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Abstract. In his monograph Chebyshev and Fourier Spectral Methods, John Boyd claimed that, regarding
Fourier spectral methods for solving differential equations, “[t]he virtues of the Fast Fourier Transform
will continue to improve as the relentless march to larger and larger [bandwidths] continues” [2, pg. 194].
This paper attempts to further the virtue of the Fast Fourier Transform (FFT) as not only bandwidth is
pushed to its limits, but also the dimension of the problem. Instead of using the traditional FFT however,
we make a key substitution: a high-dimensional, sparse Fourier transform (SFT) paired with randomized
rank-1 lattice methods. The resulting sparse spectral method rapidly and automatically determines a set of
Fourier basis functions whose span is guaranteed to contain an accurate approximation of the solution of a
given elliptic PDE. This much smaller, near-optimal Fourier basis is then used to efficiently solve the given
PDE in a runtime which only depends on the PDE’s data compressibility and ellipticity properties, while
breaking the curse of dimensionality and relieving linear dependence on any multiscale structure in the
original problem. Theoretical performance of the method is established herein with convergence analysis
in the Sobolev norm for a general class of non-constant diffusion equations, as well as pointers to technical
extensions of the convergence analysis to more general advection-diffusion-reaction equations. Numerical
experiments demonstrate good empirical performance on several multiscale and high-dimensional example
problems, further showcasing the promise of the proposed methods in practice.

1. Introduction

Consider as a model problem an elliptic PDE with periodic boundary conditions

(1) −r · (aru) = f

where, for T := R/Z taken to be the one-dimensional torus, a, f : Td ! R are the PDE data, and u : Td ! R

is the solution. Herein we propose a two stage method for solving such PDE. First, we use recently developed

SFT methods for high-dimensional functions [23] to approximate the Fourier data of both the diffusion

coefficient a and the forcing function f. So long as the PDE data, a and f, are well represented by sparse

Fourier approximations, we then provide a technique for using the SFT output to find a relatively small

number of Fourier coefficients that are guaranteed to reconstruct an accurate approximation of the solution

u. In all, this results in a sublinear-time, curse-of-dimensionality-breaking spectral method for solving

non-constant diffusion equations under periodic boundary conditions. Moreover, the technique presented is

theoretically sound, with H1 convergence guarantees provided.

These convergence guarantees hinge on a novel analysis of the Fourier-Galerkin representation of a non-

constant diffusion operator where we are able to fully characterize the Fourier compressibility of the solution

to (1) in terms of the Fourier compressibility of the PDE data. Additionally, we provide algorithmic improve-

ments to the SFT developed in [23] that allow the method to run in fully sublinear-time (with respect to the

size of the initial frequency set of interest). This is accompanied by new L1 error guarantees for this SFT

which, in addition to the original L2 guarantees, allow for the final H1 convergence analysis of the spectral

method. We also provide implementations of our methods along with various numerical experiments. Of

special note, we conclude by further extending our methods beyond the simple diffusion equation (1) to also

apply to multiscale, high-dimensional advection-diffusion-reaction equations including, e.g., the governing

equations for flow dynamics in a porous medium used in hydrological modeling [35].

Solving (1) using a traditional Fourier spectral method amounts to replacing the data and the solution

with their Fourier series, simplifying the left-hand side into a single Fourier series, matching the Fourier
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2 C. GROSS AND M. IWEN

coefficients of both sides, and solving the resulting system of equations for the Fourier coefficients of u. See

Section 5 for further explanation of this Galerkin formulation and the related formulations discussed below.

Two main sources of approximation error arise when implementing this technique computationally. The

first is due to truncating the Fourier series involved to a finite number of terms. The second is due to

numerically approximating the Fourier coefficients of the PDE data. Due to the rich theory of traditional

spectral methods, these two sources of error can directly quantify the error of the resulting approximation

of u.

Lemma 1 (Strang’s lemma, [10]). Let utruncation be the function which has the same Fourier series as u

but truncated in some manner, and aapproximate and fapproximate be computed using approximations of

the Fourier series of a and f truncated in the same way as utruncation. Then the procedure outlined

above produces a solution uspectral which satisfies
�

�u− uspectral
�

�

H1 .a,f

�

�u− utruncation
�

�

H1 +
�

�a− aapproximate
�

�

L1 +
�

�f− fapproximate
�

�

L2

where the exact notion of the periodic Sobolev space H1 is discussed further in Section 3, and .a,f

denotes an upper bound with constants that depend on the PDE data.

This is a rough simplification of Strang’s lemma [10], which is itself a generalization of the well-known

Céa’s lemma (the specific version of this lemma used in this paper is presented and proven in Lemma 6

below). Effectively, it states that the spectral method solution is optimal up to its Fourier series truncation

and the approximation of the PDE data a and f. Thus, analyzing convergence reduces to estimating these

two errors.

This outline provides the three primary ingredients for this paper:

(1) a truncation method and the resulting error analysis (Section 6),

(2) a (sparse) Fourier series approximation technique (Sections 7 and 8), and

(3) a version of Strang’s lemma that ties everything together (Section 9).

The final method is given in Algorithm 1. Its convergence guarantee in Corollary 5 shows that the error in

approximating u converges like the (near-optimal) convergence rates of the SFT approximation error of a

and f in addition to an exponentially decaying term related to the ellipticity properties of a.

The sections preceding the main theoretical analysis listed above include background on sparse spectral

methods and motivation for our techniques (Section 2), setting the notation and PDE setup (Sections 3 and

4 respectively), and the aforementioned Galerkin formulation of our model PDE underpinning the spectral

method approach (Section 5). The paper is closed with a numerics section (Section 10) describing the

implementation of our technique and a variety of numerical experiments demonstrating the theory.

2. Background and motivation

We now outline some of the previous literature on spectral methods with an emphasis on exploiting

sparsity. Along the way, various shortcomings will arise, and we will use these as opportunities to motivate

and explain our approach in the sequel.

2.1. Convergence and computational complexity. Using a d-dimensional FFT (see, e.g., [34, Section 5.3.5] for

details) to compute aapproximate and fapproximate in the procedure suggested in Lemma 1 naturally enforces

a Fourier series truncation. A d-dimensional FFT using a tensorized grid of K uniformly spaced points in

each dimension will produce approximate Fourier coefficients indexed by frequencies in the d-dimensional

hypercube on the integer lattice Z
d of sidelength K (note that when when we refer to “bandwidth” in a

multidimensional sense, we are still referring to the sidelength K of the hypercube containing these integer

frequencies). The cost of each d-dimensional FFT in general requires more than Kd operations, as does the

linear-system solve (in the absence of any sparsity or other tricks). Thus, not only do traditional Fourier

spectral methods suffer from the curse of dimensionality, but even in moderate dimensions, multiscale

problems (i.e., PDE data which require very high bandwidth to be fully resolved) can result in intractable

computations.

Note that a standard FFT requires more than Kd operations in the discussion above exactly because

we implicitly chose to expand our PDE data and solution with respect to an impractically huge set of
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Kd Fourier basis functions there. What if we instead expand all of a, f, and u in terms of the union of

their individual best possible s ⌧ Kd Fourier basis functions from this larger set? Note that doing so

would automatically lead to each term on the right hand side of Lemma 1 becoming related to a nonlinear

best s-term approximation error with respect to the Fourier basis in the sense of, e.g., Cohen et al [11].

Furthermore, whenever these errors decayed fast enough in s it would in fact imply that each of a, f, and u

was effectively sparse/compressible in the Fourier basis, allowing the theory of compressive sensing to imply

the sufficiency of a small discretization of (1). Of course, this procedure is not terribly useful in practice

unless one can actually rapidly discover the best possible subset of s⌧ Kd Fourier basis functions for each

function involved above via, e.g., compressive sensing.

A naive application of standard compressive sensing theory in pursuit of this strategy flounders in at least

two ways here, however: First, though extremely successful at reducing the number of linear measurements

needed in order to reconstruct a given function, standard compressive sensing recovery algorithms such

as basis pursuit must still individually represent all Kd basis functions (in this simple case) during the

function’s numerical approximation. As a result, no dramatic runtime speedups can be expected here

without additional modifications. Second, standard compressive sensing theory also generally requires direct

linear measurements (in the form of, e.g., point samples) to be gathered from the function whose sparse

approximation one seeks. In the case of (1) this may be trivially possible for both a and f, but is not

generally possible for the a priori unknown solution u that one aims to compute (at least, not without

additional innovations). Of course these difficulties can be overcome to various degrees even when using

standard compressive sensing reconstruction strategies, and at least one such approach for doing so will be

discussed below in Section 2.5.

In this paper, however, we instead circumvent the two difficulties mentioned above by using modified

sparse Fourier transform methods. SFTs [16, 26, 25, 17, 1, 32] are compressive sensing algorithms which are

highly specialized to take advantage of the number theoretic and algebraic structure of the Fourier basis as

much as possible. As a result, SFTs rarely have to consider Fourier basis functions individually during the

reconstruction process, and so can simultaneously reduce both their measurement needs and computational

complexities to effectively depend only on the number of important Fourier series coefficients in the function

one aims to approximate. In the present setting, this means that SFT algorithms will run in sublinear

o(Kd)-time, more or less automatically sidestepping the reconstruction runtime issues plaguing standard

compressive sensing recovery algorithms which must represent each of the Kd-basis functions individually as

they run. To circumvent the issues related to not being able to measure the solution u directly, we then use

yet another approach. Instead of attempting to apply compressive sensing methods to u at all, we instead

use the more easily discovered most-significant Fourier basis elements of a and f to predict in advance where

the most significant Fourier basis elements of u must reside by analyzing the structure of (1). Of course, once

we have discovered which Fourier basis elements are important in representing u in this fashion, standard

Galerkin techniques can then be used to solve a small truncated discretization of (1) thereafter.

2.2. Prior attempts to relieve dependence on bandwidth via SFT-type methods. A key work pioneering the use

of SFTs in computing solutions to PDEs is due to Daubechies, et al. [13]. This work mostly focuses on

time-dependent, one-dimensional problems where the spectral scheme is formulated as alternating Fourier-

projections and time-steps. Thus, there is no need to impose an a priori Fourier basis truncation on the

solution. The proposed projection step instead utilizes an SFT at each time step to adaptively retain the

most significant frequencies throughout the time-stepping procedure. Time-independent problems like (1)

can then be handled by stepping in time until a stationary solution is obtained.

A simplified form of this algorithm is shown to succeed numerically in [13], and it is also analyzed

theoretically in the case where the diffusion coefficient consists of a known, fine-scale mode superimposed

over lower frequency terms. There, the Fourier-projection step can be considered to be fixed. However,

removing the known fine-scale assumption leads to many difficulties, including the possibility of sparsity-

induced omissions in early time steps cascading into larger errors later on. In this paper, on the other

hand, we focus on the case of time-independent problems. This allows us to utilize SFTs only once initially.

By doing so we avoid the possibility of SFT-induced error accumulation over many time steps. The main

difficulty in our analysis then becomes determining how the Fourier-sparse representations of the PDE data
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discovered by high-dimensional SFTs can be used to rapidly find a suitable Fourier representation of the

solution. This takes the form of mixing the Fourier supports of a and f into stamping sets (discussed in

detail in Section 6) on which we can analyze the projection error of the solution. In fact, these stamping

sets can be viewed as a modification and generalization of the techniques used in the one-dimensional and

known fine-scale analysis from [13].

2.3. Attempts to relieve curse of dimensionality. Many attempts to overcome the curse of dimensionality in

Fourier spectral methods for PDE have focused on using basis truncations which allow for an efficient high-

dimensional Fourier transform. One of the most popular techniques is the sparse grid spectral method, which

computes Fourier coefficients on the hyperbolic cross [28, 9, 19, 20, 36, 21, 12]. In general, a sparse grid

method reduces the number of sampling points necessary to approximate the PDE data to O(K logd−1(K)),

where K acts as a type of bandwidth parameter. Algorithms to compute spectral representations using these

sparse sampling grids run with similar complexity. When used in conjunction with spectral methods for

solving PDE, these sparse grid Fourier transforms produce solution approximations with error estimates

similar to the full d-dimensional FFT-versions reduced by factors only on the order of 1/ logd−1(K).

In the context of sparse grid Fourier transforms, these methods compute Fourier coefficients with frequen-

cies on hyperbolic crosses of similar cardinality to the number of sampling points. These hyperbolic crosses

have intimate links with the space of bounded mixed derivative, in the sense that they are the optimal

Fourier-approximation spaces for this class. Thus, sparse grid Fourier spectral methods are particularly apt

for problems where the solution is of bounded mixed derivative, as this produces an optimal u− utruncation

term in Lemma 1 above.

Though sparse-grid spectral methods can efficiently solve a variety of high-dimensional problems, there

are clear downsides for the types of problems we target in this paper. While many problems fit the bounded

mixed derivative assumption, and therefore have accurate Fourier representations on the hyperbolic cross,

the multiscale, Fourier-sparse problems that we are interested are especially problematic. In fact, since a hy-

perbolic cross of bandwidth K contains only those frequencies k 2 Z
d with

Qd
i=1 |ki| = O(K), d-dimensional

frequencies active in all dimensions can have only kkk1 = O(K1/d). Thus, in a multiscale problem with even

one frequency that interacts in all dimensions, a hyperbolic cross is required with a bandwidth exponen-

tial in d to properly resolve the data. This then forces the traditionally curse-of-dimensionality-mitigating

logd−1(K) terms characteristic of sparse grid methods to be at least on the order of dd−1.

2.4. More on high-dimensional Fourier transforms. As outlined in Section 2.2 above, this paper uses sparse Fourier

transforms to create an adaptive basis truncation suited to the PDE data. This mimics a similar evolution

in the field of high-dimensional Fourier transforms from sparse grids to more flexible techniques [31, 14,

33, 29, 21, 30, 34, 24]. In particular, the high-dimensional sparse Fourier transforms discussed in Section 7

originate from a link between early high-dimensional quadrature techniques and Fourier approximations on

the hyperbolic cross [29, 30]. Instead of sampling functions on sparse grids, these methods sample high-

dimensional functions along a rank-1 lattice. Rank-1 lattices are described by sampling M points in T
d in

the direction of a generating vector z 2 N
d, that is, using the sampling set

⇤(z,M) :=

�
j

M
z mod 1 | j 2 {0, . . . ,M− 1}

�

.

So long as a rank-1 lattice satisfies certain properties with respect to a frequency space of interest I 2 Z
d,

these sampling points are sufficient to compute the Fourier coefficients of a function on I with a length-

M univariate FFT. Though many references take I to be the hyperbolic cross to leverage the well-studied

regularity properties and cardinality bounds similarly enjoyed in the sparse-grid literature, rank-1 lattice

results are available for arbitrary frequency sets. The computationally efficient extension of these techniques

via sparse Fourier transforms in [23] as well as the randomization trick presented in Section 8 take this

frequency set flexibility to its limit, allowing I to be the a priori unknown set of the most important Fourier

coefficients of the function to be approximated. This again suggests the applicability of these methods

over sparse grid (or other non-sparsity exploiting) Fourier transforms in the context of multiscale problems

involving even a small number of Fourier coefficients in extremely high dimensions.
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2.5. Additional links to compressive sensing. As discussed above, the SFT literature overlaps considerably with

the language and techniques of compressive sensing. As detailed in Section 7 below, the high-dimensional

SFT we use in this paper provides error bounds with best s-term approximation, compressive-sensing-

type error guarantees [11]. As a result, the Fourier coefficients of the PDE data are approximated with

errors depending on the compressibility of their true Fourier series, and then the compressibility of the

PDE’s solution in the Fourier basis is inferred from the Fourier compressibility of the data in a direct and

constructive fashion.

Another very successful line of work, however, aims to more directly apply standard compressive sensing

reconstruction methods to the general spectral method framework for solving PDEs. Referred to as CORS-

ING [4, 5, 8, 3, 7], these techniques use compressed sensing concepts to recover a sparse representation of the

solution to the system of equations derived from the (Petrov-)Galerkin formulation of a PDE. These meth-

ods have been further extended to the case of pseudospectral methods in [6], in which a simpler-to-evaluate

matrix equation is subsampled and used as measurements for a compressive sensing algorithm (as an aside,

[6] and discussions with the author served as a primary inspiration for this paper). This compressive spec-

tral collocation method works by finding the largest Fourier-sine coefficients of the solution with frequencies

in the integer hypercube with bandwidth K by applying Orthogonal Matching Pursuit (OMP) on a set of

samples of the PDE data. By using OMP, the method is able to succeed with measurements on the order

of O(d exp(d)s log3(s) log(K)) where s is the imposed sparsity level of the solution’s Fourier series. Thus,

while the O(Kd) dependence from a traditional Fourier (pseudo)spectral method is avoided and the method

adapts well to large bandwidths, the curse of dimensionality is still apparent.

In the preparation of this paper, the authors became aware of an improvement on [6] that addresses the

curse of dimensionality and is therefore well-suited for similar types of problems discussed in this paper. In

[37], the approach of approximating Fourier-sine coefficients on a full hypercube is replaced with approxi-

mating Fourier coefficients on a hyperbolic cross. This has the effect of converting the linear dependence on

d in the sampling complexity to a log(d) due to cardinality estimates of the hyperbolic cross. However, the

exp(d) term is refined using a different technique. The key theoretical ingredient for being able to apply

compressive sensing to these problems is bounding the Riesz constants of the basis functions that result

after applying the differential operator [7]. A careful estimation of these constants on the Fourier basis

on the hyperbolic cross is able to entirely remove the exponential in d dependence, leading to a sampling

complexity on the order of O(Cas log(d) log3(s) log(K)), where Ca involves terms depending on ellipticity

and compressibility properties of a. Notably, this estimation procedure has connections to our stamping set

techniques described in Section 6.

On the other hand, though focusing on the hyperbolic cross in compressive spectral collocation breaks the

curse of dimensionality in the sampling complexity, the method still suffers from the inability to generalize

to multiscale problems or generic frequency sets of interest like those described in 2.3. Additionally, as

mentioned in Section 2.5, the compressive-sensing algorithm used for recovery (in this case OMP) suffers

from a computational complexity on the order of the cardinality of the truncation set of interest. For the

hyperbolic cross, this is still exponential in log(d). Finally, the error estimates are presented in terms of

the compressibility of the Fourier series of the solution u, which may not be known a priori from the PDE

data. We expect that there may be some way to link our stamping theory and convergence estimates with

the compressive sensing theory to refine and generalize both approaches.

3. Notation

Define the one-dimensional torus to be T := R/Z. Unless otherwise stated, all functions are complex-

valued and defined on the torus T
d. For example, we take the inner product for u, v 2 L2 := L2(Td;C) to

be

hu, viL2 :=

Z

Td

u(x)v(x)dx.
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Additionally, unless otherwise stated, all multiindexed infinite sequences are complex-valued and indexed

on Z
d. For example, we take the inner product for û, v̂ 2 `2 := `2(Zd;C) to be

hû, v̂i`2 :=
X

k2Zd

ûkv̂k.

All finite length vectors/tensors will be denoted in boldface and when required, will be implicitly extended

to larger index sets by taking on the value zero wherever they are not originally defined. We also denote the

complex-valued finite-length vectors or infinite-length sequences supported on a set D as C
D. Since sparse

approximations will be an important tool in our final algorithm, we also define the best s-term approximation

of a sequence û as û restricted to its s largest magnitude entries and denote this as û
opt
s .

We now define periodic Sobolev spaces (see also [3, Section 2.1] and [28, Appendix A.2.2]).

Definition 1. For u 2 L2 and α 2 N
d
0 a multiindex, if there exists a v 2 L2 such that

hv,�iL2 = (−1)|α|hu,@α�iL2 for all � 2 C1 ⇢ L2,

we call v the weak α derivative of u, and write @αu := v. We define the inner product

hu, viH1 := hu, viL2 +

Z

Td

ru(x) ·rv(x)dx,

(where all derivatives are taken in the weak sense) and have the associated norm kukH1 :=
p

hu, uiH1 . The

periodic Sobolev space H1 is defined as H1 := {u 2 L2 | kukH1 < 1}.

In order to set our notation for Fourier coefficients and series, we first note the density of trigonometric

monomials in L2 and H1.

Theorem 1. The space of all infinitely differentiable periodic functions C1 is dense in L2 and H1. In

particular, space of trigonometric monomials {ek(x) := e2⇡ik·x 2 C1 | k 2 Z
d} is a basis for C1, an

orthonormal basis for L2, and an orthogonal basis for H1.

Definition 2. For any u 2 L1, and any k 2 Z
d, we define the kth Fourier coefficient

ûk = hu, ekiL2 =

Z

Td

u(x)e−2⇡ik·x dx.

If u 2 L2, the orthonormality of the trigonometric monomials in Theorem 1 allows us to write the Fourier

series for u,

u(x) =
X

k2Zd

ûkek(x).

We also note the well-known Plancherel’s identity for use later.

Proposition 1 (Plancherel’s identity). If u 2 L2, then û 2 `2 with kukL2 = kûk`2 . If v 2 L2, then

hu, viL2 = hû, v̂i`2 .
Definition 3. We additionally define the mean-zero periodic Sobolev space H as H1/R where the represen-

tative u is chosen so that û0 = 0, endowed with the inner product1

hu, viH :=

Z

Td

ru(x) ·rv(x)dx.

In the sequel, we will often consider restrictions in frequency space denoted by, e.g., û|D, where D ⇢ Z
d.

We will simultaneously consider this to be an element of CD and a complex valued sequence on Z
d with

zero entries on Z
d \ D. When û represents the Fourier coefficients of a function u, we define the associated

restriction

u|D :=
X

k2Zd

(û|D)k ek =
X

k2D

ûkek,

where the fact that D ⇢ Z
d is treated as a set of frequencies indicates that we are restricting u in frequency,

not space. Given a hatted sequence v̂ or vector v̂, the associated function with Fourier series
P

k2Zd v̂kek
will always be implicitly labeled using the non-hatted, roman font letter (in this example, v).

1note that by Proposition 1, hu,viH ' hu,viH1 for u,v 2 H.
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4. Elliptic PDE setup

We begin with a model elliptic partial differential equation.

Definition 4. For some a : Td ! R sufficiently smooth, define the linear, elliptic partial differential operator

in divergence form L[a] : C2 ! C0 by

L[a]u = −r · (aru) .
If for some f : Td ! R sufficiently smooth, u 2 C2 satisfies

(SF) L[a]u = f,

we say that u solves the given elliptic PDE with periodic boundary conditions in the strong form.

Now, after multiplying by the complex conjugate of a test function v 2 H1(Td) and integrating by parts,

we define the bilinear form associated to L[a] as L[a] : H1 ⇥H1 ! C with

L[a](u, v) :=

Z

Td

a(x)ru(x) ·rv(x)dx,

and we say that u 2 H1 solves the given elliptic PDE with periodic boundary conditions in the weak

form if

(WF) L[a](u, v) = hf, viL2 for all v 2 H1.

For our purposes, we will take a 2 L1(Td;R), and f 2 L2(Td;R).

By the conditions specified in the Lax-Milgram theorem (see, e.g., [15]), we are guaranteed that a unique

mean-zero solution to (WF) exists so long as the right-hand side and test space is also mean-zero. See [3,

Proposition 2.1] for a more specific formulation in our setting and its proof.

Proposition 2. For a 2 L1(Td;R), L[a] is continuous with continuity constant � 6 kakL1 , that is

(2) |L[a](u, v)| 6 �kukHkvkH for all u, v 2 H.

Additionally, if a(x) > amin > 0 a.e. on T
d, then L[a] is also coercive with coercivity constant ↵ > amin,

that is

(3) |L[a](u, u)| > ↵kuk2H for all u 2 H.

Under conditions (2) and (3), if f 2 L2(Td;R) is mean-zero, that is, f̂0 = 0, then (WF) has unique,

mean-zero solution u 2 H satisfying

(4) kukH 6
kfkL2

↵
.

5. Galerkin spectral methods

By Theorem 1, it is equivalent to replace the weak PDE (WF) by

L[a](u, ek) = hf, ekiL2 =: f̂k for all k 2 Z
d.

Rewriting the bilinear form on the left-hand side and using the Fourier series representations of a and u, we

obtain

L[a](u, ek) =
X

l1,l22Zd

âl1 ûl2

Z

Td

el1(x)rel2(x) ·rek(x)dx

=
X

l1,l22Zd

(2⇡)2(l2 · k)âl1 ûl2�l1,k−l2

=
X

l2Zd

(2⇡)2(l · k)âk−lûl

=: (L[â]û)k,

where L[â] is an operator in `2. This leads to the Galerkin form of our PDE,

(GF) L[â]û = f̂.
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The computational advantages of (GF) are clear. By numerically approximating â and f̂ (thereby also

truncating L[â]), we arrive at a discretized, finite system of equations that can be solved for the Fourier

coefficients of our solution.

We will use a fast sparse Fourier transform (SFT) for functions of many dimensions to approximate our

PDE data which then leads to a sparse system of equations that we can quickly solve to approximate û.

This SFT will use the values of a and f at equispaced nodes on a randomized rank-1 lattice in T
d, and

therefore, our technique is effectively a pseudospectral method where the discretization of the solution space

{û | u 2 H} is adapted to the PDE data.

Before we move to the detailed discussion of this SFT, we provide a more detailed analysis of the Galerkin

operator in Section 6 to help us analyze the resulting spectral method. But first, we note that L[â] also

captures the behavior of L[a] as a bilinear form.

Proposition 3. For û, v̂ 2 `2 with u, v 2 H,

L[a](u, v) = hL[â]û, v̂i`2 .

Proof. By the Fourier series representation of v,

L[a](u, v) =
X

k2Zd

L[a](u, ek)v̂k =
X

k2Zd

(L[â]û)k v̂k = hL[â]û, v̂i`2 .

⇤

6. Stamping sets and truncation analysis

Notably, (GF) gives us insight into the frequency support of û. The structure outlined in the following

proposition is crucial in constructing a fast spectral method that exploits Fourier-sparsity.

Proposition 4. For any set F ⇢ Z
d and N 2 N0, recursively define the sets

(5)

SN[â](F) :=

�
F if N = 0

SN−1[â](F) + supp(â) if N > 0
,

S1[â](F) :=

1
[

N=0

SN[â](F),

where here, we addition is the Minkowski sum of sets. Under the conditions of Proposition 2,

supp(û) ⇢ S1[â](supp(f̂)).

Proof. The fact that a is strictly positive implies that â0 6= 0, and the fact that a is real implies supp(â) =

− supp(â). Now, for any k 2 Z
d \ {0}, we may rearrange the equality (L[â]û)k = f̂k to obtain

ûk =
f̂k −

P
l2({k}+supp(â))\{k}(2⇡)

2(l · k)âk−lûl

(2⇡)2(k · k)â0

=
f̂k −

P
l2supp(â)\{0}(2⇡)

2(k · k− l · k)âlûk−l

(2⇡)2(k · k)â0
.

Thus, ûk explicitly depends only on the values of û on S1[â]({k}) \ {k}, which themselves then depend

only on values of û on S2[â]({k}), and so on. This decouples the system of equations L[â]û into a disjoint

collection of systems of equations, one for each class of frequencies S1[â]({k}). Since Proposition 2 implies

that v̂ = 0 is the unique solution of L[â]v̂ = 0, the unique solution of the system of equations for û on

S1[â]({k}) for any k /2 supp(f̂) is û|S1[â]({k}) = 0. Therefore, supp û ⇢ S1[â](supp(f̂)) as desired. ⇤

In what follows, when the set F and Fourier coefficients â are clear from context, we suppress them in the

notation given by (5) so that SN := SN[â](F). Intuitively, we can imagine constructing SN by first creating a

“rubber stamp” in the shape of supp(â). This rubber stamp is then stamped onto every frequency in F =: S0

to construct S1. Then, this process is repeated, stamping each element of S1 to produce S2, and so on. For

this reason, we will colloquially refer to these as “stamping sets.” Figure 1 gives an example of this stamping

procedure for d = 2.
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supp(â) supp(f̂) = S0[â]
⇣

supp(f̂)
⌘

S1[â]
⇣

supp(f̂)
⌘

S2[â]
⇣

supp(f̂)
⌘

S3[â]
⇣

supp(f̂)
⌘

N = 0

N = 1

N = 2

N = 3

Figure 1. New frequencies in each stamping level up to N = 3 where N = 0 is supp(f̂).

A key approach of our further analysis will be analyzing the decay of û on successive stamping levels.

The stamping level will become the driving parameter in the spectral method rather than bandwidth in a

traditional spectral method. Before moving onto this analysis however, we provide an upper bound for the

cardinality of the stamping sets. This will ultimately be used to upper bound the computational complexity

of our technique. The proof of this bound is given in Appendix A.

Lemma 2. Suppose that 0 2 supp(â), supp(â) = − supp(â), and
�

�supp(f̂)
�

� 6 |supp(â)| = s. Then

�

�SN[â](supp(f̂))
�

� 6 7max(s, 2N+ 1)min(s,2N+1).

Proposition 4 gives us a natural way to consider truncations of the solution u in frequency space. We will

use these truncations to discretize the Galerkin formulation (GF) in Section 9 below. In order to analyze

the error in the resulting spectral method algorithm, we will need quantitative bounds on how the solution

decays outside of the frequency sets SN := SN[â](supp(f̂)). For SN to be finite, we assume in this section

that supp â and supp f̂ are finite. This assumption will be lifted later via Lemma 5.

We begin with a technical result regarding the interplay between L[â] and the supports of vectors that it

acts on.

Proposition 5. For any v̂ with supp(v̂) ⇢ Sn \ Sn−1, supp(L[â]v̂) ⇢ Sn+1 \ Sn−2.

Proof. For any k 2 Z
d, consider

(L[â]v̂)k =
X

l2Zd

(2⇡)2(l · k)âk−lv̂l

=
X

l2({k}−supp(â))\supp(v̂)

(2⇡)2(l · k)âk−lv̂l

=
X

l2({k}−supp(â))\(Sn\Sn−1)

(2⇡)2(l · k)âk−lv̂l.
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This sum is nonempty only if k is such that there exists l 2 Sn \Sn−1 and k⇤
a 2 supp(â) with k = l+k⇤

a.

By definition of l 2 Sn \ Sn−1, n is the minimal such number that

l = kf +

nX

m=1

km
a , where kf 2 supp(f̂), km

a 2 supp(â) for all m = 1, . . . , n

holds. In particular, this implies that km
a 6= 0 for all m = 1, . . . , n.

There are now two cases. First, if k⇤
a = −km

a for any m, k = l + k⇤
a 2 Sn−1 \ Sn−2, and the proposition

is satisfied. On the other hand, we consider the case when k⇤
a does not negate any km

a involved in the sum

equalling l. If k⇤
a = 0, then clearly k = l 2 Sn \ Sn−1. In any other case, we represent

k = kf +

nX

m=1

km
a + k⇤

a =: kf +

n+1X

m=1

km
a ,

where n + 1 is the smallest number for which this holds. Thus, k 2 Sn+1 \ Sn. Altogether then, the only

possible k values such that the sum is nonzero are those in Sn+1 \ Sn−2, completing the proof. ⇤

Noting that supp(L[â]û) = supp(f̂), we observe the following interesting relationship between the values

of û on neighboring stamping levels. Below, to simplify notation, for all m,n 2 N0, we set

bm,n := hL[â]ûSm\Sm−1 , ûSn\Sn−1i`2 ,

with the convention that S−1 = ;.

Corollary 1. For all n 2 N0,

bn+1,n + bn,n + bn−1,n =

�
hf̂, û|S0i`2 if n = 0

0 otherwise.

Proof. By Proposition 5, û|Sn\Sn−1 is `2-orthogonal to L[â]û|Sm\Sm−1 for all m /2 {n − 1, n, n + 1}. In our

simplified notation, bm,n = 0 for all m /2 {n− 1, n, n+ 1}. Thus

hf̂, û|Sn\Sn−1i`2 = hL[â]û, û|Sn\Sn−1i`2 =

1X

m=0

bm,n = bn+1,n + bn,n + bn−1,n.

The proof is finished by noting that

hf̂, û|Sn\Sn−1i`2 =

�
hf̂, û|S0i if n = 0

0 otherwise.

⇤

We are now ready to estimate û|Sn\Sn−1 in terms of its neighbors û|Sn+1\Sn and û|Sn−1\Sn−2 . The

standard approach would be to use a combination of coercivity and continuity (see, e.g., the proof of

Lemma 6 or [10, Section 6.4] for other examples): for n > 0,

↵
�

�u|Sn\Sn−1

�

�

2

H
6 |bn,n| 6 |bn+1,n|+ |bn−1,n| 6 �

�

�u|Sn\Sn−1

�

�

H

⇣

�

�u|Sn+1\Sn

�

�

H
+
�

�u|Sn−1\Sn−2

�

�

H

⌘

,

and we obtain
�

�u|Sn\Sn−1

�

�

H
6

�

↵

⇣

�

�u|Sn+1\Sn

�

�

H
+
�

�u|Sn−1\Sn−2

�

�

H

⌘

.

However, we will hope to iterate this bound, and the fact that � > ↵ will not allow for us to show any decay

as n!1. Thus, we require a slightly subtler estimate than simply using continuity.

Proposition 6. For n > 0, we have

|bn±1,n| 6 ka− â0kL1

�

�u|Sn\Sn−1

�

�

H

�

�u|Sn±1\Sn±1−1

�

�

H
.
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Proof. Restricting all sums to the support of the vectors they index, we have

bn±1,n =
X

k2Sn\Sn−1

X

l2(k−supp(â))\(Sn±1\Sn±1−1)

(2⇡)2(l · k)âk−lûlûk.

Clearly, choosing l = k 2 Sn \ Sn−1 would not allow for l 2 Sn±1 \ Sn±1−1. Thus, no term multiplying

âk−k = â0 will appear in this sum. We then have the equivalence

bn±1,n = hL[â− â0]û|Sn±1\Sn±1−1 , û|Sn\Sn−1i`2 ,

which by the standard argument for continuity, implies

|bn±1,n| 6 ka− â0kL1

�

�u|Sn\Sn−1

�

�

H

�

�u|Sn±1\Sn±1−1

�

�

H
.

as desired. ⇤

The same argument preceding Proposition 6 then gives the desired “neighbor” estimate.

Corollary 2. For all n > 1,

�

�u|Sn\Sn−1

�

�

H
6
ka− â0kL1

amin

⇣

�

�u|Sn+1\Sn

�

�

H
+
�

�u|Sn−1\Sn−2

�

�

H

⌘

.

We now have the pieces to state an estimate of the truncation error.

Lemma 3. Let a, f, and u be as in Proposition 2. Assume

(6) 3ka− â0kL1 < amin

Then

ku− u|SNkH 6

✓ ka− â0kL1

amin − 2ka− â0kL1

◆N+1 kfkL2

amin

.

Proof. We begin by breaking supp(û)\SN into sets of new contributions
S1

n=N+1

�

Sn \ Sn−1
�

(which holds

due to Proposition 4). Thus

ku− u|SNkH 6

1X

n=N+1

�

�u|Sn\Sn−1

�

�

H
=: TN.

Applying the neighbor bound, Corollary 2, (where we define A := ka− â0kL1/amin), we have

TN 6 A

 

1X

n=N+1

�

�u|Sn+1\Sn

�

�

H
+

1X

n=N+1

�

�u|Sn−1\Sn−2

�

�

H

!

= A (TN+1 + TN−1)

= 2ATN +A
⇣

�

�u|SN\SN−1

�

�

H
−

�

�u|SN+1\SN

�

�

H

⌘

.

After rearranging, and ignoring the negative term, we find

(7) TN 6
A

1− 2A

�

�u|SN\SN−1

�

�

H
.

Noting that we always have

(8)
�

�u|SN\SN−1

�

�

H
6 TN−1,

iterating (7) and (8) in turn gives

ku− u|SNkH 6 TN 6

✓

A

1− 2A

◆N+1

ku|S0kH 6

✓

A

1− 2A

◆N+1 kfkL2

amin

.

⇤
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7. Previous results on SFTs

In [23], two methods for high-dimensional SFTs are presented, each with a deterministic and Monte Carlo

variant. Here, we use the faster of the two algorithms (at the cost of slightly suboptimal error guarantees).

We focus on only the Monte Carlo variant as the improvements to this technique described in Section 8

below use an additional layer of randomization.

This method relies on applying one-dimensional SFTs to samples of a high-dimensional function along

special sets called reconstructing rank-1 lattices.

Definition 5. Given a number of sampling points M 2 N and a generating vector z 2 {1, . . .M−1}d, we define

the rank-1 lattice ⇤(z,M) as the set

⇤(z,M) :=

�
j

M
z mod 1 | j 2 {0, . . . ,M− 1}

�

⇢ T
d.

Additionally, given a set of frequencies I ⇢ Z
d, we say that ⇤(z,M) is a reconstructing rank-1 lattice for

I if

l · z 6⌘ k · z mod M for all l 6= k 2 I.

The fundamental idea of a reconstructing rank-1 lattice is that it takes a multivariate function g : Td ! R

and gives the locations for M equispaced samples of the univariate function t 7! g(tz). The univariate Fourier

content of these samples can then be assigned to the original function g with the reconstructing property

ensuring that no multidimensional frequencies of interest are aliased together in the one-dimensional analysis.

For the following theorem, we assume that we know a reconstructing rank-1 lattice exists for a given frequency

set of interest, I. This assumption will be lifted in the following section.

The following theorem is a restatement of [23, Corollary 2] with minor simplifications and improvements

(most notably, L1 error bounds). The proof of these improvements is given in Appendix B.

Theorem 2 ([23], Corollary 2). Let I ⇢ Z
d be a frequency set of interest with expansion defined as

K := maxj2{1,...,d}(maxk2I kj − minl2I lj) (i.e., the sidelength of the smallest hypercube containing I),

and ⇤(z,M) be a reconstructing rank-1 lattice for I.

There exists a fast, randomized SFT which, given ⇤(z,M), sampling access to g 2 L2, and a

failure probability � 2 (0, 1], will produce a 2s-sparse approximation ĝs of ĝ and function gs :=
P

k2supp(ĝs) ĝ
s
kek approximating g satisfying

kg− gskL2 6 kĝ− ĝsk`2 6 (25+ 3K)

2

4

�

�

�
ĝ|I − (ĝ|I)

opt
s

�

�

�

1p
s

+
p
skĝ− ĝ|Ik1

3

5

with probability exceeding 1− �. If g 2 L1, then we additionally have

kg− gskL1 6 kĝ− ĝsk`1 6 (33+ 4K)
⇥
�

�ĝ|I − (ĝ|I)
opt
s

�

�

1
+ kĝ− ĝ|Ik1

⇤

with the same probability estimate. The total number of samples of g and computational complexity

of the algorithm can be bounded above by

O

✓

ds log3(dKM) log

✓

dKM

�

◆◆

.

8. Improvements with randomized lattices

To use the previous SFT algorithm, we need to know a reconstructing rank-1 lattice in advance. Though

there are deterministic algorithms to construct a reconstructing rank-1 lattice given any frequency set I (for

example, the component-by-component construction [34, 27]), these algorithms are are superlinear in |I| as

they effectively search the frequency space for collisions throughout construction.

This section presents an alternative based on choosing a random lattice. This lattice is chosen by drawing

z from a uniform distribution over {1, . . . ,M − 1}d for M sufficiently large. Below, we provide probability

estimates for when this lattice is reconstructing for a frequency set I.
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Lemma 4. Let K := maxj2{1,...d}(maxk2I kj −minl2I lj) be the expansion of the frequency set I ⇢ Z
d. Let

� 2 (0, 1], and fix M to be the smallest prime greater than max(K, |I|2

�
). Then drawing each component

of z i.i.d from {1, . . .M− 1} gives that ⇤(z,M) is a reconstructing rank-1 lattice for I with probability

1− �.

Proof. In order to show that ⇤(z,M) is reconstructing for I, it suffices to show that for any k 6= l 2 I,

k · z 6⌘ l · z mod M. Thus, we are interested in showing that P[9k 6= l 2 I s.t. (k − l) · z ⌘ 0 mod M] is

small.

If k, l 2 I are distinct, at least one component kj − lj is nonzero. Since M > K, we therefore have

that kj − lj 6⌘ 0 mod M, and since M is prime, kj − lj has a multiplicative inverse modulo M. Then

P[(k − l) · z ⌘ 0 mod M] = P

h

zj =
⇣

(kj − lj)
−1

P
i2{1,...d},i 6=j(ki − li)zi mod M

⌘i

. Since zj is uniformly

distributed in {1, . . .M− 1}, this probability is 1
M−1

. By the union bound,

P[9k 6= l 2 I s.t. (k− l) · z ⌘ 0 mod M] 6
X

k 6=l2I

P[(k− l) · z ⌘ 0 mod M] 6
|I|

2

M− 1
6 �

as desired.

⇤

One important consequence of Lemma 4 is that we no longer need to provide the frequency set of interest

in Theorem 2. Having chosen K, the expansion, and s, the sparsity level, we can always take I to be the

frequencies corresponding to the largest s Fourier coefficients of the function g in the hypercube [−K/2, K/2]d.

Lemma 4 then implies that a randomly generated lattice with length max(K, s2/�) will be reconstructing

for these optimal frequencies with probability �. We summarize this in the following corollary.

Corollary 3. For a multivariate function’s Fourier series ĝ, define ĝ|K := ĝ|[−K/2,K/2]d . Given a multi-

variate bandwidth K, a sparsity level s, probability of failure � 2 (0, 1], and sampling access to g 2 L2,

there exists a fast, randomized SFT which will produce a 2s-sparse approximation ĝs of ĝ and function

gs :=
P

k2supp(ĝs) ĝ
s
kek approximating g satisfying

kg− gskL2 6 kĝ− ĝsk`2 6 (25+ 3K)
p
s
�

�ĝ− (ĝ|K)
opt
s

�

�

`1

with probability 1− �. If g 2 L1, then gs and ĝs satisfy the upper bound

kg− gskL1 6 kĝ− ĝsk`1 6 (33+ 4K)
�

�ĝ− (ĝ|K)
opt
s

�

�

`1

with the same probability estimate. The total number of samples of g and computational complexity

of the algorithm can be bounded above by

O

✓

ds log3(dKmax(K, s/�)) log

✓

dKmax(K, s/�)

�

◆◆

.

If we fix � (say � = 0.95), this reduces to a complexity of

O
�

ds log4(dKmax(K, s))
�

.

9. A sparse spectral method via SFTs

Let âs and f̂s be s-sparse approximations of â and f̂ respectively. We will use these approximations to

discretize the Galerkin formulation (GF) of our PDE. The first step is to reduce to the case where the PDE

data is Fourier-sparse which is motivated by the following lemma.

Lemma 5. Let a 0 := a|supp âs and f 0 := f|supp f̂s . Suppose that a 0 and f 0 satisfy the conditions of

Proposition 2 and let u 0 be the unique solution of the resulting elliptic PDE, which we write in

Galerkin form as

(9) L[â 0]û 0 = f̂ 0.

Then

ku− u 0kH 6
kf− f 0kL2

amin

+
ka− a 0kL1kf 0kL2

amina
0
min

.
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Proof. We begin by observing

L[â](û− û 0) = L[â]û− L[â 0]û 0
− L[â− â 0]û 0 = f̂− f̂ 0 − L[â− â 0]û 0,

and therefore

|hL[â](û− û 0), û− û 0i| 6
�

�hf̂− f̂ 0, û− û 0i
�

�+ |hL[â− â 0]û 0, û− û 0i|.
After an application of Proposition 3 to convert the `2 inner products into bilinear forms, we can make use

of coercivity, (3), continuity, (2) and the Cauchy-Schwarz inequality to produce the H approximation

aminku− u 0kH 6
�

�f̂− f̂ 0
�

�

`2
+ ka− a 0kL1ku 0kH.

An application of the stability estimate (4) gives the desired bound

ku− u 0kH 6
kf− f 0kL2

amin

+
ka− a 0kL1kf 0kL2

amina
0
min

.

⇤

We can now replace the trial and test spaces in (WF) with finite dimensional approximations so as to

convert (GF) to a matrix equation. Inspired by Proposition 4 and the truncation error analysis in Section 6,

we use the space of functions whose Fourier coefficients are supported on SN := SN[â](supp f̂). By doing so,

we discretize the Galerkin formulation of the problem (GF) into the finite system of equations

(10) (LNû)k :=
X

l2SN

(2⇡)2(l · k)âk−lûl = f̂k for all k 2 SN.

However, in practice, we do not know â and f̂ exactly (and indeed, they may not be exactly sparse). Thus,

we substitute the SFT approximations âs and f̂s, defining the new finite-dimensional operator LN,s : CSN !
C

SN

by

(LN,sû)k :=
X

l2SN

(2⇡)2(l · k)âs
k−lûl for all k 2 SN.

Our new approximate solution will be ûN,s 2 C
SN

which solves

(11) LN,sû
N,s = f̂s.

We summarize our technique in Algorithm 1.

Algorithm 1 Sparse spectral method

Input: PDE data a and f, a sparsity parameter s, a bandwidth parameter K, and a stamping level N

Output: Fourier coefficients ûs,N of approximate solution

1: âs  SFT[s, K](a) // SFT is the algorithm in [23] using a random rank-1 lattice (cf. Section 8)

2: f̂s  SFT[s, K](f)

3: Compute SN[âs](supp(f̂s)) // see, e.g., (5) or (21)

4: (LN,s)k2SN,l2SN  (2⇡)2(l · k)âs
k−l

5: ûN,s  LN,s\f̂
s // using MATLAB backslash notation for matrix solve

Showing that uN,s converges to u now relies on a version of Strang’s lemma [10, Equation (6.4.46)].

We make the assumption here that supp(â) = supp(âs) and supp(f̂) = supp(f̂s) so that our use of SN is

unambiguous. However, this assumption will be lifted by Lemma 5 in Corollary 4 below.

Lemma 6 (Strang’s Lemma). Suppose that supp(â) = supp(âs) and supp(f̂) = supp(f̂s). Also suppose that

as > as
min > 0 on T

d. Let u and uN,s be as above. Then

�

�u− uN,s
�

�

H
6

✓

1+
kakL1

as
min

◆

�

�u|Zd\SN

�

�

H
+
ka− askL1

as
min

ku|SNkH +
kf− fskL2

as
min

.
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Proof. We let ê := ûN,s
− û|SN , and consider

LN,sê = LN,sû
N,s

− (L[âs]û|SN)|SN

= f̂s − f̂+ (L[â]û)|SN − (L[âs]û|SN)|SN

= f̂s − f̂+ (L[â]û|Zd\SN)|SN + (L[â]û|SN − L[âs]û|SN)|SN

= f̂s − f̂+ (L[â]û|Zd\SN)|SN + (L[â− âs]û|SN)|SN .

Noting that LN,sê = (L[âs]ê)|SN and owing to coercivity of L[âs], we have

as
minkek2H 6 |hLN,sê, êi|

6 kfs − fkL2kekH + kakL1

�

�u|Zd\SN

�

�

H
kekH + ka− askL1ku|SNkHkekH.

The result then follows from rearranging to estimate kekH and using the triangle inequality to estimate
�

�u− uN,s
�

�

H
6 ku− u|SNkH + kekH. ⇤

We can now thread all of our results together into a final convergence analysis. The first corollary below

is a more direct application of Strang’s lemma which is then followed by another corollary which takes

advantage of the SFT recovery results. We will also return to the setting where a and f are not necessarily

Fourier sparse. Thus, for as and fs Fourier sparse approximations of a and f, we again let a 0 = a|supp âs

and f 0 = f|supp f̂s as in Lemma 5.

Corollary 4. Suppose a, f and as, fs respectively satisfy the conditions of Proposition 2. Additionally,

suppose that

(12) 3
X

k2supp(âs)\{0}

|âk| 6 â0.

Then with u the exact solution to (WF) and uN,s the output of Algorithm 1, we have

�

�u− uN,s
�

�

H
6
kf− f 0kL2

amin

+
ka− a 0kL1kf 0kL2

amina
0
min

+

✓

1+
ka 0kL1

as
min

◆

 

ka 0
− â 0

0kL1

a 0
min − 2

�

�a 0
− â 0

0

�

�

L1

!N+1
kf 0kL2

a 0
min

+
ka 0

− askL1kf 0kL2

as
minamin

+
kf 0 − fskL2

as
min

Proof. The condition (12) ensures that a 0 is coercive, and therefore a 0 and f 0 also satisfy Proposition 2.

Additionally, this allows the use of Lemma 3, which upper bounds the truncation error in Lemma 6. Com-

bining Lemma 5 with this bound from Lemma 6 and applying the stability estimate from Proposition 2

finishes the proof. ⇤

Remark 1. In order for this bound to hold, it is necessary for the weak forms of both

L[a]u = f and L[as]us = fs

to be well-posed, that is, satisfy the continuity and coercivity conditions of Proposition 2. In practice, this

condition is not much more restrictive than assuming only the original equation is well-posed as long as

the diffusion coefficient is Fourier-compressible and the sparsity level s is large enough to ensure that as

stays strictly positive. In fact, (12) allows for the simple (if pessimistic) check after computing âs that

kâs
− âs

0k`1 < |âs
0| to ensure the positivity of as.

With minor modifications, we can rewrite this upper bound to pass all dependence on sparsity through

the error in approximating a and f via SFTs.

Corollary 5. Under the same conditions as Corollary 4 above substituting (12) with

3kâ− â0k`1 + kâ− âsk`1 < â0,
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we have
�

�u− uN,s
�

�

H
6

✓

1+
kâk`1

amin − kâ− âsk`1

◆ kfkL2

amin − kâ− âsk`1

⇥
 

kf− fskL2

kfkL2

+ ka− askL1 +

✓ kâ− â0k`1
amin − 2kâ− â0k`1 − kâ− âsk`1

◆N+1
!

.

Proof. Since â 0 = â|supp âs ,

ka− a 0kL1 6 kâ− â 0k`1 6 kâ− âsk`1 ,
ka 0

− askL1 6 kâ 0
− âsk`1 6 kâ− âsk`1 ,

and analogously to show that kf− f 0kL2 and kf 0 − fskL2 are bounded above by kf− fskL2 . Additionally,

as > a− ka− askL1 > a− kâ− âsk`1 and

a 0 > a− ka− a 0kL1 > a− kâ− âsk`1
giving min(as

min, a
0
min) > amin − kâ− âsk`1 . The rest follows from applications of (4) and rearranging. ⇤

Remark 2. Though this final bound is difficult to parse, we can focus our attention on the final factor

(13)
kf− fskL2

kfkL2

+ ka− askL1 +

✓ kâ− â0k`1
amin − 2kâ− â0k`1 − kâ− âsk`1

◆N+1

,

since the other factors are more or less fixed. The first two terms are respectively controlled by having good

SFT approximations to f in the L2 norm and a in the L1 norm. In our algorithm, these terms can be reduced

by increasing the bandwidth K and the sparsity s. As a reminder, the errors in these approximations given

in Theorem 2 are near optimal, as

kf− fskL2 6 (25+ 3K)
p
s
�

�

�
f̂−

�

f̂|K
�opt

s

�

�

�

`1
and ka− askL1 6 (33+ 4K)

�

�

�
â− (â|K)

opt
s

�

�

�

`1

with high probability.

The final term is controlled by properties of a as well as the final stamping level used. Overall, the

convergence is exponential in N, the stamping level. This convergence is accelerated as the base of the

exponent decreases: effectively, this happens as the diffusion coefficient approaches a large constant. Indeed,

the numerator can be thought of as an upper bound for the absolute deviation of a from its mean while the

denominator grows with the minimum of a.

Remark 3. The computational complexity of Algorithm 1 is

O
⇣

ds log4(dKmax(K, s)) + max(s, 2N+ 1)3min(s,2N+1)
⌘

.

This is due to the two SFTs and a matrix solve of a
�

�SN
�

�⇥
�

�SN
�

� system. Note that computing the stamping

set can be done by enumerating the frequencies using the techniques in Lemma 8 and therefore is subject

to the same upper bound as given in Lemma 2 for a stamp set’s cardinality. Recall also that the SFT

complexity can be tuned to produce SFT approximations satisfying the above bounds higher probability.

We do not analyze the complexity of the matrix solve in depth, and instead resort to the upper bound given

by Gaussian elimination on the dense matrix, O
�

max(s, 2N+ 1)3min(s,2N+1)
�

. However, LN,s is relatively

sparse for larger stamping levels. As the capabilities of sparse solvers depend strongly on analyzing the

graph connecting interacting rows in LN,s (cf. [18, Chapter 11]), we expect that the analysis of an efficient

sparse solver could be carried out using much of the same analysis of stamping sets performed in Section 6.

Remark 4. This paper considers the theory for solving the simple diffusion equation (1). However, these

techniques extend to more complex advection-diffusion-reaction (ADR) equations. The test problem is then

(14) −r · (a(x)ru(x)) + b(x) ·ru(x) + c(x)u(x) = f(x) for all x 2 T
3.

As before a, f, u : Td ! R are the diffusion coefficient, forcing function, and solution respectively. These are

now joined by an advection field b : Td ! R
d and an additional reaction coefficient c : Td ! R. For more

on the properties and well-posedness of this periodic ADR equation, we refer to [3].

Adapting Algorithm 1 for solving ADR equations requires two modifications:
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(1) When computing the approximations âs, f̂s via SFT, additionally compute b̂s := (b̂s
j )

d
j=1, an ap-

proximation to the Fourier coefficients of each component of b, and compute ĉs, an approximation

to ĉ.

(2) Redefine the “stamp” used to define SN[âs](supp(f̂s)) by including the supports of b̂s and ĉs.

Mathematically, we define

SN[âs, b̂s, ĉs](supp(f̂s)) :=

�
supp(f̂s) if N = 0

SN−1 + supp(âs) +
Pd

j=1 supp(b̂s
j ) + supp(ĉs) if N > 0

where, as usual, we suppress the Fourier coefficients when clear from context.

The convergence analysis for this method is much the same as that leading to Corollary 5 where terms like

ka− askL1 are replaced by max
�
ka− askL1 , kkb− bsk`2kL1 , kc− cskL1

 
and similarly for the mean-zero

version of a used in the exponentially decaying term. For full details see [22].

10. Numerics

This section gives examples of the algorithm summarized above applied to various problems. We begin

with an overview of our implementation as well as some techniques used to evaluate the accuracy of our

approximations. We then present solutions to univariate and very high-dimensional multiscale problems

with both exactly sparse and Fourier-compressible data. We then close with an extension of our methods to

a three-dimensional advection-diffusion-reaction equation.

10.1. Code and testing overview. We implement Algorithm 1 described above in MATLAB using an object-

oriented approach, with all code publicly available.2 All SFTs are computed using the rank-1 lattice sparse

Fourier code from [23].3

In order to evaluate the quality of our approximations, we need to choose an appropriate metric. Letting

us,N be the approximation returned by our algorithm, the ideal choice would be
�

�u− us,N
�

�

H
. However,

for the types of problems we will be investigating, the true solution u is unavailable to us. Instead, we will

use a proxy that takes advantage of the stability result in Proposition 2.

Lemma 7. Let u be the true solution to (GF) and us,N be the approximation returned by solving (11).

Define f̂s,N := L[â]ûs,N with fs,N = L[a]us,N. Then

�

�u− us,N
�

�

H
6

�

�f− fs,N
�

�

L2

amin

=

�

�f̂− f̂s,N
�

�

`2

amin

.

Proof. The result follows from the fact that û− ûs,N solves L[â]
�

û− ûs,N
�

= f̂− L[â]ûs,N = f̂− f̂s,N and

applying Proposition 2. ⇤

In the sequel, we will ignore amin since we are mostly interested in convergence properties in s and N

and we will compute the relative error
�

�f− fs,N
�

�

L2

kfkL2

or

�

�f̂− f̂s,N
�

�

`2
�

�f̂
�

�

`2

as our proxy instead. Whenever f̂ and â are exactly sparse, the numerator of the second term can be

computed exactly due to the fact that supp(f̂s,N) is known to be contained in SN+1 (cf. Proposition 5).

However, in the non-sparse setting, even though f− fs,N can be evaluated pointwise, computing an accurate

approximation of its norm on T
d is challenging for large d. For this reason, we approximate the norm via

Monte Carlo sampling. We also furnish the cases where exactly computing
�

�f̂− f̂s,N
�

�

`2
is possible with the

pointwise Monte Carlo estimates to show that in practice, Monte Carlo sampling does as well as the exact

computation.

2https://gitlab.com/grosscra/SparseADR
3this code is publicly available at https://gitlab.com/grosscra/Rank1LatticeSparseFourier
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10.2. Univariate compressible. We begin by replicating the lone numerical example of solving an elliptic prob-

lem in [13, Section 5.1]. In this case, we solve the univariate problem

(15)

−(a(x)u 0(x)) 0 = f(x) for all x 2 T, where

a(x) =
1

10
exp

✓

0.6+ 0.2 cos(2⇡x)

1+ 0.7 sin(256⇡x)

◆

, f(x) = exp(− cos(2⇡x))−

Z

T

exp(− cos(2⇡x))dx

(note that the only difference from [13] is that we use the domain T = [0, 1] rather than [0, 2⇡]). This data

is not Fourier sparse, but is compressible. In the original paper, a bandwidth of K = 1 536 is considered and

approximations with 9 and 17 Fourier coefficients are used.

We first construct a high accuracy approximation of the solution to (15) by numerically integrating on

an extremely fine mesh of 10 000 points. This allows us to forgo our proxy error described in Lemma 7.

As in [13], the bandwidth of our SFT used is set to K = 1 536. Due to our SFT returning a 2s sparse

approximation, we use s = 4 and s = 8 to compare with the 9 and 17 terms respectively considered in the

original paper, and also provide an example with s = 12. We set the stamping level to N = 1 throughout,

which, as discussed in the introduction, is similar to the technique used in [13].
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Figure 2. Errors in approximating the solution to (15).

0 0.2 0.4 0.6 0.8 1

−0.20

−0.10

0.00

0.10

u

u
4,1

u
8,1

u
12,1

(a) Approximate solutions of (15).
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(b) Detail of approximate derivatives of (15).

Figure 3. Qualitative results.

The relative errors approximated in L2 and H1 are given in Figure 2. The original paper does not give

numerical results, and instead, gives qualitative results, comparing the approximate solutions and their

derivatives with the true solution and its derivative. We have replicated this qualitative analysis in Figure 3

with similar results.

Figure 2 also shows the error computed via the proxy described by Lemma 7, and in particular, how

pessimistic the proxy error can be. In this case, the small errors in the derivative (visualized in Figure 3b)

are compounded by passing the approximate solution through the operator where a 0 is often large relative

to a. In future examples, we will see that the convergence of the proxy error is much more tolerable.

10.3. Multivariate exactly sparse.
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10.3.1. Low sparsity. Moving to the multivariate case, we start with a simple example with exactly sparse

data. Our goal is to solve

(16)
−r · (a(x)ru(x)) = f(x) for all x 2 T

d, where

a(x) = â0 + ca cos(2⇡ka · x), f(x) = sin(2⇡kf · x).

We draw ca ∼ Unif ([−1, 1]), keep it constant for each dimension, and set â0 = 4 so that our problem remains

elliptic (in the specific example below, ca ⇡ −0.6). For dimensions varying from d = 1 to d = 1 024, we

then draw ka,kf ∼ Unif
�

[−499, 500]d \ Z
d
�

. The PDE (16) is then solved for stamping levels N = 1, . . . , 5.

The bandwidth of the SFT is set to 1000 and the sparsity is set to 2. We then compute a Monte Carlo

approximation of the proxy error choosing 200 points drawn uniformly from T
d and also compute the proxy

error exactly by virtue of the sparsity of a and f. The results are given in Figure 4a.
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d = 1 Monte Carlo d = 1 exact
d = 4 Monte Carlo d = 4 exact
d = 16 Monte Carlo d = 16 exact
d = 64 Monte Carlo d = 64 exact
d = 256 Monte Carlo d = 64 exact
d = 1024 Monte Carlo d = 1024 exact

(a) Proxy error solving (16) with d = 1, 4, 16, 64, 256,

1 024 and N = 1, . . . , 5.

1 2 3

10
−2

10
−1

10
0

N (stamping level)
kf

−
f
s
,
N
k
L
2

k
f
k
L
2

d = 1 Monte Carlo d = 1 exact
d = 4 Monte Carlo d = 4 exact
d = 16 Monte Carlo d = 16 exact
d = 64 Monte Carlo d = 64 exact
d = 256 Monte Carlo d = 64 exact
d = 1024 Monte Carlo d = 1024 exact

(b) Proxy error solving (16) with diffusion coefficient

(17) in dimensions d = 4, 64, 1 024 and stamping levels

N = 1, . . . , 3.

Figure 4. Solving diffusion equation with exactly sparse data.

We see that the results do not depend on the dimension of the problem. Since all dependence on d is in

the runtime of the SFT, we also observe that in practice, after the SFTs of the data have been computed,

re-solving the problem on different stamping levels takes about the same amount of time for each d. The

error also converges exponentially in the stamping level as suggested by the theoretical error guarantees.

Notably, we also see that the Monte Carlo approximation with 200 points captures the same proxy error as

the exact computation.

10.3.2. High sparsity. We expand on the exactly sparse case by testing a diffusion coefficient with much

higher sparsity. Here, we solve (16) with

(17) a(x) = â0 +
X

k2Ia

ck cos(2⇡k · x).

The vector of coefficients is drawn as c ∼ Unif
�

[−1, 1]25
�

once and reused in each test. For every d,

the frequencies k 2 Ia are each drawn uniformly from [−499, 500]d \ Z
d as before with |Ia| = 25. Here

â0 = 4 dkck2e to ensure ellipticity. Again, the bandwidth of the SFT algorithm is set to 1 000, but the

sparsity is now fixed to 26. The results are given in Figure 4b

Again, we see that the results do not depend on the spatial dimension except for the notable example of

d = 1. The d = 1 case suffers from similar issues in a pessimistic proxy error as in Figure 2. Specifically,
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the right hand-side for this example was generated with frequency kf = −10 and is therefore relatively

low-frequency. Thus, the high-frequency modes leading to errors in the approximate solution are amplified

by the high-frequencies in a when computing fs,N. Indeed, in further experiments (not pictured here),

increasing the frequencies of f or decreasing the frequencies of a result in a lower proxy error.

For the other dimensions, the slight offsets in the exact proxy error can be attributed to the randomized

frequencies as well as slight variations in the randomized SFT code. We do see slightly more variance in

the proxy error computed using Monte Carlo sampling however. This is to be expected for data with more

varied frequency content, and as such, in future experiments, we increase the number of sampling points.

Note that because we consider sparsity much larger than the stamping level, the computational and

memory complexity of the stamping and solution step is much higher. As suggested by Lemma 2, the

size of the resulting stamp set (and therefore the necessary matrix solve) in the largest case is at most

7 · 527 ⇡ 7⇥ 1012 which pushes the memory boundaries of our computational resources.

10.4. Multivariate compressible. In order to test Fourier-compressible data which is not exactly sparse, we use

a series of tensorized, periodized Gaussians. Here, we present the only details necessary to demonstrate our

algorithm’s effectiveness on Fourier-compressible data, but for a fuller treatment on the Fourier properties

of periodized Gaussians, see e.g., [32, Section 2.1].

Here, we define the periodic Gaussian Gr : T! R by

Gr(x) =

p
2⇡

r

1X

m=−1

e−
(2π)2(x−m)

2r2

where the dilation-type parameter r allows us to control the effective support of Ĝr. In practice, we truncate

the infinite sum to m 2 {−10, . . . , 10} as additional terms do not change the output up to machine precision.

Note here that the nonstandard multiplicative factors help control the behavior of the function in frequency

rather than space. Given a multivariate modulating frequency k 2 Z
d, we define the modulated, tensorized,

periodic Gaussian by

Gr,k(x) =

dY

j=1

e2⇡ikixiGr(xi).

Finally, given a set of frequencies I ⇢ Z
d, dilation parameters r 2 R

I
+, and coefficients c 2 R

I, we can define

Gaussian series

GI
c,r(x) :=

X

k2I

ckGrk,k(x).

Depending on the severity of the dilations chosen (i.e., rk � 1), this can well approximate a Fourier series

with frequencies in I. On the other hand, a less severe dilation results in Fourier coefficients with magnitudes

forming less concentrated Gaussians centered around the “frequencies” k 2 I and −k. An example of a series

with its associated Fourier transform is given in Figure 5.

In our first experiment, we fix d = 2 and vary both stamp level and sparsity to again solve (16). The

diffusion coefficient in (16) is replaced with a two-term Gaussian series a = c0 +GI
c,r, where

I ∼ Unif
⇣

�

[−24, 25]2 \ Z
2
�2
⌘

, c ∼ Unif
�

[−1, 1]2
�

, r = 1.121, c0 = 10 dkck2e .

Note the increased constant factor from our previous examples to decrease the likelihood of sparse approx-

imations of a not satisfying the ellipticity property. The Fourier transform of the resulting a used for the

following test is depicted in Figure 6a below. The diffusion equation is then solved across various sparsities

with increasing stamping level. The bandwidth parameter of the SFT is set to K = 100 to account for the

wider effective support of â. The Monte Carlo proxy error is computed with 1 000 samples and depicted in

Figure 6b.

Here, the stamping level does not affect convergence until the sparsity is above s > 16. This demonstrates

the tradeoff between sparsity and stamping level in regards to the error bound (13). Until the SFT is able

to capture enough useful information in â, the ka− askL1 in the error bound dominates. Eventually, this

factor is reduced far enough that the stamping term becomes apparent.
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Figure 5. An example Gaussian series with c1 = c2 = 1, r1 = 0.5, r2 = 2, k1 = (3, 2), and

k2 = (−5, 15). The first term corresponds to the wider Gaussian shape and more spread

out portions of the Fourier transform. The second term contributes to the highly oscillatory

parts and the isolated spikes in the Fourier transform.
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(a) The specific â used in examples depicted in Fig-

ure 6b.
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(b) Proxy error solving (16) with Gaussian series diffu-

sion coefficient with sparsity levels s = 2, 4, 8, 16, 32, 64,

and stamping levels N = 1, . . . , 3.

Figure 6. Solving diffusion equation with Gaussian series data.

We provide another example, where sparsity is fixed at s = 16, and dimension and stamping level are

increased. Again we solve (16) with the diffusion coefficient replaced by the two-term Gaussian series

a = c0 +GI
c,r, where

I ∼ Unif
⇣

�

[−249, 250]d \ Z
d
�2
⌘

, c ∼ Unif
�

[−1, 1]2
�

, r = 1.1d1, c0 = 10 dkck2e ,

and c and c0 are not redrawn across test cases. The bandwidth of the SFT is set to 1 000 to again account

for the potentially widened Fourier transform of a. With a 1 000 point Monte Carlo approximation of the

proxy error, the results are given in Figure 7.

Here we observe much the same behavior as the previous test case. This is due to the fact that the

dimension additionally drives the sparsity of the Gaussian Fourier transforms based on the choice of dilation

r = 1.1d1. In additional experiments performed at higher dimensions (not pictured here), this factor results

in numerical instability and the approximation error blows up. We also see that the d = 2 and d = 4
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Figure 7. Approximate proxy error solving (16) with Gaussian series diffusion coefficient

with d = 2, 4, 8, 16 and N = 1, . . . , 5.

examples are swapped from their assumed positions (and the d = 2 case even mildly benefits from increased

stamping level). This is attributed to the random draw of the frequency locations affecting the proxy error

as well as the SFT algorithm performing better in lower dimensions when all parameters are fixed.

10.5. Three-dimensional exactly sparse advection-diffusion-reaction equation. We now extend our numerical exper-

iments to the situation of a three-dimensional advection-diffusion-reaction equation. See Remark 4 for the

PDE setup and necessary algorithmic modifications.

Numerically, we work with the following exactly sparse data:

(18)

a(x) = â0 +
X

k2Isine
a

csine
a,k sin(2⇡k · x) +

X

k2Icosine
a

ccosine
a,k cos(2⇡k · x)

bj(x) =
X

k2Isine

bj

csine
bj,k

sin(2⇡k · x) +
X

k2Icosine

bj

ccosine
bj,k

cos(2⇡k · x) for all j = 1, 2, 3

c(x) = ĉ0 +
X

k2Isine
c

csine
c,k sin(2⇡k · x) +

X

k2Icosine
c

ccosine
c,k cos(2⇡k · x)

f(x) =
X

k2Isine

f

csine
f,k sin(2⇡k · x) +

X

k2Icosine

f

ccosine
f,k cos(2⇡k · x),

where
�

�Isine
a

�

� =
�

�Icosine
a

�

� = 2
�

�

�
Isine
bj

�

�

�
=
�

�

�
Icosine
bj

�

�

�
=
�

�Isine
c

�

� =
�

�Icosine
c

�

� = 5 for all j = 1, 2, 3
�

�Isine
f

�

� = 2, and
�

�Icosine
f

�

� = 3.

In total, there are 45 terms composing the differential operator, and 5 terms composing the forcing func-

tion. Each frequency is randomly drawn from Unif([−49, 50]3 \ Z
3) and each coefficient for a and f

from Unif([−1, 1]). The coefficients for b and c are drawn from Unif([0, 1]). To ensure well-posedness,

â0 = 4

⇠

q

kcsine
a k22 + kccosine

a k22
⇡

, and ĉ0 = 4

⇠

q

kcsine
c k22 + kccosine

c k22
⇡

. The bandwidth of the SFT is set to

K = 100 and consider sparsity levels s = 2 and s = 5. Due to the large size of the stamp, we only consider

stamping levels N = 1, 2.
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�

�f− fs,N
�

�

L2/kfkL2

s N exact Monte Carlo

2
1 0.518 0.518

2 0.518 0.518

5
1 0.054 0.054

2 0.031 0.031

Table 1. Error in approximating solution to ADR equation (14).
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Figure 8. Samples of f10,2 and f on the x1 = 63/128 plane.

The resulting true and Monte Carlo proxy error (sampled over 1 000 points) is given in Table 1. Addition-

ally, Figure 8 shows a portion of a slice through f as well as f2,1 and f10,2 which are computed by passing

u2,1 and u10,2 through the differential operator.

We note that f10,2 and f appear qualitatively indistinguishable. However, since the sparsity level, s = 2,

used to compute u2,1 is lower than the sparsity of any term in (18), f2,1 loses some of characteristics of the

original source term. Though it captures some of the true behavior in both larger scales (e.g., the oscillations

moving in the northeast direction) and finer scales (e.g., the oscillations moving in the southeast direction),

some interfering modes which produce the “wavy” effect are left out. This is supported by the relative errors

reported in Table 1. Note also that the stamping level affects the convergence in s = 5 case, but not the

s = 2 case. This is due to the sparsity related errors in (13) overwhelming the stamping term until the SFT

approximations of the data are accurate enough.

Appendix A. Stamp set cardinality bound

We begin by proving the following combinatorial upper bound for the cardinality of a stamp set.

Lemma 8. Suppose that 0 2 supp(â), supp(â) = − supp(â), |supp(â)| = s. Then

(19)
�

�SN[â](supp(f̂))
�

� 6
�

�supp(f̂)
�

�

NX

n=0

min(n,(s−1)/2)X

t=0

2t
✓

(s− 1)/2

t

◆✓

n− 1

t− 1

◆

.

Proof. We begin by separating SN into the disjoint pieces

SN =

N
G

n=0

 

Sn \

 

n−1
[

i=0

Si

!!

and computing the cardinality of each of these sets (where we take S−1 = ;). If k 2 Sn \
�

[n−1
i=0 Si

�

, then we

are able to write k as

(20) k = kf +

nX

m=1

km
a
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where kf 2 supp(f̂) and km
a 2 supp(â) \ {0} for all m = 1, . . . , n. Additionally, since k is not in any earlier

stamping sets, this is the smallest n for which this is possible. In particular, it is not possible for any two

frequencies in the sum to be negatives of each other resulting in pairs of cancelled terms.

With this summation in mind, arbitrarily split supp(â) \ {0} into At−A (i.e., place all frequencies which

do not negate each other into A and their negatives in −A). By collecting like frequencies that occur as a

km
a term in (20), we can rewrite this sum as

(21) k = kf +
X

ka2A

s(k,ka)m(k,ka)ka,

where the sign function s(k,ka) is given by

s(k,ka) :=

8
>><

>>:

1 if ka is a term in the summation (20)

−1 if −ka is a term in the summation (20)

0 otherwise

and the multiplicity function m(k,ka) is defined as the number of times that ka or −ka appears as a

km
a term in (20). Letting s(k) := (s(k,ka))ka2A and m(k) := (m(k,ka))ka2A, we can then identify any

k 2 Sn \
�

[n−1
i=0 Si

�

with the tuple

(kf, s(k),m(k)) 2 supp(f)⇥ {−1, 0, 1}A ⇥ {0, . . . , n}A.

Upper bounding the number of these tuples that can correspond to a value of k 2 Sn \
�

[n−1
i=0 Si

�

will then

upper bound the cardinality of this set.

Since any kf 2 supp(f̂) can result in a valid k value, we will focus on the pairs of sign and multiplicity

vectors. Define by Tn ⇢ {−1, 0, 1}A ⇥ {0, . . . , n}A the set of valid sign and multiplicity pairs that can

correspond to a k 2 Sn \
�

[n−1
i=0 Si

�

. In particular, for (s,m) 2 Tn, kmk1 = n and supp(s) = supp(m).

Thus, we can write

Tn ⇢
min(n,|A|)
G

t=0

�
(s,m) 2 {−1, 0, 1}A ⇥ {0, . . . , n}A | kmk1 = n and | supp(s)| = | supp(m)| = t

 
.

This inner set then corresponds to the t-partitions of the integer n spread over the |A| entries of m where

each non-zero term is assigned a sign −1 or 1. The cardinality is therefore 2t
�

|A|
t

��

n−1
t−1

�

: the first factor

is from the possible sign options, the second is the number of ways to choose the entries of m which are

nonzero, and the last is the number of t-partitions of n which will fill the nonzero entries of m. Noting that

|A| = s−1
2

, our final cardinality estimate is

�

�SN
�

� =

NX

n=0

�

�

�

�

�

Sn \

 

n−1
[

i=0

Si

!�

�

�

�

�

6

NX

n=0

�

�supp(f̂)
�

�|Tn|

6
�

�supp(f̂)
�

�

NX

n=0

min(n,(s−1)/2)X

t=0

2t
✓

(s− 1)/2

t

◆✓

n− 1

t− 1

◆

as desired. ⇤

Though this upper bound is much tighter than the one given in the main text, it is harder to parse. As

such, we simplify it to the bound presented in Lemma 2, restated here for convenience.

Lemma 2. Suppose that 0 2 supp(â), supp(â) = − supp(â), and
�

�supp(f̂)
�

� 6 |supp(â)| = s Then
�

�SN[â](supp(f̂))
�

� 6 7max(s, 2N+ 1)min(s,2N+1).

Proof. Let r = (s− 1)/2. We consider two cases:



SPARSE SPECTRAL METHODS 25

Case 1: r > N: We estimate the innermost sum of (19). Since r > N > n, min(n, (s− 1)/2) = n. By upper

bounding the binomial coefficients with powers of r, we obtain
nX

t=0

2t
✓

r

t

◆✓

n− 1

t− 1

◆

6

nX

t=0

2t(rt)2

6 2(2r2)n

where the second estimate follows from the approximating the geometric sum. Again, bounding the

next geometric sum by double the largest term, we have

�

�SN
�

� 6
�

�supp(f̂)
�

�

NX

n=0

2(2s2)n 6 (2r+ 1)4(2r2)N 6 2(2r+ 1)2N+1 = s2N+1.

Case 2: r < N: Bounding the innermost sum of (19) proceeds much the same way as Case 1, but we must

first split the outermost sum into the first r+ 1 terms and last N− r terms. Working with the first

terms, we find
rX

n=0

nX

t=0

2t
✓

r

t

◆✓

n− 1

t− 1

◆

6 4(2r2)r

using the argument in Case 1. Now, we bound

NX

n=r+1

rX

t=0

2t
✓

r

t

◆✓

n− 1

t− 1

◆

6

NX

n=r+1

2(2(n− 1)2)r

6 2r+1

ZN

r

n2r dn

6
p
2
(
p
2N)2r+1

2r+ 1
.

Thus,

�

�SN
�

� 6
�

�supp(f̂)
�

�

"

4(2r2)r +
p
2
(
p
2N)2r+1

2r+ 1

#

6 5
p
2
⇣p

2N
⌘s

6 7(2N+ 1)s.

Combining the two cases gives the desired upper bound.

⇤

Appendix B. Proof of SFT recovery guarantees

We restate the theorem for convenience.

Theorem 2 ([23], Corollary 2). Let I ⇢ Z
d be a frequency set of interest with expansion defined as

K := maxj2{1,...,d}(maxk2I kj − minl2I lj) (i.e., the sidelength of the smallest hypercube containing I),

and ⇤(z,M) be a reconstructing rank-1 lattice for I.

There exists a fast, randomized SFT which, given ⇤(z,M), sampling access to g 2 L2, and a

failure probability � 2 (0, 1], will produce a 2s-sparse approximation ĝs of ĝ and function gs :=
P

k2supp(ĝs) ĝ
s
kek approximating g satisfying

kg− gskL2 6 kĝ− ĝsk`2 6 (25+ 3K)

2

4

�

�

�
ĝ|I − (ĝ|I)

opt
s

�

�

�

1p
s

+
p
skĝ− ĝ|Ik1

3

5

with probability exceeding 1− �. If g 2 L1, then we additionally have

kg− gskL1 6 kĝ− ĝsk`1 6 (33+ 4K)
⇥
�

�ĝ|I − (ĝ|I)
opt
s

�

�

1
+ kĝ− ĝ|Ik1

⇤

with the same probability estimate. The total number of samples of g and computational complexity

of the algorithm can be bounded above by

O

✓

ds log3(dKM) log

✓

dKM

�

◆◆

.
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Proof. The L2 upper bound is mostly the same as the original result. We are not considering noisy measure-

ments here which removes the
p
se1 term from that result (though, this could be added back in if desired).

Additionally, we have upper bounded kĝ− ĝ|Ik2 by
p
skĝ− ĝ|Ik1 adding one to the constant.

The L1 / `1 bound was not given in the original paper, but can be proven using the same techniques. In

particular, replacing the `2 norm by the `1 norm in [23, Lemma 4] has the effect of replacing all `2 norms

with `1 norms and replacing
p
2s by 2s. This small change cascades through the proof of Property 3 in [23,

Theorem 2] (again, with `2 norms replaced by `1 norms) to produce the univariate `1 upper bound (in the

language of the original paper)

kâ− vk1 6
�

�

�
â− â

opt
2s

�

�

�

1
+ (16+ 6

p
2)
�
�

�â− âopt
s

�

�

1
+ s(kâ− âk1 + kµk1)

�

=: ⌘1.

A similar logic applies to revising the proof of [23, Lemma 1]. Equation (4) with all `2 norms replaced by

`1 norms is derived the same way, and the first term is upper bounded by the maximal entry of the vector

multiplied by the number of elements without the square root. The remainder of the proof carries through

without change which leads to a final error estimate of

kb− ck`2 6 (�+ ⌘1)max(s− |S�|, 0) + ⌘1 +
�

�c|I − c|Sβ

�

�

1
+ kc− c|Ik1.

Finally, the proof of [23, Corollary 2] follows using the same logic as the original substituting these revised

upper bounds. ⇤
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