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Abstract

Let M be a compact d-dimensional submanifold of RY with reach 7 and volume V. Fix € € (0,1).
d
In this paper we prove that a nonlinear function f : RN — R™ exists with m < C (d/eQ) log ( YM)

such that
(I=alx—ylz <lf(x) = F)l. < X+ e)llx —yll2

holds for all x € M and y € RY. In effect, f not only serves as a bi-Lipschitz function from M
into R™ with bi-Lipschitz constants close to one, but also approximately preserves all distances from
points not in M to all points in M in its image. Furthermore, the proof is constructive and yields an
algorithm which works well in practice. In particular, it is empirically demonstrated herein that such
nonlinear functions allow for more accurate compressive nearest neighbor classification than standard
linear Johnson-Lindenstrauss embeddings do in practice.

1 Introduction

The classical Kirszbraun theorem [15] ensures that a Lipschitz continuous function f : S — R™ from a
subset S C RY into R™ can always be extended to a function f : RV — R™ with the same Lipschitz
constant as f. More recently, similar results have been proven for bi-Lipschitz functions, f : S — R™, from
S C RY into R™ in the theoretical computer science literature. In particular, it was shown in [18] that outer
extensions of such bi-Lipschitz functions f, f : RN — R™*! exist which both (i) approximately preserve
f’s Lipschitz constants, and which (i) satisfy f(x) = (f(x),0) for all x € S. Narayanan and Nelson [19]
then applied similar outer extension methods to a special class of the linear bi-Lipschitz maps guaranteed to
exist for any given finite set S C R by Johnson-Lindenstrauss (JL) lemma [I4] in order prove the following
remarkable result: For each finite set S C RY and e € (0,1) there exists a terminal embedding of S,

f:RN = RO (log |S|/62), with the property that

(I=elx=ylz < [IFx) = FW)lly < A+ &)lx —yll2 (1.1)

holds ¥x € S and Vy € RV.

In this paper we generalize Narayanan and Nelson’s theorem for finite sets to also hold for infinite subsets
S C RY, and then give a specialized variant for the case where the infinite subset S € R in question is
a compact and smooth submanifold of R". As we shall see below, generalizing this result requires us to
both alter the bi-Lipschitz extension methods of [18] as well as to replace the use of embedding techniques
utilizing cardinality in [19] with different JL-type embedding methods involving alternate measures of set
complexity which remain meaningful for infinite sets (i.e., the Gaussian width of the unit secants of the set
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S in question). In the special case where S is a submanifold of R, recent results bounding the Gaussian
widths of the unit secants of such sets in terms of other fundamental geometric quantities (e.g., their reach,
dimension, volume, etc.) [13| can then be brought to bear in order to produce terminal manifold embeddings
of S into R™ satisfying with m near-optimally small.

Note that a non-trivial terminal embedding, f, of S satisfying for all x € S and y € RY must
be nonlinear. In contrast, prior work on bi-Lipschitz maps of submanifolds of R into lower dimensional
Euclidean space in the mathematical data science literature have all utilized linear maps (see, e.g., [11[7][13]).
As a result, it is impossible for such previously considered linear maps to serve as terminal embeddings of
submanifolds of RY into lower-dimensional Euclidean space without substantial modification. Another way
of viewing the work carried out herein is that it constructs outer bi-Lipschitz extensions of such prior linear
JL embeddings of manifolds in a way that effectively preserves their near-optimal embedding dimension in
the final resulting extension. Motivating applications of terminal embeddings of submanifolds of RY related
to compressive classification via manifold models [5] are discussed next.

1.1 Universally Accurate Compressive Classification via Noisy Manifold Data

It is one of the sad facts of life that most everyone eventually comes to accept: everything living must
eventually die, you can’t always win, you aren’t always right, and — worst of all to the most dedicated
of data scientists — there is always noise contaminating your datasets. Nevertheless, there are mitigating
circumstances and achievable victories implicit in every statement above — most pertinently here, there are
mountains of empirical evidence that noisy training data still permits accurate learning. In particular, when
the noise level is not too large, the mere existence of a low-dimensional data model which only approximately
fits your noisy training data can still allow for successful, e.g., nearest-neighbor classification using only a
highly compressed version of your original training dataset (even when you know very little about the model
specifics) [5]. Better quantifying these empirical observations in the context of low-dimensional manifold
models is the primary motivation for our main result below.

For example, let M C RY be a d-dimensional submanifold of RY (our data model), fix § € R* (our
effective noise level), and choose T C tube(d, M) := {x | Jy € M with ||x —y|l2 < §} (our “noisy” and
potentially high-dimensional training data). Fix e € (0,1). For a terminal embedding f : RN — R™ of M
as per , one can see that

(I=ellz—tll, =21 =)0 <|[|f(z) = f(t)ly < (L + ) [z =t +2(1 +€)d (1.2)

will hold simultaneously for all z € RY and t € T, where f has an embedding dimension that only depends
on the geometric properties of M (and not necessarily on |T|) Thus, if T includes a sufficiently dense
external cover of M, then f will allow us to approximate the distance of all z € RN to M in the compressed
embedding space via the estimator

d(f(2), /(1)) := Inf [](z) = F(O)l, > d(z, M) := inf [z —y]> (1.3)

up to O(d)-error. As a result, if one has noisy data from two disjoint manifolds My, My C RY, one can use
this compressed d estimator to correctly classify all data z € tube(d, M7) | tube(d, M3) as being in either

T := tube(d, M) (class 1) or Ty := tube(d, Ms) (class 2) as long as Tinf . |lx—yl|2 is sufficiently large. In
xeT1,y€l>

short, terminal manifold embeddings demonstrate that accurate compressive nearest-neighbor classification
based on noisy manifold training data is always possible as long as the manifolds in question are sufficiently
far apart (though not necessarily separable from one another by, e.g., a hyperplane, etc.).

Note that in the discussion above we may in fact take T = tube(d, M). In that case will hold
simultaneously for all z € RN and (t,0) € RY x R* with t € tube(d, M) so that f : RY — R™ will
approximately preserve the distances of all points z € RY to tube(d, M) up to errors on the order of

1One can prove by comparing both z and t to a point x¢ € M satisfying ||t — x¢||2 < § via several applications of the
(reverse) triangle inequality.



O(e)d(z, tube(d, M)) + O(0) for all § € RT. This is in fact rather remarkable when one recalls that the best
achievable embedding dimension, m, here only depends on the geometric properties of the low-dimensional
manifold M (see Theoremfor a detailed accounting of these dependences).

We further note that alternate applications of Theoremm (on which Theorem depends) involving
other data models are also possible. As a more explicit second example, suppose that M is a union of
n d-dimensional affine subspaces so that its unit secants, S, defined as per , are contained in the
union of at most (g‘) + n unit spheres C SV~1, each of dimension at most 2d + 1. The Gaussian width
(see Deﬁnition of Sp¢ can then be upper-bounded by C+/d + logn using standard techniques, where

C € R7 is an absolute constant. An application of Theorem now guarantees the existence of a terminal
d+log n
embedding f : RV — IRO( ) which will allow approximate nearest subspace queries to be answered

for any input point z € R using only f(z) in the compressed O (‘ﬂ#)—dimensional space. Even more

specifically, if we choose, e.g., M to consist of all at most s-sparse vectors in R" (i.e., so that M is the union
of n = (]Z ) subspaces of R"), we can now see that Theorem guarantees the existence of a deterministic
compressed estimator which allows for the accurate approximation of the best s-term approximation
error inf 1z —yll2 for all z € RY using only f(z) € RO(108(V/5)) a5 input. Note that this is

yERYN at most s sparse
only possible due to the non-linearity of f herein. In, e.g., the setting of classical compressive sensing theory

where f must be linear it is known that such good performance is impossible [4] Section 5].

1.2 The Main Result and a Brief Outline of Its Proof

The following theorem is proven in Section 4| Given a low-dimensional submanifold M of RY it establishes
the existence of a function f : RN — IR™ with m < N that approximately preserves the Euclidean distances
from all points in RN to all points in M. As a result, it guarantees the existence of a low-dimensional
embedding which will, e.g., always allow for the correct compressed nearest-neighbor classification of images
living near different well separated submanifolds of Euclidean space.

Theorem 1.1 (The Main Result). Let M — RY be a compact d-dimensional submanifold of RN with
boundary OM, finite reach Tar (see Deﬁm’tion, and volume Vaq. Enumerate the connected components
of OM and let 1; be the reach of the i** connected component of OM as a submanifold of RN. Set T :=
min;{7ap, 7}, let Vo be the volume of OM, and denote the volume of the d-dimensional Euclidean ball of
radius 1 by wg. Neaxt,

1. ifd =1, define ar = % + Vam, else
2. if d > 2, define apg = L (41)d+ Yo (%)dil.

(%) T Wag—1

Finally, fiz e € (0,1) and define
B = (a3 + 3%anm) - (1.4)

Then, there exists a map f: RN — C™ with m < c(In(Bp) + 4d) /€® that satisfies
1760 = £ = llx = y1I3| < €l — w1 (L5)

forallx € M andy € RN. Here c € RY is an absolute constant independent of all other quantities.
Proof. See Section O

The remainder of the paper is organized as follows. In Section we review notation and state a result from
[13] that bounds the Gaussian width of the unit secants of a given submanifold of R in terms of geometric
quantities of the original submanifold. Next, in Section We prove an optimal terminal embedding result for
arbitrary subsets of RY in terms of the Gaussian widths of their unit secants by generalizing results from



the computer science literature concerning finite sets [18| [19]. See Theorem therein. We then combine
results from Sections [2| and [3] in order to prove our main theorem in Section [4] Finally, in Section [5]| we
conclude by demonstrating that terminal embeddings allow for more accurate compressive nearest neighbor
classification than standard linear embeddings in practice.

2 Notation and Preliminaries

Below Bg (x,7) will denote the open Euclidean ball around x of radius v in RY™. Given an arbitrary
subset S C RY, we will further define —S := {-x |x€ S} and S+ 5 := {x+y | x,y € S}. Finally,
for a given T C RY we will also let T denote its closure, and further define the normalization operator
U :RM\ {0} — SV~ to be such that U(x) := x/||x||2. With this notation in hand we can then define the
unit secants of T C RY to be

X-Yy
Sr= U@ -1 (0D - { xyeT xzy} (2.1)
l[x = yll2
Note that St is always a compact subset of the unit sphere S¥~! ¢ R”, and that Sp = —Sr.
Herein we will call a matrix A € C™*Y an e-JL map of a set T C RY into C™ if

(1= lxl3 < Ax[l3 < (1 +€)lx[3

holds for all x € T. Note that this is equivalent to A € C™*¥ having the property that

sup_ [ AGe/ [xll2) 3~ 1) = sup [lx]f} —1] <e.
x€T\{0} xeU(T)

where U(T) C RY is the normalized version of 7'\ {0} C RN defined as above. Furthermore, we will say
that a matrix A € C™*" is an e-JL embedding of a set T C R™ into C™ if A is an e-JL map of

T-T:= {x—y’x,yET}

into C™. Here we will be working with random matrices which will embed any fixed set T' of bounded size
(measured with respect to, e.g., Gaussian Width [23]) with high probability. Such matrix distributions are
often called oblivious and discussed as randomized embeddings in the absence of any specific set T since
their embedding quality can be determined independently of any properties of a given set 1" beyond its size.
In particular, the class of oblivious sub-Gaussian random matrices having independent, isotropic, and
sub-Gaussian rows will receive special attention below.

2.1 Some Common Measures of Set Size and Complexity with Associated Bounds

We will denote the cardinality of a finite set T' by |T'|. For a (potentially infinite) set T C RY we define its
radius and diameter to be
rad(T) := sup ||x]|2
xeT
and
diam(T) :=rad(T — T) = sup [|x —y],
x,y€T
respectively. Given a value § € R, a d-cover of T (also sometimes called a d-net of T') will be a subset
S C T such that the following holds

Vx € T Jy € S such that |x —y|l2 < 4.

The d-covering number of T, denoted by N(T,d) € N, is then the smallest achievable cardinality of a
d-cover of T. Finally, the Gaussian width of a set T is defined as follows.



Definition 2.1. (Gaussian Width [23, Definition 7.5.1]). The Gaussian width of a set T C RN is
w(T) := Esup (g, x)
xeT

where g is a random vector with N independent and identically distributed (i.i.d.) mean 0 and variance 1
Gaussian entries. For a list of useful properties of the Gaussian width we refer the reader to [23, Proposition

7.5.2).

Finally, reach is an extrinsic parameter of a subset S of Euclidean space defined based on how far away
points can be from S while still having a unique closest point in .S [8][22]. The following formal definition of
reach utilizes the Euclidean distance d between a given point x € RY and subset S ¢ RY.

Definition 2.2. (Reach [8, Definition 4.1]). For a subset S C RN of Euclidean space, the reach Ts is
Tg := sup {t >0 ‘ Vx € R™ such that d(x,S) < t, x has a unique closest point in S’} .

The following theorem is a restatement of Theorem 20 in [13]. It bounds the Gaussian width of a smooth
submanifold of RY in terms of its dimension, reach, and volume.

Theorem 2.1 (Gaussian Width of the Unit Secants of a Submanifold of R”, Potentially with Boundary). Let
M — RN be a compact d-dimensional submanifold of R with boundary OM, finite reach Trq, and volume
V. Enumerate the connected components of OM and let 7; be the reach of the i*" connected component of
OM as a submanifold of RN. Set 7 := min; {7, 7:}, let Varq be the volume of OM, and denote the volume
of the d-dimensional Euclidean ball of radius 1 by wg. Next,

1. ifd=1, define ar := LJZM + Vanm, else
; e V(414 |V g1\d—1
2. if d > 2, define o = Yot ()4 4 Your (81)471
Finally, define
B = (0fy + 3%n) . (2.2)

Then, the Gaussian width of U (M — M)\ {0}) satisfies
w(Sm) = w (UM = M)\{0])) < 8V2y/In (Bag) + 4d.

With this Gaussian width bound in hand we can now begin the proof of our main result. The approach
will be to combine Theorem above with general theorems concerning the existence of outer bi-Lipschitz
extensions of e-JL embeddings of arbitrary subsets of RY into lower-dimensional Euclidean space. These
general existence theorems are proven in the next section.

3 The Main Bi-Lipschitz Extension Results and Their Proofs

Our first main technical result guarantees that any given JL map @ of a special subset of SV~! related to
M will not only be a bi-Lipschitz map from M C R¥ into a lower dimensional Euclidean space R™, but
will also have an outer bi-Lipschitz extension into R™*!. It is useful as a means of extending particular
(structured) JL maps ® of special interest in the context of, e.g., saving on memory costs [12].

Theorem 3.1. Let M C RY, € € (0,1), and suppose that ® € C™*N s an (ﬁ)-JL map of Sy + Sa
into C™. Then, there exists an outer bi-Lipschitz extension of ® : M — C™, f : RN — €™+, with the

property that
2 2 2
1f(x) = fI2 = Ix = yllz| <ellx—yll;

holds for allx € M andy € RN,



Proof. See Section O

Looking at Theoremwe can see that an (ﬁ)—JL map of Sy + Sy is required in order to achieve

the outer extension f of interest. This result is sub-optimal in two respects. First, the constant factor 1/2304
is certainly not tight and can likely be improved substantially. More importantly though is the fact that € is
squared in the required map distortion which means that the terminal embedding dimension, m+ 1, will have
to scale sub-optimally in € (see Remark below for details). Unfortunately, this is impossible to rectify
when extending arbitrary maps ® (see, e.g., [18]). For sub-gaussian ® an improvement is in fact possible,
however, which is the subject of our second main technical result just below. Using specialized theory for
sub-gaussian matrices it demonstrates the existence of terminal JL. embeddings for arbitrary subsets of R~
which achieve an optimal terminal embedding dimension up to constants.

2
Theorem 3.2. Let M C RN and e € (0,1). There exists a map f: RN — C™ with m < c (@) that

satisfies

2 2 2
1760 = £ )13 = Ix = yI3] < e lx = w3 (3.1)
for allx € M andy € RN. Here c € Rt is an absolute constant independent of all other quantities.
Proof. See Section|[3.5] O

To see the optimality of the terminal embedding dimension m provided by Theorem [3.2] we note that
functions f which satisfy for all x,y € M must in fact generally scale quadratically in both w(Sx)
and 1/e (see [11, Theorem 7] and [16]). We will now begin proving supporting results for both of the main
technical theorems above. The first supporting results pertain to the so-called convex hull distortion of
a given linear e-JL map.

3.1 All Linear «-JL Maps Provide O(y/¢)-Convex Hull Distortion

A crucial component involved in proving our main results involves the approximate norm preservation of all
points in the convex hull of a given set bounded set S C RY. Recall that the convex hull of S ¢ C¥ is

0o J J
conv(S) := U { Xy ’ X1,...,%X; €85, aq,...,05 €[0,1] s.t. Zag: 1}.
i=1 Le=1

{=1

The next theorem states that each point in the convex hull of S € RY can be expressed as a convex
combination of at most N + 1 points from S. Hence, the convex hulls of subsets of R" are actually a bit
simpler than they first appear.

Theorem 3.3 (Carathéadory, see, e.g., [2]). Given S € RN, ¥x € conu(S), Iyi,...,yg, N = min(|S|, N +
1), such that x = Eévzl agyy for some oy, ..., a5 € [0,1], Eévzl ap=1.
Finally, we say that a matrix ® € C™*¥ provides e-convex hull distortion for S ¢ RY if

[[[@x[l2 = [Ix][2] <

holds for all x € conv(S). The main result of this subsection states that all linear e-JL maps can provide
e-convex hull distortion for the unit secants of any given set. In particular, we have the following theorem
which generalizes arguments in [18| for finite sets to arbitrary and potentially infinite sets.

Theorem 3.4. Let M C RN, e € (0,1), and suppose that ® € C™*N is an (%)—JL map of Sy + Sam into

C™. Then, ® will also provide e-convez hull distortion for Spg.

The proof of Theoremdepends on two intermediate lemmas. The first lemma is a slight modification
of Lemma 3 in [12].



Lemma 3.1. Let S C RN and e € (0,1). Then, an e-JL map ® € C™*VN of the set

S’:{ x + Y , x Y ’X,yES}
xll2  [lyllz” [Ixllz [yl

will satisfy
IR ((2x, y)) — (x,¥)| < 2¢[x[2[yll2
Vx,y € 5.

Proof. If x = 0 or y = 0 the inequality holds trivially. Thus, suppose x,y # 0. Consider the normalizations

u= ”;‘”2 ,V = “;'”2. The polarization identities for complex/real inner products imply that
1 3 2
R (@0, 8v)) — (u,v)| = ¢ B (Z% H@uw%vm) (VI3 - vI3)
£=0
1 2 2
= 2| (1eu+ @v]3 = |lou—ov]) = (Ju+vi3 - u—v]3)|
1 2 2
< 1 (1o +ovi3 = I+ Vi3] + 1@ - ovi3 -l - vi3|)
€ € 2
< 5 (e VI + fla=vi3) < 5 (lafla+ [[v]l2)” < 2e.
The result now follows by multiplying the inequality through by ||x||2]y]2- O

Next, we see that and linear e-JL maps are capable of preserving the angles between the elements of the
convex hull of any bounded subset S C RV.

Lemma 3.2. Suppose S C Bg(O,v) and € € (0,1). Let ® € C™*N be an (ﬁ)—JL map of the set S’
defined as in Lemmal3.1|into C™. Then

holds Vx,y € conv(S).
Proof. Let x,y € COHV(S)' By Theorem ' H{Yi}i]\ll’ {Xi}£1 C Sand {aé}é\L ) {56}112\7:1 C [Oa 1] with
Zév=1 oy = Zévzl B¢ = 1 such that

N

N
X = ZO[[Xb and y = Zﬁe}%
£=1

=1
Hence, by Lemmawe have that

R ((0x, Dy) — (5,3 = DD "y (R((Dxr, Dy;) — (x0,;))

(=1 j=1
N N .
<233 oot (553 ) Il
=1 j=1 g
N N
<e|Dac| | D8] =«
£=1 j=1
Here we have also used the mapping error (ﬁ) and the fact that all norms of vectors in this case will be

less than ~. O

We are now prepared to prove Theorem |3.4



3.1.1 Proof of Theorem [3.4]

Applying Lemma3.2with S = Sxq = SpU—Sas, we note that 5" = Sni+Spa = (SamU—Sm) +(SamU—Sa)
since S € S¥~!. Furthermore, v = 1 in this case. Hence, ® € R™*" being an <§)—JL map of Sy + Sum
into R™ implies that

62

2
holds Vx,y € conv(Sr) C BY(0,1). In particular, (3.2) with x =y implies that

IR ((Px, Py)) — (x,¥)| < (3.2)

[1@xll> — Ilxlla| [[|®x[l2 + [Ix[l2] = [[|®x]5 — [Ix[I3] < €*/2.

Noting that ||| ®x]|2 + ||x[|2] > ||x||]2 we can see that the desired result holds automatically if ||x||2 > €/2.
Thus, it suffices to assume that that ||x|2 < €/2, but then we are also finished since |||®x|2 — ||x]|2| <

max{|[x||a, [|0x[|2} < /[x[Z + €2/2 < %2¢ will hold in that case.
Remark 3.1. Though Theorem holds for arbitrary linear maps, we note that it has suboptimal dependence

on the distortion parameter €. In particular, a linear %)—JL map of an arbitrary set will generally embed

that set into C™ with m = Q(1/e*) [16]. However, it has been shown in [19] that sub-Gaussian matrices will
behave better with high probability, allowing for outer bi-Lipschitz extensions of JL-embeddings of finite sets
into R™ with m = O(1/€%). In the next subsection we generalize those better scaling results for sub-Gaussian
random matrices to (potentially) infinite sets.

3.2 Sub-Gaussian Matrices and e-Convex Hull Distortion for Infinite Sets

Motivated by results in [19] for finite sets which achieve optimal dependence on the distortion parameter e
for sub-Gaussian matrices, in this section we will do the same for infinite sets using results from [23|. Our
main tool will be the following result (see also [13] Theorem 4]).

Theorem 3.5 (See Theorem 9.1.1 and Exercise 9.1.8 in [23]). Let ® be m x N matriz whose rows are
independent, isotropic, and sub-Gaussian random vectors in RYN. Let p € (0,1) and S C RN. Then there
exists a constant ¢ depending only on the distribution of the rows of ® such that

sup [l x> = Vil < ¢ [w(S) + vIn2/p] - rad ()|

holds with probability at least 1 — p.

The main result of this section is a simple consequence of Theorem together with standard results
concerning Gaussian widths [23] Proposition 7.5.2].

Corollary 3.1. Let M C RY, ¢,p € (0,1), and ® € R™*N be an m x N matriz whose rows are independent,
isotropic, and sub-Gaussian random vectors in RN . Furthermore, suppose that

/

m > 5 (w(Su) + VIR

where ¢’ is a constant depending only on the distribution of the rows of ®. Then, with probability at least
1—p the random matriz ﬁ@ will simultaneously be both an e-JL embedding of M into R™ and also provide

e-convez hull distortion for Sp,.

Proof. We apply Theoremto S = conv (Sp). In doing so we note that w (conv (Sy)) = w (Sam) [23)
Proposition 7.5.2], and that rad (conv (Sa)) = 1 since conv (Sxq) € B (0,1). The result will be that \/%(P
provides e-convex hull distortion for Spq as long as ¢’ > ¢2. Next, we note that providing e-convex hull
distortion for S implies that ﬁ@ will also approximately preserve the fso-norms of all the unit vectors



in Spq C conv (Saq). In particular, LmCP will be a 3e-JL map of Sy into R™, which in turn implies that
ﬁ@ will also be a 3e-JL embedding of M — M into R™ by linearity/rescaling. Adjusting the constant ¢/
to account for the additional factor of 3 now yields the stated result. O

We are now prepared to prove our general theorems regarding outer bi-Lipschitz extensions of JL-
embeddings of potentially infinite sets.

3.3 Outer Bi-Lipschitz Extension Results for JL-embeddings of General Sets

Before we can prove our final results for general sets we will need two supporting lemmas. They are adapted
from the proofs of analogous results in [18] [19] for finite sets.

Lemma 3.3. Let M C RY, ¢ € (0,1), and suppose that ® € C™*N provides e-convex hull distortion for
Su. Then, there exists a function g : RV — €™ such that

R ((9(y), 2x)) — (v, x)| < 2€]lyll2[[x]l2 (3.3)
holds for allx € M — M andy € RY.

Proof. First, we note that (3.3) holds trivially for y = 0 as long as g(0) = 0. Thus, it suffices to consider
nonzero y. Second, we claim that it suffices to prove the existence of a function g : RN — C™ that satisfies
both of the following properties

L lgy)llz < llyll2, and
2. R{g(y),®x")) — (y,x)| < €|ly||2 for all X" in a finite (/2 max{1,|P|2—2})-cover C of S,

for ally € RY. To see why, fix y # 0, x € Sy, and let X’ € C C Sy satisfy ||[x—x'||2 < ¢/2max{1,||®|2—2}-
We can see that any function g satisfying both of the properties above will have

IR ((9(y), @x)) — (y,x)| = [R ({9(y), 2x')) + R ((9(¥), ® (x = X)) — {y, (x = X)) = {y, %)
<R (gy), 2x")) = (y, x") + [{g(y), ® (x = x))| + |{y, (x = X))
< ellyllz + g2l ®ll2—2llx = x"[l2 + [y [l2llx — x"ll2

where the second property was used in the last inequality above.

Appealing to the first property above we can now also see that |R ({(g(y), Px)) — (y,x)| < 2¢||y]||2 will
hold. Finally, as a consequence of the definition of Sy, we therefore have that will hold for all
x € M — M and y € RY whenever Properties 1 and 2 hold above. Showing that (3.3) holds all x € M — M
more generally can be proven by contradiction using a limiting argument combined with the fact that both
the right and left hand sides of are continuous in x for fixed y. Hence, we have reduced the proof to
constructing a function g that satisfies both Properties 1 and 2 above.

Let
g(y) (= arg minvem max)\em hy (V7 )\), where (34)
hy(v,A) i= > (A (v, 1) = R ((v, D)) — €[ Aa| - ly]2) (3.5)
ueC

where we identify €™ with IR*™ above. Note that Property 1 above is guaranteed by definition (3.4).
Furthermore, we note that if

% T ()N = () = R, Bu| = eyl < ok, s hy(a(y). ) < 0

then Property 2 above will hold as well. Thus, it suffices to show that min v,A) <

veBZ (0.l M xeB ST 0,1) iy (
0 always holds in order to finish the proof.



Noting that hy : R>™HCl — R defined in (3.5) is continuous, convex (affine) in v, concave in A, and

further noting that both B(L?I (0,1) and B%™(0,||y||2) are compact and convex, we may apply Von Neumann’s

minimax theorem [21] to see that

mi

in, ————— max_—=—— hy(Vv,\) = max
veB (Olyl2) M a5 (0,1) y(V:A)

hy (v, )

min —
xeBl{l(0,1) veBZr(0,llyllz) Y

holds. Thus, we will in fact be finished if we can show that min hy(v,A) < 0 holds for each

veBZ (0.[ly2)

S Bﬁl(o, 1). By rescaling this in turn is implied by showing that Yu € conv(C U —C) 3v € B2"(0, ||ly||2)
such that
((y,u) =R ((v, 2w)) — elly[l2) <0 (3.6)

holds.
To prove (3.6) for a fixed u € conv(C U —C) C conv(Sy U —Spq) = conv(Spq) and thereby establish
the stated theorem, one may set v = ||y||2‘|§ﬁ. Doing so we see that the left side of (3.6) simplifies to

(y,u) — |lyll2||®u||2 — €|ly|l2. To finish, we note that indeed

(v, u) — llylzll®ufls = ellylle < llyllzllull2 = [[yll2l|®ufl2 — €llyll2
<|lyll2 ([lull2 = [|[®Pullz —€) <0

will then hold since ® provides e-convex hull distortion for S. O

Lemma 3.4. Let M C RY be non-empty, € € (0,1), and suppose that ® € C™*N provides e-convex hull
distortion for Syq. Then, there exists an outer bi-Lipschitz extension of ®, f : RN — C©™H, with the
property that

17 (e) = £33~ l1x = yll3| < 2dellx — yll3 (3.7)
holds for allx € M andy € R".
Proof. Given 'y € RY let yp € M satisty |ly — ymll, = inf, 7 lly — x||2 We define
(vaa oty = yad Iy ~vauli - lo (v ~yalB) ity ¢ M

fly) =

where g is defined as in Lemma Fix x € M. If y € M then ||f(x) — f(y)||3 = [|®(x — y)||3, and so we
can see that ||| f(x) — f(y)[3 — lIx — y||3] < 3¢[x—y||3 will hold since ® will be 3e-JL embedding of M — M
(recall the proof of Corollaryand note the linearity of ®). Thus, it suffices to consider a fixed y ¢ M.
In that case we have

1£60) = FW5 = 1®(x = yar) =g (¥ =ya0) 5+ ly — yaulls = llg (v — yad)l
= [ly = yalls + 1 2(x = ya0) 13 = 2R ({9 (¥ = ym) , 2(x = yan))) (3-8)

by the polarization identity and parallelogram law.
Similarly we have that

I = yl3 = 1 = yaa) = v = ya)lls = Iy = yaall3 + % = yadlls =20y =yt x —yam) (3.9)
Subtracting (3.9) from (3.8) we can now see that

F) = FIE = Ix =yl < [I2(x—ya)ll3 = Ix —yrml3] +
2[R9 (y —ym), 2(x —ym))) — ¥y = ym, X — ym)|

20ne can see that it suffices to approximately compute y A in order to achieve up to a fixed precision.

10



IN

Belx —ymll3 + 4elly — ymllallx — yall2
Belx —ymllz + 2e(lly —ymll3 + Ix —yal3) (3.10)

IN

where the second inequality again appeals to ® being a 3e-JL embedding of M — M, and to Lemma
Considering (3.10) we can see that

e |y —ymlz2 < |ly — x||l2 by the definition of y s, and so
o [x—ymllz <llx=yl2+lly = ymll2 < 2[lx = y|l2, and thus
o lly = yaml3 + lx =yl < (ly = yaallz + % = yall2)* < 9llx = yl3.
Using the last two inequalities above in now yields the stated result. O

We are now prepared to prove the two main results of this section.

3.4 Proof of Theorem [3.1]

Apply Theorem with € < €/24 in order obtain €/24-convex hull distortion for Sy via ®. Then, apply
Lemma

3.5 Proof of Theorem

" 2
To begin we apply Corollary with, e.g., p = 1/2 to demonstrate that an [22 (w(S’M) + x/ln(4)) -‘ x N

matrix with i.i.d. standard normal random entries can provide (€/24)-convex hull distortion for Sy, where
¢’ is an absolute constant. Hence, such a matrix ® exists. An application of Lemma now finishes the

proof.

4 The Proof of Theorem [1.1]

We apply Theoremtogether with Theorem to bound the Gaussian width of Sx4.

5 A Numerical Evaluation of Terminal Embeddings

In this section we consider several variants of the optimization approach mentioned in Section 3.3 of [19]
for implementing a terminal embedding f : RY — R™*! of a finite set X C RY. In effect, this requires
us to implement a function satisfying two sets of constraints from |19} Section 3.3] that are analogous to
the two properties of g : RY — €™ listed at the beginning of the proof of Lemma See Lines 1 and
2 of Algorithm for a concrete example of one type of constrained minimization problem solved herein to
accomplish this task.
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Algorithm 1 Terminal Embedding of a Finite Set
Input: €€ (0,1), X CRY, |X|=:n, SCRY, |S| =:n, m € N with m < N, a random matrix with i.i.d.
standard Gaussian entries, ® € R™*¥ | rescaled to perform as a JL embedding matrix IT := ﬁ@
Output: A terminal embedding of X, f € RN — R™*!, evaluated on S
forue S do
1) Compute xyy = argmin, .y [|u — x|2
2) Solve the following constrained minimization problem to compute a minimizer u’ € R™
Minimize Ay xyy (2) = |12]]3 + 2(I(u — xyN), Z)

subject to  ||z|l2 < |[lu—xnyn]l2

|<Z,H(X — XNN)> — <11 — XNN,X — XNN>| S 6”11 — XNN||2HX — XNNHZ Vx eX

3) Compute f: RY — R™*! at u via
(Hua 0)’ ue X
f(u) = ’ 2 712
(Ixyy + o', /[lu—xwn[5 = [w]3), u¢X

end for

Crucially, we note that any choice u’ € R™ of a z satisfying the two sets of constraints in Line 2 of
Algorithm/|1|for a given u € RY is guaranteed to correspond to an evaluation of a valid terminal embedding of
X atu in Line 3. This leaves the choice of the objective function, hy x y, minimized in Line 2 of Algorithm
open to change without effecting its theoretical performance guarantees. Given this setup, several heretofore
unexplored practical questions about terminal embeddings immediately present themselves. These include:

1. Repeatedly solving the optimization problem in Line 2 of Algorithm to evaluate a terminal embed-
ding of X on S is certainly more computationally expensive than simply evaluating a standard linear
Johnson-Lindenstrauss (JL) embedding of X on S instead. How do terminal embeddings empirically
compare to standard linear JL embedding matrices on real-world data in the context of, e.g., com-
pressive classification? When, if ever, is their additional computational expense actually justified in
practice?

2. Though any choice of objective function hyx,, in Line 2 of Algorithm must result in a terminal
embedding f of X based on the available theory, some choices probably lead to better empirical
performance than others. What’s a good default choice?

3. How much dimensionality reduction are terminal embeddings capable of in the context of, e.g., accurate
compressive classification using real-world data?

In keeping with the motivating application discussed in Sectionbove, we will explore some preliminary
answers to these three questions in the context of compressive classification based on real-world data below.

5.1 A Comparison Criteria: Compressive Nearest Neighbor Classification

Given a labelled data set D C RN with label set £, we let Label : D — L denote the function which
assigns the correct label to each element of the data set. To address the three questions above we will
use compressive nearest neighbor classification accuracy as a primary measure of an embedding strategy’s
quality. See Algorithm for a detailed description of how this accuracy can be computed for a given data
set D.

12



Algorithm 2 Measuring Compressive Nearest Neighbor Classification Accuracy

Input: € € (0,1), A labeled data set D C R split into two disjoint subsets: A training set X C D with
|X] =:n, and a test set S C D with |S| =: n/, such that SN X = 0. A compressive dimension m < N.
Output: Successful Nearest Neighbor Classification Percentage for Data Embedded in R™t!
Fix f: RN — R™*! an embedding of the training data X C RY into R™*! satisfying

(1 =alx=yl2 < 1Fx) = f@)ll, < T+ O)llx = yll2

for all x,y € X. [Note: this can either be a JL-embedding of X, or a stronger terminal embedding of X.]

% Embed the training data into R™+1.
for x € X do

Compute f(x) using, e.g., Algorithm
end for

% Classify the test data using its embedded distance in R™+!.
p=0
forue S do

Compute f(u) using, e.g., Algorithm

Compute x = argminy ¢y | f(u) — f(y)]l2

if Label(u) = Label(x) then

p=p+1
end if
end for
Output the Successful Classification Percentage = ﬁ/ x 100%
n

Note that Algorithm can be used to help us compare the quality of different embedding strategies. For
example, one can use Algorithm to compare different choices of objective functions hy x,, in Line 2 of
Algorithm against one another by running Algorithm multiple times on the same training and test data
sets while only varying the implementation of Algorithmeach time. This is exactly the type of approach
we will use below. Of course, before we can begin we must first decide on some labelled data sets D to use
in our classification experiments.

5.2 Our Choice of Training and Testing Data Sets

Herein we consider two standard benchmark image data sets which allow for accurate uncompressed Nearest
Neighbor (NN) classification. The images in each data set can then be vectorized and embedded using, e.g.,
Algorithm in order to test the accuracies of compressed NN classification variants against both one another,
as well as against standard uncompressed NN classification. These benchmark data sets are as follows.

13
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Figure 1: Example images from the MNIST data set (left), and the COIL-100 data set (right).

The MNIST data set [17}[6] consists of 60,0000 training images of 28 x 28-pixel grayscale hand-written
images of the digits 0 through 9. Thus, MNIST 10 labels to correctly classify between, and N = 282 = 784.
For all experiments involving the MNIST dataset n/10 digits of each type are selected uniformly at ran-
dom to form the training set X, for a total of n vectorized training images in R7®*. Then, 100 digits of
each type are randomly selected from those not used for training in order to form the test set S, leading
to a total of n’ = 1000 vectorized test images in R784. See the left side of Figurefor example MNIST images.

The COIL-100 data set [20] is a collection of 128 x 128-pixel color images of 100 objects, each
photographed 72 times where the object has been rotated by 5 degrees each time to get a complete rotation.
However, only the green color channel of each image is used herein for simplicity. Thus, herein COIL-100
consists of 7,200 total vectorized images in R with N = 1282 = 16, 384, where each image has one of 100
different labels (72 images per label). For all experiments involving this COIL-100 data set, n/100 training
images are down sampled from each of the 100 objects’ rotational image sequences. Thus, the training sets
each contain n/100 vectorized images of each object, each photographed at rotations of ~ 36000/n degrees
(rounded to multiples of 5). The resulting training data sets therefore all consist of n vectorized images in
R'6:384  After forming each training set, 10 images of each type are then randomly selected from those not
used for training in order to form the test set S, leading to a total of n’ = 1000 vectorized test images in
R'6:384 per experiment. See the right side of Figure for example COIL-100 images.

5.3 A Comparison of Four Embedding Strategies via NN Classification

In this section we seek to better understand (i) when terminal embeddings outperform standard JL-embedding
matrices in practice with respect to accurate compressive NN classification, (i7) what type of objective func-
tions Ay xyy in Line 2 of Algorithmperform best in practice when computing a terminal embedding, and
(#47) how much dimensionality reduction one can achieve with a terminal embedding without appreciably
degrading standard NN classification results in practice. To gain insight on these three questions we will
compare the following four embedding strategies in the context of NN classification. These strategies be-
gin with the most trivial linear embeddings (i.e., the identity map) and slowly progress toward extremely
non-linear terminal embeddings.

(a) Identity: We use the data in its original uncompressed form (i.e., we use the trivial embedding
f:RYN — RY defined by f(u) = u in Algorithm. Here the embedding dimension m + 1 is always
fixed to be N.

(b) Linear: We compressively embed our training data X using a JL embedding. More specifically, we
generate an mx N random matrix ® with i.i.d. standard Gaussian entries and then set f : RV — R™*!

to be f(u) := (\/%fbu, 0) in Algorithmfor various choices of m. It is then hoped that f will embed
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the test data S well in addition to the training data X. Note that this embedding choice for f is
consistent with Algorithm [T] where one lets X = X U S when evaluating Line 3, thereby rendering the
minimization problem in Line 2 irrelevant.

A Valid Terminal Embedding That’s as Linear as Possible: To minimize the pointwise differ-
ence between the terminal embedding f computed by Algorithm|l|and the linear map defined above in
(b), we may choose the objective function in Line 2 of Algorithm|1{to be hyxyy (2z) := (Il(xy N — 1), Z).
To see why solving this minimizes the pointwise difference between f and the linear map in (b), let
u’ be such that (II(xyny — u),z) is minimal subject to the constraints in Line 2 of Algorithm|1| when
z = u’. Since u and xyn are fixed here, we note that z = u’ will then also minimize

IT(xyn — w3+ 2((xny — ), 2) + [Ju— xyn|3
2
= [M(xyn — w5 + llzl5 + 2 (xyy — ), 2) + lu—xnnll5 — [2]l3

2
= My — ) +2; + [lu—xnw |5 - [lz]3

| (v + 2l =3 = ol ) = (0.0

2

2

subject to the desired constraints. Hence, we can see that choosing z = u’ as above is equivalent to
minimizing || f(u) — (ITu, 0)||3 over all valid choices of terminal embeddings f that satisfy the existing
theory.

A Terminal Embedding Computed by Algorithm as Presented: This terminal embedding
is computed using Algorithm [1|exactly as it is formulated above (i.e., with the objective function in
Line 2 chosen to be hy xyy (z) := ||z]|3 +2(II(u—xnn),2z)). Note that this choice of objective function
was made to encourage non-linearity in the resulting terminal embedding f computed by Algorithm
To understand our intuition for making this choice of objective function in order to encourage non-
linearity in f, suppose that ||z]|3 + 2(II(u — Xy~ ), z) is minimal subject to the constraints in Line 2 of
Algorithm when z = u’. Since u and xyy are fixed independently of z this means that z = u’ then
also minimize

2[5 + 2(I(u — xn), 2) + [[T(u — xyn)[3 = [z + (a —xyn) 3.

Hence, this objection function is encouraging u’ to be as close to —II(u — xyy) = H(xyy —u) as
possible subject to satisfying the constraints in Line 2 of Algorithm Recalling (c) just above, we can
now see that this is exactly encouraging u’ to be a value for which the objective function we seek to
minimize in (c) is relatively large.

We are now prepared to empirically compare the four types of embeddings (a) — (d) on the data sets
discussed above in Section To do so, we run Algorithm four times for several different choices of
embedding dimension m on each data set below, varying the choice of embedding f between (a), (b), (c),
and (d) for each value of m. The successful classification percentage is then plotted as a function of m for
each different data set and choice of embedding. See Figures a) and c) for the results. In addition,
to quantify the extent to which the embedding strategies (b) — (d) above are increasingly nonlinear, we
also measure the relative distance between where each training-set embedding f maps points in the test
sets versus where its associated linear training-set embedding would map them. More specifically, for each
embedding f and test point u € S we let

— (I
Nonlinearity ; (u) = ”f(lﬁzl'[u( 0;]’20)”2 x 100%

See Figures b) and d) for plots of

Meanyes Nonlinearity ;(u)

15



for each of the embedding strategies (b) — (d) on the data sets discussed in Section

To compute solutions to the minimization problem in Line 2 of Algorithm below we used the MATLAB
package CVX [101[9] with the initialization zg = II(u — xyx) and € = 0.1 in the constraints. All simulations
were performed using MATLAB R2021b on an Intel desktop with a 2.60GHz i7-10750H CPU and 16GB
DDR4 2933MHz memory. All code used to generate the figures below is publicly available at https:
//github.com/MarkPhilipRoach/TerminalEmbedding,
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Figure 2: Figures a) and b) concern the MNIST data set with training set size n = 4000 and test set
size n’ = 1000 in all experiments. Similarly, Figures c) and d) concern the COIL-100 dataset with
training set size n = 3600 and test set size n’ = 1000 in all experiments. In both Figures a) and c) the
dashed black “NearestNeighbor” line plots the classification accuracy when the Identity map (a) is used in
Algorithm Note that the “NearestNeighbor” line is independent of m because the indentity map involves
no compression. Similarly, in all of the Figures a) - d) the red “TerminalEmbed” curves correspond
to the use of Algorithm as it’s presented to compute highly non-linear terminal embeddings (embedding
strategy (d) above), the green “InnerProd” curves correspond to the use of nearly linear terminal embeddings
(embedding strategy (c) above), and the blue “Linear” curves correspond to the use of Linear JL embedding
matrices (embedding strategy (b) above).

Looking at Figure one can see that the most non-linear embedding strategy (d) — i.e., Algorithm f
allows for the best compressed NN classification performance, outperforming standard linear JL. embeddings
for all choices of m. Perhaps most interestingly, it also quickly converges to the uncompressed NN classifi-
cation performance, matching it to within 1 percent at the values of m = 24 for MNIST and m = 15 for
COIL-100. This corresponds to relative dimensionality reductions of

100(1 — 24/784)% =~ 96.9%

and

100(1 — 15/16384)% ~ 99.9%,

respectively, with negligible loss of NN classification accuracy. As a result, it does indeed appear as if
nonlinear terminal embeddings have the potential to allow for improvements in dimensionality reduction in
the context of classification beyond what standard linear JL embeddings can achieve.
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Of course, challenges remain in the practical application of such nonlinear terminal embeddings. Prin-
cipally, their computation by, e.g., Algorithm [1]|is orders of magnitude slower than simply applying a JL
embedding matrix to the data one wishes to compressively classify. Nonetheless, if dimension reduction at all
costs is one’s goal, terminal embeddings appear capable of providing better results than their linear brethren.
And, recent theoretical work [3] aimed at lessening their computational deficiencies looks promising.

5.4 Additional Experiments on Effective Distortions and Run Times

In this section we further investigate the best performing terminal embedding strategy from the previous
section (i.e., Algorithm on the MNIST and COIL-100 data sets. In particular, we provide illustrative
experiments concerning the improvement of (i) compressive classification accuracy with training set size,
and (i7) the effective distortion of the terminal embedding with embedding dimension m + 1. Furthermore,
we also investigate (ii¢) the run time scaling of Algorithm

To compute the effective distortions of a given (terminal) embedding of training data X, f : RY — R™+!,
over all available test and train data X U S we use

MaxDist; = max —||f(u) — f(x)||2) MinDist; = min —||f(u) — f(x)||2
x€X ueSUX\{x} ||117X||2 x€X ueSuUX\{x} ||117X||2

Note that these correspond to estimates of the upper and lower multiplicative distortions, respectively, of
a given terminal embedding in . In order to better understand the effect of the minimizer u’ of the
minimization problem in Line 2 of Algorithm [1fon the final embedding f, we will also separately consider
the effective distortions of its component linear JL embedding u +— (ITu, 0) below. See Figures and for
such plots using the MNIST and COIL-100 data sets, respectively.
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Figure 3: This figure compares (a) compressive NN classification accuracies, and (b) the classification run
times of Algorithm [2| averaged over all u € S, on the MNIST data set. Three different training data set
sizes n = | X| € {1000, 2000, 4000} were fixed as the embedding dimension m + 1 varied for each of the first
two subfigures. Recall that the test set size is always fixed to n’ = 1000. In addition, Figure (¢) compares
MaxDist ; and MinDist s for the nonlinear f computed by Algorithmversus its component linear embedding
u — (TTu, 0) as m varies for a fixed embedded training set size of n = 4000.
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Figure 4: Figures (a) and (b) here are run with identical parameters as for their corresponding subfigures in
Figure except using the COIL-100 data set. Similarly, Figure (c¢) compares MaxDist; and MinDist, for
the nonlinear f computed by Algorithm versus its component linear embedding u +— (ITu,0) as m varies
for a fixed embedded training set size of n = 3600.

Looking at Figuresand@one notes several consistent trends. First, compressive classification accuracy
increases with both training set size n and embedding dimension m, as generally expected. Second, com-
pressive classification run times also increase with training set size n (as well as more mildly with embedding
dimension m). This is mainly due to the increase in the number of constraints in Line 2 of Algorithm
with the training set size n. Finally, the distortion plots indicate that the nonlinear terminal embeddings f
computed by Algorithm tend to preserve the lower distortions of their component linear JL embeddings
while simultaneously increasing their upper distortions. As a result, the nonlinear terminal embeddings
considered here appear to spread the initially JL. embedded data out, perhaps pushing different classes away
from one another in the process. If so, it would help explained the increased compressive NN classification
accuracy observed for Algorithm in Figure
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