It’s all in your head(set): Side-channel attacks on AR/VR systems

Yicheng Zhang, Carter Slocum, Jiasi Chen and Nael Abu-Ghazaleh
University of California, Riverside

Abstract

With the increasing adoption of Augmented Reality/Virtual
Reality (AR/VR) systems, security and privacy concerns at-
tract attention from both academia and industry. This paper
demonstrates that AR/VR systems are vulnerable to side-
channel attacks launched from software; a malicious appli-
cation without any special permissions can infer private in-
formation about user interactions, other concurrent applica-
tions, or even the surrounding world. We develop a number
of side-channel attacks targeting different types of private
information. Specifically, we demonstrate three attacks on the
victim’s interactions, successfully recovering hand gestures,
voice commands made by victims, and keystrokes on a virtual
keyboard, with accuracy exceeding 90%. We also demon-
strate an application fingerprinting attack where the spy is
able to identify an application being launched by the victim.
The final attack demonstrates that the adversary can perceive
a bystander in the real-world environment and estimate the
bystander’s distance with Mean Absolute Error (MAE) of
10.3 cm. We believe the threats presented by our attacks are
pressing; they expand our understanding of the threat model
faced by these emerging systems and inform the development
of new AR/VR systems that are resistant to these threats.

1 Introduction

AR/VR enables a range of new applications where users view
virtual objects and scenes through a wearable headset. This
information is perceived directly through the user’s senses,
enabling the devices to enrich the user’s perception of the real
world with overlaid virtual objects (Augmented Reality) or
even completely replace the real world with the virtual (Vir-
tual Reality). AR and VR support a range of new and exciting
applications, from gaming to virtual exploration, training, and
many others. Several commercial headsets are available on the
market (e.g., Microsoft Hololens 2 [41], Meta Quest 2 [38]),
and an increasing number of applications and content are
becoming available.

Security and privacy issues in the context of AR/VR sys-
tems have been receiving increasing interest. This application
space presents a number of unique challenges because it lies
at the intersection of the physical and digital worlds. AR/VR
applications augment the physical world and can expose sen-
sitive information about the activities of users [25, 58, 60],
their interactions with the system [16], or the environment
itself[19, 22, 57]. These applications can be downloaded from
an App Store and executed on the headset. As AR/VR appli-
cations proliferate, AR/VR platforms are evolving to support
the operation of multiple concurrent apps, each providing a
different service visible to users [56]. For example, a user
could meet with a remote 3D user [51] while simultaneously
taking notes on a virtual whiteboard. Thus, it is critical to
understand the threat models faced in emerging multi-app
scenarios, to guide the development of mitigations and best
practices in the supporting systems and software.

In this paper, we explore whether side-channel attacks are
feasible threat vectors affecting AR/VR headsets running
multiple concurrent apps. Our threat model considers a mali-
cious application without special privileges that seeks to infer
sensitive information about other concurrently running ap-
plications or user interactions with the device. We show that
AR/VR engines expose performance counters and additional
information that is accessible to user-level applications with-
out special privileges. Moreover, these performance counters
change in a way that correlates with sensitive information,
enabling an attacker to infer this sensitive information from
the counter values. For example, the frame rate sustained by
the device goes down when other applications execute compu-
tationally demanding operations, such as rendering a virtual
hand or parsing new information about the environment, pro-
viding recognizable signatures allowing a spy to track the
behavior of other applications.

Although similar side-channel attacks have been demon-
strated in the context of Central Processing Unit (CPU) (e.g.,
[2, 53]) and Graphics Processing Unit (GPU) (e.g., [50, 71]),
AR/VR applications and systems are significantly different in
terms of the nature of the workloads as well as the character-

istics of both the hardware and the run-time on the headsets.
We present a taxonomy of the possible targets of side-
channel attacks, showing that the targets can include: (1)
inferring user interactions such as hand gestures or voice
commands that are used as input to the device; (2) inferring
information about other applications: different applications
have different signatures based on their baseline behavior, as
well as a function of sensitive data they may process; and
(3) inferring information about the environment or bystander
behavior: the nature of the environment or the user behavior
can cause different identifiable signatures in the performance
counters we track.

To illustrate these threats, we develop a number of end-to-
end attacks selected to represent the attack classes we identify
above. Specifically, we construct a side-channel attack that
infers the victims’ hand gestures and voice commands by
tracking the rendering performance counters provided by the
shared rendering engine (discussed in § 4.1 and § 4.2). We
demonstrate another attack that monitors the keystrokes en-
tered by the victim (discussed in § 4.3). We construct another
attack that infers the launch of different applications, iden-
tifying the launched application (discussed in § 5). Finally,
we demonstrate an attack that infers information about the
environment — the attack is able to perceive the presence of
an approaching person and estimate the distance (discussed
in § 6).

As auser interacts with a Mixed Reality (MR) device, or as
the environment changes, these interactions trigger processing
tasks that leave a footprint on resource and rendering-related
performance counters. Our side-channel attacks look for these
signatures to infer sensitive information about other applica-
tions, user interactions, or changes in the environment. The
attacks illustrate a number of potential leakage sources on
AR/VR devices. Although known patterns of defenses such as
limiting access to performance counters could be leveraged,
we believe that these defenses should be thoughtfully con-
sidered due to the fundamentally different nature of AR/VR
applications. In particular, while conventional computing ap-
plications share only the resources, AR/VR applications share
the environment and the user, inviting new solutions that are
able to provide access without compromising security and
privacy. We discuss the challenges in mitigating these attacks
and outline potential solutions in § 7.

In summary, the contributions of this paper are:

* We present a taxonomy of the potential targets and leak-
age sources of software-accessible side-channel attacks
on AR/VR devices and applications.

* We demonstrate five end-to-end side-channel attacks
illustrating three types of targets: Inferring (1) user inter-
actions (hand gesture or voice command as inputs, and
virtual keyboard inputs); (2) information about concur-
rent applications (fingerprinting newly launched applica-
tions); and (3) distance estimation of a bystander. The

§ I AR/VR applications]
8
i.;, IO
o " - _ x "
] Human interaction (hand/eye/voice) Environmental understanding]
3
ay 9 AR/VR interaction toolkit
x 9 —
S l Planes detectioon ” 2D object tracking] I 3D object tracking l I Raycast l
g
;‘.’ [Performance counters & Memory allocation API]
(=2
I Unity/Unreal XR SDK
1
x Windows ARCore Oculus ARKit Open
a [[| H XR ” XR H XR H XR ” XR l
2| =- d
2 = VR
% RIS, &0 Sensor Manager APls Render Manager APls
: &
- =
U J l’h{j Native APIs
EA [i Holographic
[[IMUs [Cameras [Mmrophone cPu Procesgsin: Unit
e GPU (HPU)
I Sensors Compute Engine

Figure 1: General software and hardware architecture for
AR/VR device.

proof-of-concept attack can infer the walking bystander
distance from the headset, providing evidence that there
are side-channel signatures from the surrounding envi-
ronment.

» We discuss the challenges in mitigating these classes
of attacks in the context of AR/VR applications and
headsets.

Disclosure: We have reported all of our findings to the headset
manufacturers, Microsoft and Meta, as well as the Unity and
Unreal Engine security teams.

2 Background

In this section, we first present the general architecture of an
AR/VR system and explain the link between development
tools, devices, and performance counters. We then discuss
how the run time works and how it supports concurrent appli-
cations.
Devices and developer tools. We analyzed the Hololens 2
and Meta Quest 2 and investigated their common aspects in
terms of device hardware and software developer tools. A
similar architecture is also shared with other AR/VR devices,
like Magic Leap [27] and HTC Vive [12]. Fig. | shows a
general software and hardware architecture of an AR/VR
headset. The architecture consists of four main subsystems,
starting from the bottom: device hardware, low-level Software
Development Kit (SDK), high-level SDK, and developer tools.
The hardware components of AR/VR devices include
computing engines (e.g., CPU and GPU) and sensing units
(e.g., inertial measurement unit (IMU), cameras, and micro-
phones). Each AR/VR device is supported by a manufacturer-
specific low-level SDK that reads and processes device-

specific sensor data, providing the results to the high-level
SDK. For instance, Hololens is supported by Windows XR
SDK, while Meta Quest uses the Oculus XR SDK. The low-
level SDK also leverages compute engines to accelerate some
sensor processing tasks. For example, the Hololens 2 has a
holographic processing unit (HPU) 2.0 [64], which provides
hardware-accelerated support for computer vision tasks such
as hand tracking and eye tracking.

Above the low-level SDKs, high-level SDKs define stan-
dard APIs that provide common AR/VR-related function-
alities across the supported devices (e.g., plane detection,
ray-casting, 2D and 3D object tracking). Two primary high-
level SDK options are Unity XR SDK [68] or Unreal XR
SDK [15]. Finally, at the top of the architecture, developers
writing AR/VR applications can access two main groups of
functionality: human interaction and environmental under-
standing. For human interaction, AR/VR applications can un-
derstand user commands through hand tracking, eye tracking,
and voice commands. In terms of environmental understand-
ing, it supports spatial mapping and scene understanding.

In summary, AR/VR devices have specific low-level SDKs
tailored to their hardware, which provide a common set of
AR/VR functionality to the high-level SDKs, which develop-
ers can then utilize in their applications.

Performance counters. Specific functionality exposed by the
high-level SDK includes performance counters and memory
allocation APIs. These help developers track and optimize
the performance of their running applications. These counters
or APIs rather track application performance at the software
level, abstracted away from specific hardware, as shown in
Fig. 1. In this work, we focus on performance counters re-
lated to rendering and thread time, as they are common across
AR/VR devices, no matter their hardware capabilities. Exam-
ples include the Number of draw calls and Vertex count, which
reflect the graphical complexity of 2D/3D objects rendered on
the display (further details on the performance counters are
provided in Section 3.2). As a victim interacts with the device
or the environment changes, the low-level SDKs perform pro-
cessing whose results propagate to the high-level SDK and
impact the performance counters there, which we leverage to
launch our attacks.

Permissions in the multi-app AR/VR platform. Many pop-
ular augmented reality headsets, like the Microsoft Hololens
2, Meta Quest 2, and Magic Leap, support multiple applica-
tions simultaneously, enabling these applications to enrich
the user’s mixed reality experience collectively. However, the
isolation of these multiple applications in AR/VR platforms
face presents a number of challenges: each application likely
needs information about the environment for rendering and
potentially also to provide the opportunity for the user to inter-
act with the environment. Thus, even though the applications
may be isolated in the user’s field of view/display, it is unclear
how to set up permissions without interfering with usability.
As a result, we observed on the headsets we tested that ap-

Attack class Attack target

Attack example

I

1

1

JI_. User interaction
model

1
1
+| App detection :
1
1
1
1

Web fingerprint |

—L| App monitoring

Bystander }—.—hl Bystander track(§6) |

1
1
1
1
1
1
1
1
L

Software side-channel attacks
on AR/VR systems

Environment

1| Surrounding P .
T{ space H Spatial information
1

1

1

1

1

1

]

1

1

1

1

1

:

1
Concurrent App 4]—

1

1

1

1

1

:

1

I

1

1

1

- - - =TT ===

Figure 2: Taxonomy of software side-channel attacks on AR
devices. The shaded attack examples specifically are demon-
strated in the paper.

plications running in the background have access to various
APIs in the high-level SDK, such as plane detection, which
is shared with other applications. This access is necessary
since the different applications may need to update what they
display according to changes in where the user is looking or
in response to user interactions. While there is some coarse-
grained permission control (for example, only the foreground
application has access to the hand tracking API), most other
sensor data and performance counters were not subject to
access control on the headsets we tested.

3 Attack Model and Experiment Setup

In this section, we discuss the threat models considered by our
attacks. Specifically, we identify potential attack goals and
leakage sources exploitable by attackers, and also describe
our experimental setup and workflow.

3.1 Threat model and attack taxonomy

We assume a malicious program is running in the back-
ground with standard application-level permissions. Such
threat models have been widely deployed in prior works
(e.g., [3, 30,48, 50, 55, 72, 76, 77]). A recent paper [35] present-
ing a side-channel attack on an AR device shares the same
threat model, although without considering performance coun-
ters. The malicious program periodically probes certain per-
formance counters available either from the hardware or the
run-time system and analyzes the results to infer the activities
of other concurrent apps, the user, or the environment.
AR/VR headsets and applications are unique in that they
bridge the physical world, perceiving it through sensors, aug-
menting it, or potentially completely replacing it (in VR) with
digitally projected models. As a result, these applications pro-
vide a target-rich environment for attackers. We first present a

User interaction

. Spy @@, Q|
Spy |: Memory allocation API i Spy
App & 0 App

Concurrent applications

Real-world environment

© i
LS. A Spy (m
Memory allocaton AP | Spy |: Memory allocation API
Performance counters :I App =

'; Bystander ﬁ

A | ﬂ AN] e
Victim '||I' ﬂ E Victim (g3) : ﬂ
o i1 [Concurrent [—> § : o
= ':°'>] ' ¢ Spatial _((o?
7] App i1 information J
__ U | S

Figure 3: Three attack scenarios are considered in this work. For user interaction, we assume a victim interacts with the device
through hand gestures or voice commands. For concurrent applications, the victim launches a new application. In the real-world
environment, a bystander passes through the field of view of the AR/VR device. In all scenarios, a spy program runs concurrently

and collects memory allocation API and performance counters.

taxonomy of the types of attack goals we envision our attack
targeting.

Fig. 2 presents a taxonomy of the attack space we expect
to be of interest to attackers in our threat model. Broadly, the
attacks can be placed in three categories:

* Spying on user interactions: In AR/VR applications,
the user is at the confluence of the physical and digital
worlds. User interactions can provide valuable informa-
tion to a spy, to enable them to track the user’s activi-
ties and even infer passwords or credentials. Common
user interaction interfaces with the device include hand
gestures (e.g., air tap to select a Ul element, pinch and
grab to move a virtual object), as well as hands-free user
interactions (e.g., voice commands, eye gaze). User inter-
actions may cause changes in the performance counters
due to changes in computations to track hands/head/eyes
and recognize pre-defined hand/voice patterns, as well
as from rendering virtual hands or gaze pointers.

* Spying on concurrent applications: The user may not
wish to reveal information about other concurrently run-
ning apps, such as their launch, or detailed information
about their operation such as the currently open website
in a virtual browser. These concurrent apps may cause
changes in the performance counters due to their typi-
cal rendering workload during launch, or based on their
appearance as well as memory allocations.

* Spy on the real-world (or virtual in the case of VR)
environment: The environment in which the user is op-
erating the AR/VR device may contain private informa-
tion, such as how many bystanders are passing by or the
amount of clutter in the scene (e.g., a blank hallway vs.
a messy lab), which enables deriving the location of the
user. The real-world environment may cause changes in
the performance counters due to AR devices’ continuous
spatial mapping background process [46], which helps

blend virtual objects with the real world in a realistic
way.

In this work, we demonstrate five specific attacks from Fig. 2
(shaded boxes): hand gestures, voice input, keystrokes, app
launch, and bystander ranging. These five attacks occur under
three scenarios, shown in Fig. 3.

3.2 Available leakage vectors

Unity [18] and Unreal Engine [59] are two leading platforms
for developing AR/VR applications, and they are supported
on both the Hololens and Meta Quest headsets. They both
provide resource monitoring APIs which provide access to
various performance statistics (performance counters) to as-
sist developers in improving the performance of their applica-
tions. These values are updated with every frame. The APIs
are accessible to all applications, including the spy applica-
tion, requiring only user-level permissions even when they
are in the background. We exploit these APIs to obtain the
side-channel information that enables us to carry out the at-
tacks and recover sensitive information. We describe these
APIs next.

Memory allocation API. After an application is launched
on an AR/VR device, the system will allocate memory for it,
based on the size and content of its visible objects. On Unity,
we can use AppMemoryUsage [44] to track an app’s memory
usage, including current memory usage, memory usage peak,
and memory usage limit. While on Unreal Engine, Rendering
Hardware Interface (RHI) [69] provides CurrentRendertar-
getMemorySize and CurrentTextureMemorySize, two APIs to
help developers understand the memory allocation for render
targets and textures.

Although each application can only access the memory
allocation information corresponding to its own usage, we
notice that these numbers are affected by contention from user
inputs or other applications. For example, when the built-in
voice commands are triggered, the observed memory usage of

Categories | Counters

Frame rate CPU frame rate, GPU frame rate, Frame time, Refresh rate, GPU input latency time

Thread Game thread Fime, Render thread time, Working RHI thread time, Render thread idle count, RHI thread time,
Swap buffer time

Render task Number of drayv calls, Number of primitives, Draw up call index counts, Vertex count, Texture pool size, GPU
max texture mip count, Graph pool size percentage

Table 1: Performance counters used by our spy program, available from the Unity and/or Unreal game engines.

the spy program increases (discussed in Section 4.2); we con-
jecture that this is because the voice commands used shared
buffers that are also treated as part of the spy program, result-
ing in memory usage increasing. Conversely, when concurrent
applications are launched, the resident memory usage of the
spy program decreases because of pressure on the physical
memory arising from resource contention. By observing these
contention-related patterns, the spy can infer the behavior of
other concurrent applications (discussed in Section 5).
Performance counters. Performance counters are provided
by both the Unity and Unreal XR high-level SDKs. Table 1
summarizes the available performance counters categorized
by three groups:

* Frame rate: Since a sudden decrease in frame rate has
been shown as a major factor underlying AR/VR sick-
ness [78], it is important for developers to maintain a
high frame rate. Towards this, Unity provides a Frame-
TimingManager API [67] to track the CPU frame rate
and GPU frame rate. CPU frame rate is calculated as the
time between the start of the frame and the next frame
on the main thread. GPU frame rate reflects the GPU’s
work time between the work submitted to the GPU and
finished. These two counters help developers determine
where are the performance bottlenecks in AR/VR ap-
plications. If developers find it is CPU-bound, they can
control workloads on the CPU by reducing how often
some game objects’ logic is updated [63]. If the frame
rate is GPU-bound, developers can reduce the rendering
resolution to limit the amount of work done by the GPU.

* Thread: Multi-threading is widely used in AR/VR ap-
plications, which support processing multiple render-
ing threads simultaneously. However, poor synchroniza-
tion of multiple threads would bring in resource waste,
which harms the immersive experience on AR/VR de-
vices. Thus, thread-related counters assist developers by
providing timing information for parallel threads. For
example, Unreal XR SDK offers Render thread time and
Game thread time. These two threads typically run in
parallel. By tracking the timing information of these two
threads, developers can synchronize the rendering work
between the game thread and the render thread to make
the application faster.

* Render task: The rendering-related counters represent

the complexity of 2D/3D objects shown on the AR/VR
display. For instance, Vertex count indicates the number
of vertices in existing 2D/3D scenes. Primitives are pre-
defined 3D objects, like cubes, spheres, etc. Each type of
primitive corresponds to a different Number of primitives.
With the help of render-related counters, developers can
avoid involving too many or too complex objects, which
may slow down the application’s frame rate.

Although each application can only access its own perfor-
mance counters, we notice that these numbers are affected by
other applications or user interactions. This allows us to bridge
a series of side-channel attacks. In general, those counters re-
lating to graphical rendering tend to show increased load when
user behaviors generate new display elements (e.g., Vertex
count increases when users make gestures that are rendered
on the screen), while non-graphics-related counters tend to
show increased load during non-rendering tasks (e.g., App-
MemoryUsage increases during parsing of voice commands,
CPU frame rate decreases while processing changes in the
real-world environment). More details are provided in the
following sections.

3.3 Experimental setup

We demonstrate our attacks on two devices: a Microsoft
Hololens 2 [41] (a Windows-based AR headset) and a Meta
Quest 2 [38] (an Android-based VR headset). We chose these
devices for the following reasons: Firstly, they serve as two of
the most representative headsets for the AR and VR domains,
respectively. Secondly, the low-level SDK of the two devices
is distinct: Hololens is built upon the Windows XR SDK while
the Quest is based on the Oculus XR. We seek to show that
our side-channel attacks generally work on different AR/VR
systems. The malicious spy applications were designed using
both Unity version 2020.3.16f1 and Unreal Engine version
4.27.2. The spy runs as a normal user-space application; it
does not require special permissions (e.g., research mode [66],
which provides access to raw sensor streams) to operate. We
typically conduct experiments with only the spy and any vic-
tim running; the impact of noise from other background apps
is examined in § 4.1.

Data collection. In the experiments, we got IRB approval
from our institution and solicited ten volunteers with a diver-
sity of ages, heights, weights, and gender from our university

ANV

Side-channel 2

signal

Features

Classifiers/
regressors

Feature
engineering

Figure 4: Attack overview.

community. Before the data collection experiments, we intro-
duced these volunteers to a brief training session on Hololens
2 and Meta Quest 2 interaction models. We collect data for the
5 different attack scenarios from each volunteer. Data collec-
tion for each attack took around 30 minutes per volunteer. We
record performance counter readings at 60 Hz. All collected
features are accessible by the spy background program with
user-level permissions.

To demonstrate the generalizability of attacks across SDKs,
we tested some attacks on Unity and others on Unreal, the two
primary SDKs for AR/VR devices. It is possible for any attack
to be conducted against either SDK. Specifically, attacks 3
(keystroke monitoring) and 4 (concurrent app fingerprinting)
use Unreal, while all the other attacks target Unity applica-
tions. The set of counters offered by each SDK is different.
For example, in attack 1 (hand gestures inference), we target
Unity applications and collect five leakage vectors, including
CPU frame rate, GPU frame rate, Number of draw calls, Ver-
tex count and AppMemoryUsage. Volunteers perform each
hand gesture five times for each trial. Attacks 2 (voice com-
mands inference) and 5 (bystander ranging) also target Unity
and collect the same performance counters. For attack 2, vol-
unteers trigger each voice command five times for each trial.
For attack 5, the experiments were held in the same room
with an unchanged surrounding environment. The headset
was kept in the same position on the table. Each of the ten
volunteers is requested to walk with constant speed in front
of the device five times at different preset distances (0.5, 1, 2,
3,4, and 5 meters).

Attacks 3 and 4 (concurrent app fingerprinting) target Un-
real. They collect the following performance counters: Frame
time, Game thread time, Render thread time, Number of draw
calls and Number of primitives counters from the Unreal En-
gine RHI. For attack 3, the volunteers are asked to type each
digit (0-9) ten times each, while for attack 4, each volunteer
opens and closes each foreground application 10 times as the
spy collects data.

3.4 Attack workflow

The general attack workflow is shown in Fig. 4, and we
expound on each stage below. We split the data into train-
ing/testing sets with 80/20%, respectively. 80% of the data
were used to do feature engineering and training, and the
remaining 20% for evaluation for all attacks.

Feature engineering. After recording side-channel leakages
from the malicious app on AR/VR device, our next step is

(b) Start gesture [45]

(a) Air tap [45]

Figure 5: Examples of hand gestures.

to extract useful features from the time-series data. We use
tsfresh [11], a Python library that automatically generates
hundreds of statistical features from time-series data. We used
the Benjamini-Yekutieli procedure [5] to rank all the features
and filter the strongly relevant ones based on the p-value.

Classification/Regression. We use these features to train
several standard classifier or regressor candidates, namely K
Nearest Neighbors (KNN) [26], Decision Tree (DT) [62], Ran-
dom Forest (RF) [7], Light Gradient Boosting Machine (Light-
GBM) [24] and weighted majority rule voting (Voting) [54]
based classifier/regressor. The voting ensemble method com-
bines a decision tree and a random forest as candidates. The
weights of the two candidates are set as identical. The hyper-
parameter settings for classifiers and regressors are listed
in Table 11 and Table 12, respectively. To evaluate the per-
formance of the classifiers, we compute the F1 score (F1),
Precision (Prec), and Recall (Rec). Also, to select the best
regressor, we calculate the Mean Absolute Error (MAE).

4 Attack Scenario 1: User Interactions

In the first attack scenario, we assume a spy application runs
in the background to keep profiling performance counters and
memory allocation APIs, while a victim user is interacting
with AR/VR device. We will use performance counters and
memory allocation APIs to infer hand gestures (both system
commands and keystrokes) and voice input behavior.

4.1 Attack 1: Hand gestures inference

Users can interact with digital artifacts (e.g., holograms) in
the environment either directly or with hand gestures. We
first describe hand gesture inputs on the Hololens 2 and Meta
Quest 2, and then our attacks and evaluations.

Hand gestures on Hololens 2. We focus on inferring five
basic system-level hand gestures on the Hololens 2 that are
part of the standard interaction interface for most applications.
The first gesture is Touch, which means touching holographic
contents directly using the user’s index finger. A white touch
cursor will be displayed on the user’s index finger, which helps
the user touch and interact with the item precisely. Second,
Air tap gesture allows users to interact with distant holograms

Start Menu

Touch

Air tap

—— Start menu

4000 7000

3500 6000

%]
S
S
S

3000

IS
S
S
S

Vertex count
N
g
8

Vertex count

w
=3
S
3

2000

2000
1500

1000

6000

—— Touch —— Air tap

5000

IS
S
S
s

Vertex count
8
3

2000

0 1000 2000 3000 4000

Time (ms)
(a)

5000 6000 7000) 1000

2000

Time (ms)

5000 0 2000 4000

Time (ms)
(©)

3000 4000 6000 8000

(b)

Figure 6: Performance counter traces for hand gestures on Hololens 2: (a) Start menu; (b) Touch; and (c) Air tap.

through the help of a hand ray, which emanates from the
palm of a user’s hand, as shown in Fig. 5a. To select distant
holograms pointed to by the hand ray, the user needs to pinch
her thumb and index finger together and release them quickly
after that. The third interaction is Start menu gesture, which
opens the start menu. To perform it, the user points at her
inner wrist with her palm facing outward as shown in Fig. 5b.
The fourth and fifth gestures are Scale up and Scale down
gestures, which enable resizing the hologram by grabbing and
stretching its corners.

Hand gestures on Meta Quest 2. Similar to the Hololens
2, users can interact with 3D objects using hand gestures on
Meta Quest 2. We track five different hand gestures, includ-
ing Palm pinch, Point and pinch, Touch, Scale up and Scale
down [37]. Palm pinch requires the user to hold her thumb
and index finger together to trigger the start menu. Point and
pinch is similar to Air tap on the Hololens — it allows users to
select far away holograms by using thumb point holograms
and pinch index finger to select. The Touch, Scale up, and
Scale down gestures are identical to those on the Hololens 2.
Selected leakage vectors. We notice that different hand ges-
tures introduce distinct rendering contention patterns with
the spy program running in the background. Specifically, as
a user interacts with holograms using hand gestures, vari-
ous rendering tasks will be dispatched to the device CPU
depending on which hand gesture is being performed. In turn,
these rendering workloads leave signatures visible through
rendering performance counters: for example, Vertex count
reveals the number of vertices submitted to the graphics API
for rendering.

Fig. 6 shows traces of the rendering performance counter
Vertex count illustrating unique signatures when the Start
menu, Touch, and Air tap gestures are performed. Specifically,
before three hand gesture inputs are sent to the device, the
value of Vertex count is stable at around 1000. However, when
the user starts to interact with the device via hand gestures,
the AR/VR device needs to render the hands in the immersive
world, resulting in the sudden increase of Vertex count. Also,

R ke o do e S R SIS OR Y B P RIS

art
menu is less than other two gestures. In addition, the Touch

gesture generates more vertices than Air tap gesture, since
Touch gesture interacts with the object directly while Air tap
gesture interacts remotely.

Feature engineering and classification. Table 2 summa-
rizes the top 10 features for classifying hand gestures on
the Hololens 2 and Meta Quest 2, respectively. Table 15 de-
fines these statistics [10]. The top 3 features for Hololens
are benford correlation (Vertex count), approximate entropy
(CPU frame rate) and approximate entropy (GPU frame rate).
For Quest 2, the top 3 features are sum_values, mean and
root_mean_square (AppMemoryUsage). We noticed that all
top 3 features of the Quest 2 are generated from the App-
MemoryUsage counter. We conjecture that this is because the
hardware configurations of Hololens and Meta are different.
For instance, the Quest 2 has a CPU and GPU to accelerate
render tasks but the Hololens 2 has an extra HPU to help
process render tasks. The AppMemoryUsage is more sensitive
when different hand gestures are triggered on the Quest than
the Hololens.

Table 3 presents the performance results for each classifier
using the previously selected features. We found that the
voting-based classifier achieves over 89% accuracy for hand
gestures inference on the Hololens 2. Similarly, we noticed
that the random forest classifier attains the best performance
among all classifier candidates for hand gesture inference on
Quest 2, with over 93% for F1 score, precision, and recall.
Robustness to Noise: Since the preceding experiments were
tested in a relatively quiet environment, other applications
may also run on the same AR/VR device, which harms
the quality of side-channel leakages. Signal to Noise Ra-
tio (SNR) is often used to evaluate the quality of a side-
channel [36]. We use SNR to check whether there is leak-
age in the presence of other applications. We use the SNR

. Varg;,
equation: SNR = —— el 1
Var (Noise)

Specifically, we collect five traces of CPU frame rate and
compute the average SNR with other apps (Microsoft Store,
Microsoft Edge, and 3D Viewer) running in the background.

T - - -

Varsignai) is the variance of the CPU frame rate when the victim uses the

Start menu gesture to interact with the device, and Varwiso is the variance
of CPU frame rate when no hand gestures involved.

Features

Hololens 2 Quest 2

CPU frame rate approximate_entropy, sample_entropy, permutation_entropy median
Number of draw calls benford correlation minimum, quantile
GPU frame rate approximate_entropy, sample_entropy, permutation_entropy root_mean_square
sum_values, mean,

AppMemoryUsage maximum, abs_energy root_mean_square, abs_energy,
c3
Vertex count benford_correlation minimum

Table 2: Top 10 features for classifying hand gestures on the Hololens and Quest (top 3 features are bolded).

Hololens 2 Quest 2
F1 Prec | Rec F1 Prec | Rec
KNN 53.6 | 554 | 542 | 579 | 583 | 588
DT 80.0 | 805 | 80.0 | 913 | 91.7 | 913
RF 86.6 | 86.6 | 86.7 | 93.7 | 93.8 | 93.7
LightGBM | 84.7 | 86.7 | 85.0 | 89.0 | 91.9 | 90.0
Voting 89.2 | 893 | 89.2 | 913 | 919 | 913

Table 3: Hand gesture inference performance: F1 (%), Preci-
sion (%), and Recall (%) on Hololens and Quest.

Without interference, for the Start menu gesture, the measured
SNR is 10.51 indicating a high-quality channel. While in the
presence of noise the calculated SNR decreases to 6.90, this
value is still high, indicating resilience to noise. In particular,
an SNR value greater than 1 is considered to be exploitable
in recent literature [75].

4.2 Attack 2: Voice commands inference

Users can also communicate with the headset through voice

input commands. We launch a similar attack as Section 4.1;

however, this attack infers a user’s voice commands on both

the Quest and Hololens headsets. We first briefly describe the
built-in voice commands for each.

Built-in voice input commands on the Hololens 2. We aim
to infer five HoloLens-specific commands [43]: “Go to Start”,
“Take a picture’, “Start/stop recording”, “Turn up/down the
volume” and “Show/hide hand ray”.

Built-in voice input commands on the Meta Quest 2. To
initiate a voice command, the user double-clicks the home
button on the right controller. We aim to infer the five Meta
built-in voice commands [39]: “Take a photo”, “Start/stop
recording”, “Turn up/down the volume”, “Reset view’ and
“Start casting”.

Selected leakage vectors. We notice that different voice com-
mands (“Go to Start”, “Take a picture’, “Start/stop record-
ing”) result in different memory usage of the spy program,
which is shown in Fig. 7. The sudden increase in memory us-
age indicates the voice command is triggered. We conjecture
it is because the triggered voice command may be allocated
to a shared buffer with the background spy program. Also,

Hololens 2 Quest 2
F1 Prec | Rec F1 Prec | Rec
KNN 875 | 877 | 875 | 659 | 73.3 | 62.0
DT 937 | 93.8 | 93.8 | 88.1 | 89.6 | 88.0
RF 912 | 913 | 912 | 86.0 | 89.3 | 86.0
LightGBM | 889 | 909 | 89.5 | 903 | 93.0 | 90.8
Voting 913 | 924 | 913 | 939 | 94.0 | 94.0

Table 4: Voice command inference performance: F1 (%),
Precision (%), and Recall (%) on Hololens and Quest.

the peaks of three voice commands are different: “Start/stop
recording” is the highest, around 780 MB, while “Go to Start”
only triggers 610 MB.

Feature engineering and classification. We use the same
methodology to extract the salient time-series features, shown
in the Appendix in Table 13 for Hololens 2 and Meta Quest 2,
respectively. Table 4 presents the attack accuracy on the two
devices. The Hololens-specific voice commands can be suc-
cessfully inferred with F-1 score of 93.7% with the decision
tree classifier. Using the voting classifier, we can identify the
correct type of voice command with high accuracy (F-1 score
0f 93.9%) on the Meta Quest 2.

4.3 Attack 3: Keystroke monitoring

The next attack targets keystroke monitoring on the virtual
keyboard. We noticed that when the user enters keystrokes
using the virtual keyboard in the immersive environment, the
user has to move her hand and fingers differently for each
keystroke based on the key location. This movement in turn
generates distinguishable side-channel leakage patterns for
each keystroke [70]. Fig. 9 shows example patterns for three
different digit inputs collected by the spy program on the
Hololens 2. As can be seen, each of the digits has a distinctive
pattern. We note that prior work [4] has studied keystroke
monitoring in VR using WiFi Channel State Information
(CSI) monitored by an external attacker with access to the
wireless channel. In contrast, our attack does not require any
physical access to the wireless infrastructure.

Attack scenario. Fig. 8 illustrates the attack overview. The
victim user switches to a new foreground application (1) and

Go to start

Take a picture

Start video & Stop recording

—— Go to start

760

Used memory (MB)
Used memory (MB)

—— Take a picture .

Start video
Stop recording

Used memory (MB)

680

660

0 100 200 300
Time (ms)

@

400 500 600 0 200

400

Time (ms)

(b)

600 800 1000 0 250 500 750 1000 1250 1500 1750 2000

Time (ms)
(©

Figure 7: Performance counter traces as a user speaks different voice commands: (a) Go to start; (b) Take a picture; and (c) Start

video and Stop recording.

Figure 8: Keystroke monitoring attack scenario. (1) The fore-
ground app (Meta Messenger) (2) Victim user types messages
using the built-in board (3) The malicious app records perfor-
mance counters in the background (4) Victim uses the hand
gesture Point and pinch to type.

starts typing some sensitive text via the system keyboard

(2). In the meantime, the malicious application is recording
the performance counters in the background (3). The user
enters the sensitive keystrokes via the hand gesture Point and
pinch directly (4). As proof of concept, we focus on the ten
digits (0-9) on the virtual keyboard. The digits can contain
sensitive information, for example, credit card numbers, for
online payment.

Selected leakage vectors. Fig. 9 shows the values of the
counters for these two threads for three digits (0, 2, and 9).
These three digits all have different patterns since the hand
movements are distinct. The counters Game thread time and
Render thread time track the execution time of two primary
threads present in applications using this engine. The game
thread is responsible for most application logic, while the
render thread is activated to render new frames. We notice

Hololens 2 Quest 2
F1 Prec | Rec F1 Prec | Rec
KNN 433 | 49.6 | 443 | 44.1 | 494 | 440
DT 88.7 | 89.8 | 88.6 | 92.1 | 93.7 | 92.0
RF 521 | 540 | 529 | 737 | 755 | 75.0
LightGBM | 87.5 | 88.0 | 888 | 938 | 94.8 | 94.0
Voting 914 | 91.7 | 914 | 90.1 | 91.6 | 90.0

Table 5: Keystroke monitoring performance: F1 (%), Preci-
sion (%), and Recall (%) on Hololens and Quest.

that the Game thread time counter increases while the Render
thread time counter decreases simultaneously. A possible ex-
planation of this counter behavior pattern is that when AR/VR
devices detect the touch gesture, it consumes some resources
to keep tracking the hand movement. Since the game thread
time reflects the time used for spy application logic, it may be
preempted by the hand-tracking task. Also, rendering threads
of the spy application may skip updating because of resource
contention. As a result, the game thread time increases while
the rendering time decreases.

Feature engineering and classification. Table 14 in the Ap-
pendix summarizes the top performance counters for the two
AR/VR devices. Results are presented in Table 5, showing that
the voting method performs best with an F-1 score of around
91% on Hololens 2, and the LightGBM classifier achieves
93.8% on Quest 2.

5 Attack Scenario 2: Concurrent Apps

In this scenario, the attacker exploits side-channel leakage
to infer information about other applications running on the
device. Specifically, we show that a spy can fingerprint an
application being opened.

Attack 4: Concurrent app fingerprinting: Information
about other concurrent applications can potentially be sen-
sitive: it discloses information about the user activity and
could be used to provide context for other attacks such as
phishing attacks [14]. The goal of this attack is to infer the
launch and identify a concurrent application. We observe that

18

=
o

H
&

16

-
=

14

—— Game thread time

Render thread time
10

Thread time (ms)

Thread time (ms)

o

IS

\ {
12 V N J

—— Game thread time
Render thread time

Digit 9

-
o

TR
[N
g

—— Game thread time
Render thread time

Thread time (ms)

o

IS

0 200 400 600 800 1000 1200 1400 1600 0

Time (ms)
(a)

200 400

600

Time (ms)

800 1000 1200 1400 1600 0 200 400 600 800 1000 1200 1400 1600

Time (ms)

(b) (©)

Figure 9: Performance counter traces when a user inputs different digits on a virtual keyboard: (a) 0, (b) 2, and (c) 9.

Frame time (ms)
= N N -
- 8 N 4

-
o

Microsoft Edge OneDrive Mail
60
19
9 504 M)
£ £
)) 18
£ 40 €
= b=
& g
c ©
o i
w [
16
201
0 500 1000 1500 2000 [} 500 1000 1500 2000 2500 3000 3500 0 500 1000 1500 2000
Time (ms) Time (ms) Time (ms)

(@)

(b) ©

Figure 10: Performance counter traces when launching applications: (a) Microsoft Edge; (b) OneDrive; and (c) Mail.

different applications create different side-channel patterns
when launched on Hololens, which can be observed by the
spy program running in the background. This attack was not
possible on the Quest 2 headset, where only a few applica-
tions (such as Facebook Messenger or Meta chat) are allowed
to open in the foreground with other applications, although
this may change in the future.

Application launch process and attack preliminaries.
When the user launches an application, a system process
named backgroundTaskHost will handle the launch of the
selected application. The user waits until the application ren-
ders on the display. We observe that launching an application
typically takes several seconds. Meanwhile, the foreground
application execution leads to resource contention with the
spy program, causing a detectable signature. For instance, we
observe that when the user launches another application, the
CPU/GPU frame latency of the spy program increases. We
use such leakage to fingerprint the application.

Application fingerprinting demonstration. Fig. 10 shows
traces of the Frame time counter during the launch of three
applications. Each application exhibits a distinct pattern. Al-
though applications are rendered in fixed-size windows, they
each have different graphics content to generate during launch,
resulting in different traces.

Feature engineering and classification. Table 9 in the Ap-
pendix summarizes the top-ranked features for the selected

Category Application

Productivity Calendar, File explorer, OneDrive

Recreation 3D Yiewer, Microsoft Store,
Movies&TV, Photos

Communication anana, Captive pqrtal flow, Mail,
Microsoft Edge, Microsoft Pay

Table 6: Applications tested for the fingerprinting attack.

F1 Prec | Rec
KNN 337 | 394 | 35.0
DT 84.7 86.5 | 85.0
RF 513 53.0 | 50.8
LightGBM | 85.8 874 | 86.8
Voting 893 | 91.0 | 89.2

Table 7: Concurrent application inference performance on
Hololens 2: F1 (%), Precision (%), and Recall (%).

rendering performance counters for classification. Table 6
shows the set of evaluated applications and Table 7 presents
the classification results. Voting classifier performs best with
an F-1 score of 89.3%.

Figure 11: Example of a constructed spatial mesh.

6 Attack Scenario 3: Environment

An attacker can attempt to infer information about the envi-
ronment viewed by an AR device. The presence of certain
items or events in the field of view may result in different pro-
cessing patterns that can be used to infer information about
what is being seen. We illustrate an example of this type of
attack by showing that we are able to estimate the distance of
a walking bystander from the head-mounted display. This at-
tack turns the AR device into a surveillance device to monitor
the surrounding real-world environment.

Privacy concerns of the bystander. AR/VR devices, by def-
inition, interface with the real world and may capture infor-
mation about a bystander who steps into the field of view of
the device. However, the spatial information of the surround-
ing space is typically encrypted and its raw data cannot be
easily accessed [60]. For instance, the Hololens 2 provides a
research mode [66] to let the developer access the raw sensor
data stream, but this mode is turned off by default, making
it impossible to recover visible spatial information via direct
sensor-based or vision-based leakages. In contrast, our work
shows the possibility of learning about the distance of the
bystander using the side-channel leakages via performance
counters.

Attack 5: Bystander ranging: Our intuition is that these envi-
ronmental events may cause the headset to carry out additional
rendering or other processing tasks that create signatures in
the performance counters, allowing a spy to learn information
about the environment. Prior work has raised privacy concerns
about the presence or location of bystanders on AR/VR de-
vices [56]. Thus, we build an attack to show that the distance
of a walking bystander may be vulnerable to estimation via
side-channel leakage.

Attack model. In this attack, a spy program running in the
background keeps profiling the rendering performance coun-
ters. We consider a scenario when a bystander steps into
the field of view of a Hololens.” The spy program is instru-
mented with a Mixed Reality Toolkit Scene Understanding

2According to [42], the Hololens can still work for several minutes even
if the user removes the headset.

observer [47], which forces the Hololens to generate spatial
mesh representations of the real-world environment (no ex-
plicit permissions are needed from the user to do so, since
spatial mapping is a fundamental part of mixed reality). This
spatial processing is typically happening continuously in the
background of a MR device [31]; what our instrumentation
does is create additional contention by forcing the results of
the spatial processing to be rendered. As a result, the spy
program turns the Hololens into a monitoring device, which
keeps perceiving the surrounding space. On the Hololens, the
spatial surfaces appear to be covered by triangle meshes, as
shown in Fig. 11. Note that Quest 2 disallows access to the
spatial mapping data, so we could not perform these experi-
ments with it.

The spy program is developed via the Unity platform, and

the spatial meshes are set to update at interval of 1 second. In
Fig. 12a, we plot the CPU frame rate as a bystander passes by.
We observe that CPU frame rate decreases briefly when the
bystander steps into the field of view, and also again when the
bystander steps out of view. We believe that this effect occurs
because when the bystander steps into the frame, the Hololens’
spatial processing detects the bystander and generates a mesh
to cover the bystander, causing CPU frame rate to decrease
from around 60 to 18. Then when the bystander steps out
of the frame of Hololens, the mesh is discarded immediately
for the removed spatial surfaces. During this mesh removal
process, we notice that CPU frame rate also decreases, from
60 to 37. Thus by tracking the side-channel leakages, the
adversary can monitor when the bystander steps into the field
of view and when she leaves.
Impact of bystander distance. We also examined the impact
of bystander distance on the side-channel fingerprint. The
intuition is that new spatial objects near and in front of the user
would be given priority, and their meshes would be rendered
first. Also, due to the perspective projection, near objects
would appear larger in the field of view than far objects and
thus would be covered with more meshes than a distant object,
creating a location-dependent fingerprint.

We performed experiments to see how distance influences
the CPU frame rate. Volunteer bystanders stood in front of
Hololens at different distances, ranging from 0.5 meters to 5
meters (0.5, 1, 2, 3, 4, and 5 meters). The bystander passes by
the Hololens at a constant walking speed. Fig. 12 shows the
performance counter traces of CPU frame rate for different
distances. When the distance is smaller, the CPU frame rate
tends to drop more. For instance, CPU frame rate dips to
18 when the distance is 0.5 meters in Fig. 12 (a), while it
only drops to 35 when the distance increases to 2 meters in
Fig. 12 (b). In some scenarios where the bystander is far from
the Hololens, the spatial mesh is not triggered to cover the
bystander, and the bystander is not detected.

Feature engineering and regression. The filtered top fea-
tures are summarized in Table 10 in the Appendix. We trained
several standard regression models to infer the distance be-

u
3

CPU Frame rate (Hz)
g 8

N
S

Distance = 0.5m

Distance = 2m

Distance = 4m

=

Bystander steps out of the view|

Bystander steps into the view

CPU Frame rate (Hz)

o
&

o
3

v
o

v
3

a
G

»
S

w
[

Bystanter steps out of the view

D steps into the view

Byuetand:
y

CPU Frame rate (Hz)

55

Bystander steps into the vie
5

Bystander steps out of the view <:|

L (¢—

0 2000 4000 6000
Time (ms)

(@)

8000 10000

0 2500 5000 7500 10000 12500 15000 17500 2000C
Time (ms)
(b)

0

2000 4000 6000
Time (ms)

(©)

8000 10000 12000

Figure 12: Side-channel leakage pattern for a bystander moving into view at different distances: (a) Distance = 0.5m; (b) 2m; (c)
4m. As the bystander becomes closer, the CPU frame rate drops more.

KNN
0.401

DT
0.103

RF
0.257

LightGBM
0279

Voting
0.164

| MAE

Table 8: Bystander ranging mean absolute error (meters).

tween the device and the bystander. Table & shows that the
decision tree performs best, with mean absolute error of 10.3
cm, showing that the attack can estimate bystander distance
with high accuracy.

Limitations: We note that this is a proof-of-concept attack
that identifies walking-bystander distance in a known environ-
ment. It would be interesting to explore how well this attack
can be generalized to arbitrary environments and with headset
movement.

7 Potential Mitigations

We consider two general classes of mitigations: (1) managing
access to the performance counters and (2) detecting suspi-
cious contention. These solutions’ directions are similar to
prior side-channel attacks that rely on tracked states such as
performance counters.

Managing access to performance counters: We note that
MR presents unique challenges in that part of the state is
relevant to multiple applications, including the model of the
surrounding environment and the inputs from the sensors.
Thus, it is important to think about managing access to the
performance counters and other system resources in a way
that does not interfere with an application’s legitimate access
to the needed state.

Completely blocking access to potentially leaky APIs and
counters is impractical since legitimate applications some-
times rely on these APIs for online performance tuning. One
possibility is to allow performance counter access only to
the current foreground or active app that the user is focusing
on, thereby preventing a spy from listening in. However, de-
termining which app is active in MR is challenging because
multiple MR apps could be interspersed throughout the field

100

60

40 A

F1 score (%)

201

0-
Baseline (60) 10 5 2
Sampling rate (Hz)

Figure 13: Hand gesture classification accuracy with reduced
sampling rate.

of view, providing different services (e.g., a gallery app dis-
plays multiple virtual paintings while simultaneously a virtual
board game app is visible). It is difficult to determine which
app(s) the user is focused on at any given time. This is in con-
trast to traditional displays such as monitors or tablets, where
apps typically have a single contiguous window rendered on a
confined rectangular viewpoint. Eye gaze could be potentially
used as a proxy for attention and hence to determine the active
MR app.

Reducing the precision or rate of performance counters
could reduce the effectiveness of the spy [50]. However, this
could result in side effects on legitimate applications, inter-
fering with their ability to operate correctly. Fig. 13 shows
the effect of limiting the sampling rate on the hand gesture
recognition attack. While the accuracy drops significantly,
there remains some signal even at low sampling rates. We
conjecture that since the event we are capturing (the hand ges-
tures) takes multiple performance counter features as input,
even sampling at such a low rate retains some useful signal.

Another possibility is to delegate responsibility to the user
to set permissions for what APIs each app can access through
an explicit permissions management system. Such permis-

sions systems have been used for other types of MR data such
as MR content shared between multiple users [58], visual
camera data [20], or general sensor streams [21, 57], but not
for mixed reality performance counters. However, this pushes
the responsibility of determining when these performance
counters can be accessed by different apps to the user, who
may be unclear on the consequences of granting such per-
mission and lack informed consent. Moreover, there may be
technical difficulties in implementing a permissions system
and providing the appropriate user interface.

Monitoring for abnormal monitoring and/or contention:
Several of the proposed attacks rely on creating contention on
the shared resources. Moreover, the attacks rely on repeated
accesses to the monitoring APIs to collect the time series
data. One possibility is to monitor this behavior to detect
the presence of such behavior (for example, by hooking the
leaky APIs [73] or using hardware support [52]). Once such
behavior is detected, different defenses could be triggered to
interfere with the ability of the spy to carry out the attack.
As with other intrusion detection systems, false positives and
overhead are potential drawbacks of this approach.

8 Related Work

Software-based information leakage on AR/VR devices.
Some work has been done on stealing sensitive informa-
tion from MR devices through software vulnerabilities. Prior
works show that malicious applications can probe the network
traffic information to infer the location of the victim user in a
crowd-sourced AR app [40, 60]. Other works [13, 17, 34] also
focus on location estimation based on 3D cloud point data col-
lected by AR devices. Recently, Casey et al. [8] demonstrate
that the configuration files of OpenVR and SteamVR API leak
information about the user and can be modified to disorient
the user. Yarramreddy et al. [74] and OVRSeen [65] show that
sensitive information can be reconstructed from VR network
traces. Arya [29] prevents visual conflicts between holograms
and a user’s perception of the real world. Several works also
focus on the privacy of input data streams [9, 19-22]. Several
works [35, 61] show that malicious AR applications can infer
keystrokes by tracking a user’s head motions. In the multi-app
scenario, Lebeck et al. [28] discuss challenges in visual con-
flicts between multiple apps. However, none of these works
investigate performance counters as a source of information
leakages as we do.

MR information leakages requiring physical access: An-
other class of information leakage attacks requires physical
access to the MR hardware or the environment where the
hardware is being used. Several works infer the keystrokes
in the immersive environment by WiFi CSI side-channel in-
formation [4] and vision and sensor-based side-channel leak-
ages [32]. Kohno et al. [25] investigate whether a malicious
bystander can exploit the information leakage from the visual
channel on the augmented reality headset to infer sensitive in-

formation that an augmented reality user is seeing. In contrast,
the attacks we propose in this work do not require physical
access to the hardware.

Side-channel attacks via micro-architectural hints. Our
work relies on performance counters provided by software in-
terface (Unity/Unreal XR SDK) to construct side-channel on
the AR/VR devices. It differs from the low-level hardware per-
formance counters used in the prior works under CPU [1, 6],
GPU resources [50, 71]. Moreover, the hardware components
(e.g., CPU, GPU, HPU, system memory) on AR/VR devices
can be potential attack targets through high-precision prime-
probe attacks on data caches [23, 33], rowhammer attacks on
DRAM [49]. We leave this as future work.

9 Concluding Remarks

This paper explored side-channel attacks on AR/VR devices.
We present a classification of the types of attacks possible
based on the target information that the attacker seeks to com-
promise. We identify three general classes of targets: the be-
havior of the user by inferring their interactions, the behavior
of other applications, or information about the visible envi-
ronment. We demonstrate a number of successful end-to-end
attacks from these three categories. Our attacks demonstrate
that this attack vector is a threat to AR/VR systems.

Acknowledgments

The authors would like to thank the insightful reviews and
helpful suggestions from our anonymous shepherd and re-
viewers. The authors also thank the user study participants for
volunteering their time. This work was partially supported by
the NSF grants CNS-1942700, CNS-2053383, CCF-2212426,
and a Meta faculty research award.

References

[1] Manaar Alam, Astikey Singh, Sarani Bhattacharya,
Kuheli Pratihar, and Debdeep Mukhopadhyay. In-situ
extraction of randomness from computer architecture
through hardware performance counters. In Inferna-
tional Conference on Smart Card Research and Ad-
vanced Applications. Springer, 2019.

[2] Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib
ul Hassan, Cesar Pereida Garcia, and Nicola Tuveri. Port
contention for fun and profit. In IEEE Symposium on
Security and Privacy (S&P), 2019.

[3] Marco Alecci, Riccardo Cestaro, Mauro Conti, Ketan
Kanishka, and Eleonora Losiouk. Mascara: A novel
attack leveraging android virtualization. arXiv preprint
arXiv:2010.10639, 2020.

[4] Abdullah Al Arafat, Zhishan Guo, and Amro Awad. Vr-
spy: A side-channel attack on virtual key-logging in vr
headsets. In IEEE Virtual Reality and 3D User Inter-
faces (VR), 2021.

[5] Yoav Benjamini and Daniel Yekutieli. The control of
the false discovery rate in multiple testing under depen-
dency. Annals of statistics, pages 1165-1188, 2001.

[6] Sarani Bhattacharya and Debdeep Mukhopadhyay. Uti-
lizing performance counters for compromising public
key ciphers. ACM Transactions on Privacy and Security
(TOPS), 21(1):1-31, 2018.

[7] Leo Breiman. Random forests. Machine learning,
45(1):5-32, 2001.

[8] Peter Casey, Ibrahim Baggili, and Ananya Yarramreddy.
Immersive virtual reality attacks and the human joy-
stick. IEEE Transactions on Dependable and Secure
Computing, 18(2):550-562, 2019.

[9] Song Chen, Zupei Li, Fabrizio Dangelo, Chao Gao, and
Xinwen Fu. A case study of security and privacy threats
from augmented reality (ar). In [EEE International
Conference on Computing, Networking and Communi-
cations (ICNC), 2018.

[10] Maximilian Christ, Nils Braun, Julius Neuffer, and An-
dreas W Kempa-Liehr. Overview on extracted features
from tsfresh library. https://tsfresh.readthedocs.
io/en/latest/text/list of features.html.

[11] Maximilian Christ, Nils Braun, Julius Neuffer, and An-
dreas W Kempa-Liehr. Time series feature extraction
on basis of scalable hypothesis tests (tsfresh—a python
package). Neurocomputing, 307:72-77, 2018.

[12] HTC Corporation. HTC Vive. https://www.vive.
com/us/.

[13] Jaybie A de Guzman, Kanchana Thilakarathna, and
Aruna Seneviratne. A first look into privacy leakage
in 3d mixed reality data. In European Symposium on
Research in Computer Security. Springer, 2019.

[14] Wenrui Diao, Xiangyu Liu, Zhou Li, and Kehuan Zhang.
No pardon for the interruption: New inference attacks
on android through interrupt timing analysis. In /EEE
Symposium on Security and Privacy (S&P), 2016.

[15] Unreal Engine. Unreal engine xr sdk.
https://docs.unrealengine.com/4.26/en-US/

SharingAndReleasing/XRDevelopment/.

[16] Lucas Silva Figueiredo, Benjamin Livshits, David Mol-
nar, and Margus Veanes. Prepose: Privacy, security, and
reliability for gesture-based programming. In [EEE
Symposium on Security and Privacy (S&P), 2016.

[17] Jaybie Agullo de Guzman, Aruna Seneviratne, and Kan-
chana Thilakarathna. Unravelling spatial privacy risks
of mobile mixed reality data. Proceedings of the ACM
on Interactive, Mobile, Wearable and Ubiquitous Tech-
nologies (IMWUT), 5(1):1-26, 2021.

[18] John Haas. A history of the unity game engine (disser-
tation). Worcester Polytechnic Institute, 2014.

[19] Jassim Happa, Mashhuda Glencross, and Anthony Steed.
Cyber security threats and challenges in collaborative
mixed-reality. Frontiers in ICT, 6:5, 2019.

[20] Jinhan Hu, Andrei losifescu, and Robert LiKamWa.
Lenscap: split-process framework for fine-grained vi-
sual privacy control for augmented reality apps. In ACM
International Conference on Mobile Systems, Applica-
tions, and Services (MobiSys), 2021.

[21] Suman Jana, David Molnar, Alexander Moshchuk, Alan
Dunn, Benjamin Livshits, Helen J Wang, and Eyal Ofek.
Enabling fine-grained permissions for augmented real-
ity applications with recognizers. In USENIX Security
Symposium, 2013.

[22] Suman Jana, Arvind Narayanan, and Vitaly Shmatikov.
A scanner darkly: Protecting user privacy from percep-
tual applications. In IEEE Symposium on Security and
Privacy, 2013.

[23] Mehmet Kayaalp, Nael Abu-Ghazaleh, Dmitry Pono-
marev, and Aamer Jaleel. A high-resolution side-
channel attack on last-level cache. In Design Automation
Conference (DAC), 2016.

[24] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang,
Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan Liu.
Lightgbm: A highly efficient gradient boosting decision
tree. Advances in neural information processing systems,
30, 2017.

[25] Tadayoshi Kohno, Joel Kollin, David Molnar, and
Franziska Roesner. Display leakage and transparent
wearable displays: Investigation of risk, root causes, and
defenses (technical report). Technical report, Microsoft
Research, 2015.

[26] Oliver Kramer. K-nearest neighbors. In Dimensionality
reduction with unsupervised nearest neighbors, pages
13-23. Springer, 2013.

[27] Magic Leap. Magic leap 2. https://www.magicleap.
com/en-us/.

[28] Kiron Lebeck, Tadayoshi Kohno, and Franziska Roes-
ner. Enabling multiple applications to simultaneously
augment reality: Challenges and directions. In ACM

International Workshop on Mobile Computing Systems
and Applications (HotMobile), 2019.

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

Kiron Lebeck, Kimberly Ruth, Tadayoshi Kohno, and
Franziska Roesner. Securing augmented reality out-
put. In [EEE symposium on security and privacy (S&P),
2017.

Seungsoo Lee, Changhoon Yoon, and Seungwon Shin.
The smaller, the shrewder: A simple malicious appli-
cation can kill an entire sdn environment. In ACM
Workshop on Security in Software Defined Networks &
Network Function Virtualization, 2016.

Peiliang Li, Tong Qin, Botao Hu, Fengyuan Zhu, and
Shaojie Shen. Monocular visual-inertial state estimation
for mobile augmented reality. In [EEE International
Symposium on Mixed and Augmented Reality (ISMAR),
2017.

Zhen Ling, Zupei Li, Chen Chen, Junzhou Luo, Wei
Yu, and Xinwen Fu. I know what you enter on gear vr.
In IEEE Conference on Communications and Network
Security (CNS), 2019.

Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and
Ruby B Lee. Last-level cache side-channel attacks are
practical. In IEEE symposium on security and privacy,
2015.

Hongbin Liu, Jinyuan Jia, and Neil Zhenqgiang Gong.
Pointguard: Provably robust 3d point cloud classifica-
tion. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2021.

Shiqing Luo, Xinyu Hu, and Zhisheng Yan. Holologger:
Keystroke inference on mixed reality head mounted dis-
plays. In IEEE Conference on Virtual Reality and 3D
User Interfaces (VR), 2022.

Stefan Mangard. Hardware countermeasures against
dpa—a statistical analysis of their effectiveness. In Cryp-
tographers’ Track at the RSA Conference, pages 222—
235. Springer, 2004.

Meta. Getting started with hand tracking on meta quest
2 and meta quest. https://www.meta.com/help/
quest/articles/headsets-and-accessories/
controllers-and-hand-tracking/
hand-tracking-quest-2/.

Meta. Meta quest 2. https://store. facebook.com/
quest/products/quest-2/.

Meta. What you can say with Voice
Commands on Meta Quest. https:
/ /www.meta.com/help/quest/articles/
in-vr-experiences/oculus—features/
what-can-I-say-with-voice-commands/, 2022.

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

Gabriel Meyer-Lee, Jiacheng Shang, and Jie Wu.
Location-leaking through network traffic in mobile aug-
mented reality applications. In /EEE International Per-
formance Computing and Communications Conference
(IPCCC), 2018.

Microsoft. Microsoft hololens 2. https://www.
microsoft.com/en-us/hololens/buy.

Microsoft. Microsoft hololens 2 sleep behavior.
https://learn.microsoft.com/en-us/hololens/

hololens2-setup#sleep-behavior.

Microsoft. Voice input. https://learn.microsoft.
com/en-us/windows/mixed-reality/design/
voice-input.

Microsoft. Window memorymanager api. https:
//docs .microsoft.com/en-us/uwp/api/windows.
system.memorymanager?view=winrt-22000.

Microsoft. Getting around hololens 2.
https://docs.microsoft.com/en-us/hololens/

hololens2-basic-usage, 2021.

Microsoft. Spatial mapping - mixed reality.
https://docs.microsoft.com/en-us/windows/

mixed-reality/design/spatial-mapping, 2021.

Microsoft. Scene understanding observer - Mixed Real-
ity Toolkit. https://docs.microsoft.com/en-us/
windows/mixed-reality/mrtk-unity/features/
spatial-awareness/scene-understanding?
view=mrtkunity-2021-05,2022.

Charlie Miller. Mobile attacks and defense. IEEE Secu-
rity & Privacy, 9(4):68-70, 2011.

Onur Mutlu and Jeremie S Kim. Rowhammer: A retro-
spective. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 39(8):1555-1571,
2019.

Hoda Naghibijouybari, Ajaya Neupane, Zhiyun Qian,
and Nael Abu-Ghazaleh. Rendered insecure: Gpu side
channel attacks are practical. In ACM SIGSAC confer-
ence on computer and communications security, 2018.

Sergio Orts-Escolano, Christoph Rhemann, Sean
Fanello, Wayne Chang, Adarsh Kowdle, Yury Degt-
yarev, David Kim, Philip L Davidson, Sameh Khamis,
Mingsong Dou, et al. Holoportation: Virtual 3d
teleportation in real-time. In ACM Symposium on user
interface software and technology (UIST), 2016.

Meltem Ozsoy, Caleb Donovick, lakov Gorelik, Nael
Abu-Ghazaleh, and Dmitry Ponomarev. Malware-aware
processors: A framework for efficient online malware

[56]

[57]

[58]

[61]

[62]

[63]

[64]

detection. In /EEE International Symposium on High
Performance Computer Architecture (HPCA), 2015.

Riccardo Paccagnella, Licheng Luo, and Christopher W
Fletcher. Lord of the ring (s): Side channel attacks on the
cpu on-chip ring interconnect are practical. In USENLX
Security Symposium, 2021.

Robi Polikar. Ensemble based systems in decision mak-
ing. IEEE Circuits and systems magazine, 6(3):21-45,
2006.

Attia Qamar, Ahmad Karim, and Victor Chang. Mo-
bile malware attacks: Review, taxonomy & future direc-
tions. Future Generation Computer Systems, 97:887—
909, 2019.

Franziska Roesner and Tadayoshi Kohno. Security and
privacy for augmented reality: Our 10-year retrospective.
In International Workshop on Security for XR and XR
for Security (VR4Sec), 2021.

Franziska Roesner, David Molnar, Alexander Moshchuk,
Tadayoshi Kohno, and Helen J Wang. World-driven
access control for continuous sensing. In ACM SIGSAC

Conference on Computer and Communications Security,
2014.

Kimberly Ruth, Tadayoshi Kohno, and Franziska Roes-
ner. Secure multi-user content sharing for augmented
reality applications. In USENIX Security Symposium,
2019.

Andrew Sanders. An introduction to Unreal engine 4.
CRC Press, 2016.

Jiacheng Shang, Si Chen, Jie Wu, and Shu Yin. Arspy:
Breaking location-based multi-player augmented reality
application for user location tracking. /EEE Transac-
tions on Mobile Computing, 2020.

Carter Slocum, Yicheng Zhang, Nael Abu-Ghazaleh,
and Jiasi Chen. Going through the motions: Ar/vr typ-
ing inference using head motion tracking. In USENIX
Security Symposium, 2023.

Yan-Yan Song and LU Ying. Decision tree methods:
applications for classification and prediction. Shanghai
archives of psychiatry, 27(2):130, 2015.

Bob Tellez. How to improve game thread
cpu performance in unreal engine. https:
/ /www .unrealengine.com/en-US/blog/
how-to-improve-game-thread-cpu-performance,
2014.

Elene Terry. Silicon at the heart of hololens 2. In /EEE
Hot Chips 31 Symposium (HCS), 2019.

[65]

[68]

[69]

Rahmadi Trimananda, Hieu Le, Hao Cui, Janice Tran
Ho, Anastasia Shuba, and Athina Markopoulou.
OVRSEEN: Auditing Network Traffic and Privacy
Policies in Oculus VR. USENIX Security, 2022.

Dorin Ungureanu, Federica Bogo, Silvano Galliani,
Pooja Sama, Casey Meekhof, Jan Stiihmer, Thomas J
Cashman, Bugra Tekin, Johannes L Schonberger, Pawel
Olszta, et al. Hololens 2 research mode as a tool for com-
puter vision research. arXiv preprint arXiv:2008.11239,
2020.

Unity. Unity engine FrameTimingManager API.
https://docs.unity3d.com/ScriptReference/

FrameTimingManager.html.

Unity. Unity xrsdk. https://docs.unity3d.com/
Manual/xr-sdk.html.

Unreal. RHI (rendering hardware interface).
https://docs.unrealengine.com/4.26/en-US/

API/Runtime/RHI/.

Daimeng Wang, Ajaya Neupane, Zhiyun Qian, Nael B.
Abu-Ghazaleh, Srikanth V. Krishnamurthy, Edward J. M.
Colbert, and Paul L. Yu. Unveiling your keystrokes: A
cache-based side-channel attack on graphics libraries.
In Network and Distributed System Security Symposium
(NDSS), 2019.

Junyi Wei, Yicheng Zhang, Zhe Zhou, Zhou Li, and Mo-
hammad Abdullah Al Faruque. Leaky DNN: Stealing
deep-learning model secret with GPU context-switching
side-channel. In IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN), 2020.

Tao Wei, Min Zheng, Hui Xue, and Dawn Song. Ap-
ple without a shell-ios under targeted attack. In Virus
Bulletin Conference, 2014.

Carsten Willems, Thorsten Holz, and Felix Freiling.
Toward automated dynamic malware analysis using
cwsandbox. IEEFE Security & Privacy, 5:32-39, 2007.

Ananya Yarramreddy, Peter Gromkowski, and Ibrahim
Baggili. Forensic analysis of immersive virtual reality
social applications: a primary account. In /EEE Security
and Privacy Workshops, 2018.

Yicheng Zhang, Rozhin Yasaei, Hao Chen, Zhou Li,
and Mohammad Abdullah Al Faruque. Stealing neu-
ral network structure through remote fpga side-channel

analysis. /[EEE Transactions on Information Forensics
and Security, 16:4377-4388, 2021.

Wu Zhou, Yajin Zhou, Xuxian Jiang, and Peng Ning.
Detecting repackaged smartphone applications in third-
party android marketplaces. In ACM Conference on
Data and Application Security and Privacy, 2012.

[77] Yajin Zhou, Zhi Wang, Wu Zhou, and Xuxian Jiang. Hey,
you, get off of my market: detecting malicious apps in
official and alternative android markets. In Network
and Distributed System Security Symposium (NDSS),
volume 25, pages 50-52, 2012.

[78] David J Zielinski, Hrishikesh M Rao, Mark A Sommer,
and Regis Kopper. Exploring the effects of image persis-
tence in low frame rate virtual environments. In /IEEE
Virtual Reality (VR), 2015.

Appendix

We show the top 10 features extracted from performance
counters in concurrent application inference attack, bystander
ranging inference attack, voice commands inference attack,
and keystrokes monitoring attack in Tables 9, 10, 13, and 14
respectively. Also, the hyper-parameter settings for classifiers
and regressors are listed in Table | | and Table 12 respectively.
Besides, we provide definitions for the extracted features in
Table 15.

Performance counters | Features

agg linear trend
longest_strike_above _mean,
autocorrelation

Frame time

Game thread time

Render thread time quantile, agg_linear_trend, median
Number of draw calls benford correlation, quantile

L benford correlation,
Number of primitives -

agg autocorrelation

Table 9: Top 10 features for classifying concurrent application
inference.

Classifiers | Settings
KNN nﬁnei'ghbors = 3, leaf size = 50,p =
1, weights = uni form
criterion = entropy, splitter =
DT random, max_depth =
10, min_samples_split = 2
RF criterion = entropy, max_depth =
10, n_estimators = 100
. boostin e = ghdt, num leaves =
LightGBM 10, max%;'t;fth :gIO, nﬁesti;mtors =100
classifiers =
Voting {DecisionTree, RandomForest}, voting =

soft,weights = [1,1]

Table 11: Hyper-parameter settings for classifiers

Performance counters | Features
CPU frame rate maximum
Number of draw calls minimum
GPU frame rate maximum, agg_linear_trend
AppMemoryUsage quantile, cwt_coefficients
Vertex counts minimum, quantile, .
agg linear trend, cwt coefficients

Table 10: Top 10 features for inference bystander ranging on

Hololens 2.

Regressors | Settings
KNN nﬁnez'ghbors = ?, leaf size =30,p =
2, weights = uni form
criterion = squared_error, splitter =
DT . .
best, min_samples_split = 1
RF criterion =
squared_error,n_estimators = 100
. boosting type = gbdt, num_leaves =
LightGBM 31,n_estimators = 100
regressors =
Voting {DecisionTree, RandomForest}, voting =

soft,weights = [1,1]

Table 12: Hyper-parameter settings for regressors

Features

Hololens 2 Quest 2

CPU frame rate quantile, root_mean_square, abs_energy quantile, maximum
Number of draw calls minimum, quantile fft coefficient
GPU frame rate quantile, root_mean_square, abs_energy quantile, maximum,
Used Memory benford correlation quantile, median, abs_energy
Vertex counts fft aggregated sum_values, mean

Table 13: Top 10 features for classifying voice commands on the Hololens 2 and Meta Quest 2.

Features
Hololens 2 Quest 2
Frame time quantile, minimum fft_coefficient, median
Game thread time benford correlation, change quantiles, median, c3, sum_values maximum, agg_linear_trend, quantile
Render thread time fft_coefficient mean, root_mean_square
Number of draw calls maximum cwt_coefficients, quantile
Number of primitives quantile root_mean_square

Table 14: Top 10 features for classifying keystrokes on the Hololens 2 and Meta Quest 2.

Features

Definition

abs energy

Returns the absolute energy of the time series.

agg autocorrelation

Descriptive statistics on the autocorrelation of the time series.

agg linear trend

Calculates a linear least-squares regression for values of the time series.

approximate entropy

Implements the approximate entropy algorithm on the time series.

autocorrelation Calculates the autocorrelation of the specified lag.
benford correlation Useful for anomaly detection applications.
c3 Uses c3 statistics to measure non linearity in the time series.

change quantiles

First fixes a corridor given by the quantiles ql and gh of the distribution of time series.

cwt coefficients

Calculates a Continuous wavelet transform for the Ricker wavelet.

fft aggregated

Returns descriptive statistics of the absolute Fourier transform spectrum.

fft coefficient

Calculates the Fourier coefficients of the time series.

longest strike above mean

Returns the length of the longest consecutive subsequence that is bigger than the mean.

maximum Calculates the highest value of the time series.

mean Returns the mean of the time series.

median Returns the median of the time series.

minimum Calculates the lowest value of the time series.
permutation entropy Calculate the permutation entropy of the time series.
quantile Calculates the q quantile of the time series.

root mean square

Returns the root mean square of the time series.

sample entropy

Calculate and return sample entropy of the time series.

sum values

Calculates the sum over the time series.

Table 15: Definitions of performance counter features.

