
ing process in the vanishing regime is characterized by the sequence ⇣t = p�1

Pp
j=1

"tjzTt,�j⌘
0

(j),

t = 1, ..., T, whereas in the non-vanishing regime by the sequence ⇣t = p�1
Pp

j=1

n
"tjzTt,�j⌘

0

(j)�

⌘0T
(j)zt,�jzTt,�j⌘

0

(j)

o
, t = 1, ..., T. A somewhat unusual consequence is that the increments

of the limiting process change from symmetric to asymmetric in the vanishing and non-
vanishing regimes, respectively. This observation further distinguishes the above result
from that for mean shift models, such as that obtained in Kaul et al. (2021), wherein the
same sequence of r.v.’s characterizes limiting processes for both vanishing and non-vanishing
regimes. Another consequence is that the presence of an additional quadratic form in the
sequence of interest leads to an inflation in the variance of the process in the non-vanishing
regime. The reason for this can be observed from (2.7), where the variance of the quadratic
form is O( 4), whereas the variance of the remainder is O( 2). Thus, in the vanishing
regime the first part of the r.v. under consideration dominates the quadratic form, which
is no longer true in the non-vanishing jump regime.

The above results provide the capability of performing inference on ⌧0 given the regime
of the jump size  . However, determination of whether one operates in a vanishing vs. a
non-vanishing regime is unverifiable in practice. Consequently, it is unclear which of the
two confidence intervals constructed using Theorems 2 or 5 would provide a more precise
representation in a real data setting. In order to address this problem, we examine the
relationship between the two limiting distributions obtained in (2.5) and (2.8) and show
that if the underlying regime is a vanishing one, then the distribution of the non-vanishing
regime undergoes an asymptotic adaptation to it. This result has significant implications
which are discussed after the statement of the result below.

The following result establishes an asymptotic relationship between two distributions.
It is independent of the considered model framework. However, it is stated in coherent
notations to allow its direct applicability. For explicit clarity on the acting limits in this
result, we introduce subscripts on all involved sequences which have thus far been implicit.
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Theorem 7 Suppose L(µ,�2) is any distribution law, with EL(µ,�2) = µ and finite vari-
ance, varL(µ,�2) = �2 < 1. Let L be continuously distributed and invariant under scalar
addition and multiplication2. Furthermore, let  T , �

2

1T
,�2

2T
and �̄2

1T
, �̄2

2T
be positive se-

quences in T, such that, as T ! 1, the following limits hold. (i)  T ! 0, (ii) �2
1T

! �2
1
, and

�2
2T

! �2
2
, and finally, (iii)  �2

T
�̄2

1T
! 4�⇤2

1
and  �2

T
�̄2

2T
! 4�⇤2

2
, where 0 < �1 ,�2 ,�

⇤
1
,�⇤

2
<

1. Then, we have the following,

(�⇤1)
�2�41 

2

T
argmaxr2ZC1

�
r, T ,�

2

T
, �̄2

T

�
) argmaxr2RZ

�
r,�2,�⇤2

�
, when T ! 1, (2.9)

where C1
�
r, T ,�

2

T
, �̄2

T

�
and Z

�
r,�2,�⇤2

�
are as defined in (2.6) and (2.2), respectively.

Theorem 7 shows that the distributions in the non-vanishing and vanishing jump size
regimes correspond to the discrete and continuous versions of the same underlying stochas-
tic process (when viewed in a limiting sense). This is conceptually akin to the elementary
limiting relationship between geometric and exponential distributions. Technically, Theo-
rem 7 is perhaps not particularly surprising when viewed from a probabilistic perspective.
All it says is that a suitably normalized random walk converges to a Brownian motion
(functional central limit theorem (Donsker’s Theorem), see, e.g., Theorem 4.3.2 of Whitt
(2002)). The convergence of the argmax following an inclusion of a negative drift can then
be viewed roughly as an application of a version of the continuous mapping theorem.

Remark 8 In order to view Theorem 7 in context of the model (1.1) and the limiting
results (2) and (5) one can set distribution L as that in Condition B’ and the underlying
sequences as follows. 1. The sequence  T is the jump size as defined in (1.3). 2. The
sequences �2

1T
and �2

2T
represent finite sample negative drifts as defined in Condition D, i.e.,

�2
1T

= ⇠�2

2,2

pX

j=1

⌘0T
(j)⌃�j,�j⌘

0

(j),

and symmetrically define �2
2T
, w.r.t covariance matrix �. 3. The sequences �̄2

1T
and �̄2

2T

represent finite sample variances as defined in Condition B’, i.e.,

�̄2
1T

= var
h
p�1

pX

j=1

n
2"tjz

T
t,�j⌘

0

(j) � ⌘0T
(j)zt,�jz

T
t,�j⌘

0

(j)

oi
, for any t  ⌧0,

and symmetrically define �̄2
2T
, for t > ⌧0. Then, all assumptions of Theorem 7 hold. Specif-

ically,  T ! 0 from regime mis-specification. �2
1T

! �2
1
, and �2

2T
! �2

2
, from Condition

D. Finally,  �2

T
�̄2

1T
! 4�⇤2

1
and  �2

T
�̄2

2T
! 4�⇤2

2
, where �⇤2

1
and �⇤2

2
are also defined in

Condition D. The latter convergence follows from (2.7) and the discussion in Remark 6.

To discuss implications of Theorem 7, note the normalization on the lhs of (2.5) is the
same as on the lhs of (2.9). On the other hand, the lhs of (2.8) is un-normalized, thus
Theorem 7 provides a direct connection between confidence intervals for ⌧0 in either of the
vanishing and non-vanishing regimes. More precisely, one can construct intervals as,

CI(⌧̃) :=
⇥
(⌧̃ � qnv↵ ), (⌧̃ + qnv↵ )

⇤
, (2.10)

2. aL(µ,�2
) + b ⇠ L(aµ+ b, a

2
�
2
), for any constants a, b < 1.
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where qnv↵ is the symmetric quantile so that (�qnv↵ , qnv↵ ) contains (1� ↵) of the probability
mass of (2.8) of the non-vanishing regime. The interval CI(⌧̃) is clearly valid w.r.t the
non-vanishing regime. On the other hand, an interval constructed directly using Theorem 2
for the vanishing case would be

⇥
⌧̃ ± �⇤2

1
��4

1
 �2qv↵

⇤
, where qv↵ is the corresponding quantile

of the distribution in this case. Instead of using this direct formulation, obtaining the
required quantile using the finite sample approximation of Theorem 7, one obtains the
asymptotically equivalent (�⇤

1
)2��4

1
 �2qv↵ ⇣ qnv↵ . Substituting back in the interval yields

exactly the construction of CI(⌧̃). Thus, the results of Theorem 2, Theorem 5 and their
relationship in Theorem 7 together imply that doing so shall yield the desired (1 � ↵)

asymptotic coverage, pr
⇣
(⌧̃ � qnv↵ )  ⌧0  (⌧̃ + qnv↵ )

⌘
! (1 � ↵), irrespective of whether

the underlying regime is vanishing or non-vanishing. In other words, the interval CI(⌧̃)
is indeed regime adaptive. A summary of the implementation details for computation of
CI(⌧̃) is provided as Algorithm 4 in Section 4.

The above analysis can be appreciated by a comparison to the only other method that
provides this feature, which is regime adaptive bootstrap, for e.g., Antoch et al. (1995);
Cho and Kirch (2021). It proceeds by obtaining an empirical distribution of the change
point estimator. Our approach on the other hand completely bypasses the need to perform
such computationally intensive examination of the empirical distribution, which is especially
useful under the considered high dimensional setting. This comparison is also only heuristic
since no such bootstrap method is available in the considered second order setting.

Finally, we briefly discuss the converse case, i.e., what would happen if we use the
confidence intervals of the vanishing jump size regime in the non-vanishing regime. The
reason one may be tempted to perform this converse routine may be due to the ease of
computing of quantiles. However, an immediate concern is regarding the variance infla-
tion of the non-vanishing regime discussed in Remark 6, i.e., the asymptotic variance �⇤2

implied by the vanishing regime will underestimate the true variance under a finite jump
size. Thus, employing confidence intervals obtained for the vanishing regime, under regime
mis-specification may yield inaccurate coverage. A potential numerical correction for this
problem is to utilize a corrected version ( �2�̄2/4) in place of �⇤2 as suggested by the re-
lation between these two variances (see, (3) of Remark 8) while utilizing the result of the
vanishing regime. A detailed examination of this problem and theoretical validation of this
correction remains an important question, however, it is outside the scope of this article.
We also mention that an alternative recent approach has also been proposed in Theorem
28 of Bhattacharjee et al. (2020) in the direction of regime adaptation, which relies on sim-
ulated sampling of the data generating process and generating an empirical distribution of
change point estimates which in turn can be utilized to obtain regime free confidence inter-
vals. This approach is conceptually closer to the traditional bootstrap method and is thus
numerically significantly more intensive. Further, it relies on several additional assumptions
on the signal to noise ratio for the setting under consideration. We conclude the Section
with a remark on implementation of the interval CI(⌧̃).

Remark 9 (Numerical approximations of distribution law L) One requires quantiles from
the limiting distributions in order to construct CI(⌧̃). Unlike the distribution in Theorem
2, this cdf is not available analytically. To construct confidence intervals, one needs to
simulate sample paths of the random walk C1(r), and then obtain realizations of its argmax
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to calibrate the quantiles of L. Specifically, realizations from the incremental distributions
L
�
�  2�2

1
, �̄2

1

�
and L

�
�  2�2

2
, �̄2

2

�
of Condition B0 need to be simulated. Note that the

means can be computed as plug in estimates from the estimated jump size and the given
form in Remark 8. The variances �̄2

1
and �2

2
can also be estimated as piecewise sample

variances from the observed data by noting that one has available T predicted realizations,

⇣̂t = p�1
Pp

j=1

n
2"̂tjzTt,�j ⌘̂(j) � ⌘̂(j)zt,�jzTt,�j ⌘̂(j)

o
, t = 1, ..., T. Thus, the only missing link

that remains is the form of the distribution L. Since no explicit assumptions on the form of
the underlying data generating distribution have been made in the article, thus identifying
the distribution L is not analytically feasible. For the Gaussian case, the distribution
L becomes an average of inter-dependent Variance-Gamma distributed random variables,
which to the best of our knowledge has no known analytical form. We overcome this hurdle
of choosing the form of L by performing an empirical fit to the predicted realizations ⇣̂t,
t = 1, ..., T, by means of the Kolmogorov-Smirnov goodness of fit test. Details of this process
are described in Section 4 and Algorithm 3 therein.

3. Constructing a feasible Op( �2) estimator for ⌧
0

The results of Section 2 rely on estimates of the nuisance parameters satisfying Condition C.
Procedures to obtain such estimates and the required theoretical guarantees are discussed
next. We start by introducing additional notation. For any ⌧ 2 {(1, ..., (T � 1))}, consider
the `1 regularized (Lasso) estimates of the regression of each column of the observed variables
z 2 RT⇥p on the remaining columns, for each of the two binary partitions induced by ⌧.
Specifically, for each j = 1, ..., p, define,

µ̂(j)(⌧) = argminµ(j)2Rp�1

n1

⌧

⌧X

t=1

�
ztj � zTt,�jµ(j)

�
2
+ �jkµ(j)k1

o
, (3.1)

�̂(j)(⌧) = argmin�(j)2Rp�1

n 1

(T � ⌧)

TX

t=⌧+1

�
ztj � zTt,�j�(j)

�
2
+ �jk�(j)k1

o
,

where �j > 0. Towards obtaining these estimates, we begin with a modification of Con-
dition A that is su�cient for this Section and is weaker than the original one.

Condition A0 (assumption on model parameters): Assume Condition A(i) and A(ii)
and in place of A(iii) assume the following weaker requirement.

cu
p
(1 + ⌫2)

�2

 

ns log(p _ T )

T (1�2b)`T

o 1
2  cu1,

for some 0 < b < (1/2), where cu1 > 0 is a suitably chosen small constant.

The following result studies the behavior of the estimates (3.1) uniformly over the col-
lection G(uT , vT ) of ⌧ as defined in (A.2).

Theorem 10 Suppose Condition A0 and B hold. Let 0  uT  1 be any sequence and
�j = 2(�1j + �2j), where

�1j = cu�
2
p
(1 + ⌫2)

n log(p _ T )

T `T

o 1
2
, �2j = cu(�

2 _ �)k⌘0
(j)k2max

n log(p _ T )

T `T
,
uT
`T

o
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Then, uniformly over all j = 1, ..., p, the following two properties hold with probability at
least 1� cu2 exp

�
� (cu3 log(p _ T )

 
, for some cu2, cu3 > 0.

(i) The vectors µ̂(j)(⌧) � µ0

(j) 2 A1j , and �̂(j)(⌧) � �0
(j) 2 A2j , where the sets Aij , i = 1, 2,

and j = 1, ..., p are as defined in Condition C.
(ii) For any constant cu1 > 0, we have,

sup
⌧2G(uT ,0);

⌧^(T�⌧)�cu1T `T

kµ̂(j)(⌧)� µ0

(j)k2  cu

p
s


�j .

The same upper bounds also hold for �̂(j)(⌧)� �0
(j), uniformly over j and ⌧.

From a practical perspective, Theorem 10 aids in showing that the only requirement
for the main results of Section 2 to hold is solely the availability of any preliminary near
optimal estimate ⌧̂ lying in a wider neighborhood of ⌧0 in comparison to ⌧̃ . Specifically,
consider any estimate satisfying

(⌧̂ � ⌧0) = O
�
 �2 log(p _ T )

�
, w.p. 1� o(1). (3.2)

Recall from the construction (A.2) of set G(uT , 0), that uT is the sequence that measures
the outer bound of the distance with the underlying change point ⌧0, i.e., in the case of ⌧̂ in
(3.2), we have uT = c �2T�1 log(p _ T ). Substituting this choice of uT in Theorem 10 and
simplifying resulting expressions, it may be observed that the resulting nuisance estimates
µ̂(j)(⌧̂), �̂(j)(⌧̂), j = 1, ..., p satisfy all requirements of Condition C. Note that the weaker
bound (3.2) is the resulting localization error of the existing methods in the literature for a
second order shift. This allows us to integrate these existing methods and develop a method
that allows one to attain a sharp rate of estimation together with the inference properties
described in Section 2. This is described below in Algorithm 1.

Algorithm 1: Op( �2) estimation of ⌧0 :

Step 1: Implement any estimator ⌧̂ from the literature that satisfies (3.2) with
probability 1� o(1).

Step 2: Obtain µ̂(j) = µ̂(j)(⌧̂), and �̂(j) = �̂(⌧̂), j = 1, ..., p, and perform update,

⌧̃ = argmin⌧2{1,...,(T�1)}Q(⌧, µ̂, �̂)

(Output): ⌧̃

The most direct estimator that can be utilized in Step 1 is that of a full grid search, i.e.,
searching over all combinations of (⌧, µ(⌧), �(⌧)),

⌧̂ = argmin⌧2{1,...,(T�1)}Q(⌧, µ(⌧), �(⌧))

Such full grid search estimators have been studied in several contexts and it can be shown
via standard arguments, such as those in Lee et al. (2016) that they satisfy the weaker rate
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of estimation (3.2). These arguments are not repeated here to avoid redundancy. Other
estimators from the literature that can be used in Step 1 of Algorithm 1 include the ones
introduced in Bybee and Atchadé (2018); Wang et al. (2021) that aim to avoid a brute
force search and save on computational time. Note that all of these estimators only come
with the weaker bound (3.2) and do not provide the sharp rate of Theorem 1. Further,
Algorithm 1 can be viewed as performing a refitting of the change point estimate in Step 2,
which leads to improving the Op

�
 �2 log(p_T )

�
rate to the attainable sharp rate Op( �2)

and thereby enabling inference on the change point as per the discussion of Section 2. This
is summarized in the following Corollary.

Corollary 11 Suppose Conditions A0 and B hold and that
�
maxj k⌘0(j)k2/( 

p
s)
�
= O(1).

Then, the nuisance estimates µ̂(j), and �̂(j), j = 1, ..., p, from Step 2 of Algorithm 1 satisfy
all requirements of Condition C. Upon assuming Condition A, ⌧̃ of Algorithm 1 satisfies
the Op( �2) rate of Theorem 1. Further assuming Condition D and (2.4), ⌧̃ possesses the
limiting distribution of Theorem 2 under a vanishing jump size regime. Finally, assuming
Condition B0, additionally yields the limiting distribution of Theorem 5 of the non-vanishing
regime, together with the regime adaptation of Theorem 7.

Algorithm 1 presents all necessary steps for a feasible implementation of the proposed
methodology, while Corollary 11 summarizes estimation and inferential properties of the
resulting change point estimate.

Next, we introduce a new computationally e�cient estimator that can be used in Step 1
of Algorithm 1. The key idea is that a single refitting step leads to an improvement in the
rate of estimation from (3.2) to Op( �2). Similarly, upon backtracking one more step, one
can further relax the required localization (3.2) to a nearly arbitrarily large interval around
the change point parameter.

The twice iterative approach of the estimator to be considered is as follows. Rough edge
estimates µ̌(j) = µ̂(j)(⌧̌), and �̌(j) = �̂(j)(⌧̌), j = 1, ..., p, computed using a nearly arbitrary
⌧̌ 2 (0, 1) (see, Condition E below) possess su�cient information, so that a single step
update ⌧̂ = ⌧̃(µ̌, �̌), moves into a near optimal neighborhood (nbd.) Op

�
 �2 log(p _ T )

�
.

This provides the intermediate relation (3.2). Next, proceeding as in Algorithm 1, this near
optimal estimate ⌧̂ , upon another refitting yields an improvement to optimality, specifically
and Op( �2) rate and thus ensuring that the results of Section 2 hold. More specifically,
we shall establish that Algorithm 2 moves any starting value in this o(T 1�k) neighborhood

into an optimal neighborhood in two iterations, i.e., o(T 1�k)-nbd.
Step1���! near optimal-nbd.,

Op( �2 log p)
Step2���! optimal-nbd., Op( �2). Note the sequential improvement in the rate of

convergence from initialization to Step 2. Moreover, the improvement to optimality occurs
in exactly two iterations. The procedure is stated as Algorithm 2 below and is described
visually in Figure 1.

The only additional requirement of Algorithm 2 in comparison to Algorithm 1 is the
following mild condition imposed on the initializer ⌧̌ of Algorithm 2.

Condition E (initializer): Assume initializer ⌧̌ of Algorithm 2 satisfies,

(i) ⌧̌ ^ (T � ⌧̌) � cuT `T , (ii) |⌧̌ � ⌧0|  cu`T
s(�2 _ �)T

(1�k),
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Algorithm 2: Op( �2) estimation of ⌧0 :

(Initialize): Initialize ⌧̌ 2 {1, ..., (T � 1)}.

Step 1: Obtain µ̌(j) = µ̂(j)(⌧̌), and �̌(j) = �̂(⌧̌), j = 1, ..., p, and update change point as,

⌧̂ = argmin⌧2{1,...,(T�1)}Q(⌧, µ̌, �̌)

Step 2: Obtain µ̂(j) = µ̂(j)(⌧̂), and �̂(j) = �̂(⌧̂), j = 1, ..., p, and perform another update,

⌧̃ = argmin⌧2{1,...,(T�1)}Q(⌧, µ̂, �̂)

(Output): ⌧̃

⌧̌
µ̌ = µ̂(⌧̌)
�̌ = �̂(⌧̌) ⌧̂

µ̂ = µ̂(⌧̂),
�̂ = �̂(⌧̂)

⌧̃

Condition

E satisfied

Lemma

17 bounds
Op

�
 

�2
log p

�
Op( 

�2
)

Condition

C satisfied

Figure 1: A schematic of the proposed Algorithm 2 and its underlying working mechanism.

for any constant k > 0.3

The first requirement of Condition E is clearly innocuous and simply requires a sepa-
ration of the chosen initializer from the boundaries of the parametric space of the change
point which is satisfied with any (⌧̌/T ) 2 [cu1, cu2] ⇢ (0, 1). Regarding the second require-
ment, for simplicity consider the case when `T � cu, i.e., the true change (⌧0/T ) lies in
some bounded subset of (0, 1), and the sparsity parameter is bounded above by a constant.
Then, the requirement reduces to |⌧̌�⌧0| = o(T 1�k), where the constant k is any arbitrarily
small, but fixed value; in other words, the initializer may be in any arbitrary polynomial
neighborhood o(T (1�k)) of ⌧0.

Remark 12 (Computational Complexity) The complexity of Algorithm 1 depends on the
method utilized in Step 1, i.e., the implementation time scales as O(Step1) + O(p4 + T ).
For Algorithm 2, the corresponding time scaling is O(T + p4). Here O(T ) corresponds to
the one-dimensional minimizations required to update the change point parameters, the
remaining comes from the p Lasso optimizations carried out to update the coe�cients µ, �,
with each Lasso optimization scaling as O(p3) via the algorithm LARS (see, page 443, Efron
et al. (2004)). For comparison purposes, the complexity of a full grid search via the loss
(1.4) would be O(Tp4), as these methods in principle attempt to simultaneously optimize
the change point and coe�cient parameters. Similar grid search methods are common in
the change point literature, for e.g., Lee et al. (2016). We note that the added cost towards

3. Without loss of generality we assume k < b, where b is as defined in Condition A
0
.
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computation of the confidence intervals (see, Algorithm 4 in Section 4) is observed to be
negligible relative to the estimation process as it only requires Monte Carlo sampling.

A theoretically valid initializer ⌧̌ in an very wide o(T 1�k) neighborhood of ⌧0 can be
obtained by a preliminary coarse grid search as follows: consider T k equally separated
values in P ⇢ {1, ..., T} forming a coarse grid of possible initializers, for any arbitrarily
chosen, but fixed value k. Then, select the best fitting value ⌧̌ for Algorithm 2, i.e., ⌧̌ =
argmin⌧2PQ

�
⌧, µ(⌧), �(⌧)

�
. Then, by leveraging arguments analogous to those developed

for the proof of Theorem 1, or more generally similar to those available in the literature
pertaining to grid search approaches for e.g., Bhattacharjee et al. (2017) and Lee et al.
(2016),4 it can be shown that this best fitting value is closest to the true change point
⌧0, amongst the choices available in the coarse grid. As a consequence, by the pigeonhole
principle it must be in an o(T 1�k) neighborhood of ⌧0, and hence a valid initializer. A
similar preliminary coarse grid search has also been heuristically utilized in Roy et al.
(2017) in a di↵erent high dimensional model setting, in Kaul et al. (2019, 2021) for mean
shifts, and most recently in McGonigle and Peng (2021). All simulation experiments in
Section 4 consider a preliminary search grid of ⌧̌ 2 {b0.25·T c, b0.5·T c, b0.75·T c} to select
the initializer for Algorithm 2. The following Theorem establishes that ⌧̂ of Step 1 of
Algorithm 2 lies in an O

�
 �2 log(p _ T )

�
neighborhood of ⌧0, i.e., satisfies (3.2).

Theorem 13 Suppose Conditions A0, B and E hold. Let ⌧̂ be the change point estimate in
Step 1 of Algorithm 2. Then, for su�ciently large T , we have,

 2(1 + ⌫2)�1(�2 _ �)�22
��⌧̂ � ⌧0

��  cu log(p _ T ) (3.3)

with probability 1� o(1). In other words,
�
⌧̂ � ⌧0

�
= O

�
 �2 log(p _ T )

�
, w.p. 1� o(1).

Theorem 13 establishes that the behavior of Step 2 in Algorithm 2 is now identical to that
Algorithm 1. Specifically, the resulting estimate ⌧̃ satisfies the desirable estimation and
inference properties developed in Section 2. This is summarized in the following Corollary.

Corollary 14 Suppose the conditions of Corollary 11 hold and additionally assume that the
initializer ⌧̌ of Algorithm 2 satisfied Condition E. Then, ⌧̃ of Algorithm 2 satisfies the sharp
rate of estimation of Theorem 1 and the possesses the limiting distributions of Theorem 2
and Theorem 5 together with their inter-relationship of Theorem 7.

4. Implementation details and performance evaluation

Construction of confidence intervals requires evaluation of the quantile qnv↵ of the argmax
of the two sided random walk. This is computed by simulating 3000 realizations of this
distribution and its Monte Carlo approximation. This approximation requires estimation
of the drift and variance parameters �2

1
,�2

2
and �⇤2

1
,�⇤2

2
, �̄2

1
, �̄2

2
, as defined in Remark 8, as

well as identification of L of Condition B0. The following discussion provides the methods
employed for these calculations.

4. Note that a full grid search is simply the case where P = {1, .., (T � 1)}.
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4.1 Implementation details

Computation of asymptotic variances and negative drifts. Step 2 of Algorithm 1 or 2
yields `1 regularized estimates µ̂(j) and �̂(j). In order to alleviate finite sample regularization
biases we undertake a supplemental step of refitting these coe�cient estimates as ordinary
least squares on estimated non-zero indices, i.e., let Ŝ1j = {k ; µ̂(j)k 6= 0} and Ŝ2j =
{k ; �̂(j)k 6= 0}, j = 1, ..., p. Then define,

µ̃(j) = argminµ(j)2Rp
;

µ(j)k=0;

8k2Ŝc
1j

1

⌧̃

⌧̃X

t=1

�
ztj � zTt,�jµ(j)

�
2
, j = 1, ..., p

and symmetrically define �̃(j), j = 1, ..., p. It is known that such refitted estimates preserve
the rate of convergence of the regularized version while reducing finite sample biases, see,
e.g. Belloni et al. (2011). The jump sizes ⇠2,2 and  are then estimated using these refitted

coe�cient vectors, i.e., let ⌘̃(j) = µ̃(j)� �̃(j), then ⇠̃2,2 =
�Pp

j=1
k⌘̃(j)k22

�
1/2

and  ̃ = ⇠̃2,2/
p
p.

Recall the definition of drift parameter �2
1
= ⇠�2

2,2

Pp
j=1

⌘0T
(j)⌃�j,�j⌘0(j), and similar for �2

2

from Remark 8. Plug in versions are computed by utilizing the above described ⇠̃2,2 and ⌘̃(j),
j = 1, ..., p. The covariances in the above calculation are chosen as the sample covariances
⌃̃ and �̃ computed on the binary partition induced by ⌧̃ . Since we are not interested in the
estimation of the covariances themselves but instead the quardratic form described above,
thus utilizing the sample covariances is e↵ectively identical to utilizing refitted covariances
on the adjacency matrix defined by the jump parameters ⌘̃(j), in turn making this shortcut
valid despite potential high dimensionality.

Finally consider asymptotic variances �̄2
1
, �̄2

2
. Plug in estimates are infeasible here since

no closed form expressions are available for these variances. Instead, define

"̃tj =

(
ztj � zTt,�jµ̃(j), t = 1, ..., ⌧̃

ztj � zTt,�j �̃(j), t = ⌧̃ + 1, ..., T,

Next, recall from Remark 8, �̄2
1
is defined as var

⇥
p�1/2Pp

j=1
"tjzTt,�j⌘

0

(j)� ⌘
0T
(j)zt,�jzTt,�j⌘

0

(j)

⇤
.

Thus, one can obtain ⌧̃ predicted realizations as ⇣̃⇤t = p�1/2Pp
j=1

"̃tjzTt,�j ⌘̃(j)�⌘̃T(j)zt,�jzTt,�j ⌘̃(j),

t = 1, ..., ⌧̃ . The parameter �̄2
1
is then estimated as the sample variance of these realizations,

˜̄�21 =
1

⌧̃

⌧̃X

j=1

⇣
⇣̃⇤t � ¯̃⇣

⇤
t

⌘
2

.

The parameter �̄2
2
is approximated analogously as the sample variance of predicted realiza-

tions ⇣̃⇤t from the post binary partition ⌧̃ + 1, ..., T.

Empirically fitting the distribution law L: Here we illustrate the process employed to
empirically fit a distribution L of Condition B0. The distribution under question is that of
the sequence p�1

Pp
j=1

�
2"tjzTt,�j⌘

0

(j) � ⌘0T
(j)zt,�jzTt,�j⌘

0

(j)

 
in the limit. As described above,

the available data z and plug in estimates of underlying parameters allow one to obtain
predicted realizations from this distribution. Figure 2 provides an example of the centered
and scaled distribution of these realizations when the data generating process is Gaussian.
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Algorithm 3: Empirically fitting a centered and scaled �2

k to the distribution law L.

Step 1: Obtain refitted estimates µ̃(j), �̃(j) and ⌘̃(j), j = 1, ..., p and obtain predicted
realizations,

⇣̃t = p�1

pX

j=1

�
2"̃tjz

T
t,�j ⌘̃(j) � ⌘̃T

(j)zt,�jz
T
t,�j ⌘̃(j)

 
, t = 1, ..., T. (4.1)

Step 2: Piecewise center and scale the predicted realizations ⇣̃t, i.e.

⇣̃⇤t =

(
(⇣̃t � ⇣̄t1)/sd1, t = 1, ..., ⌧̃

(⇣̃t � ⇣̄t2)/sd2, t = ⌧̃ + 1, ..., T.

Here ⇣̄t1, ⇣̄t2 and sd1, sd2 are the piecewise sample means and standard deviations,
respectively.

Step 3: Consider a negative centered and scaled �2

k distribution with k degrees of
freedom, i.e., X = �(�2

k � k)/
p
(2k) and utilize the Kolmogorv-Smirnov (K-S) goodness of

fit test to check for the empirical fit between X and the realizations ⇣̃⇤t , t = 1, ..., T.

Step 4: Repeat Step 3 on a grid of values for the degrees of freedom k 2 {1, 2, 3....} and
choose k as the maximizing value of the p-value of the K-S test.

The following two key observations are in order: First, given the sub-Gaussian assump-
tion of Condition B, the distribution under investigation must be sub-exponential. This
observation allows considerable reduction of the potential distributions to be tested to a
sub-class of well known sub-expoential distributions. Next, note that the second part of
the sequence under consideration is a quadratic form, thus it induces a skewness in the
distribution with the underlying skewness diminishing with a decreasing jump size5. Since
this quadratic form appears with a negative sign in the distribution of interest, thus the
skewness appears through a larger left tail.

In view of the above, we consider a negative centered and scaled chi-square distribution
as an empirical fit. The negative sign switches the right skew of a chi-square to a left skew.
Further, an increasing degrees of freedom parameter of this chi-square allows one to fit a
distribution from complete left skew to perfect symmetry. Specifically, we utilize Algorithm
3, where the degrees of freedom of this chi-square distribution are selected so as to maximize
the p-value of the Kolmogorov-Smirnov goodness of fit test, i.e., so as to provide the best
fitting chi-square approximation to the underlying distribution. An illustration of the fitted
distribution using Algorithm 3 is provided in Figure 2.

4.2 Numerical results

Evaluation of Regime Adaptivity: Next, we construct confidence intervals as described
in (2.10). In view of Theorem 7 and the ensuing discussion, these confidence intervals are

5. Recall from (2.7), variance of the quadratic form is O( 
4
), whereas the first symmetric part is O( 

2
).

21



Kaul, Zhang, Tsampourakis and Michailidis

Algorithm 4: Overall Inference Procedure for ⌧0

Step 1: Implement Algorithm 1 or Algorithm 2 to obtain estimate ⌧̃ .

Step 2: Obtain quantile qnv↵ at any given coverage ↵ of limiting distribution of the
non-vanishing regime as follows:

a: Obtain estimates for jump size ( ̃), drift (�̃2
1
, �̃2

2
) and variance (˜̄�2

1
, ˜̄�2

2
) as

described in Section 4.1.

b: Implement Algorithm 3 to identify incremental distribution L.
c: Repeatedly sample the distribution argmaxrC1(r) with parameters and

distribution identified in Step 2a and Step 2b, respectively. Obtain the Monte Carlo
approximation of qnv↵ as the symmetric sample quantile that cuts-o↵ central (1� ↵)
proportion of the obtained realizations.

(Output): Confidence interval:
⇥
⌧̃ ± qnv↵

⇤

Figure 2: Histograms of ⇣̃
⇤
t , along with superimposed densities of negative centered and scaled �

2
k distribu-

tions with df identified via K-S goodness of fit test. Top panels: p = 25, and p = 50, (fitted distributions with

df=5, 7, respectively. p-values of K-S test: 0.90, 0.95, respectively.) Bottom panels: p = 150 and p = 250.

(fitted distributions with df=7, 8, respectively. p-values of K-S test: 0.99, 0.82, respectively.)
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Jump
Size
 

Ratio of quantiles
⇣
qnv↵

�
(�⇤2

1
��4

1
 �2qv↵)

⌘

↵ = 0.2 ↵ = 0.1 ↵ = 0.05 ↵ = 0.01

2.00 0 0 0 0
1.74 0 0 0 0
1.48 0 0 0 0
1.22 0 0.789 0.543 0.304
0.97 0.811 0.493 0.679 0.571
0.71 0.877 0.800 0.735 0.721
0.45 0.898 0.873 0.752 0.717
0.20 1.032 1.025 0.951 0.945

Jump
Size
 

Ratio of quantiles
⇣
qnv↵

�
(�⇤2

1
��4

1
 �2qv↵)

⌘

↵ = 0.2 ↵ = 0.1 ↵ = 0.05 ↵ = 0.01

2.00 0 0 0 0.807
1.74 0 0 1.094 0.613
1.48 0 1.153 0.795 0.891
1.22 1.298 0.789 1.087 0.914
0.97 0.811 0.986 1.019 1.143
0.71 0.877 1.066 1.102 0.927
0.45 0.898 0.873 0.903 0.886
0.20 0.963 0.961 1.009 0.945

Table 1: Comparison of quantiles of distributions in the non-vanishing vs the normalized version of those

of the vanishing regime. Expected behavior:

⇣
q
nv
↵

�
(�

⇤2
1 �

�4
1  

�2
q
v
↵)

⌘
! 1 as  ! 0,. Left panel: Incremental

distribution L: centered and scaled �
2
k, k = 5, Right panel: Incremental distribution L : N (0, 1)

regime adaptive, a property illustrated next. Specifically, the observable consequence of
Theorem 7 that allows regime adaptation is that for any significance level ↵, we have the
asymptotic equivalence qnv↵ ⇣ �⇤2

1
��4

1
 �2qv↵, as  ! 0, where qnv↵ , qv↵ are the quantiles of

the distributions in the non-vanishing and vanishing regime, respectively. In other words,
one should observe the ratio qnv↵

��
�⇤2
1
��4

1
 �2qv↵

�
! 1 as  ! 0.

We consider eight equally separated and decreasing values of  2 {2, .., 0.2}. Two cases
of the form of the incremental distribution L are considered: (1) a centered and scaled �2

k
distribution in keeping with earlier discussion, and (2) a standard normal distribution. For
a clear illustration, we set the drift and variance parameters as �2

1
= �2

2
= �⇤2

1
= �⇤2

2
= 1.

The variance parameter of the random walk process is accordingly set to �̄⇤2
1

= �⇤2
2

=
1/4 (as dictated by Theorem 7). Quantiles for the non-vanishing case are computed as
described via a Monte Carlo simulation of 3000 sample paths of the underlying random walk
process, whereas quantiles of the vanishing case are computed via its cumulative distribution
function. Results are shown in Table 1, which confirm the theoretical assertion. Specifically,
the ratio under consideration approaches 1 for all considered values of ↵ as the jump size
vanishes. This is also illustrated visually in Figure 3.

Evaluation of Estimation and Inference Properties: Next, an evaluation of the
proposed estimation and inference methodology is provided on synthetic data. We note that
while there is no existing inference methodology, however in order to provide a benchmark
from an estimation perspective, we also compare the performance of Algorithm 2 to the
method of Bybee and Atchadé (2018). The method being based on the likelhood criterion,
and optimized via the Simulated Annealing algorithm. Its implementation is carried out via
the authors developed R-package ChangepontsHD with recommended tuning settings and is
referred to as BA 2018 in the following.

In all to follow, wt, xt of model (1.1) are independent, p-dimensional, Gaussian r.v.’s
with distinct covariance structures. Specifically, we set wt ⇠ N (0,⌃), t = 1, ..., ⌧0 and
xt ⇠ N (0,�), t = ⌧0 + 1, ..., T. The observation period T is set to {300, 400, 500}, the
dimension p to {25, 50, 150, 250} and the relative location of the change point (⌧0/T ) 2
{0.2, 0.4, 0.6, 0.8}. All computations are carried out in R, and all Lasso optimizations of 3.1
are carried out using the glmnet package. In all cases, the initializer for Algorithm 2 is
selected via a preliminary search grid of ⌧̌ 2 {0.25, 0.5, 0.75} as described in the discussion
ensuing Condition E. The significance level is set to ↵ 2 {0.05, 0.01} in all cases.
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Structure of the covariance matrices: To construct ⌃, we consider a Toeplitz type ma-
trix � with the (l,m)th component set as �(l,m) = ⇢|l�m|a , l,m = 1, ..., p. We set ⇢ = 0.4
and a = 1/ log s, where s specified below.6. Then, set ⌃ =·A·�, where · denotes a com-
ponentwise product. The matrix A is constructed as a symmetric block diagonal matrix
with alternating signs {�1, 1} within each block of size s⇥ s. This allows both positive and
negative correlations in ⌃ and also induces a sparsity structure with each row and column
having s non-zero components. The post-change point covariance � is chosen as a banded
matrix. The non-zero correlations for each row and column of � are chosen as a sequence
of s equally spaced values between {⇢2 = 0.5, ..., 0}s⇥1. The sparsity of both ⌃ and � are
set at 15% of the dimension size.

Selection of tuning parameters: The tuning parameters �j , j = 1, ..., p used to obtain `1
regularized mean estimates are selected based on a BIC type criterion. Specifically, we set
�j = �, j = 1, ..., p, and evaluate µ̂(j)(�), and �̂(j)(�) over an equally spaced grid of seventy

five values in the interval (0, 1). Upon letting Ŝ = [p
j=1

⇥
{k; µ̂(j)k 6= 0} [ {k; �̂(j)k 6= 0}

⇤

we evaluate the criteria,

BIC(�, ⌧) =
⌧X

t=1

pX

j=1

�
ztj � zTt,�jµ̂(j)(�)

�
2
+

TX

t=⌧+1

pX

j=1

(ztj � zTt,�j �̂(j)(�)
�
2
+ |Ŝ| log T. (4.2)

Set � as the minimizer of BIC(�, ⌧̌), and BIC(�, ⌧̂). for Step 1 and Step 2 of Algorithm 2.
We note some additional pertinent aspects. The problem under consideration relies on

recovery of two p⇥pmatrices, the number of free parameters in each being p(p�1)/2. Second,
high dimensionality in the considered framework is characterized as log p = o(T `T ), where
`T is the separation of ⌧0 from the parametric boundary. The largest sample size is T = 500
and closest to boundary change point is at b0.2·T c, consequently the e↵ective sample size
here is 100. The appropriate comparison of dimensionality p is with these e↵ective sample
sizes. Finally, the considered problem is of estimation and inference on ⌧0, which is discrete,
and so are the estimates ⌧̃ as well as the associated confidence intervals This is distinct from
a conventional inference problem under a continuous parametric space. Specifically, in the
construction (2.10) the quantiles of the limiting distribution are discrete values and can
very well be identically zero. E↵ectively, a confidence interval can also be identical to
a point estimate, while additionally providing an uncertainty measurement. Technically,
there is also the trivial asymptotic regime, where the signal is so large that the asymptotic
distribution becomes degenerate, see, e.g. Page 6 of Bhattacharjee et al. (2019).

The following metrics are used for assessing the performance of the methodology: bias
(
��E(⌧̂ �⌧0)

��), root mean squared error (RMSE, E1/2(⌧̂ �⌧0)2), coverage (relative frequency
of the number of times ⌧0 lies in the confidence interval) and the average margin of error
(average over replicates of the margin of error of each confidence interval). Estimation
performance in Table 2 are based on 100 replications. All other inference results reported
metrics are based on 500 replications. Results are provided in Tables 2, 3 and 4.

Discussion of the Results: We note that estimates obtained via the proposed method
exhibit very little bias and are tightly distributed, as seen from the RMSE metric. Further,
an expected deterioration is present as p increases, which is compensated by an increasing

6. We choose the log s root of |l�m| so as to somewhat preserve the magnitude of correlations and in turn

condition dependencies
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Figure 3: Left Panel: Illustration of regime adaptivity. At all considered values of ↵ = 0.1, 0.05, 0.01, the

ratio of margin of errors
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jump size ! 0. Center and Right Panel: Comparison of estimation results (bias, RMSE) with BA 2018 at

T = 300. x-axis: change point in a fraction scale (⌧
0
/T ).

p ⌧0

T

T = 300 T = 400 T = 500

Algorithm 2 BA 2018 Algorithm 2 BA 2018 Algorithm 2 BA 2018

Bias (RMSE) Bias (RMSE) Bias (RMSE) Bias (RMSE) Bias (RMSE) Bias (RMSE)

50

0.2 0.02 (0.24) 8.68 (46.08) 0.04 (0.20) 13.28 (74.07) 0.01 (0.10) 0.22 (63.35)
0.4 0.01 (0.10) 6.85 (42.16) 0.01 (0.17) 8.55 (75.91) 0.00 (0.00) 7.41 (80.87)
0.6 0.04 (0.20) 13.96 (58.19) 0.03 (0.17) 21.85 (74.64) 0.00 (0.14) 5.51 (60.06)
0.8 0.08 (0.40) 64.58 (102.80) 0.00 (0.00) 64.70 (126.40) 0.05 (0.22) 61.98 (148.65)

150

0.2 0.21 (1.16) 3.84 (38.23) 0.02 (0.14) 6.16 (53.50) 0.00 (0.00) 1.20 (57.25)
0.4 0.00 (0.00) 9.18 (29.74) 0.02 (0.14) 10.30 (32.85) 0.00 (0.00) 11.88 (38.58)
0.6 0.01 (0.10) 20.41 (47.47) 0.01 (0.10) 26.86 (72.91) 0.00 (0.00) 26.30 (80.22)
0.8 7.21 (9.73) 80.51 (103.00) 3.34 (7.40) 95.76 (130.58) 0.08 (0.28) 71.99 (120.55)

250

0.2 10.23 (26.70) 5.87 (39.17) 1.58 (10.74) 10.82 (62.55) 0.52 (5.00) 7.95 (59.01)
0.4 0.00 (0.00) 4.84 (24.99) 0.00 (0.00) 3.97 (31.54) 0.00 (0.00) 10.51 (36.36)
0.6 8.41 (14.72) 25.91 (47.70) 0.03 (0.17) 16.39 (44.49) 0.00 (0.00) 33.36 (81.01)
0.8 11.50 (18.85) 94.69 (115.61) 12.97 (15.69) 110.63 (142.27) 8.50 (13.10) 92.32 (132.21)

Table 2: Estimation performance of proposed Algorithm 2 and BA 2018. Reported results based on 100

Monte Carlo replications.

T . Results are observed to be nearly uniformly better than the benchmark method of Bybee
and Atchadé (2018), as also visualized in Figure 3. This is agreement with the estimation
result of Theorem 1 yielding a sharper rate of estimation.

From an inference perspective, the results are in agreement with our theoretical devel-
opments. The coverage is observed to deviate below the nominal level only for the case
of large p and small T (for e.g., cases p = 250, T = 300, ⌧0 = 0.8). An increase in the
sampling period compensates for this and improves coverage to or above the nominal level.
The deviation of coverage above the nominal level (conservative coverage) is an expected
feature under change point inference particularly due to the inherent discreteness of the
problem. This feature is observed for large values of p, T (driven by p). The reason for this
is as follows. Recall the distribution of the change point estimator is driven by a random
walk with increments as L(� 2�2, �̄2), with the negative mean causing the negative drift
of the process. By the design of our simulation, the sparsity s of the underlying precision
matrices is growing with p, consequently the underlying parameters of these increments
are also varying. In particular, the drift relative to the standard deviation of these incre-
ments (signal/noise) is observed to be growing, i.e., ( 2�2

�
�̄
�
is increasing with p. In e↵ect,
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T p
⌧0 = bT · 0.6c ⌧0 = bT · 0.8c

bias (RMSE)
↵ = 0.05 ↵ = 0.01

bias (RMSE)
↵ = 0.05 ↵ = 0.01

Coverage (av. ME) Coverage (av. ME)

300 25 0.018 (0.279) 0.95 (0.190) 0.99 (0.910) 0.088 (0.400) 0.93 (0.198) 0.98 (0.882)
300 50 0.022 (0.265) 0.97 (0.008) 0.99 (0.456) 0.098 (0.417) 0.93 (0.020) 0.96 (0.430)
300 150 0.050 (0.688) 0.98 (0.002) 0.98 (0.024) 7.342 (9.891) 0.35 (0.314) 0.35 (0.708)
300 250 6.768 (13.32) 0.65 (0.190) 0.66 (0.362) 11.82 (14.71) 0.16 (0.282) 0.16 (0.830)

400 25 0.030 (0.349) 0.95 (0.182) 0.99 (0.944) 0.034 (0.332) 0.95 (0.212) 0.99 (0.920)
400 50 0.012 (0.155) 0.98 (0.004) 0.99 (0.434) 0.058 (0.279) 0.94 (0.020) 0.96 (0.438)
400 150 0.006 (0.077) 0.99 (0) 0.99 (0.006) 2.664 (6.291) 0.71 (0.070) 0.72 (0.238)
400 250 0.480 (3.865) 0.97 (0.012) 0.98 (0.030) 16.87 (17.85) 0.07 (0.518) 0.07 (1.038)

500 25 0.008 (0.261) 0.95 (0.162) 0.99 (0.958) 0.052 (0.379) 0.93 (0.200) 0.98 (0.940)
500 50 0.002 (0.118) 0.98 (0.002) 0.99 (0.536) 0.028 (0.179) 0.96 (0.004) 0.99 (0.536)
500 150 0 (0) 1 (0) 1 (0.010) 0.146 (1.017) 0.93 (0.002) 0.94 (0.066)
500 250 0 (0) 1 (0) 1 (0) 13.23 (16.97) 0.30 (0.338) 0.30 (0.718)

Table 3: Simulation results for ⌧
0 2 {bT · 0.6c, bT · 0.8c} based on 500 replicates. Bias, RMSE and

av.margin of error rounded to three decimals, coverage rounded to two decimals.

T p
⌧0 = bT · 0.2c ⌧0 = bT · 0.4c

bias (RMSE)
↵ = 0.05 ↵ = 0.01

bias (RMSE)
↵ = 0.05 ↵ = 0.01

Coverage (av. ME) Coverage (av. ME)

300 25 0.016 (0.245) 0.95 (0.036) 0.98 (0.772) 0.012 (0.245) 0.95 (0.143) 0.99 (0.884)
300 50 0.032 (0.219) 0.97 (0) 0.97 (0.116) 0.006 (0.134) 0.98 (0) 0.99 (0.274)
300 150 2.294 (12.89) 0.93 (0) 0.93 (0.014) 0 (0.063) 0.99 (0) 0.99 (0.002)
300 250 12.97 (32.051) 0.72 (0) 0.72 (0) 0.534 (4.560) 0.97 (0.008) 0.98 (0.016)

400 25 0.008 (0.253) 0.95 (0.024) 0.99 (0.824) 0.014 (0.279) 0.94 (0.088) 0.99 (0.898)
400 50 0.016 (0.155) 0.97 (0) 0.98 (0.102) 0.006 (0.100) 0.99 (0) 0.99 (0.324)
400 150 0.086 (1.661) 0.99 (0) 0.99 (0) 0 (0) 1 (0) 1 (0.002)
400 250 2.886 (18.42) 0.93 (0) 0.93 (0) 0 (0) 1 (0) 1 (0)

500 25 0.002 (0.272) 0.95 (0.018) 0.99 (0.834) 0.026 (0.326) 0.94 (0.068) 0.99 (0.950)
500 50 0.006 (0.118) 0.98 (0) 0.98 (0.098) 0.004 (0.110) 0.99 (0) 0.99 (0.306)
500 150 0.006 (0.077) 0.99 (0) 0.99 (0) 0.002 (0.045) 0.99 (0) 0.99 (0)
500 250 0.042 (0.475) 0.98 (0) 0.98 (0) 0 (0) 1 (0) 1 (0)

Table 4: Simulation results for ⌧
0 2 {bT · 0.2c, bT · 0.4c} based on 500 replicates. Bias, RMSE and

av.margin of error rounded to three decimals, coverage rounded to two decimals.
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the associated random walk process is dropping to negative infinity more quickly, i.e., the
distribution of the change point estimator is concentrating on the the true change point pa-
rameter. The consequence is that for large enough values of ( 2�2

�
�̄
�
, the quantiles at both

considered levels of significance are identically zero, i.e., the interval is a point estimate.
This in turn causes the coverage in some cases to be observed as exactly one, moreover,
makes it more di�cult to distinguish between higher significance levels.

5. Age Evolving Associations of the Gut Microbiome

Microbiome studies are becoming increasingly important, due to recent findings on inter-
actions of human microbiota with several human health outcomes for e.g., (Sharma and
Tripathi, 2019; Svoboda, 2020), which has in turn led to considerable scientific interest in
the related area of probiotic pharmaceuticals. Large scale microbiome data have become
available in the last decade and are obtained by 16s rRNA sequencing technology. The re-
sulting data correspond to operational taxonomic units (OTUs) which represent counts of
observed microbial taxa identified by their genetic signature. For our analyses we consider
the publicly available global human gut microbiome data of Yatsunenko et al. (2012).

It has been discussed in the literature that the gut microbiome undergoes a significant
transformation from infancy/adolescence to adulthood. This transition point is often deter-
mined based on domain knowledge or other significant life events. Lozupone et al. (2013)
suggest this transition age at around two years due to a switch over to solid food. This
cuto↵ age has also been employed in Kaul et al. (2017a) for geographical classification of
subjects based on their microbiota. Lane et al. (2019) suggest that such a transition point
may occur well into adolescence of an individual, due to various social interactions, includ-
ing those with siblings, early exposure to antibiotics amongst others. We aim to pursue this
question quantitatively to estimate this transition point based on microbiome data from a
second order perspective. We employ the model in (1.1), and estimate the transition age in
the second order association structure of the taxa.

The Global Gut data set contains measurements of individuals from several geograph-
ical locations, with an associated age variable distributed over (0.08 years, 57 years). Our
analysis is carried out at the second to finest, i.e., the genus level of bacterial taxonomy.
We subset the analysed set of genera by retaining only those present in at least 35% of the
samples. This limits the number of genera to p = 166 for model (1.1), with T = 490 obser-
vations. A further pre-processing of the data set is carried out via a log-relative abundance
transformation of the raw OTU data, in order to switch over from a count to a continuous
scale. The reference group chosen for this transformation is Bifidobacterium7 due to it be-
ing a highly observed taxa which is present in all analyzed samples. This transformation is
motivated by the compositional structure of the data set, see, e.g., Aitchison (1982) and is
often adopted in the microbiome literature, see, e.g., Kaul et al. (2017b,a).

To study the age evolution of the association structure, all specimens are first sorted
according to the age variable. Model (1.1) is then implemented with Algorithm 2 of Section
3, with a preliminary search grid over ⌧̌ 2 {0.25, 0.5, 0.75}, which is the same as that used
in the simulation studies of Section 4. All other computations such as tuning parameters
selection, drift and asymptotic variance computation are as described in Section 4.

7. Phylogeny: Bacteria!Actinobacteria!Actinobacteria !Bifidobacteriales!Bifidobacteriaceae!Bifidobacterium
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The estimated change point and the corresponding confidence intervals are obtained in
the integer scale associated with index numbers of observations {1...., T}. We choose the
significance level at ↵ = 0.05, 0.01, i.e., a coverage of 95% and 99%, respectively. These
estimated values are then mapped back to the age variable to obtain the transition point
in the age scale. The results of our analyses are discussed below.

The estimated change point is ⌧̃ = 246, with a jump size  ̂ = 0.49. Upon mapping back
to the age variable yields a transition age of 15yrs. Confidence intervals are constructed
under both vanishing and non-vanishing regimes and presented for both the index level
and the age level in Table 5. At a coverage level of 99%, and under the vanishing jump
regime, the associated confidence interval at the index level is [243.31, 248.68], which yields
an interval [14yrs, 15rs] for the age of transition. The non-vanishing interval at the same
coverage is found to be [243, 249], at the index level and the same upon mapping to the
age level. These results provide quantitative evidence to the hypothesis of gut microbial
evolution over age and also appear to support the findings of Lane et al. (2019) from a
second order shift in associations perspective. From a change point perspective, both non-
vanishing and vanishing intervals appear very close to each other, which again supports our
theoretical result on regime adaptation given the small jump size in this application.

↵ = 0.05 ↵ = 0.01

Vanishing Non-Vanishing Vanishing Non-vanishing

Index level [244.42, 247.57] [244, 248] [243.31, 248.68] [243, 249]
Age level [15, 15] [15, 15] [14, 15] [14, 15]

Table 5: Confidence intervals under vanishing and non-vanishing jump size regimes at 95%
and 99% coverage. Intervals presented at both index level and corresponding age level.
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Appendix

Appendix A. Proofs of results in Section 2

The following notations is used throughout this Section. In addition to ⇠2,2 defined in (1.3),
we also define ⇠2,1 =

Pp
j=1

k⌘0
(j)k2 in the `2,1 norm. Also, in all to follow we denote as

⌘̂(j) = µ̂(j) � �̂(j), j = 1, ..., p. We also recall the definition of r.v.’s "tj from (2.3),

"tj =

(
ztj � zTt,�jµ

0

(j), t = 1, ..., ⌧0

ztj � zTt,�j�
0

(j), t = ⌧0 + 1, ..., T.

Towards obtaining the rate of estimation of the proposed estimator we require a lemma
that is instrumental to our argument. Define for µ, � 2 Rp(p�1) and ⌧ 2 {1, ..., (T � 1)},

U(⌧, µ, �) =
⇣
Q(⌧, µ, �)�Q(⌧0, µ, �)

⌘
, (A.1)
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where ⌧0 2 {1, ..., (T � 1)} is the change point parameter and Q(⌧, µ, �) is the squared loss
defined earlier. For any non-negative sequences 0  vT  uT  1, define the collection

G(uT , vT ) =
n
⌧ 2 {1, ..., (T � 1)}; TvT 

��⌧ � ⌧0
��  TuT

o
(A.2)

Then, the following lemma provides a uniform lower bound on the expression U(⌧, µ̂, �̂),
over the collection G(uT , vT ).

Lemma 15 Suppose Conditions A, B and C hold and let 0  vT  uT  1 be any non-
negative sequences. For any 0 < a < 1, let ca1 = 4· 48ca2, with ca2 �

p
(1/a), and

ca3 = cu
nca1(�2 _ �)

p
(1 + ⌫2)

 

o
.

Additionally, let uT � c2a1�
4
�
(T�2), then for T � 2, we have,

inf
⌧2G(uT ,vT )

U(⌧, µ̂, �̂) � ⇠22,2

h
vT � ca3max

n⇣uT
T

⌘ 1
2
,
uT
T b

oi
(A.3)

with probability at least 1� 3a� o(1).

Proof of Lemma 15 For any fixed ⌧ � ⌧0 consider,

U(⌧, µ̂, �̂ = Q(⌧, µ̂, �̂)�Q(⌧0, µ̂, �̂) (A.4)

=
1
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T zt,�jz
T
t,�j ⌘̂(j).

The expansion in (A.4) provides the following relation,

inf
⌧2G(uT ,vT );

⌧�⌧0

U(⌧, µ̂, �̂ � inf
⌧2G(uT ,vT );

⌧�⌧0

1

T

⌧X
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�
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�
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�2 sup
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T
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���
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�2 sup
⌧2G(uT ,vT );

⌧�⌧0

1

T

���
⌧X

t=⌧0+1

pX

j=1

(�̂(j) � �0
(j))

T zt,�jz
T
t,�j ⌘̂(j)

���

= R1�R2�R3 (A.5)

Bounds for the terms R1, R2 and R3 are provided in Lemmas 24 and 25, respectively. In
particular,

R1 � ⇠22,2

h
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⇣uT
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⌘ 1
2 � cu(�
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n
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2 _ �) uT
T b

i
,

with probability at least 1� a� o(1). The first inequality follows from Lemma 24 and the
final inequality follows by using the bounds in Lemma 25. Next, we obtain upper bounds
for the terms R2

�
⇠2

2,2 and R3
�
⇠2

2,2. For this purpose, first note that (⇠2,1
�
⇠2,2) 

p
p,

consequently (⇠2,1
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 cuca1
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with probability at least 1 � a � o(1). As before, the first inequality follows from Lemma
24 and the final inequality follows by using the bounds of Lemma 25. Similarly we can also
obtain,

R3
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with probability at least 1�a�o(1). Substituting these bounds in (A.5) and applying a union
bound over these events yields the bound (A.3) uniformly over the set {G(uT , vT ); ⌧ � ⌧0}.
The mirroring case of ⌧  ⌧0 follows with similar arguments.

The main idea of the proof of Theorem 1 is to use a contradiction argument. Using
Lemma 15 recursively, we show that any value of ⌧ lying outside an O(c2a3) neighborhood
of ⌧0 satisfies, U(⌧, µ̂, �̂) > 0, with probability at least 1 � 3a � o(1). Upon noting that by
definition, we have, U(⌧̃ , µ̂, �̂)  0, shall yield the desired result.

Proof of Theorem 1 To prove this result, we show that for any 0 < a < 1, the bound
��⌧̃ � ⌧0

��  c2a3, (A.6)
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holds with probability at least 1 � 3a � o(1). The proof to follow relies on a recursive
argument on Lemma 15, where the optimal rate of convergence Op(1) is obtained by a
series of recursions with the rate of convergence being sharpened at each step.

We begin with any vT > 0, and applying Lemma 15 on the set G(1, vT ) to obtain,

inf
⌧2G(1,vT )

U(⌧, µ̂, �̂) � ⇠22,2

h
vT � ca3max

n⇣ 1

T

⌘ 1
2
,
1

T b

oi

with probability at least 1 � 3a � o(1). Recall by assumption b < (1/2), and choose any
vT > v⇤T = ca3/T b. Then we have inf⌧2G(1,vT ) U(⌧, µ̂, �̂) > 0, thus implying that ⌧̃ /2 G(1, vT ),
i.e.,

��⌧̃ �⌧0
��  Tv⇤T , with probability at least 1�3a�o(1)8. Now reset uT = v⇤T and reapply

Lemma 15 for any vT > 0 to obtain,

inf
⌧2G(uT ,vT )

U(⌧, µ̂, �̂) � ⇠22,2

h
vT � ca3max

n⇣ ca3
T 1+b

⌘ 1
2
,
ca3
T b+b

oi

Again choosing any

vT > v⇤T = max
n cg2a3
T u2

,
c2a3
T v2

o
, (A.7)

where,

g2 = 1 +
1

2
, u2 =

1

2
+

u1
2
, and v2 = b+ v1 � 2b, with u1 = v1 = b,

we obtain infG(uT ,vT ) U(⌧, µ̂, �̂) > 0, with probability at least 1 � 3a � o(1). Consequently
⌧̃ /2 G(uT , vT ), i.e.,

��⌧̃ � ⌧0
��  Tv⇤T . Note the rate of convergence of ⌧̃ has been sharpened

at the second recursion in comparison to the first. Continuing these recursions by resetting
uT to the bound of the previous recursion, and applying Lemma 15, we obtain for the mth

recursion,

��⌧̃ � ⌧0
��  T max

n cgma3
T um

,
cma3
T vm

o
:= T max{R1m, R2m}, where,

gm =
m�1X
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1

2k
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1

2
+

um�1

2
=

b

m
+

mX

k=1

1

2m
, and

vm = b+ vm�1 � mb, with u1 = v1 = b.

Next, we observe that for m large enough, R2m  R1m. This follows since R2m is faster than
any polynomial rate of 1/T.9 Consequently for m large enough we have

��⌧̃ � ⌧0
��  TR1m,

with probability at least 1 � 3a � o(1). Finally, we continue these recursions an infinite
number of times to obtain, g1 =

P1
k=0

1/2k, u1 =
P1

k=1
(1/2k), thus yielding,

��⌧̃ � ⌧0
��  T

c2a3
T

= c2a3

8. Since by construction of ⌧̃ we have, U(⌧̃ , �̂, �̂)  0.

9. Consider c
m
1 /T

mb  (c1

�
log T )

m
(log T

�
T )

mb  (1/T
mb1), for any 0 < b1 < b, for T su�ciently large.
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with probability at least 1 � 3a � o(1). This proves the bound (A.6). To finish the proof,
note that despite the recursions in the argument, the probability bound after every step is
maintained at 1�3a�o(1). This follows since the probability statement of Lemma 15 arises
from stochastic upper bounds of Lemma 20, Lemma 21, Lemma 22 and Lemma 36, applied
recursively, with a tighter bound at each recursion. This yields a sequence of events such
that each event is a proper subset of the event at the previous recursion.

The limiting distributions of Theorem 2 and Theorem 5 are presented in more conven-
tional argmax notation instead of the argmin of the problem setup in Section 1. This is
purely notational and all results can equivalently be stated in the argmin language.

For a clear presentation of the proofs below we use the following additional notation.
Let U(⌧, ✓1, ✓2) be as in (A.1) and consider,

C(⌧, µ, �) = �Tp�1U(⌧, µ, �) (A.8)

The multiplication of U with the product Tp�1 is only meant for notational convenience
later on. Then, we can re-express the change point estimator ⌧̃(µ, �) defined in (1.5) as,

⌧̃(µ, �) = argmax⌧2{1,...,(T�1)}C(⌧, µ, �)

The proofs of Theorem 2 and Theorem 5 below are applications of the Argmax Theorem
(reproduced as Theorem 47). The arguments here are largely an exercise in verification of
requirements of this theorem.
Proof of Theorem 2 In the vanishing jump regime  ! 0, the argmax theorem requires
verification of the following conditions (see, page 288 of Vaart and Wellner (1996)).

(i) The sequence  2(⌧̃ � ⌧0) is uniformly tight.

(ii) For any r 2 [�cu, cu] ✓ R wehave, C(⌧0 + r �2, µ̂, �̂) ) Z(r).

(iii) The process Z(r) satisfies suitable regularity conditions.10.

We begin by noting that the sequence of r.v.’s under consideration here is  2(⌧̃ � ⌧0),
which are supported on R, which forms the underlying indexing metric space for the limiting
process under consideration for this vanishing jump size case. Now Part (i) follows from
the result of Theorem 1 and Part (iii) follows from well known properties of Brownian
motion’s. Thus, it only remains to prove Part (ii). For this purpose, let ⌧⇤ = ⌧0 + r �2,
with r 2 (0, c1], then using Lemma 28 we have,

p�1

⌧⇤X

⌧0+1

pX

j=1

⌘0T
(j)zt,�jz

T
t,�j⌘

0

(j) !p r�
2

2. (A.9)

Also, let ⇣t =
Pp

j=1
⇣tj =

Pp
j=1

"tjzTt,�j⌘
0

(j), then from Condition D(ii) we have that ⇣⇤t =

⇠�2

2,2p
�1var

�
⇣t
�
! �⇤2

2
, thus the sequence {⇣⇤t } are finite variance i.i.d. random variables11,

10. Almost all sample paths ⇣ !
�
2�1W (⇣)� |⇣|} are upper semicontinuous and posses a unique maximum

at a (random) point argmax⇣2R
�
2�1W (⇣)� |⇣|}, which as a random map in the indexing metric space

is tight.

11. More precisely, sequence {⇣⇤t } forms an i.i.d triangular array
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now applying the function central limit theorem (see, e.g., Theorem 4.3.2 of Whitt (2002)))
on the sequence {⇣⇤t } in t, we obtain,

p�1

⌧⇤X

t=⌧0+1

pX

j=1

"tjzt,�j⌘
0

(j) =  
⌧⇤X

t=⌧0+1

 �1p�1

pX

j=1

⇣tj =  
⌧⇤X

t=⌧0+1

�
⇠�1

2,2p
�1/2

pX

j=1

⇣tj
 

=  
⌧⇤X

t=⌧0+1

⇣⇤t ) �⇤2W2(r), (A.10)

where W2(r) is a Brownian motion on [0,1). Next, define the process

G(r) =

8
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2
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(A.11)

and consider the function C evaluated at ⌧⇤ and at the known nuisance parameters

C(⌧⇤, µ0, �0) = �p�1
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, (A.12)

where convergence in distribution follows from (A.9) and (A.10). Next, from Lemma 26 we
have that,

sup
⌧2G

�
(c1T�1 �2),0

�
��C(⌧, µ̂, �̂)� C(⌧, µ0, �0)

�� = op(1). (A.13)

Combining the results of (A.13) and (A.12) we obtain,

C(⌧⇤, µ̂, �̂) )
�
2�⇤2W2(r)� �22r

 

Symmetrical arguments for the case of r < 0 yields an analogous result. Finally, a change
of variable yields the relation, argminrG(r) =d

�
�⇤2
1

�
�4
1

�
argminrZ(r), where Z(r) is as

defined in (2.2) and =d represents equality in distribution, see, e.g. proof of Proposition 3
of Bai (1997). This completes the proof of Part (ii) and the statement of this theorem now
follows as an application of the argmax theorem.

Proof of Theorem 5 The broad structure of the argument of this proof is similar to that
of the proof of Theorem 2 in the sense that it is also an application of the argmax theorem.

The first important distinction is that the sequence of r.v’s under consideration
�
⌧̃�⌧0

�
,

are supported on the set of integers Z. Consequently, the underlying indexing metric space
for the limiting process for this non-vanishing jump size framework is the set of integers Z.
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Now consider any cu > 0 and r 2 {�cu,�cu + 1, ..., 0, 1, ..., cu} ✓ Z. Let ⌧⇤ = ⌧0 + r, then
the requirements of the argmax theorem requires verification of the following conditions.

(i) The sequence
�
⌧̃ � ⌧0

�
is uniformly tight.

(ii) C(⌧⇤, µ̂, �̂) ) C1(r).

(iii) The process C1(r) satisfies suitable regularity conditions.

Part (i) follows directly from the result of Theorem 1. Part (iii) is provided in Lemma 16.
A verification of Part (ii) is provided below. Let r > 0 and consider C evaluated at ⌧⇤ and
at the known nuisance parameters, i.e.,

C(⌧⇤, µ0, �0) = �p�1
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2

�
(A.14)

The weak convergence follows directly from Condition B0 and since r  cu, which in turn
is due to the non-vanishing jump size regime under consideration. Next, from Lemma 26,

sup
⌧2G

�
(c1T�1 �2),0

�
��C(⌧, µ̂, �̂)� C(⌧, µ0, �0)

�� = op(1).

This result together with (A.14) yields the statement of Part (ii). Repeating the same ar-
gument for r < 0 yields the symmetric result. An application of the argmax theorem now
yields the statement of this theorem.

Lemma 16 (Regularity conditions of argmaxC1(r)) Let C1(r) be as defined in (2.6)
and suppose Condition B0 holds. Then, the map r ! C1(r) is continuous with respect to
the domain space Z. Additionally assume that Condition D holds and that the jump size is
non-vanishing, i.e, 0 <  1 < 1. Then argmaxr2ZC1(r) possesses an almost sure unique
maximum at !1, which as a random map in Z is tight.

Proof of Lemma 16 From Condition B0, each side of the random walk C(r) has incre-
ments supported on R, thus the first assertion on the continuity of the map r ! C1(r)
follows trivially since the domain space of this map is restricted to only the integers Z (✏��
definition of continuity). To prove the remaining assertions note that from Condition B0,
Condition D and the assumed framework of the non-vanishing jump size, we have that each
side of C1(r) has i.i.d increments with a negative drift of � 2

1�
2

1
or � 2

1�
2

2
. Consequently,
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we have C1(r) ! �1, as r ! 1 almost surely (strong law of large numbers). Using ele-
mentary properties of random walks, this implies that maxr C1(r) < 1, a.s. (follows from
the Hewitt-Savage 0-1 law, see, e.g. (1.1) and (1.2) on Page 172, 173 of Durrett (2010)).
Additionally !1 � 0, from the construction of C1(r). Thus, we have 0  !1 < 1, a.s.
which directly implies that when !1 is well defined (unique) then it must be tight. To show
that !1 is unique, note that since by assumption (Condition B0) the increments are contin-
uously distributed and supported on R, therefore max C1(r) is continuously distributed on
(0,1), with some additional probability mass at the singleton zero. Hence, the probability
of max C1(r) attaining any two identical values is zero. Consequently !1 is unique a.s.
This completes the proof of this lemma.

Proof of Theorem 7 The main idea of this proof is first to prove the weak convergence of
the two underlying stochastic processes, i.e., the two sided random walk and the Brownian
motion on the lhs and rhs of (2.9), repsectively, followed by an application of continuous
mapping type results to obtain the weak convergence of the desired argmax.

The first immediate roadblock towards this approach the incoherence of the indexing
spaces of the stochastic processes on the lhs and rhs of (2.9). To alleviate this incoherence
one may consider representing the lhs of (2.9) as argmaxr2RC1(brc). This representation
is however not well defined due to the non-uniqueness of the argmax functional in this case.
Thus, argmax needs to re-defined as the smallest maximizer: sargmaxf(x) = min{x; f(x) �
f(y) 8 y}. The functional sargmax has been studied in the literature, e.g., Lan et al. (2009)
and Seijo and Sen (2011) whose motivations are exactly the same that arise here. Under
this definition one can re-write the lhs of (2.9) as,

argmaxr2ZC1
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2
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T
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2

T
, �̄2

T

�
,(A.15)

where the second equality follows directly from a change of variables r0 = rb �2c. Next
consider the random walk in the rhs of (A.15) as per the defining relation (2.6).
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i
, r 2 R+.

(A.16)

here the second equality follows from the additive invariance of L w.r.t scalar addition. Now
consider the positive arm (r > 0) of this process, we have,
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�
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=d b T c

brb �2
T

ccX

t=1

L
�
0, b �2

T
c�̄2

2T

�
�  2

T
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) 2�⇤2W2(r)� �22r (A.17)

The equality follows from the invariance of L w.r.t scalar multiplication. The weak conver-
gence follows from the functional central limit theorem, together with the limit assumptions
on the underlying sequences, specifically,  T ! 0, �2

2T
! �2

2
, and  �2

T
�̄2

2T
! 4�⇤2

2
. Here we

have also utilized the elementary result  2

T
brb �2

T
cc ! r. The relation (A.17) together with

a symmetric result on the negative arm (r < 0) of this process yields,

C1
�
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cc, T ,�

2

T
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T

�
) G(r,�2,�⇤2) :=

8
><

>:

2�⇤
1
W1(r) + �2

1
r if r < 0,

0, if r = 0,

2�⇤
2
W2(r)� �2

2
r if r > 0,

(A.18)

Applying the continuous mapping theorem for the sargmax functional (Lemma 3.1 of Lan
et al. (2009) or Theorem 3.1 of Seijo and Sen (2011)) we obtain,

sargmaxr2RC1
�
brb �2

T
cc, T ,�

2

T
, �̄2

T

�
) argmaxr2RG(r,�2,�⇤2)

=
�
�⇤21 /�41

�
argmaxr2RZ(r,�2,�⇤2),

The last equality follows from a change of variables (also see, proof of Theorem 2). Also
note that sargmax of the rhs has been replaced by argmax, since the rhs possesses a unique
maximizer. Finally, the statement of the theorem now follows by a back substitution to the
relation (A.15) and noting that  2

T
b �2

T
c ! 1. This completes the proof of this theorem.

Appendix B. Proofs of results in Section 3

The main result of Section 3 is Theorem 10, which forms the basis of the subsequent
corollaries. This result provides uniform bounds (over ⌧) of the `2 error in the lasso estimates
(3.1) obtained from a regression of each column of z on the rest.
Proof of Theorem 10 Consider any ⌧ 2 G(uT , 0), and w.l.o.g. assume that ⌧ � ⌧0. Then
for any j = 1, .., p, by construction of the estimator µ̂(j)(⌧), we have the basic inequality,

1

⌧

⌧X

t=1

�
ztj � zTt,�jµ̂(j)(⌧)
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⌧
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0

(j)

�
2
+ �jkµ0

(j)k1.

An algebraic rearrangement of this inequality yields,

1
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2
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T
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(j)),

where "̃tj = "tj = ztj�zTt,�jµ
0

(j), for t  ⌧0, and "̃tj = ztj�zTt,�jµ
0

(j) = "tj�zTt,�j(µ
0

(j)��
0

(j)),

for t > ⌧0. A further simplification using these relations yields,
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(j)k1 +
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(j)) (B.1)
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�2
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Using the bounds in Lemma 29 we obtain
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T `T
,
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with probability at least 1�cu2 exp{�cu3 log(p_T )}. Applying these bounds in (B.1) yields,

1

⌧

⌧X

t=1

�
zTt,�j(µ̂(j) � µ0
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�
2
+ �jkµ̂(j)(⌧)k1  �jkµ0

(j)k1 + (�1j + �2j)kµ̂(j)(⌧)� µ0

(j)k1,

with probability at least 1 � cu2 exp{�cu3 log(p _ T )}. Choosing �j � 2(�1j + �2j), leads
to

���µ̂(j)(⌧)
�
Sc
1j

��
1
 3

���µ̂(j)(⌧) � µ0

j

�
S1j

��
1
, and thus by definition µ̂(j) � µ0

(j) 2 A1j , with

the same probability. This proves the first assertion of this theorem. Next, applying the
restricted eigenvalue condition of (37) to the l.h.s. of the inequality (B.1), we also have
that,

kµ̂(j)(⌧)� µ0

(j)k
2

2  3�kµ̂(j)(⌧)� µ0

(j)k1  3
p
s�jkµ̂(j)(⌧)� µ0

(j)k2.

This directly implies that kµ̂(j)(⌧)�µ0

(j)k2  3
p
s(�j/), which yields the desired `2 bound.

To complete the proof, recall that the stochastic bounds used here hold uniformly over
G(uT , 0), and j, consequently the statements of this theorem also hold uniformly over the
same collections. The case of ⌧  ⌧0, and the corresponding results for �̂(j)(⌧)� �0(j) can be
obtained by symmetrical arguments.

Proof of Corollary 11 All we need to show here is that the mean estimates µ̂(⌧̂)(j), �̂(⌧̂)j ,
j = 1, ..., p of Step 2 of Algorithm 1 satisfy all requirements of Condition C. Then the
statement of the Corollary follows from direct applications of the corresponding results of
Section 2.

Towards this, Part (i) of Condition C now holds directly as a consequence of Theorem 10.
Additionally from Condition (3.2) we have ⌧̂ 2 G(uT , 0), with probability at least 1� o(1),
where uT = cuT�1 �2 log(p_T ). Substitute this choice of uT in �2j , j = 1, ...p, of Theorem
10 to obtain,

�2j = cu(�
2 _ �)k⌘0
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,
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 O(1)max
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Here the final inequality follows since by Condition A0 together with the condition
⇣
maxj k⌘0(j)k2
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p
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O(1). Consequently �2j  �1j , j = 1, ..., p, and thus applying Theorem 10 we obtain,
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
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for all j = 1, ..., p, with probability at least 1 � o(1). Corresponding bound for �̂(j) � �0
(j),

j = 1, ..., p, can be obtained using symmetrical arguments. Thereby the mean estimates of
Step 2 of Algorithm 1 satisfy Condition C, which completes the proof of this corollary.

The following lemma obtains `2 error bounds for the Step 1 edge estimates by utilizing
the initializing Condition E and Theorem 10.

Lemma 17 Suppose Conditions A0, B and E hold. Select regularizers �j , j = 1, ..., p, as
prescribed in Theorem 10, with uT =

�
culT

���
sT k(�2 _ �)

�
. Then, edge estimates µ̌(j),

j = 1, ..., p of Step 1 of Algorithm 2 satisfy the following bound.
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with probability 1� o(1). Corresponding bounds also holds for �̌(j), j = 1, ..., p.

Proof of Lemma 17 We begin by noting that Part (ii) of the initializing Condition E of
Algorithm 2 guarantees that ⌧̌ satisfies,
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, where k < b. This choice

of uT provides the following relations,
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(B.3)

The inequality of (B.2) follows from the assumption cuT (1�k)lT � (�2 _ �)s log(p _ T ) of
Condition E. The equality of (B.3) follows directly upon substituting the choice of uT , and
the inequality follows from assumption A0 and since w.l.o.g we have k < b. Now using this
choice of uT in �j of Part (ii) of Theorem 10 we obtain,

pX

j=1

p
s


(�1j + �2j)  cu�

2
p
(1 + ⌫2)

p



ns log(p _ T )

T lT

o 1
2

42



Change Point Inference in HD Covariances
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The second inequality follows from (B.2) and the final inequality follows from (B.3). The
bound of Part (i) is now a direct consequence of Theorem 10. We proceed similarly to prove
Part (ii); note that,
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The final inequality follows from Condition A0. Part (ii) is now a direct consequence.

Lemma 18 Suppose Condition A0, B and E hold and let µ̌(j) and �̌(j), j = 1, ..., p be edge
estimates of Step 1 of Algorithm 2. Additionally, let log(p _ T )  TvT  TuT be non-
negative sequences. Then,
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with probability at least 1� o(1). Here cm = {cu(�2 _ �)
p
(1 + ⌫2)

 ��
 

 
.

Proof of Lemma 18 The structure of this proof is similar to that of Lemma 15, the
distinction being the use of weaker available error bounds of the edge estimates µ̌(j), �̌(j),
and sharper bounds for other stochastic terms made possible by the additional assumption
log(p _ T )  TvT  TuT . Proceeding as in (A.5) we have that,

inf
⌧2G(uT ,vT );

⌧�⌧0
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Where R1, R2 and R3 are as defined in (A.5) with µ̂(j), �̂(j) and ⌘̂(j) replaced with µ̌(j), �̌(j)
and ⌘̌(j) = µ̌(j) � �̌(j), j = 1, ..., p. Now applying the bounds of Lemma 34 we obtain,
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with probability 1 � o(1). Where the final inequality follows from Lemma 17. Next we
obtain upper bounds for the terms R2
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with probability 1� o(1). Here the first and second inequalities follow from Lemma 34 and
Lemma 17, respectively. Similarly we can also obtain,
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with probability 1 � o(1). Recalling from Lemma 48 that  < 1, then substituting these
bounds in (B.4) and applying a union bound over these three events yields the bound of the
statement of this lemma uniformly over the set {G(uT , vT ); ⌧ � ⌧0}. The mirroring case of
⌧  ⌧0 can be obtained by similar arguments.

Proof of Theorem 13 This proof relies on the same recursive argument as that of Theorem
1, the distinction being that recursions are made on the bound of Lemma 18 instead of
Lemma 15. Consider any TvT > log(p _ T ), and apply Lemma 18 on the set G(uT , vT ) to
obtain,
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with probability at least 1� o(1). Substituting uT = 1, yields,
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with probability at least 1 � o(1). Recall that w.l.o.g k < b < (1/2), and now choose any

vT > v⇤T = cm
�
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. Then, we have inf⌧2G(1,vT ) U(z, ⌧, µ̌, �̌) > 0, thus implying
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that ⌧̂ /2 G(1, vT ), i.e.,
��⌧̌�⌧0

��  Tv⇤T , with probability at least 1�o(1). Next, reset uT = v⇤T
and reapply Lemma 15 for any vT > 0 to obtain
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where
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2
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2
, and v2 = k + v1 � 2k, with u1 = v1 = k,

we obtain infG(uT ,vT ) U(z, ⌧, µ̌, �̌) > 0, with probability at least 1 � o(1). Consequently
⌧̂ /2 G(uT , vT ), i.e.,

��⌧̂ � ⌧0
��  Tv⇤T . Continuing these recursions by resetting uT to the

bound of the previous recursion, and applying Lemma 15, we obtain for the lth recursion,
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, and

vl = k + vl�1 � lk, with u1 = v1 = k.

Next, it is straightforward to observe that for l large enough, R2l  R1l, for T su�ciently
large. Consequently for l large enough we have

��⌧̃ � ⌧0
��  TR1m, with probability at

least 1 � o(1). Finally, we continue these recursions an infinite number of times to obtain,
g1 =
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(1/2j), thus yielding,
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with probability at least 1� o(1). This completes the proof of this result.

Proof of Corollary 14 Note that from Theorem 13 we have that ⌧̂ of Step 1 of Algorithm
2 satisfies the bound (3.2). Proceeding identically to the proof of Corollary 11 yields the
statement of this Corollary.

Appendix C. Deviation bounds used for proofs in Section 2

Lemma 19 Suppose Condition B holds and let "tj be as in (2.3). Then, (i) the r.v.
"tjzt,�j,k is sub-exponential with parameter �1 = 48�2

p
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⇥
|⇣t|k

⇤
 4�k

2
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Proof of Lemma 19 Here we only prove Part (ii) of this lemma, Part (i) follows using sim-
ilar arguments, and Part (iii) follows from properties of sub-exponential random variables,
see, Lemma 41. We begin by noting that the following r.v’s are mean zero, E("tj) = 0,
E(zTt,�j⌘
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(j)) = 0 and E
�
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(j)k2. Recall that if Z ⇠ subG(�), then the rescaled

variable Z/� ⇠ subG(1). Next observe that,

"tjzTt,�j⌘
0

(j)

�1�2
=

1

2

n
�
⇣"tj
�1

+
zTt,�j⌘

0

(j)

�2

⌘
� �

⇣"tj
�1

⌘
� �

⇣zTt,�j⌘
0

(j)

�2

⌘o
=

1

2
[T1� T2� T3]

where �(v) = kvk2
2
�E

�
kvk2

2

�
. Using Lemma 42 and Lemma 44 we have that T1 ⇠ subE(64),

T2 ⇠ subE(16), and T3 ⇠ subE(16). Applying Lemma 43 and rescaling with �1, and
�2 we obtain that "tjzTt,�j⌘

0

(j) ⇠ subE(48�1�2). Another application of Lemma 43 yields

⇣t =
Pp

j=1
"tjzTt,�j⌘

0

(j) ⇠ subE(�2) where

�2 = 48�2
pX

j=1

k⌘0
(j)k2

p
(1 + ⌫2) = 48�2⇠2,1

p
(1 + ⌫2)

This completes the proof of Part (ii).

Lemma 20 Suppose Condition B holds and let "tj be as defined in (2.3). Additionally, let
uT , vT be any non-negative sequences satisfying 0  vT  uT  1. Then for any 0 < a < 1,
choosing ca1 = 4· 48ca2, with ca2 �

p
(1/a), we have for T � 2,

sup
⌧2G(uT ,vT )

⌧�⌧0

1

T

���
⌧X

t=⌧0+1

pX

j=1

"tjz
T
t,�j⌘

0

(j)

���  ca1�
2⇠2,1

p
(1 + ⌫2)

⇣uT
T

⌘ 1
2
,

with probability at least 1� a.

Proof of Lemma 20 First note that without loss of generality we can assume uT �
(1/T ). This is because when uT < (1/T ), the set G(uT , 0) contains only the singleton ⌧0.
Consequently, the sum of interest is over indices t in an empty set, and is thus trivially
zero. Now, let ⇣t =

Pp
j=1

"tjzTt,�j⌘
0

(j), then using Lemma 19 we have that ⇣t ⇠ subE(�),

where � = 48⇠2,1
p
(1 + ⌫2)�2. Additionally, from part (iii) of Lemma 19, we have, var(⇣t) =

E(⇣t)2  16�2. Consider the set G(uT , vT )\ {⌧ � ⌧0} and note that in this set, there are at
most TuT distinct values of ⌧. Applying Kolmogorov’s inequality (Theorem 46) with any
d > 0,

pr
⇣

sup
⌧2G(uT ,vT )

⌧�⌧0

���
⌧X

t=⌧0+1

⇣t
��� > d

⌘
 1

d2

X

t2G(uT ,vT )

t�⌧0

var(zt) 
16TuT�2

d2
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Choosing d = 4ca2�
p
(TuT ), with ca2 �

p
(1/a) yields the lemma.

Lemma 21 Suppose Condition B holds and let "tj be as defined in (2.3) and let 0  vT 
uT  1 be any non-negative sequences. Then for any cu2 > 3 and cu1 � 96cu2, we have for
T � 2,

(i) sup
⌧2G(uT ,vT )

⌧�⌧0

1

T

���
⌧X

t=⌧0+1

"tjz
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2
p
(1 + ⌫2)

⇣uT
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2
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(ii) sup
⌧2G(uT ,vT )

⌧�⌧0

1

T

���
⌧X

t=⌧0+1

pX

j=1
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2
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T
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2
log(p _ T )

pX

j=1

k⌘̂(j) � ⌘0
(j)k1,

each with probability at least 1� 2 exp
�
� (cu2 � 3) log(p _ T )

 
.12

Proof of Lemma 21 Part (ii) is a direct consequence of Part (i), thus we only prove Part
(i). Without loss of generality, we can assume vT � (1/T ). This follows since the only
additional distinct element ⌧ in the set G(uT , 0) in comparison to G(uT , (1/T )) is ⌧0, and
at this value, the sum of interest is over indices t in an empty set and is thus trivially zero.

Let zt,�j = (zt,�j,1, ...., zt,�j,p�1)T , then from Lemma 19 we have "tjzt,�j,k ⇠ subE(�1),
with �1 = 48

p
(1 + ⌫2)�2. Now applying Bernstein’s inequality (Lemma 45) for any fixed

⌧ 2 G(uT , vT ) satisfying ⌧ � ⌧0, we have for any d > 0,
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⇣���

⌧X
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Choose d = 2cu2�1 log(p _ T )
�p�

⌧ � ⌧0
�
, then,

�
⌧ � ⌧0

� d2

2�2
1

= 2c2u2 log
2(p _ T ), and,

�
⌧ � ⌧0

� d

2�1
= cu2 log(p _ T ),

where we used
�
⌧ � ⌧0

�
� TvT � 1. A substitution back in the probability bound yields,

���
⌧X

t=⌧0+1

"tjzt,�j,k

���  2cu2�1 log(p _ T )
�
⌧ � ⌧0

�
1/2  2cu2�1 log(p _ T )

�
TuT

� 1
2 ,

12. Here

���
P
"tjz

T
t,�j

���
1

= maxj,k

���
P
"tjzt,�j,k

���.
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w.p. at least 1 � 2 exp{�cu2 log(p _ T )}. Finally applying a union bound over j = 1, ..., p,
k = 1, ..., p� 1 and over the at most T distinct values of ⌧ for ⌧ 2 G(uT , vT ), we obtain,

sup
⌧2G(uT ,vT )

⌧�⌧0

���
1

T

⌧X

t=⌧0+1

"tjzt,�j,k

���
1

 2cu2�1 log(p _ T )
⇣uT
T

⌘ 1
2
,

w.p. at least 1� 2 exp{�(cu2 � 3) log(p _ T )}. This completes the proof of Part (i).

Lemma 22 Suppose Condition B holds and let uT , vT be any non-negative sequences sat-
isfying 0  vT  uT  1. Then for any 0 < a < 1, choosing ca1 = 64ca2, with ca2 �

p
(1/a),

we have for T � 2,

(i) inf
⌧2G(uT ,vT );

⌧�⌧0

1

T

⌧X

t=⌧0+1

pX
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⌘ 1
2
,

(ii) sup
⌧2G(uT ,vT );

⌧�⌧0

1

T

⌧X

t=⌧0+1

pX

j=1

⌘0T
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T
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0

(j)  uT�⇠
2

2,2 + ca1�
2⇠22,2
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T
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2

with probability at least 1� a.

Proof of Lemma 22 As before in Lemma 20, w.l.o.g we assume uT � (1/T ). Now, we
have ⌘0T

(j)zt,�j ⇠ subG
�
�k⌘0

(j)k2
�
, consequently, using Lemma 44 and Lemma 43 we have

pX

j=1

⇣
k⌘0T

(j)zt,�jk22 � Ek⌘0T
(j)zt,�jk22

⌘
⇠ subE

�
�
�
, with � = 16�2⇠22,2.

Using moment properties of sub-exponential distributions
�
Part (iii) of Lemma 19

�
we also

have that

var
n pX

j=1

⇣
k⌘0T

(j)zt,�jk22 � Ek⌘0T
(j)zt,�jk22

⌘o
 16�2.

Now applying Kolmogorov’s inequality (Lemma 46) we obtain,
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8
><

>:
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���
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.

Choosing d = 4ca2�
p
(TuT ), with ca2 �

p
(1/a) yields,
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with probability at least 1�a. The statement of this lemma is now a direct consequence.

We require additional notation for the following results. Consider any sequence of
↵(j), (j) 2 Rp�1, j = 1, ..., p, and let ↵,  represent the concatenation of all ↵(j)’s and
 (j)’s. Then define

�(↵, ) =
1

T

⌧X

t=⌧0+1

pX

j=1

↵T
(j)zt,�jzt,�j (j) (C.1)

Lemma 23 Let �(· , · ) be as defined in (C.1) and suppose Condition B and C(ii) hold. Let
uT , vT be any non-negative sequences satisfying 0  vT  uT  1. Then for any 0 < a < 1,
choosing ca1 = 64ca2, with ca2 �

p
(1/a), we have for T � 2,

(i) inf
⌧2G(uT ,vT );

⌧�⌧0

�(⌘0, ⌘0) � vT⇠
2
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2⇠22,2
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⌘ 1
2

(ii) sup
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⌧�⌧0

�(⌘̂ � ⌘0, ⌘̂ � ⌘0)  cu(�
2 _ �)s log(p _ T )uT

pX

j=1

k⌘̂(j) � ⌘0
(j)k

2

2

with probability at least 1� a, and 1� o(1), respectively. Moreover, when uT � c2a1�
4
�
T�2,

we have,

(iii) sup
⌧2G(uT ,vT );

⌧�⌧0

�(⌘0, ⌘0)  2uT�⇠
2

2,2,

(iv) sup
⌧2G(uT ,vT );

⌧�⌧0
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n
s log(p _ T )

pX

j=1

k⌘̂(j) � ⌘0
(j)k

2

2

o 1
2
,

with probability at least 1� a, and 1� a� o(1), respectively.

Proof of Lemma 23 Part (i) and Part (iii) of this lemma are a direct consequence of
Lemma 22. To prove Part (ii), first note that,

pX
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k⌘̂(j) � ⌘0
(j)k

2

1  2
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j=1
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1

⌘

 32s
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kµ̂(j) � µ0
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2
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(j)k

2

2

⌘

 32s
pX

j=1

k⌘̂(j) � ⌘0
(j)k

2

2, (C.2)

with probability at least 1 � ⇡T = 1 � o(1). Here the second inequality follows since by
Condition C(ii) we have, µ̂(j) � µ0

(j) 2 A1j , and �̂(j) � �0
(j) 2 A2j , j = 1, ..., p. Now applying

Lemma 36, we have,

sup
⌧2G(uT ,vT )

�(⌘̂ � ⌘0, ⌘̂ � ⌘0)
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 cu(�
2 _ �) log(p _ T )uT

⇣ pX

j=1

k⌘̂(j) � ⌘0k22 +
pX

j=1
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k⌘̂(j) � ⌘0
(j)k

2

2

with probability at least 1�o(1). Here the final inequality follows by using (C.2). The proof
of Part (iv) is an application of the Cauchy-Schwartz inequality together with the bounds
of Part (ii) and Part (iii),
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This completes the proof of this lemma.

Lemma 24 Suppose Condition B and C(ii) hold. Let uT , vT be any non-negative sequences
satisfying 0  vT  uT  1. Then for any 0 < a < 1, choosing ca1 = 4· 48ca2, with
ca2 �

p
(1/a), and for uT � c2a1�

4
�
(T�2), we have for T � 2,
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each with probability at least 1� a� o(1).

Proof of Lemma 24 Let �(· , · ) be as defined in (C.1). Then note that �(⌘̂, ⌘̂) =
�(⌘0, ⌘0) + 2�(⌘̂� ⌘0, ⌘0) +�(⌘̂� ⌘0, ⌘̂� ⌘0). Using this relation together with the bounds
of Part (i) and Part (iv) of Lemma 23 we obtain,

inf
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with probability at least 1�a�o(1). To prove Part (ii), note that using identical arguments
as in the proof of Lemma 23 it can be shown that,
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with probability at least 1�a�o(1). The above inequalities and the relation �
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with probability at least 1� a� o(1). To prove Part (iii), note that,
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Now using Lemma 20 we have for any 0 < a < 1, R1  ca1
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with probability at least 1� o(1). Part (iv) now follows by combining bounds for terms R1
and R2.

Lemma 25 Suppose Condition A and C hold. Then we have,
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with probability at least 1� o(1).

Proof of Lemma 25 Part (i) can be obtained as,
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with probability at least 1� o(1). Here the final inequality follows from (1.6). Part (ii) can
be obtained quite analogously. To prove Part (iii) note that from Condition A we have
(1
�
⇠2,2) = (1

�
 
p
p) and consider,

1

⇠2,2

⇣
s log(p _ T )

pX

j=1

k⌘̂(j) � ⌘0
(j)k

2

2

⌘ 1
2  1

 

⇣
sp�1 log(p _ T )

pX

j=1

k⌘̂(j) � ⌘0
(j)k

2

2

⌘ 1
2

 cu
p
(1 + ⌫2)

�2

 

ns log(p _ T )p
(T `T )

o
 cu1

T b
,

with probability at least 1� o(1). Here the second inequality follows by using the bound of
Part (i) and the second follows from Condition A. To prove Part (iv) consider,

1

⇠2
2,2

pX

j=1

k⌘̂(j) � ⌘0
(j)k1  cu

p
(1 + ⌫2)

�2s

 2

n log(p _ T )

T `T

o 1
2


� 1

 log(p _ T )

o
cu
p
(1 + ⌫2)

�2

 

ns log(p _ T )p
(T `T )

o

 cu1
 

n 1

log(p _ T )

o 1
2
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with probability at least 1 � o(1). Here the first inequality follows by the assumption
(1
�
⇠2,2) = (1

�
 
p
p) together with the bound in Part (ii). The final inequality follows

from Condition A.

Lemma 26 Let C(⌧, µ, �) be as defined in (A.8) and suppose Condition A, B and C hold.
Additionally assume that the relation (2.4) holds. Then, for any cu > 0, we have,

sup
⌧2G

�
(cuT�1 �2),0

�
��C(⌧, µ̂, �̂)� C(⌧, µ0, �0)

�� = op(1)

Proof of Lemma 26 For any ⌧ � ⌧0, first define the following,

R1 = p�1

⌧X

⌧0+1

pX

j=1

kzTt,�j ⌘̂(j)k22 � 2p�1

⌧X

⌧0+1

pX

j=1

"tjz
T
t,�j ⌘̂(j)

+2p�1

⌧X

⌧0+1

pX

j=1

(�̂(j) � �0
(j))

T zt,�jz
T
t,�j ⌘̂(j)

= R11 � 2R12 + 2R13,

R2 = p�1

⌧X

⌧0+1

pX

j=1

kzTt,�j⌘
0

(j)k
2

2 � 2p�1

⌧X

⌧0+1

pX

j=1

"tjz
T
t,�j⌘

0

(j)

= R21 � 2R22. (C.3)

Then we have the following algebraic expansion,

�
C(⌧, µ̂, �̂)� C(⌧, µ0, �0)

�
= �Tp�1

⇣
Q(z, ⌧, µ̂, �̂)�Q(z, ⌧0, µ̂, �̂)

⌘

+Tp�1

⇣
Q(z, ⌧, µ0, �0)�Q(z, ⌧0, µ0, �0)

⌘

=
�
R2 �R1

�

=
n�

R21 � 2R22

�
�
�
R11 � 2R12 + 2R13

�o
. (C.4)

Lemma 27 shows that the expressions
��R21�R11

��,
��R22�R12

��, and |R13| are op(1) uniformly
over the set {G

�
c1T�1 �2, 0

�
} \ {⌧ � ⌧0}. The same result can be obtained symmetrically

on the set {G
�
cuT�1 �2, 0

�
} \ {⌧  ⌧0}, thereby yielding op(1) bounds for these terms

uniformly over G
�
cuT�1 �2, 0

�
Consequently,

sup
⌧2G

�
(cuT�1 �2),0

�
��C(⌧, µ̂, �̂)� C(⌧, µ0, �0)

��  sup
⌧2G

�
(cuT�1 �2),0

� |R21 �R11|

+ sup
⌧2G

�
(cuT�1 �2),0

� 2|R22 �R12|

+ sup
⌧2G

�
(cuT�1 �2),0

� 2|R13|

= op(1)
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This completes the proof of this lemma.

Lemma 27 Suppose Condition A, B and C hold and additionally assume that relation
(2.4) holds. Let R11, R12, R13, and R21, R22 be as defined in (C.3). Let 0 < cu < 1 be any
constant, then we have the following bounds.

(i) sup
⌧2G

�
(cuT�1 �2

),0
�
;

⌧�⌧0

|R11 �R21| = o(1) (ii) sup
⌧2G

�
(cuT�1 �2

),0
�
;

⌧�⌧0

|R12 �R22| = o(1)

(iii) sup
⌧2G

�
(cuT�1 �2

),0
�
;

⌧�⌧0

|R13| = o(1)

each with probability at least 1� o(1).

Proof of Lemma 27 Let �(· , · ) be as defined in (C.1) and consider,

sup
⌧2G

�
(c1T�1 �2

),0
�
;

⌧�⌧0

|R11 �R21|

= sup
⌧2G

�
(c1T�1 �2

),0
�
;

⌧�⌧0

p�1

���
⌧X

⌧0+1

pX

j=1

⇣
kzTt,�j ⌘̂(j)k22 � kzTt,�j⌘

0

(j)k
2

2

⌘���

= sup
⌧2G

�
(c1T�1 �2

),0
�
;

⌧�⌧0

p�1

���
⌧X

⌧0+1

pX

j=1

(⌘̂(j) � ⌘0
(j))

T zt,�jz
T
t,�j(⌘̂(j) + ⌘0

(j))
���

= sup
⌧2G

�
(c1T�1 �2

),0
�
;

⌧�⌧0

���Tp�1�(⌘̂ � ⌘0, ⌘̂ � ⌘0) + 2Tp�1�(⌘̂ � ⌘0, ⌘0)
���. (C.5)

Now from Part (ii) of Lemma 23 we have

sup
⌧2G

�
(c1T�1 �2

),0
�
;

⌧�⌧0

Tp�1�(⌘̂ � ⌘0, ⌘̂ � ⌘0)

 cuc1(�
2 _ �) �2p�1s log(p _ T )

pX

j=1

k⌘̂(j) � ⌘0
(j)k

2

2

= O
⇣s2 log2(p _ T )

 �2T lT

⌘
= o(1), (C.6)

with probability at least 1 � o(1). Also, from Part (iv) of Lemma 23, we have for uT �
c2a1�

4
x

�
(T�2),

sup
⌧2G(uT ,0

�
;

⌧�⌧0

2Tp�1
���(⌘̂ � ⌘0, ⌘0)

��
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 cu(�
2 _ �)TuT p�1⇠2,2

⇣
s log(p _ T )

pX

j=1

k⌘̂(j) � ⌘0
(j)k

2

2

⌘ 1
2

(C.7)

with probability at least 1� a� o(1). Upon choosing a =
�
642 2�4

��
(c1�2) ! 0, we have

c1T�1 �2 = c2a1�
4
x

�
(T�2), consequently from (C.7) we have,

sup
⌧2G

�
(c1T�1 �2

),0
�
;

⌧�⌧0

2T
���(⌘̂ � ⌘0, ⌘0)

��

 cuc1(�
2 _ �) ⇠2,2

p 2

⇣
s log(p _ T )

pX

j=1

k⌘̂(j) � ⌘0
(j)k

2

2

⌘ 1
2

= cuc1(�
2 _ �) 1

⇠2,2

⇣
s log(p _ T )

pX

j=1

k⌘̂(j) � ⌘0
(j)k

2

2

⌘ 1
2

 O
⇣ 1

 

s log(p _ T )p
(T lT )

⌘
= o(1) (C.8)

with probability at least 1� a� o(1) = 1� o(1). Substituting this uniform bound together
with (C.6) back in (C.5) yields Part (i) of this lemma. To prove Part (ii), note that

sup
⌧2G

�
(c1T�1 �2

),0
�
;

⌧�⌧0

|R12 �R22| = sup
⌧2G

�
(c1T�1 �2

),0
�
;

⌧�⌧0

p�1

���
⌧X

⌧0+1

pX

j=1

"tjz
T
t,�j(⌘̂(j) � ⌘0

(j))
���

= O
⇣
p�1 �1 log(p _ T )

pX

j=1

k⌘̂(j) � ⌘0
(j)k1

⌘

 O
⇣s log3/2(p _ T )

 
p
(T lT )

⌘
= o(1),

with probability at least 1� o(1). Here the second equality follows from Part (ii) of Lemma
21. To prove Part (iii) we first note that the expressions �

�
�̂��0, ⌘̂�⌘0

�
, and �(�̂��0, ⌘0)

can be bounded above with probability at least 1�o(1), by the same bounds as in (C.6) and
(C.8), respectively. Now applications of the Cauchy-Schwartz inequality yields the following
bound for the term |R13|.

sup
⌧2G

�
(c1T�1 �2

),0
�
;

⌧�⌧0

|R13| = sup
⌧2G

�
(c1T�1 �2

),0
�
;

⌧�⌧0

���
⌧X

⌧0+1

pX

j=1

(�̂(j) � �0
(j))

T zt,�jz
T
t,�j ⌘̂(j)

���

 sup
⌧2G

�
(c1T�1 �2

),0
�
;

⌧�⌧0

T
n���(�̂ � �0, ⌘̂ � ⌘0)

��+
���(�̂ � �0, ⌘0)

��
o
= o(1),

with probability at least 1� o(1), thus completing the proof of the lemma.
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Lemma 28 Suppose Condition B holds and that  ! 0. Then for any constant r > 0, we
have,

p�1

���
⌧0+br �2cX

⌧0+1

pX

j=1

⇣
kzTt,�j⌘

0

(j)k
2

2 � EkzTt,�j⌘
0

(j)k
2

2

⌘��� = op(1)

Additionally, if ⇠�2

2,2

Pp
j=1

EkzTt,�j⌘
0

(j)k
2

2
! �⇤, then,

p�1

⌧0+br �2cX

⌧0+1

pX

j=1

��zTt,�j⌘
0

(j)

��2
2
!p r�

⇤.

Proof of Lemma 28 From Lemma 43 and Lemma 44 we have,

p�1 �2

pX

j=1

⇣��zTt,�j⌘
0

(j)

��2
2
� E

��zTt,�j⌘
0

(j)

��2
2

⌘
⇠ subE(�), � = 16�2. (C.9)

Now upon applying Bernstein’s inequality (Lemma 45), we obtain for any d > 0,

pr
n
p�1

���
⌧0+br �2cX

⌧0+1

pX

j=1

⇣��zTt,�j⌘
0

(j)

��2
2
� E

��zTt,�j⌘
0

(j)

��2
2

⌘��� > cu2dr
o

 2 exp
n
� cu1r �2

2

⇣d2

�2
^ d

�

⌘o
.

Choosing d as any sequence converging to zero slower than  , say d =  1�b, for any
0 < b < 1, and noting that in this case (d

�
�)  1 for T large, we obtain,

p�1

���
⌧0+br �2cX

⌧0+1

pX

j=1

⇣��zTt,�j⌘
0

(j)

��2
2
� E

��zTt,�j⌘
0

(j)

��2
2

⌘��� = op(1),

This completes the proof of the first part of this lemma, the second part can be obtained
as a direct consequence of Part (i).

Appendix D. Deviation bounds used for proofs in Section 3

Lemma 29 Suppose Condition A0 and B holds, and cu1 > 0 be any constant. Then uni-
formly over j = 1, ..., p, we have,

sup
⌧2{1,...,(T�1)};
⌧�cu1T `T

1

⌧

���
⌧X

t=1

"tjzt,�j

���
1

 48�2(cu/
p
cu1)

p
(1 + ⌫2)

n log(p _ T )

T `T

o 1
2

with probability at least 1 � 2 exp
⇥
� {(c2u/2) � 3} log(p _ T )

⇤
. Additionally, let uT � 0, be

any sequence and cu > 0 any constant, then uniformly over j = 1, ..., p, we have,

sup
⌧2G(uT ,0);
⌧�cu1T `T

1

⌧

���
⌧X

t=⌧0+1

⌘0T
(j)zt,�jz

T
t,�j

���
1

 cu2(�
2 _ �)k⌘0

(j)k2max
n log(p _ T )

T `T
,
uT
`T

o
,
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with probability 1�2 exp
�
�cu3 log(p_T )

 
, with cu2 = (1+48cu)/cu1, cu3 = {(cu^c2u)/2}�3.

Proof of Lemma 29 We begin with proving the first bound. Using Lemma 19 we have
that "tjzt,�j,k ⇠ subE(�1), with �1 = 48�2

p
(1+ ⌫2). For any ⌧ � cu1T `T , applying Lemma

45 we have for d > 0,

pr
⇣���

⌧X

t=1

"tjzt,�j,k

��� > d⌧
⌘
 2 exp

n
� ⌧

2

⇣d2

�2
1

^ d

�1

⌘o
.

Choose d = cu�1
p
{log(p _ T )

�
⌧}, and recall that by choice we have ⌧ � cu1T `T , and from

Condition A0 we have log(p _ T )  cu1T `T . Thus, d/�1  1, and consequently (d2/�2
1
) 

(d/�1). Using these relations the above probability bound yields,

1

⌧

���
⌧X

t=1

"tjzt,�j,k

���  (cu/
p
cu1)�1

n log(p _ T )

T `T

o 1
2

with probability at least 1� 2 exp
�
� (c2u/2) log(p_T )

 
. Part (i) now follows by applying a

union bound over k = 1, ..., (p� 1), j = 1, ..., p and over the at most T distinct values of ⌧.
To prove the second bound, first note that using similar arguments as in Lemma 19 we

have that ⌘0T
(j)zt,�jzt,�j,k � E

�
⌘0T
(j)zt,�jzt,�j,k

�
⇠ subE(�1), with �1 = 48�2k⌘0

(j)k2. For any

⌧ 2 G(uT , 0), satisfying ⌧ � cu1T `T , applying a union bound over k = 1, ..., p � 1, on the
Bernstein’s inequality (Lemma 19) yields the following probability bound,

pr
n���

⌧X

t=⌧0+1

�
⌘0T
(j)zt,�jzt,�j � ⌘0T

(j)��j,�j
����

1
> d(⌧ � ⌧0)

o

 2p exp
n
� (⌧ � ⌧0)
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⇣d2

�2
1

^ d

�1

⌘o
(D.1)

Now upon choosing,

d = cu�1max
hn log(p _ T )

(⌧ � ⌧0)

o 1
2
,
log(p _ T )

(⌧ � ⌧0)

i
,

it can be verified that 13,

d
(⌧ � ⌧0)

⌧
 cu

cu1
�1max

n log(p _ T )

T `T
,
uT
`T

o
, and,

(⌧ � ⌧0)

2

⇣d2

�2
1

^ d

�1

⌘
=

(cu ^ c2u)

2
log(p _ T ) (D.2)

Substituting the relations of (D.2) in the probability bound (D.1) we obtain,

1

⌧

���
⌧X

t=⌧0+1

�
⌘0T
(j)zt,�jzt,�j � ⌘0T

(j)��j,�j
����

1
 cu

cu1
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n log(p _ T )

T `T
,
uT
`T

o

13. See, Remark 30
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with probability at least 1 � 2p exp
⇥
{(cu ^ c2u)/2} log(p _ T )

⇤
. Next, using the bounded

eigenvalue assumption of Condition B we have that,

1

⌧

⌧X

t=⌧0+1

⌘0T
(j)��j,�j  k⌘0

(j)k2�
uT

cu1`T

Using this relation in the probability bound now yields,

1

⌧

���
⌧X

t=⌧0+1

⌘0T
(j)zt,�jzt,�j

���
1

 cu2�k⌘0(j)k2
uT
`T

+ cu3�
2k⌘0

(j)k2max
n log(p _ T )

T `T
,
uT
`T

o
,

with probability at least 1 � 2p exp
⇥
{(cu ^ c2u)/2} log(p _ T )

⇤
, where cu2 = 1/cu1, and

cu3 = 48cu/cu1. Uniformity over ⌧ can be obtained by a union bound over the at most T
values of ⌧, and similarly over j = 1, ..., p, by using another union bound. This completes
the proof of the lemma.

Remark 30 Consider,

d = cu�1max
hn log(p _ T )

(⌧ � ⌧0)

o 1
2
,
log(p _ T )

(⌧ � ⌧0)

i
, (D.3)

observe that when log(p _ T )
�
(⌧ � ⌧0) � 1, then the maximum of the two terms in the

expression (D.3) is log(p _ T )
�
(⌧ � ⌧0). In this case,

⇣d2

�2
1

^ d

�1

⌘
= (c2u ^ cu)

log(p _ T )

(⌧ � ⌧0)
. (D.4)

In the case where log(p _ T )
�
(⌧ � ⌧0) < 1, the maximum in the expression (D.3) becomesp

{log(p _ T )
�
(⌧ � ⌧0)}, however the minimum in the expression (D.4) remains the same.

Lemma 31 Suppose Condition B holds and let "tj be as defined in (2.3). Let log(p_ T ) 
TvT  TuT be any non-negative sequences. Then for any cu > 0, we have,

sup
⌧2G(uT ,vT )

⌧�⌧0
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T

���
⌧X

t=⌧0+1

"tjz
T
t,�j

���
1

 48
p
(2cu)�

2
p
(1 + ⌫2)

⇣uT log(p _ T )

T

⌘ 1
2
,

with probability at least 1� 2 exp
�
� (cu1 � 3) log(p _ T )

 
, with cu1 = cu ^

p
(cu/2).

Proof of Lemma 31 The proof of this result is very similar to that of Lemma 21, the
di↵erence being utilization of the additional assumption TvT � log(p_T ), in order to obtain
this sharper bound. Proceeding as in (C.1) we have,
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where �1 = 48�2
p
(1 + ⌫2). Choose d = �1{2cu log(p _ T )

�
(⌧ � ⌧0)}1/2, then,

�
⌧ � ⌧0

� d2

2�2
1

= cu log(p _ T ), and,

�
⌧ � ⌧0

� d

2�1
=

p
(cu/2){log(p _ T )(⌧ � ⌧0)}1/2 �

p
(cu/2) log(p _ T ),

where we used
�
⌧ � ⌧0

�
� TvT � log(p _ T ). Substituting back in the probability bound

yields,

1

T

���
⌧X

t=⌧0+1

"tjzt,�j,k

���  �1
n2cuuT log(p _ T )

T

o
1/2

,

with probability 1�2 exp{�cu1 log(p_T )}, with cu1 = cu^
p
(cu/2). Finally applying a union

bound over j = 1, ..., p, k = 1, ..., p � 1 and over at most T values of ⌧ for ⌧ 2 G(uT , vT ),
yields the statement of the lemma.

Lemma 32 Let �(· , · ) be as defined in (C.1) and suppose Condition B holds. Additionally,
let 0  uT , vT  1 be non-negative sequences satisfying log(p _ T )  TvT  TuT . Then for
any constant cu > 0, we have,

(i) inf
⌧2G(uT ,vT );

⌧�⌧0

�(⌘0, ⌘0) � vT⇠
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⌘ 1
2

with probability at least 1� 2 exp{�(cu1 � 1) log(p _ T )}, where cu1 = cu ^
p
(cu/2).

Proof of Lemma 32 Note that
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2,2. For any fixed ⌧ 2 G(uT , vT ), applying the Bernstein’s inequality (Lemma 45)

we obtain,
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pX

j=1

�
kzTt,�j⌘

0

(j)k
2

2 � EkzTt,�j⌘
0

(j)k
2

2

���� � d(⌧ � ⌧0)
o

 2 exp
n
� (⌧ � ⌧0)

2

⇣d2

�2
^ d

�

⌘o

Choose d = �{2cu log(p _ T )
�
(⌧ � ⌧0)}1/2 and observe that,

(⌧ � ⌧0)
d2

2�2
= cu log(p _ T )

(⌧ � ⌧0)
d

2�
=

p
(cu/2){TvT log(p _ T )}1/2 �

p
(cu/2) log(p _ T )
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where the inequality follows from the assumption TvT � log(p_ T ). A substitution back in
the above probability bound yields,

1

T

���
⌧X

t=⌧0+1

pX

j=1

�
kzTt,�j⌘

0

(j)k
2

2 � EkzTt,�j⌘
0

(j)k
2

2

����


p
(2cu)�

nuT log(p _ T )

T

o 1
2

(D.5)

with probability at least 1� 2 exp
�
� cu1 log(p_ T )

�
, cu1 = cu ^

p
(cu/2). Applying a union

bound over at most T distinct values of ⌧, yields the bound (D.5) uniformly over ⌧. The
statements of this lemma are now a direct consequence.

Lemma 33 Let �(· , · ) be as defined in (C.1) and suppose Condition B holds. Let µ̌(j)

and �̌(j), j = 1, ..., p be Step 1 edge estimates of Algorithm 2, and 0  uT , vT  1 be any
non-negative sequences satisfying log(p _ T )  TvT  TuT . Then,

(i) inf
⌧2G(uT ,vT );

⌧�⌧0

�(⌘0, ⌘0) � vT⇠
2

2,2 � cu�
2⇠22,2

⇣uT log(p _ T )

T

⌘ 1
2
,

(ii) sup
⌧2G(uT ,vT );

⌧�⌧0

�(⌘̌ � ⌘0, ⌘̌ � ⌘0)  cu(�
2 _ �)uT

⇣
s

pX

j=1

k⌘̌(j) � ⌘0
(j)k

2

2

⌘

with probability 1� o(1). Furthermore, when uT � cu�4 log(p _ T )
�
T�2, we have,

(iii) sup
⌧2G(uT ,vT );

⌧�⌧0

�(⌘0, ⌘0)  2uT�⇠
2

2,2,

(iv) sup
⌧2G(uT ,vT );

⌧�⌧0

���(⌘̌ � ⌘0, ⌘0)
��  cu(�

2 _ �)uT ⇠2,2
n
s

pX

j=1

k⌘̌(j) � ⌘0
(j)k

2

2

o 1
2
,

with probability at least 1� o(1).

Proof of Lemma 33 Part (i) and Part (iii) are a direct consequence of Lemma 32. To prove
Part (ii), first note from Theorem 10 we have that µ̌(j) � µ0

(j) 2 A1j , and �̌(j) � �0
(j) 2 A2j ,

j = 1, ..., p, with probability at least 1 � o(1). It can be verified that this property yields
k⌘̌(j) � ⌘0

(j)k1  cu
p
sk⌘̌(j) � ⌘0

(j)k2.
�
see, e.g. (C.2)

�
. Now applying Part (ii) of 36 yields,

sup
⌧2G(uT ,vT );

⌧�⌧0

�(⌘̌ � ⌘0, ⌘̌ � ⌘0)  cu(�
2 _ �)uT

⇣
s

pX

j=1

k⌘̌(j) � ⌘0
(j)k

2

2

⌘

with probability at least 1�o(1). Part (iv) follows by an application of the Cauchy-Schwartz
inequality together with the bounds of Part (ii) and Part (iii) (see, (C.3)). This completes
the proof of this lemma.
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Lemma 34 Suppose Condition B holds. Let µ̌(j), �̌(j), j = 1, ..., p be Step 1 estimates of
Algorithm 2, and assume 0  uT , vT  1 satisfy log(p _ T )  TvT  TuT . Then,

(i) inf
⌧2G(uT ,vT );

⌧�⌧0

1

T

⌧X

t=⌧0+1

pX

j=1

k⌘̌T
(j)zt,�jk22 �

⇠22,2

h
vT � cu�2



nuT log(p _ T )

T

o 1
2 � cu(�

2 _ �) uT
⇠2,2

⇣
s

pX

j=1

k⌘̂(j) � ⌘0
(j)k

2

2

⌘ 1
2
i

(ii) sup
⌧2G(uT ,vT );

⌧�⌧0

1

T

���
⌧X

t=⌧0+1

pX

j=1

(�̌(j) � �0
(j))

T zt,�jz
T
t,�j ⌘̌(j)

��� 

cu(�
2 _ �)⇠2,2uT

n
s

pX

j=1

k�̌(j) � �0
(j)k

2

2

o 1
2
h
1 +

1

⇠2,2

n
s

pX

j=1

k⌘̌(j) � ⌘0
(j)k

2

2

o 1
2
i

(iii) sup
⌧2G(uT ,vT );

⌧�⌧0

1

T

���
⌧X

t=⌧0+1

pX

j=1

"tjz
T
t,�j ⌘̌(j)

��� 

cu
p
(1 + ⌫2)�2⇠2,1

⇣uT log(p _ T )

T

⌘ 1
2
+ cu

p
(1 + ⌫2)�2

⇣uT log(p _ T )

T

⌘ 1
2

pX

j=1

k⌘̌(j) � ⌘0
(j)k1,

each with probability at least 1� o(1).

Proof of Lemma 34 Let �(· , · ) be as defined in (C.1). Then note that �(⌘̌, ⌘̌) =
�(⌘0, ⌘0) + 2�(⌘̌� ⌘0, ⌘0) +�(⌘̌� ⌘0, ⌘̌� ⌘0). Using this relation together with the bounds
of Part (i) and Part (iv) of Lemma 33 we obtain,

inf
⌧2G(uT ,vT );

⌧�⌧0

�(⌘̌, ⌘̌) � inf
⌧2G(uT ,vT );

⌧�⌧0

�(⌘0, ⌘0)� 2 sup
⌧2G(uT ,vT );

⌧�⌧0

|�(⌘̌ � ⌘0, ⌘0)|

� vT⇠
2

2,2 � cu�
2⇠22,2

nuT log(p _ T )

T

o 1
2

�cu(�
2 _ �)uT ⇠2,2

⇣
s

pX

j=1

k⌘̌(j) � ⌘0
(j)k

2

2

⌘ 1
2

with probability at least 1 � o(1). To prove Part (ii), note that using identical arguments
as in the proof of Lemma 33 it can be shown that,

sup
⌧2G(uT ,vT );

⌧�⌧0

�(�̌ � �0, �̌ � �0)  cu(�
2 _ �)uT s

pX

j=1

k�̌(j) � �0
(j)k

2

2,

sup
⌧2G(uT ,vT );

⌧�⌧0

���(�̌ � �0, ⌘0)
��  cu(�

2 _ �)uT ⇠2,2
n
s

pX

j=1

k�̌(j) � �0
(j)k

2

2

o 1
2
,
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with probability at least 1 � o(1). The above inequalities and the relation �
�
�̌ � �0, ⌘̌

�
���(�̌ � �0, ⌘̌ � ⌘0)

�� +
���(�̌ � �0, ⌘0)

��, together with applications of the Cauchy-Schwartz
inequality yields,

sup
⌧2G(uT ,vT );
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���
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⇣
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⌘ 1
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⌘ 1
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k�̌(j) � �0
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o 1
2
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⇠2,2

n
s

pX
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k⌘̌(j) � ⌘0
(j)k

2
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o 1
2
i

with probability at least 1� o(1). To prove Part (iii), note that,

sup
⌧2G(uT ,vT );

⌧�⌧0

1

T

���
⌧X

t=⌧0+1

pX
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"tjz
T
t,�j ⌘̌(j)
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⌧2G(uT ,vT );

⌧�⌧0

1

T

���
⌧X

t=⌧0+1

pX

j=1

"tjz
T
t,�j⌘

0

(j)

���

+ sup
⌧2G(uT ,vT );

⌧�⌧0

1

T

���
⌧X

t=⌧0+1

pX

j=1

"tjz
T
t,�j(⌘̌(j) � ⌘0

(j))
���

:= R1 +R2.

Now using Lemma 31, we have

R1  cu
p
(1 + ⌫2)�2⇠2,1

⇣uT log(p _ T )

T

⌘ 1
2
, and

R2  cu
p
(1 + ⌫2)�2

⇣uT log(p _ T )

T

⌘ 1
2

pX

j=1

k⌘̌(j) � ⌘0
(j)k1 (D.6)

w.p. at least 1� o(1). Part (iv) now follows by combining bounds for terms R1 and R2.

Appendix E. Uniform (over ⌧) Restricted Eigenvalue Condition

Lemma 35 Let zt 2 Rp, t = 1, ..., n be independent subG(�) r.v’s and � = 16�2. Addi-
tionally, for any s � 1, let Kp(s) = {� 2 Rp; k�k1  1, k�k0  s}. Then for non-negative
0  vT  uT  1, and any d1 > 0, we have T � 2,

pr

2

64 sup
⌧2G(uT ,vT );

⌧�⌧0

sup
�2Kp(2s)

1
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���
⌧X

t=⌧0+1

�
kzTt �k22 � EkzTt �k22

 ��� � d1uT

3

75 

2 exp
n
� TvT

2

⇣d2
1

�2
^ d1
�

⌘
+ 3s log(p _ T )

o
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Proof of Lemma 35 Consider any fixed � 2 Rp, with k�k2  1, then from Lemma 44
we have kzTt �k22 � EkzTt �k22 ⇠ subE(�), with � = 16�2. Now, for any fixed ⌧ 2 G(uT , vT ),
⌧ � ⌧0 applying Lemma 45 (Bernstein’s inequality) we have,

pr
⇣���

⌧X

t=⌧0+1

kzTt �k22 � EkzTt �k22
��� > d(⌧ � ⌧0)

⌘

 2 exp
n
� (⌧ � ⌧0)

2

⇣d2

�2
^ d

�

⌘o

Choose d = d1TuT /(⌧ � ⌧0) and observe that by definition of the set G(uT , vT ), we have
TvT  (⌧ � ⌧0)  TuT , this in turn yields d1  d, and consequently,

pr
⇣ 1
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���
⌧X
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��� � d1uT
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1
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^ d1
�

⌘o
(E.1)

Using the inequality (E.1) and a covering number argument, it can be shown that (see,
Lemma 15 of the supplementary materials of Loh and Wainwright (2012)) for any s � 1,

pr
⇣

sup
�2Kp(2s)

1

T

���
⌧X

t=⌧0+1

kzTt �k22 � EkzTt �k22
��� � d1uT

⌘

 2 exp
n
� TvT

2

⇣d2
1

�2
^ d1
�

⌘
+ 2s log(p _ T )

o
.

Finally, uniformity over the set G(uT , vT ) can be obtained by applying a union bound over
the at most T distinct values of ⌧ for ⌧ 2 G(uT , vT ), thus yielding the statement of this
lemma.

Lemma 36 Suppose Condition B holds and let 0  vT  uT  1 be any non-negative
sequences. Then for all �(j) 2 Rp�1, j = 1, ..., p, and T � 2, we have,

(i) sup
⌧2G(uT ,vT );

⌧�⌧0

1

T

⌧X

t=⌧0+1

pX
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k�(j)k22 +
pX
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k�(j)k21
⌘

with probability at least 1�2 exp
�
� log(p_T )

 
. Additionally assuming that T � log(p_T )

and vT satisfies TvT � log(p _ T ), then for all �(j) 2 Rp�1, j = 1, ..., p,

(ii) sup
⌧2G(uT ,vT );
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cu(�
2 _ �)uT

⇣ pX

j=1

k�(j)k22 +
pX

j=1

k�(j)k21
⌘

with probability at least 1� 2 exp
�
� log(p _ T )

 
.

Proof of Lemma 36 w.l.o.g. assume vT � (1/T )
�
see, Lemma 21

�
. Now for any s � 1,

consider any non-negative uT , any �(j) 2 Kp�1(2s), j = 1, ..., p. Then for any d1 > 0,
applying a union bound to the result of Lemma 35 over the components j = 1, ..., p we
obtain,

sup
⌧2G(uT ,vT );

⌧�⌧0

sup
�(j)2K(2s);
j=1,...,p

1

T

���
⌧X

t=⌧0+1

kzTt,�j�(j)k22 � EkzTt,�j�(j)k22
���  d1uT (E.2)

with probability at least 1� 2 exp
n
� TvT

2

⇣
d21
�2 ^

d1
�

⌘
+4s log(p_ T )

o
. It can be shown that

the bound (E.2) in turn implies that (see, Lemma 12 of supplement of Loh and Wainwright
(2012)), for all ⌧ 2 G(uT , vT ), and for all �(j) 2 Rp�1, j = 1, ..., p,

1

T

���
⌧X

t=⌧0+1

pX

j=1

kzTt,�j�(j)k22 � EkzTt,�j�(j)k22
���  27d1uT (

pX

j=1

k�(j)k22 + (1/s)
pX

j=1

k�(j)k21)

with probability at least 1 � 2 exp
n
� TvT

2

⇣
d21
�2 ^ d1

�

⌘
+ 4s log(p _ T )

o
. Now choose d1 =

10� log(p_ T ), and note that TvT
2

⇣
d21
�2 ^

d1
�

⌘
� 5 log(p_ T ). This follows since TvT � 1, and

that d1/� � 1. A substitution back in the probability bound yields,

1

T

���
⌧X

t=⌧0+1

pX

j=1

kzTt,�j�(j)k22 � EkzTt,�j�(j)k22
���

 270�uT log(p _ T )
n pX

j=1

k�(j)k22 +
1

s

pX

j=1

k�(j)k21
o

,

with probability at least 1� 2 exp
�
� 5 log(p _ T ) + 4s log(p _ T )

 
. The statement of Part

(i) follows by setting s = 1. The proof of Part (ii) is quite analogous. This can be obtained
by proceeding as earlier with (E.2) above, and additionally utilizing TvT � log(p_ T ), and
setting d1 = 10�, instead of the choice made for Part (i). This completes the proof of the
result.

Lemma 37 Suppose Condition A0 and B hold, then for i = 1, 2,

min
j=1,...,p;

inf
⌧2{1,...,(T�1)};

⌧�cu1`T

inf
�2Aij ;

k�k2=1

1

⌧

⌧X

t=1

�T zt,�jz
T
t,�j� �



2
.

with probability at least 1 � 2 exp{�cu log(p _ T )}, for some cu > 0 and for T su�ciently
large.
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Lemma 37 is a nearly direct extension of the usual restricted eigenvalue condition. Its
proof is analogous to those available in the literature, for e.g., Corollary 1 of Loh and
Wainwright (2012). In comparison to the typical restricted eigenvalue condition, Lemma 37
has additional uniformity over ⌧, i and j, which can be follow by dditional union bounds.

Appendix F. Auxiliary results

In the following Definition’s 38, 39, and Lemma’s 40-45, we list well known properties of
subgaussian and subexponential distributions. These are largely reproduced from Vershynin
(2019) and Rigollet (2015). Theorem 46 and 47 below reproduce Kolmogorov’s inequality
and the argmax theorem. Lemma 48 provides an upper bound for the `2 norm of the
parameter vectors defined in Section 1.

Definition 38 Sub-gaussian r.v.: A random variable X 2 R is said to be sub-gaussian
with parameter � > 0

�
denoted by X ⇠ subG(�)

�
if E(X) = 0 and its moment generating

function

E(etX)  et
2�2/2, 8 t 2 R (F.1)

Furthermore, a random vector X 2 Rp is said to be sub-gaussian with parameter �, if the
inner products hX, vi ⇠ subG(�) for any v 2 Rp with kvk2 = 1.

Definition 39 Sub-exponential r.v.: A random variable X 2 R is said to be sub-
exponential with parameter � > 0

�
denoted by X ⇠ subE(�)

�
if E(X) = 0 and its moment

generating function

E(etX)  et
2�2/2, 8 |t|  1

�

Lemma 40 [Tail bounds] (i) If X ⇠ subG(�), then,

pr(|X| � �)  2 exp(��2/2�2).

(ii) If X ⇠ subE(�), then

pr(|X| � �)  2 exp
n
� 1

2

⇣�2

�2
^ �

�

⌘o
.

Proof of Lemma 40 This proof is a simple application of the Markov inequality. For any
t > 0,

pr(X � �) = pr(tX � t�)  EetX

et�
= e�t�+t2�2/2.

Minimizing over t > 0, yields the choice t⇤ = �/�2, and substituting in the above bound
,we obtain,

pr(X � �)  inf
t>0

e�t�+t2�2/2 = e��
2/2�2

.
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Repeating the same for P (X  ��) yields part (i) of the lemma. To prove Part (ii), repeat
the above argument with t 2 (0, 1/�], to obtain,

pr(X � �) = pr(tX � t�)  e�t�+t2�2/2. (F.2)

As in the subgaussian case, to obtain the tightest bound one needs to find t⇤ that minimizes
�t�+ t2�2/2, with the additional constraint for this subexponential case that t 2 (0, 1/�].
We know that the unconstrained minimum occurs at t⇤ = �/�2 > 0. Now consider two
cases:

1. If t⇤ < (0, 1/�] , �  � then the unconstrained minimum is same as the constrained
minimum, and substituting this value yields the same tail behavior as the subgaussian
case.

2. If t⇤ > (1/�) , � > �, then note that �t�+ t2�2/2 is decreasing in t, in the interval
(0, (1/�)], thus the minimum occurs at the boundary t = 1/�. Substituting in the tail
bound we obtain for this case,

pr(X � �)  e�t�+t2�2/2 = exp{�(�/�) + (1/2)}  exp (��/2�),

where the final inequality follows since � > �.

Part (ii) of the lemma is obtained by combining the results of the above two cases.

Lemma 41 (Moment bounds) (i) If X ⇠ subG(�), then

E|X|k  3k�kkk/2, k � 1.

(ii) If X ⇠ subE(�), then

E|X|k  4�kkk, k > 0.

Proof of Lemma 41 Consider X ⇠ subG(�), and w.l.o.g assume that � = 1 (else define
X⇤ = X/�). Using the integrated tail probability expectation formula, we have for any
k > 0,

E|X|k =

Z 1

0

pr(|X|k > t)dt =

Z 1

0

pr(|X| > t1/k)dt

 2

Z 1

0

exp
⇣
� t2/k

2

⌘
dt

= 2k/2k

Z 1

0

e�uuk/2�1du, u =
t2/k

2

= 2k/2k�(k/2)

Here the first inequality follows from the tail bound Lemma 40. Now, for x � 1/2, we have
the inequality �(x)  3xx, thus for k � 1 we have, �(k/2)  3(k/2)(k/2). A substitution
back in the moment bound yields desired bound of Part (i).
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To prove the moment bound of Part (ii). As before, w.l.o.g. assume � = 1. Consider
the inequality,

|x|k  kk(ex + e�x)

which is valid for all x 2 R and k > 0. Substitute x=X and take expectation to get,

E|X|k  kk(EeX + Ee�X).

Since in this case � = 1, from the mgf condition, at t = ±1 we have, EeX  e1/2  2, and
Ee�X  2. Thus for any k > 0,

E|X|k  4kk

This yields the desired moment bound of Part (ii).

Lemma 42 Assume that X ⇠ subG(�), and that ↵ 2 R, then ↵X ⇠ subG(|↵|�). Moreover
if X1 ⇠ subG(�1) and X2 ⇠ subG(�2), then X1 +X2 ⇠ subG(�1 + �2).

Proof of Lemma 42 The first part follows directly from the inequality E(et↵X)  exp(t2↵2�2/2).
To prove Part (ii) use the Hölder’s inequality to obtain,

E(et(X1+X2)) = E(etX1etX2)  {E(etX1p)}
1
p {E(etX2q)}

1
q

 e
t2

2 �
2
1p

2
e

t2

2 �
2
2q

2
= e

t2

2 (p�2
1+q�2

2)

where p, q 2 [1,1], with 1/p+1/q = 1. Choose p⇤ = (�2/�1)+1, q⇤ = (�1/�2)+1 to obtain

E(et(X1+X2))  exp
�
t2

2
(�1 + �2)2

 
. This completes the proof of this lemma.

Lemma 43 Assume that X ⇠ subE(�), and that ↵ 2 R, then ↵X ⇠ subE(|↵|�). Moreover,
assume that X1 ⇠ subE(�1) and X2 ⇠ subE(�2), then X1 +X2 ⇠ subE(�1 + �2).

The proof of Lemma 43 is analogous to that of Lemma 42 and is thus omitted.

Lemma 44 Let X ⇠ subG(�) then the random variable Z = X2�E[X2] is sub-exponential:
Z ⇠ subE(16�2).

The next result is Bernstein’s inequality, reproduced from Lemma 1.13 of Rigollet (2015).

Lemma 45 (Bernstein’s inequality) Let X1, X2, ..., XT be independent random vari-
ables such that Xt ⇠ subE(�). Then for any d > 0 we have,

pr(|X̄| > d)  2 exp
n
� T

2

⇣d2

�2
^ d

�

⌘o

The next result is Kolmogorov’s inequality reproduced from Hájek and Rényi (1955)

67



Kaul, Zhang, Tsampourakis and Michailidis

Theorem 46 (Kolmogorov’s inequality) If ⇠1, ⇠2, ... is a sequence of mutually inde-
pendent random variables with mean values E(⇠k) = 0 and finite variance var(⇠k) = D2

k
(k = 1, 2, ...), we have, for any " > 0,

pr
⇣

max
1km

��⇠1 + ⇠2 + ...+ ⇠k
�� > "

⌘
 1

"2

mX

k=1

D2

k

The following theorem is the well known ‘Argmax’ theorem reproduced from Theorem
3.2.2 of Vaart and Wellner (1996)

Theorem 47 (Argmax Theorem) Let Mn,M be stochastic processes indexed by a met-
ric space H such that Mn ) M in `1(K) for every compact set K ✓ H. Suppose that
almost all sample paths h ! M(h) are upper semicontinuous and posses a unique maximum
at a (random) point ĥ, which as a random map in H is tight. If the sequence ĥn is uniformly
tight and satisfies Mn(ĥn) � suphMn(h)� op(1), then ĥn ) ĥ in H.

Lemma 48 Suppose condition B holds, and let µ0

(j) and �
0

(j), be as defined in (1.2). Then
we have,

max
1jp

⇣
kµ0

(j)k2 _ k�0
(j)k2

⌘
 ⌫,

Consequently we also have that   2⌫ < 1, where  is as defined in (1.3).

Proof of Lemma 48 Let ⌦ = ⌃�1 be the precision matrix corresponding to ⌃. Then we
can write ⌦jj = �(⌃jj �⌃j,�jµ0

(j))
�1, and ⌦�j,j = �⌦jjµ0

(j), for each j = 1, ..., p, (see, e.g.,

Yuan (2010)). We also have that 1
�
�  maxj |⌦jj |  1

�
. Now note that the `2 norm of

the rows (or columns) of ⌦ are bounded above, i.e., k⌦j·k2 = k⌦ejk2  1/. This finally
implies that

kµ0

(j)k2 = k � ⌦�j,j
�
⌦jjk2  k⌦j·k2

�
|⌦jj | 

�


= ⌫ (F.3)

Since the r.h.s. in (F.3) is free of j, this implies that maxj kµ0

(j)k  ⌫. Identical arguments

can be used to show that maxj k�0(j)k  ⌫. These two statements together imply the state-
ment of the lemma.
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