
One Server for the Price of Two:
Simple and Fast Single-Server Private Information Retrieval

Alexandra Henzinger
MIT

Matthew M. Hong
MIT

Henry Corrigan-Gibbs
MIT

Sarah Meiklejohn
Google

Vinod Vaikuntanathan
MIT

Abstract. We present SimplePIR, the fastest single-server
private information retrieval scheme known to date. Sim-
plePIR’s security holds under the learning-with-errors assump-
tion. To answer a client’s query, the SimplePIR server performs
fewer than one 32-bit multiplication and one 32-bit addition
per database byte. SimplePIR achieves 10 GB/s/core server
throughput, which approaches the memory bandwidth of the
machine and the performance of the fastest two-server private-
information-retrieval schemes (which require non-colluding
servers). SimplePIR has relatively large communication costs:
to make queries to a 1 GB database, the client must download a
121MB“hint” about the database contents; thereafter, the client
may make an unbounded number of queries, each requiring
242 KB of communication. We present a second single-server
scheme, DoublePIR, that shrinks the hint to 16 MB at the
cost of slightly higher per-query communication (345 KB)
and slightly lower throughput (7.4 GB/s/core). Finally, we
apply our new private-information-retrieval schemes, together
with a novel data structure for approximate set membership,
to the task of private auditing in Certificate Transparency.
We achieve a strictly stronger notion of privacy than Google
Chrome’s current approach with modest communication over-
heads: 16 MB of download per month, along with 150 bytes
per TLS connection.

1 Introduction

In a private information retrieval (PIR) protocol [27, 62], a
database server holds an array of 𝑁 records. A client wants to
fetch record 𝑖 ∈ {1, . . . , 𝑁} from the server, without revealing
the index 𝑖 that it desires to the server. PIR has applications
to systems for private database search [85, 93], metadata-
hiding messaging [9, 10], private media consumption [55],
credential breach reporting [66, 82, 91, 94], private contact
discovery [60], privacy-friendly advertising [11, 54, 58, 87],
and private blocklist lookups [61], among others.
Modern PIR schemes require surprisingly little commu-

nication: with a single database server and under modest
cryptographic assumptions [21,49,80], the total communica-
tion required to fetch a database record grows only polylog-
arithmically with the number of records, 𝑁 . Unfortunately,

This is the full version of a paper of the same title at USENIX Security 2023.

PIR schemes are computationally expensive: the server must
touch every bit of the database to answer even a single client
query [13], since otherwise the PIR scheme leaks information
about which database records the client is not interested in.
(A number of recent PIR schemes preprocess the database
such that the server can answer a query in time sublinear
in 𝑁 , but all known approaches require either client-specific
preprocessing [30,31, 61, 88, 97] or impractically large server
storage [13, 17, 22].) Thus, a hard limit on the throughput of
PIR schemes—that is, the ratio between the database size and
the server time to answer a query—is the speed with which the
PIR server can read the database from memory: roughly 12.4
GB/s/core on our machine [92].
In the standard setting, in which the client interacts with

a single database server, the performance of existing PIR
protocols is far from this theoretical limit: we measure that
the fastest prior single-server PIR schemes [76] achieve a
throughput of 259 MB/s/core, or 2% of our machine’s memory
bandwidth, on a database of hundred-byte records. It is possible
to push the performance up to 1.3 GB/s/core when the database
records are hundreds of kilobytes long, though that parameter
setting is not relevant for many PIR applications, including our
application to Certificate Transparency.
When the client can communicate with multiple non-

colluding database servers [27], there exist PIR schemes with
server-side throughput of up to 11.5 GB/s/core, or 93% of the
memory bandwidth (described in Table 1). However, these
multi-server PIR schemes are cumbersome to deploy, since they
rely on multiple coordinating yet independent infrastructure
providers. In addition, their security is brittle, as it stems from
a non-collusion assumption rather than from cryptographic
hardness. Thus, existing PIR schemes suffer from either poor
performance—in the single-server setting—or undesirable
trust assumptions—in the multi-server case.
In this paper, we present two new single-server PIR schemes

that exceed the throughput of all existing single-server PIR
protocols and approach the throughput of multi-server ones.
In addition, our schemes are relatively simple to explain and
easy to implement: our complete implementation of both
schemes, available at github.com/ahenzinger/simplepir,
requires roughly 1,400 lines of Go code, plus 200 lines of C,
and uses no external libraries.
More specifically, our first scheme, SimplePIR, achieves a

server throughput of 10 GB/s/core, or 81% of the memory

1

github.com/ahenzinger/simplepir

bandwidth, though it requires the client to download a relatively
large “hint” about the database contents before making its
queries. On a database of 𝑁 bytes, the hint has size roughly
4
√
𝑁 KB. The hint is not client-specific, and a client can reuse

the hint over many queries, so the amortized communication
cost per query can be small. Our second scheme, DoublePIR,
achieves slightly lower server throughput of 7.4 GB/s/core, but
shrinks the hint to roughly 16 MB for a database of one-byte
records—independent of the number of records in the database.
Our techniques.Wenow summarize the technical ideas behind
our results.
Recap: Single-server PIR. Our starting point is the single-
server PIR construction of Kushilevitz and Ostrovsky [62]. In
their scheme, the PIR server represents an 𝑁-record database
as a matrix D of dimension

√
𝑁 by

√
𝑁 . To fetch the database

record in row 𝑖 and column 𝑗 , the client sends the server
the encryption 𝐸 (q) of a dimension-

√
𝑁 vector that is zero

everywhere except that it has a “1” in index 𝑗 . If the encryption
scheme is linearly homomorphic, the server can compute the
matrix-vector product D · 𝐸 (q) = 𝐸 (D · q) under encryption
and return the result to the client. The client decrypts to recover
D ·qwhich, by construction, is the 𝑗-th column of the database,
as desired. The total communication grows as

√
𝑁 .

SimplePIR from linearly homomorphic encryption with pre-
processing. The PIR server’s throughput here is limited by the
speed with which it can compute the product of the plaintext
matrix D with the encrypted vector 𝐸 (q). Our observation in
SimplePIR (Section 4) is that, using Regev’s learning-with-
errors-based encryption scheme [86], the server can perform
the vast majority of the work of computing the matrix-vector
product D · 𝐸 (q) in advance—before the client even makes
its query. The server’s preprocessing depends only on the
database D and the public parameters of the Regev encryp-
tion scheme, so the server can reuse this preprocessing work
across many queries from many independent clients. After
this preprocessing step, to answer a client’s query, the server
needs to compute only roughly 𝑁 32-bit integer multiplications
and additions on a database of 𝑁 bytes. The catch is that the
client must download a “hint” about the database contents after
this preprocessing step—the hint accounts for the bulk of the
communication cost in SimplePIR.
DoublePIR from one recursive step. The idea behind Dou-
blePIR (Section 5) comes from the original Kushilevitz and
Ostrovsky paper [62]: in SimplePIR, the client downloads the
hint from the server, along with a dimension-

√
𝑁 encrypted

vector. However, to recover its record of interest, the client only
needs one small part of the hint and one component of this
vector. We show how the client can use SimplePIR recursively
on the hint and this vector to fetch its desired database record at
a reduced communication cost. To minimize the concrete costs,
we make non-black-box use of SimplePIR in this recursive
construction, which saves a factor of the lattice dimension,
which is 1024 for our parameters, over a naïve design.

Application to Certificate Transparency. Finally, we evaluate
our PIR schemes in the context of the application of signed cer-
tificate timestamp (SCT) auditing in Certificate Transparency.
In this auditing application, a server holds a set 𝑆 of strings and
a client (web browser) wants to test whether a particular string
𝜎, representing an SCT, appears in the set 𝑆, while hiding
𝜎 from the server. (The string 𝜎 reveals information about
which websites a client has visited.) Google Chrome currently
implements this auditing step using a solution that provides
𝑘-anonymity for 𝑘 = 1000 [35].
Along the way, we construct a new data structure (Section 6)

for more efficiently solving this type of private set-membership
problem using PIR, when a constant rate of false positives is ac-
ceptable (as in our application). In this setting, standard Bloom
filters [15] and approaches based on PIR by keywords [26]
require the client to perform PIR over a database of 𝜆𝑁 bits (if
the set 𝑆 has size 𝑁 and 𝜆 ≈ 128 is a security parameter). In
contrast, our data structure requires performing PIR over only
8𝑁 bits—giving a roughly 16× speedup in our application.
Google’s current solution to SCT auditing, which provides

𝑘-anonymity rather than full cryptographic privacy, requires
the client to communicate 24 B on average per TLS connection.
Our solution, which provides cryptographic privacy, requires
150 B and 0.0003 core-seconds of server compute on average
per TLS connection, along with 16 MB of client download and
150 KB of client storage every month to maintain the hint.
Limitations.Our new PIR schemes come with two main down-
sides. First, our client must download a “hint”: on databases
gigabytes in size, the hint is tens of megabytes. If a client makes
only one query, this hint download dominates the overall com-
munication. Second, our schemes’ online communication is on
the order of hundreds of kilobytes, which is 10× larger than in
some prior work. Nevertheless, we believe that SimplePIR and
DoublePIR represent an exciting new point in the PIR design
space: large computation savings, along with a conceptually
simple design and small, stand-alone codebase, at the cost of
modest communication and storage overheads.

Our contributions. In summary, our contributions are:

• two new high-throughput single-server private information
retrieval protocols (Sections 4 and 5),

• a new data structure for private set membership using
PIR (Section 6) and its application to private auditing in
Certificate Transparency (Section 7), and

• the evaluation of these schemes, using a new open-source
implementation (Section 8).

2 Related work and comparison
Chor, Goldreich, Kushilevitz and Sudan [27] introduced PIR
in the multi-server setting and Kushilevitz and Ostrovsky [62]
gave the first construction of single-server PIR. Their scheme
uses a linearly homomorphic encryption scheme that expands

2

Scheme Se
rv
er
s

Co
m
m
un
ica
tio
n

No
pe
r-c
lie
nt
sto
rag
e

(o
n t
he
se
rv
er
)

po
ly

lo
g(
𝑛
) c
om
pu
te

ov
er
he
ad

M
ax
. a
ch
iev
ab
le

th
ro
ug
hp
ut
/co
re

DPF PIR [16,59] 2 log 𝑁 ✓ ✓ 5,381 MB/s
XOR PIR [27] 2

√
𝑁 ✓ ✓ 6,067 MB/s

XOR PIR fast♣ [27] 2
√
𝑁 ✓ ✓ 11,797 MB/s

SealPIR [9] (𝑑 = 2) 1
√
𝑁 ✗ ✓ 97 MB/s

MulPIR [8] (𝑑 = 2) 1
√
𝑁 ✗ ✓ 69 MB/s♦

FastPIR [6] 1 𝑁 ✗ ✓ 215 MB/s
OnionPIR [77] 1 log 𝑁 ✗ ✓ 104 MB/s
Spiral family [76] 1 log 𝑁 ✗ ✓ 1,314 MB/s

KO [62]+Paillier [81] 1 𝑁 𝜖 ✓ ✗ 0.131 MB/s
XPIR [5] (𝑑 = 2) 1

√
𝑁 ✓ ✓ 142 MB/s♥

FrodoPIR♠ [34] 1
√
𝑁 ✓ ✓ 1,256 MB/s

SimplePIR (§4) 1
√
𝑁 ✓ ✓ 10,305 MB/s

DoublePIR (§5) 1
√
𝑁 ✓ ✓ 7,622 MB/s

Table 1: A comparison of PIR schemes on database size 𝑁 and
security parameter 𝑛. The overhead column indicates whether the
server computation per database bit is at most polylogarithmic in
𝑛. The throughput column gives the maximum throughput we mea-
sured for any record size. The database and record sizes used are in
Appendix A. The throughput is normalized by the number of cores,
i.e., divided by two for two-server schemes. ♣This is a non-constant-
time implementation—each server’s running time depends on its
secret input. We include the performance for comparison, though a
side-channel-resistant production implementation might not use this
optimization. ♦No open-source code available; this throughput is re-
ported in the MulPIR paper [8]. ♥This XPIR throughput is reported by
SealPIR [9]. ♠FrodoPIR is concurrent work and is essentially identical
to SimplePIR, up to the choice of lattice parameters (see Section 2).

ℓ-bit plaintexts to ℓ ·𝐹-bit ciphertexts. We call 𝐹 the expansion
factor of the encryption scheme. Then, on a database of 𝑁
bits and any dimension parameter 𝑑 ∈ {1, 2, 3, . . . }, their
PIR construction has communication roughly 𝑁1/𝑑𝐹𝑑−1. The
server must perform roughly 𝑁𝐹𝑑−1 homomorphic operations
in the process of answering the client’s query.
The Damgård-Jurik [33] cryptosystem has expansion fac-

tor 𝐹 ≈ 1 + 𝜖 for any constant 𝜖 > 0, which yields very
communication-efficient PIR schemes [69]. It is possible to
construct PIR with similar communication efficiency from
an array of cryptographic assumptions [21, 24, 39]. However,
these schemes are all costly in computation: for each bit of
the database, the server must perform work polynomial in the
security parameter.
Lattice-based PIR. To drive down this computational cost,
recent PIR schemes instantiate the Kushilevitz-Ostrovsky con-
struction using encryption schemes based on the ring learning-
with-errors problem (“Ring LWE”) [72]. In these schemes, for
each bit of the database, the server performs work polylog-
arithmic in the security parameter—rather than polynomial.

However, these savings in computation come at the cost of a
larger expansion factor (𝐹 ≈ 10), which increases the commu-
nication as the dimension parameter 𝑑 cannot be too large. For
example, XPIR [5] takes 𝑑 = 2. In addition, the client in the
Kushilevitz-Ostrovsky scheme must upload 𝑁1/𝑑 ciphertexts,
and each ring-LWE ciphertext is at least thousands of kilobytes
in size. This imposes large absolute communication costs (e.g.,
tens of MB per query, on a database of hundreds of MB).
SealPIR [9] shows that the client can compress the cipher-

texts in an XPIR-style scheme before uploading them. The
server can then expand these ciphertexts using homomor-
phic operations. (FastPIR [6] uses a similar idea to compress
responses.) This optimization reduces the communication
costs by orders of magnitude, though it requires the server
to store some per-client information (“key-switching hints”)—
essentially, encryptions of the client’s secret decryption key—
that is megabytes in size and that the client must upload to the
server before it makes any queries.
MulPIR [8], OnionPIR [77], and Spiral [76] additionally use

fully homomorphic encryption [47] to reduce the communica-
tion cost. In Spiral [76], for example, the cost grows roughly
as 𝑁1/𝑑𝐹, where the exponent on the 𝐹 term is now 1 instead
of 𝑑 − 1. Building on ideas of Gentry and Halevi [48], Spiral
shows how to decrease the communication cost while keeping
the throughput high: up to 259 MB/s on a database of short
records. (With long database records, Spiral does not use the
SealPIR query compression technique and gets throughput as
large as 1,314 MB/s, at the cost of increased communication.)
Plain learning with errors. We base our PIR schemes on
the standard learning-with-errors (LWE) problem—not the
ring variant. The expansion factor of the standard LWE-based
encryption scheme, Regev encryption [86], is roughly 𝐹 =

𝑛 ≈ 1024, where 𝑛 is the lattice security parameter. This large
expansion factor means that a direct application of Regev
encryption to the Kushilevitz-Ostrovsky PIR scheme would be
disastrous in terms of communication and computation. Our
innovation is to show that the server can do the bulk of its work
in advance, and reuse it over multiple clients.
Aside from the fact that our scheme is based on a weaker

cryptographic assumption, namely plain LWE as opposed to
ring LWE, this strategy yields multiple benefits:
1. Our LWE-based schemes are simple to implement: they
require no polynomial arithmetic or fast Fourier transforms.

2. Our schemes do not require the server to store any extra
per-client state. In contrast, many schemes based on Ring
LWE [8, 9, 76, 77] rely on optimizations that require the
server to store one “key-switching hint” for each client.

3. Our schemes are faster. We avoid the costs associated with
ciphertext compression and expansion. In addition, since
we only need our encryption scheme to be linearly (not
fully) homomorphic, we can use smaller and more efficient
lattice parameters.
The drawback of our schemes is that they have larger com-

3

munication cost, especially when the client makes only a single
query (so the client cannot amortize the offline download cost
over multiple queries) or when the database records are long.

Concurrent work: FrodoPIR. FrodoPIR [34] is independent
concurrent work that constructs a PIR scheme that is essentially
identical to SimplePIR. The default configuration of FrodoPIR
has communication cost 𝑂 (𝑁), on database size 𝑁 , though
rebalancing the scheme gives a 𝑂 (𝑛

√
𝑁)-cost, on lattice di-

mension 𝑛, as in SimplePIR. The additional contributions of
our work are: the more communication-efficient DoublePIR
scheme, our new data structure for private set-membership
queries (Section 6), the application to certificate transparency
(Section 7), and an optimized implementation of our schemes.

Preprocessing and PIR. The server in our PIR schemes
performs some client-independent preprocessing. Prior work
uses server-side preprocessing—either one-time [13,17,22] or
per-client [30, 31,61,88,97]—to build PIR where the server
online work is sublinear in the database size. Prior work also
proves strong lower bounds on the performance of any such PIR
with preprocessing schemes [13,30,31,84]. In contrast, in this
work, we use preprocessing to build PIR where the amortized
per-query server work is still linear, but it is concretely efficient.

Multi-server PIR. In our PIR schemes, the client commu-
nicates with a single database server. In multi-server PIR
schemes [27], the client communicates with multiple database
servers and client privacy holds only as long an attacker can-
not compromise some number of them. In Table 1, we give
the throughput of an optimized implementation [59] of a
two-server PIR scheme based on distributed point functions
(“DPF PIR”) [16, 50]. We also report the throughput of a

√
𝑁-

communication two-server PIR scheme (“XOR PIR”) [27]. It
is possible to speed these schemes up by roughly 2× if the
server’s running time can depend on the Hamming weight of
the client’s query vector (“XOR PIR fast”). The downside of
this optimization is that it could potentially leak information
about one server’s secret query vector to another server via
timing information, thereby breaking client privacy. Whether
such a performance-leakage trade-off is acceptable in practice
likely depends on the application scenario.

Hardware acceleration for PIR. Recent work improves the
throughput of both single-server [67] and multi-server [56] PIR
using hardware acceleration. This approach is complementary
to ours, as it may further speed up our new PIR protocols.

Privacy and certificate transparency. Lueks and Gold-
berg [71] and Kales, Omolola, and Ramacher [59] propose
using multi-server PIR for auditing in certificate transparency.
We work in the single-server setting, where the client communi-
cates with a separate audit server (e.g., Google, in the applica-
tion to Chrome). Further, we introduce a new set-membership
data structure to reduce the cost of auditing (Section 6). We
discuss existing approaches to auditing in Section 7.

3 Background and definitions
Notation. For a probability distribution 𝜒, we use 𝑥 ←R 𝜒 to
indicate that 𝑥 is a random sample from 𝜒. For a finite set 𝑆, we
use 𝑥 ←R 𝑆 to denote sampling 𝑥 uniformly at random from 𝑆.
We use N to represent the natural numbers and Z𝑝 to represent
integers modulo 𝑝. All logarithms are to the base two. For
𝑥 ∈ N, we let [𝑥] denote the set {1, . . . , 𝑥}. Throughout, we
assume that values like

√
𝑁 are integral, wherever doing so is

essentially without loss of generality. Algorithms are modeled
as RAM programs and their runtime is measured in terms of
the number of RAM instructions executed. We use the symbols
MB and GB to denote 220 and 230 bytes, respectively.

3.1 Learning with errors (LWE)
The security of our PIR schemes relies on the decision version
of the learning-with-errors assumption [86]. The assumption
is parameterized by the dimension of the LWE secret 𝑛 ∈ N,
the number of samples 𝑚 ∈ N, the integer modulus 𝑞 ≥ 2,
and an error distribution 𝜒 over Z. The LWE assumption then
asserts that for a matrix A←R Z𝑚×𝑛

𝑞 , a secret s←R Z𝑛
𝑞 , an error

vector e←R 𝜒𝑚, and a random vector r←R Z𝑚
𝑞 , the following

distributions are computationally indistinguishable:

{(A,As + e)} 𝑐≈ {(A, r)}.

More specifically, the (𝑛, 𝑞, 𝜒)-LWE problem with 𝑚 sam-
ples is (𝑇, 𝜖)-hard if all adversaries running in time 𝑇 have
advantage at most 𝜖 in distinguishing the two distributions. In
Section 4.2, we give concrete values for the LWE parameters.
Secret-key Regev encryption. Regev [86] gives a secret-key
encryption scheme that is secure under the LWE assumption.
With LWE parameters (𝑛, 𝑞, 𝜒) and a plaintext modulus 𝑝, the
Regev secret key is a vector s←R Z𝑛

𝑞 . The Regev encryption of
a message 𝜇 ∈ Z𝑝 is

(a, 𝑐) = (a, a⊺s + 𝑒 + ⌊𝑞/𝑝⌋ · 𝜇) ∈ Z𝑛
𝑞 × Z𝑞 ,

for 𝑒 ←R 𝜒. To decrypt the ciphertext, anyone who knows the
secret s can compute 𝑐− a⊺s mod 𝑞 and round the result to the
nearest multiple of ⌊𝑞/𝑝⌋. Decryption succeeds as long as the
absolute value of the error sampled from the error distribution
𝜒 is smaller than 1

2 · ⌊𝑞/𝑝⌋. We say that a setting of the Regev
parameters supports correctness error 𝛿 if the probability of a
decryption error is at most 𝛿 (over the encryption algorithm’s
randomness). Regev encryption is additively homomorphic,
since given two ciphertexts (a1, 𝑐1) and (a2, 𝑐2), their sum
(a1+a2, 𝑐1+𝑐2) decrypts to the sum of the plaintexts, provided
again that the error remains sufficiently small.

3.2 Private information retrieval with hints
We now give the syntax and security definitions for the type of
PIR schemes we construct. Our form of PIR is very similar to
the standard single-server PIR schemes [27,62]. The primary

4

distinction is that we allow the PIR server to preprocess the
database ahead of time and to output two “hints”: one that the
server stores locally, and another that the server sends to each
client. This preprocessing allows the PIR server to push much
of its computational work into an offline phase that takes place
before the client makes its query. In our constructions, both
hints are small—they have size sublinear in the database size.
In addition, all clients use the same hint and a client can reuse
the same hint for all of its of PIR queries.

Remark 3.1 (Handling database updates). As PIR schemeswith
preprocessing perform some precomputation over the database,
the server inherently needs to repeat some of this work if
the database contents change. Related work investigates how
to minimize the amount of computation and communication
that such database updates incur, in both a black-box [61] and
a protocol-specific [73] manner. We address how to handle
updates in our schemes in Appendices C.3 and E.3.

A PIR-with-preprocessing scheme [13], over plaintext
space D and database size 𝑁 ∈ N, consists of four routines,
which all take the security parameter as an implicit input:
Setup(db) → (hint𝑠 , hint𝑐). Given a database db ∈ D𝑁 ,
output preprocessed hints for the server and the client.

Query(𝑖) → (st, qu). Given an index 𝑖 ∈ [𝑁], output a secret
client state st and a database query qu.

Answer(db, hint𝑠 , qu) → ans. Given the database db, a server
hint hint𝑠 , and a client query qu, output an answer ans.

Recover(st, hint𝑐 , ans) → 𝑑. Given a secret client state st, a
client hint hint𝑐 , and an answer ans, output a record 𝑑 ∈ D.

Correctness. When the client and the server execute the
PIR protocol faithfully, the client should recover its desired
database record with all but negligible probability in the
implicit correctness parameter. Formally, we say that a PIR
scheme has correctness error 𝛿 if, on database size 𝑁 ∈ N,
for all databases db = (𝑑1, . . . , 𝑑𝑁) ∈ D𝑁 and for all indices
𝑖 ∈ [𝑁], the following probability is at least 1 − 𝛿:

Pr

⎡⎢⎢⎢⎢⎢⎢⎣𝑑𝑖 = 𝑑𝑖 :

(hint𝑠 , hint𝑐) ← Setup(db)
(st, qu) ← Query(𝑖)

ans← Answer(db, hint𝑠 , qu)
𝑑𝑖 ← Recover(st, hint𝑐 , ans)

⎤⎥⎥⎥⎥⎥⎥⎦ .
For the PIR scheme to be non-trivial, the total client-to-server

communication should be smaller than the bitlength of the
database. That is, it must hold that |hint𝑐 | + |qu| + |ans| ≪ |db|.
Security. The client’s query should reveal no information
about its desired database record. That is, we say that a PIR
scheme is (𝑇, 𝜖)-secure if, for all adversaries A running in
time at most 𝑇 , on database size 𝑁 ∈ N, and for all 𝑖, 𝑗 ∈ [𝑁],|︁|︁ Pr[A(1𝑁 , qu) = 1 : (st, qu) ← Query(𝑖)]

− Pr[A(1𝑁 , qu) = 1 : (st, qu) ← Query(𝑗)]
|︁|︁ ≤ 𝜖 .

Remark 3.2 (Stateless client). The client in our PIR schemes
does not hold any secret state across queries. In contrast, in
SealPIR [9] and related schemes, the client builds its queries
using persistent, long-term cryptographic secrets. We show in
Appendix B that, in certain settings, a malicious PIR server
can perform a state-recovery attack against these schemes and
thus break client privacy for both past and future queries. Our
stateless schemes are not vulnerable to such attacks.

4 SimplePIR
In this section, we present our first PIR scheme, SimplePIR.
SimplePIR is the fastest single-server PIR scheme known to
date in terms of throughput per second per core (Table 1). In
particular, we prove the following theorem:

Informal Theorem 4.1. On database size 𝑁 , let 𝑝 ∈ N be a
suitable plaintext modulus for secret-key Regev encryption with
LWE parameters (𝑛, 𝑞, 𝜒), achieving (𝑇, 𝜖)-security for

√
𝑁

LWE samples and supporting
√
𝑁 homomorphic additions with

correctness error 𝛿 (cf. Section 4.2). Then, for a random LWE
matrix A ∈ Z

√
𝑁×𝑛

𝑞 , SimplePIR is a (𝑇 −𝑂 (
√
𝑁), 2𝜖)-secure

PIR scheme on database size 𝑁 , over plaintext space Z𝑝 , with
correctness error 𝛿.

We give a formal description of SimplePIR in Figure 2 and
we prove its security and correctness in Appendix C.
Remark 4.1 (Concrete costs of SimplePIR). Using the param-
eters of Informal Theorem 4.1, we give SimplePIR’s concrete
costs, with no hidden constants, in terms of operations (i.e.,
integer additions and multiplications) over Z𝑞 . In a one-time
public preprocessing phase, SimplePIR requires:
• the server to perform 2𝑛𝑁 operations in Z𝑞 , and
• the client to download 𝑛

√
𝑁 elements in Z𝑞 ,

where our implementation takes 𝑛 = 210 and 𝑞 = 232 to achieve
128-bit security against the best known attacks [7].
On each query, SimplePIR requires

• the client to upload
√
𝑁 elements in Z𝑞 ,

• the server to perform 2𝑁 operations in Z𝑞 , and
• the client to download

√
𝑁 elements in Z𝑞 .

4.1 Technical ideas
We now discuss the SimplePIR construction in more detail.
The simplest non-trivial single-server PIR schemes [23,

62, 69] take the following “square-root” approach: given an
𝑁-element database, the server stores this database as a

√
𝑁-by-√

𝑁 square matrix. Meanwhile, a client who wishes to query
for database entry 𝑖 ∈ [𝑁] decomposes index 𝑖 into the pair
of coordinates (𝑖row, 𝑖col) ∈ [

√
𝑁]2. Then, the client builds a

unit vector u𝑖col in Z
√
𝑁

2 (i.e., the vector of all zeros with a
single ‘1’ at index 𝑖col), element-wise encrypts it with a linearly
homomorphic encryption scheme, and sends this encrypted

5

Construction: SimplePIR. The parameters of the con-
struction are a database size 𝑁 , LWE parameters (𝑛, 𝑞, 𝜒),
a plaintext modulus 𝑝 ≪ 𝑞, and a LWE matrix A ∈
Z
√
𝑁×𝑛

𝑞 (sampled in practice using a hash function). The
database consists of 𝑁 values inZ𝑝 , which we represent as
a matrix in Z

√
𝑁×
√
𝑁

𝑝 . Define the scalar Δ := ⌊𝑞/𝑝⌋ ∈ Z.

Setup(db ∈ Z
√
𝑁×
√
𝑁

𝑝) → (hint𝑠 , hint𝑐).
• Return (hint𝑠 , hint𝑐) ← (⊥, db · A ∈ Z

√
𝑁×𝑛

𝑞).

Query(𝑖 ∈ [𝑁]) → (st, qu).
• Write 𝑖 as a pair (𝑖row, 𝑖col) ∈ [

√
𝑁]2.

• Sample s←R Z𝑛
𝑞 and e←R 𝜒

√
𝑁 .

• Compute qu← (As + e +Δ · u𝑖col) ∈ Z
√
𝑁

𝑞 , where u𝑖col
is the vector of all zeros with a single ‘1’ at index 𝑖col.

• Return (st, qu) ← ((𝑖row, s), qu).

Answer(db ∈ Z
√
𝑁×
√
𝑁

𝑝 , hint𝑠 , qu ∈ Z
√
𝑁

𝑞) → ans.

• Return ans← db · qu ∈ Z
√
𝑁

𝑞 .

Recover(st, hint𝑐 ∈ Z
√
𝑁×𝑛

𝑞 , ans ∈ Z
√
𝑁

𝑞) → 𝑑.
• Parse (𝑖row ∈ [

√
𝑁], s ∈ Z𝑛

𝑞) ← st.
• Compute 𝑑 ← (ans[𝑖row] − hint𝑐 [𝑖row, :] · s) ∈ Z𝑞 ,
where ans[𝑖row] denotes component 𝑖row of ans and
hint𝑐 [𝑖row, :] denotes row 𝑖row of hint𝑐 .

• Return 𝑑 ← RoundΔ (𝑑)/Δ ∈ Z𝑝 , which is 𝑑 rounded
to the nearest multiple of Δ and then divided by Δ.

Figure 2: The SimplePIR protocol.

vector to the server. The server computes the matrix-vector
product between the database and the query vector and returns
it to the client. Finally, the client decrypts element 𝑖row of the
server’s answer vector—which corresponds exactly to the inner
product of database row 𝑖row and encrypted unit vector u𝑖col , or,
equivalently, the encrypted database entry at (𝑖row, 𝑖col). In this
scheme, the server and the client exchange 2

√
𝑁 ciphertext ele-

ments, while the server performs 𝑁 ciphertext multiplications
and additions to answer each PIR query.
Our starting point is to instantiate this “square-root” ap-

proach with the secret-key version of Regev’s LWE-based
encryption scheme [86]. Let (𝑛, 𝑞, 𝜒) be LWE parameters.
Then, the Regev encryption of a vector 𝝁 ∈ Z𝑚

𝑝 consists of a
pair of a matrix and a vector:

Enc(𝝁) = (A, c) = (A,As + e + ⌊𝑞/𝑝⌋ · 𝝁),

for some LWE matrix A←R Z𝑚×𝑛
𝑞 , secret s←R Z𝑛

𝑞 , and error
vector e←R 𝜒𝑚.
We make three crucial observations about Regev encryption:

1. First, a large part of the ciphertext—namely, the matrix

√
𝑁

√
𝑁

db ×

𝑛

A

,

1

qu →

𝑛

hint𝑐

,

1

ans

one-time, offline preprocessing

per-query, online computation

Figure 3: The server computation in SimplePIR. Each cell represents a
Z𝑞 element, and× denotes matrix multiplication. The server performs
the bulk of its work in a one-time preprocessing step. Thereafter, the
server can answer each client’s query with a lightweight online phase.

A—is independent of the encrypted message. It is thus
possible to generate the matrix A ahead of time.

2. Second, Regev encryption remains secure even when the
same matrix A is used to encrypt polynomially many mes-
sages (cf. Corollary C.3), provided that each ciphertext uses
an independent secret vector s and error vector e [83].

3. Finally, we can take A to be pseudorandom (rather than
random) at a negligible loss in security, allowing us to
succinctly represent A by a short random seed.
In SimplePIR, we leverage these three observations as fol-

lows. Consider a client who wishes to retrieve the database
entry at (𝑖row, 𝑖col). At a conceptual level, the client’s query to
the server consists of Enc(u𝑖col) = (A, c)—the Regev encryp-
tion of the vector in Z

√
𝑁

𝑝 that is zero everywhere but with a
“1” at index 𝑖col. The server then represents the database as a
matrix D ∈ Z

√
𝑁×
√
𝑁

𝑝 and computes and returns the matrix-
vector product of the database with the client’s encrypted query,
i.e., (D · A,D · c). From the server’s reply, the client can use
standard Regev decryption to recover D · u𝑖col ∈ Z

√
𝑁

𝑝 , which
is exactly the 𝑖col-th column of the database, as desired.
Now, we make the following modifications:

1. We have the server compute the value D · A ahead of time
in a preprocessing phase. This preprocessing step requires
2𝑛𝑁 operations in Z𝑞 , on lattice dimension 𝑛 ≈ 210 and
database size 𝑁 . Then, to answer the client’s query, the
server needs to compute the valueD · c, which requires only
2𝑁 operations in Z𝑞 . So, an 𝑛/(𝑛 + 1) fraction (i.e., 99.9%)
of the server’s work can happen ahead of time—before the
client even decides which database record it wants to fetch.

2. We have all clients use the same matrix A to build each of
their queries. Then, the server only precomputesD ·A once.
The server sends this one-time “hint” to all clients. Thus, the
server amortizes the cost of computing and communicating
D · A over many clients and over many queries.

3. As an optimization, we compress A using pseudorandom-
ness. Specifically, the server and the clients can derive A as
the output of a public hash function, modelled as a random
oracle, applied to a fixed string in counter mode. This saves
on bandwidth and storage, as the server and the clients

6

communicate and store only a small seed to generate A.
The security of the SimplePIR construction follows almost

immediately from the security of Regev encryption [86] with a
reused matrix A [83], which in turn follows from the hardness
of LWE. SimplePIR’s correctness follows from the correctness
of Regev’s linearly homomorphic encryption scheme and of
Kushilevitz and Ostrovsky’s “square-root” PIR template.

4.2 Parameter selection
Picking the LWE parameters (𝑛, 𝑞, 𝜒) and the plaintext
modulus 𝑝 requires a standard (though tedious) analysis. We
choose our parameters to have 128-bit security, according
to modern lattice-attack-cost estimates [7]. In particular, we
set the secret dimension 𝑛 = 210, use modulus 𝑞 = 232 (as
modern hardware natively supports operations with this
modulus), set the error distribution 𝜒 to be the discrete
Gaussian distribution with standard deviation 𝜎 = 6.4, and
allow correctness error 𝛿 = 2−40. We obtain the following
trade-off between database size 𝑁 and plaintext modulus 𝑝:

Database size 𝑁: 226 228 230 234 238 242

Plaintext modulus 𝑝: 991 833 701 495 350 247

We discuss parameter selection further in Appendix C.1.

4.3 Extensions
Finally, we extend our SimplePIR construction to meet the
requirements of realistic deployment scenarios:
Supporting databases with larger record sizes. The basic
SimplePIR scheme (Figure 2) supports a database in which
each record is a single Z𝑝 element—or, roughly 8-10 bits with
our parameter settings. Our main application (Section 7) uses
a database with one-bit records, though other applications of
PIR [6, 9, 10, 55, 76] use much longer records.
To handle large records, we observe that the client in Sim-

plePIR can retrieve an entire column of the database at once.
Concretely, after executing a single online phase with the server
to query for database element (𝑖row, 𝑖col), the client can run the
Recover procedure

√
𝑁 times—once for every row in [

√
𝑁]—

to reconstruct the entire column 𝑖col of the database matrix. So,
to support large records, we encode each record as multiple
elements in the plaintext space, Z𝑝 , and store these elements
stacked vertically in the same column. By making a single
online query and reconstructing the corresponding column of
elements, the client recovers any record of its choosing.
On a database of 𝑁 records, each in Z𝑑

𝑝 (where 𝑑 ≤ 𝑁),
with LWE secret dimension 𝑛 and modulus 𝑞, SimplePIR has:
• one-time (hint) download 𝑛 ·

√
𝑑𝑁 elements in Z𝑞 ,

• per-query upload and download
√
𝑑𝑁 elements in Z𝑞 , and

• per-query server computation 2𝑑𝑁 operations in Z𝑞 .

Fetching many database records at once (“Batch PIR”).
In many applications [9, 10], a client wants to fetch 𝑘 records
from the PIR server at once. If the client runs our PIR protocol

𝑘 times on a database of 𝑁 records, the total server time would
be roughly 𝑘𝑁 . We can apply the “batch PIR” techniques of
Ishai et al. [57] to allow a client to fetch 𝑘 records at server-side
cost≪ 𝑘𝑁 , without increasing the hint size.
The idea is to randomly partition the database of 𝑁 records

into 𝑘 chunks, each represented as a matrix of dimension
(
√
𝑁/𝑘)-by-

√
𝑁 . If the 𝑘 records that the client wants to fetch

fall into distinct chunks, the client can recover these records by
running SimplePIR once on each database chunk. In this case,
the hint size remains 𝑛

√
𝑁—as in one-query SimplePIR. The

communication cost for the client is 𝑘
√
𝑁—𝑘 times larger than

in one-query SimplePIR (and identical to the communication
if the client fetched all 𝑘 records sequentially). The server
performs 𝑁 operations in Z𝑞—as in one-query SimplePIR.
However, more than one of the client’s desired records may

fall into the same chunk. There are two ways to handle this:
• If the client must recover all 𝑘 records with overwhelming
probability, the client can make 𝜆 PIR queries to each of
the 𝑘 chunks to achieve failure probability 2−Ω(𝜆) [9, 57].
This optimization saves on server work as long as 𝜆 < 𝑘 .

• If the client only needs to recover a constant fraction of the 𝑘
database records, then the client and the server can run this
batch-PIR protocol only once. The server-side computation
cost is as in one-query SimplePIR.

Additional improvements.We discuss how to further improve
the asymptotic efficiency of SimplePIR in Appendix C.3.

4.4 Fast linearly homomorphic encryption
In Appendix D, we introduce the notion of linearly homo-
morphic encryption with preprocessing. This new primitive
abstracts out the key properties of Regev encryption that we
use in SimplePIR. We expect this new form of linearly homo-
morphic encryption to have further practical applications.

5 DoublePIR
While SimplePIR has high server-side throughput, it requires
the client to download and store a relatively large preprocessed
hint, of size roughly 𝑛

√
𝑁 on lattice dimension 𝑛 ≈ 210 and

database size 𝑁 . In this section, we present DoublePIR, a new
PIR scheme that recursively applies SimplePIR to reduce the
hint size to roughly 𝑛2 on lattice dimension 𝑛—independent of
the database size—while maintaining a server-side throughput
upwards of 7.4 GB/s. (In practice, this hint size is 16 MB
for one-byte records.) For databases of very many records
(𝑁 ≫ 𝑛2 ≈ 220), DoublePIR has a much smaller hint size than
SimplePIR. As in SimplePIR, the per-query communication
cost for DoublePIR is 𝑂 (

√
𝑁) on database size 𝑁 .

5.1 Construction
We present a formal description of DoublePIR in Figure 14 of
Appendix E, along with a full correctness and security analysis.

7

In this section, we describe the key design ideas.
We first give the concrete costs of DoublePIR on database

size 𝑁 , lattice dimension 𝑛, LWEmodulus 𝑞, plaintext modulus
𝑝, and 𝜅 = ⌈log(𝑞)/log(𝑝)⌉ ≈ 4 (chosen as in Appendix E.1).
In a one-time public preprocessing phase, DoublePIR requires
1. the server to perform 2𝑛𝑁 + 2𝜅𝑛2

√
𝑁 operations in Z𝑞 , and

2. the client to download 𝜅𝑛2 elements in Z𝑞 .
On each query, DoublePIR requires
1. the client to upload 2

√
𝑁 elements in Z𝑞 ,

2. the server to do 2𝑁 + 2(2𝑛 + 1) ·
√
𝑁 · 𝜅 Z𝑞 operations, and

3. the client to download (2𝑛 + 1) · 𝜅 elements in Z𝑞 .
At a high level, DoublePIR first executes exactly as Sim-

plePIR: from the database, the server computes a hint matrix
and, in response to each client’s query, produces an answer
vector. At this point, we observe that a client querying for ele-
ment (𝑖row, 𝑖col) in SimplePIR needs two pieces of information
to recover its desired database element:
• row 𝑖row of the hint matrix D · A ∈ Z

√
𝑁×𝑛

𝑞 , and

• element 𝑖row of the answer vector a ∈ Z
√
𝑁

𝑞 .
Thus, in DoublePIR, we have the client execute a second level
of SimplePIR over the hint matrix and the answer vector to
retrieve these (𝑛 + 1) values. As such, the client in DoublePIR
recovers the database entry at (𝑖row, 𝑖col) without downloading
the large first-level hint.
Kushilevitz and Ostrovsky [62] first proposed using re-

cursion to reduce communication costs in PIR in this way.
However, applied naïvely, this strategy requires (𝑛 + 1) ≈ 210

instances of PIR to recover the (𝑛 + 1) desired values. We
avoid this bottleneck with the insight that SimplePIR lets the
client retrieve a column of the database at a time (as discussed
in Section 4.3). Therefore, in DoublePIR, we run the second
level of PIR over the database corresponding to the transpose
of the hint matrix concatenated with the answer vector (i.e.,[︁
D · A | | a

]︁𝑇). Using a single invocation of SimplePIR, the
client in DoublePIR can retrieve column 𝑖row of this database—
which holds exactly row 𝑖row of the hint matrix and element
𝑖row of the answer vector—and finally recover the database
entry at (𝑖row, 𝑖col). As SimplePIR executes over a database of
elements in Z𝑝, while the hint matrix and the answer vector
consist of elements in Z𝑞 , the server in DoublePIR computes
the base-𝑝 decomposition of the entries in the hint matrix and
the answer vector before performing the second level of PIR.
Since this second level of PIR operates on a much smaller

database, its cost is dwarfed by that of the first level of PIR:
in DoublePIR, both the online communication and the server
throughput remain roughly the same as in SimplePIR. More-
over, as the client in DoublePIR forgoes downloading the large
first-level hint, it now only downloads a much smaller hint,
whose size is independent of the database length, produced by
the second level of PIR. Concretely, our PIR client downloads
a 16 MB hint in the offline phase.
Remark 5.1 (Why not recurse more?). DoublePIR performs

two levels of PIR to reduce the total communication. A natural
question is whether additional levels of recursion can help,
as in standard single-server PIR schemes [62]. After 𝑟 levels
of recursion, the cost of the recursive PIR scheme, on lattice
dimension 𝑛 and database size 𝑁 , would be (hiding constants):

• one-time download 𝑛𝑟 in the preprocessing step, as well as
• per-query upload 𝑟 · 𝑁1/𝑟 and download 𝑛𝑟−1.

For 𝑟 > 2, the communication is likely too large for databases
of interest. An intriguing open question is to construct recursive
LWE-based PIR schemes with total communication 𝑛 · 𝑁1/𝑟 .

5.2 Extensions

We extend DoublePIR to handle diverse deployment scenarios.

Handling large database records. To handle databases with
large records, we represent each record as a series of elements
in Z𝑝 , where 𝑝 is the plaintext modulus, using base-𝑝 decom-
position. Let 𝑑 denote the number of Z𝑝 elements that each
record maps to. Then, on each execution of DoublePIR, we run
the PIR scheme 𝑑 times in parallel, over 𝑑 databases, where
the 𝑖-th database holds the 𝑖-th Z𝑝 element of each record.
With this approach, DoublePIR’s throughput is identical on
databases with long records and with short records. On a
database of 𝑁 records, each in Z𝑑

𝑝, with lattice dimension 𝑛,
LWE modulus 𝑞, and 𝜅 = ⌈log(𝑞)/log(𝑝)⌉, DoublePIR has:
• hint size 𝑑𝜅𝑛2 elements in Z𝑞 ,
• online upload 2

√
𝑁 elements in Z𝑞 ,

• online server work 2𝑑
(︂
𝑁 + 𝜅(2𝑛 + 1)

√
𝑁

)︂
ops. in Z𝑞 , and

• online download 𝑑𝜅 · (2𝑛 + 1) elements in Z𝑞 .

Batching client queries. To implement query batching in
DoublePIR, we batch queries exactly as in SimplePIR when
performing the first level of PIR. As DoublePIR makes non-
black-box use of SimplePIR in performing the second level of
PIR, we are not able to derive any computation savings from
batching in this second, recursive step. (In particular, in the
second level of PIR, the client must read an entire column
consisting of (𝑛+1) elements at once for each query; this breaks
SimplePIR’s batching trick.) However, as the first level of
PIR dominates the computation in DoublePIR, batching many
queries nevertheless greatly improves DoublePIR’s throughput.
Concretely, to fetch a constant fraction among a set of 𝑘

records from a database of 𝑁 values inZ𝑝 , on lattice dimension
𝑛, LWE modulus 𝑞, and 𝜅 = ⌈log(𝑞)/log(𝑝)⌉, DoublePIR has:
• hint size 𝜅𝑛2 elements in Z𝑞 ,
• online upload

√
𝑁 (𝑘 +

√
𝑘) elements in Z𝑞 ,

• online server work 2𝑁 + 2𝑘 (2𝑛 + 1)𝜅
√
𝑁 ops. in Z𝑞 , and

• online download 𝑘𝜅(2𝑛 + 1) elements in Z𝑞 .

8

6 Data structure for private
approximate set membership

In this section, we introduce a new data structure for the private
approximate set membership problem. In this problem, a client
holds a private string 𝜎, a server holds a set of strings 𝑆, and
the client wants to test whether 𝜎 ∈ 𝑆 without revealing 𝜎 to
the server. Unlike in private set intersection [46], the server’s
set 𝑆 is public. To rule out the trivial solution where the server
sends 𝑆 to the client, we insist on communication sublinear in
|𝑆 |. Our approach is approximate: there is some chance that
the client outputs “𝜎 ∈ 𝑆” when in fact this is not the case.
However, this false-positive rate is bounded even when the set
𝑆 and the string 𝜎 are chosen adversarially. Looking ahead,
our data structure will be at the core of our new scheme for
auditing in Certificate Transparency (Section 7).
At a high level, we have the server preprocess its set 𝑆 into

a data structure. Then, the client, holding a string 𝜎, can test
whether 𝜎 ∈ 𝑆 by privately reading a few bits of the server’s
data structure using PIR. The relevant cost metrics are:
• Number of probes. How many bits of the server’s data
structure must the client read?

• PIR database size. Over how many bits of the server’s data
structure does the client perform its private PIR read?

• Adversarial false-positive rate. Given an honest server but
an adversarially chosen set 𝑆 and string 𝜎, what is the
probability, only over the client’s secret randomness, that
the client outputs “𝜎 ∈ 𝑆” when in fact 𝜎 ∉ 𝑆?

Background: Bloom filters. A Bloom filter [15] is a standard
data structure for approximate set membership. A one-hash-
function Bloom filter consists of a fixed-length bitstring 𝐷 and
uses a hash function𝐻 : {0, 1}∗ → {1, . . . , |𝐷 |}. Given a set of
strings 𝑆 ⊂ {0, 1}∗, the setup routine hashes each string 𝜎 ∈ 𝑆
into an index 𝑖 ∈ {1, . . . , |𝐷 |} and sets the corresponding bit
of the data array: 𝐷𝐻 (𝜎) ← 1. Then, to test whether a string
𝜎 is in the set represented by the data structure 𝐷, the query
algorithm outputs “𝜎 ∈ 𝑆” if and only if the bit 𝐷𝐻 (𝜎) = 1.
As long as the query string is chosen independently of the

hash function 𝐻, the probability of a false-positive is at most
1/2 when |𝐷 | ≥ 2 |𝑆 |. However, when the query string is
chosen adversarially—as can be the case in our application—
an adversary can easily find strings 𝜎 ∈ 𝑆 and 𝜎̂ ∉ 𝑆 such that
𝐻 (𝜎) = 𝐻 (𝜎̂). In this case, the one-hash-function Bloom filter
will always incorrectly output “𝜎̂ ∈ 𝑆.” We present a new data
structure—which is a twist on Bloom filters—to address this
false-positive issue, without increasing the number of probes
or the size of the PIR read required by the query algorithm.

Remark 6.1 (False positives). Some, but not all, applications
can tolerate a non-negligible false-positive rate. For example,
credential-breach lookups [66, 82, 91] and contact discov-
ery [60] may tolerate false-positive rates as large as 2−30; in
contrast, Safe Browsing blocklist checks [52,61] demand a cryp-

𝑖

0 1 0 1 1 0
1 0 1 0 0 1
0 1 1 1 0 0
0 0 1 0 1 1
1 0 0 1 0 1

𝑆 = {𝜎1, 𝜎2, 𝜎3} ...

hash
function 1

hash
function 𝑎

𝜎̂ ∈ 𝑆?

PIR read

Figure 4: Our data structure for private, approximate set membership
with adversarial soundness, when instantiated with a set 𝑆 consisting
of three strings and with 𝑎 = 5 hash functions. We highlight in blue
the bits of the data structure that are set, in red the bits that the query
string 𝜎̂ maps to, and in yellow the area covered by the client’s PIR
read, when the client probes the 𝑖-th one-hash-function Bloom filter.

tographically negligible false-positive rate, as false positives
would cause a legitimate website to be flagged as malicious. In
the latter case, other data structures may be more appropriate.

6.1 Our approximate membership test
Our data structure for approximate set-membership, illustrated
in Figure 4, is parameterized by integers 𝑎, 𝑘 ∈ N, a universe
of strings U , and a set size 𝑁 . The data structure consists of 𝑎
independent one-hash-function Bloom filters [15], each of size
𝑘𝑁 bits. Crucially, these Bloom filters each use independent
hash functions, which are chosen after the set 𝑆 is fixed. In the
remainder of this section, we give an informal description of
our construction; a formal treatment appears in Appendix F.
Data-structure setup. The setup algorithm takes as input a set
of strings 𝑆 ⊆ U of size at most 𝑁 . The algorithm then chooses
a set of 𝑎 hash functions—one per Bloom filter—and inserts
each string in 𝑆 into each of the 𝑎 one-hash-function Bloom
filters defined by these hash functions. (In practice, we would
use a salted hash function with a different salt per filter.)
Query algorithm. Given a query string 𝜎, the query algorithm
chooses an index 𝑖 ←R [𝑎] at random, and outputs the result of
querying the 𝑖-th one-hash-function Bloom filter on string 𝜎.

Our data structure has the following properties:
Correctness. For any set 𝑆 ⊆ U and any query string 𝜎 ∈ 𝑆,
the query algorithm always returns “𝜎 ∈ 𝑆.”
Adversarial false-positive rate 1/2. For any set 𝑆 ⊆ U of size
at most 𝑁 , for a random choice of the hash functions used in
the data structure, and for any query string 𝜎̂ ∉ 𝑆—which can
depend on the hash functions—the data structure incorrectly
returns “𝜎̂ ∈ 𝑆” with probability at most 1/2 (taken over the
query algorithm’s randomness), for an appropriate choice of
the parameters 𝑎 and 𝑘 . In Appendix F, we prove:
Proposition 6.2: For all 𝜆 ∈ N, on parameters 𝑘 ≥ 8 and
𝑎 ≥ 2 (log(|U |) + 𝜆), our approximate set-membership data
structure has adversarial false-positive rate at most 1/2. The
construction fails with probability 2−𝜆, over the choice of the
Bloom filters’ hash functions, modeled as independent random
oracles. Concretely, on |U | = 2256, taking 𝑎 = 768 and 𝑘 = 8
gives false-positive rate 1/2 and failure probability 2−128.

9

PIR compatibility. To privately test whether a string is in the
set, the client can perform a PIR read over only a small fraction
of the data structure. More specifically, the query algorithm
probes a single bit in one of the Bloom filters. The client can
reveal which Bloom filter it wants to probe to the server, as
this does not depend on the query string. So, while the entire
data structure consists of 𝑎𝑘𝑁 bits, the client can execute a
private set-membership test with a PIR read over only 𝑘𝑁 bits.

6.2 Related approaches and comparison
We now compare our solution to other data structures for
private approximate set-membership, given in Table 5. One
natural alternative would be to use a single one-hash-function
Bloom filter. (In contrast, our construction uses 𝑎 ≈ 768 one-
hash-function Bloom filters.) However, this approach is not
sound in our adversarial setting: as the data structure (including
its hash function) is public, an adversary can trivially find a
string that causes the query algorithm to always return a false-
positive result. We can address this issue by using a Bloom
filter with 𝑂 (𝜆) hash functions, which gives security against
2𝑂 (𝜆) -time attacks (where 𝜆 ≈ 128 is a security parameter).
Unfortunately, the query algorithm of such a data structure is
roughly 𝜆× more expensive than ours in terms of both (1) the
number of probes and (2) the size of the PIR read required for
a private query.
Adversarial Bloom filters [28, 45, 78] provide the false-

positive guarantees we require, but do not naturally support
private reads via PIR. In particular, they have the client send its
string 𝜎 to the server; the server then applies a pseudorandom
function to 𝜎 to determine which bits to probe. It is not clear
how to use such a data structure in our setting without relatively
expensive general-purpose multi-party computation schemes.
Another approach to private set membership has the client

and the server execute a PIR by keywords protocol [26]. On
security parameter 𝜆, the server stores a 𝜆-bit hash of each
string in its set in a hash table. Thereafter, the client can
perform PIR over this hash table to check if a string is present.
While the client probes only few locations of the hash table,
its PIR read must cover the entire table, or roughly 3𝜆𝑁 bits.
Finally, prior work constructs other data structures for ap-

proximate set membership [36,53], offering different perfor-
mance trade-offs. Combining our ideas for efficiently tolerating
false positives in an adversarial setting with such data structures
is an intriguing direction for future work.

7 Application: Auditing in
Certificate Transparency

We now apply our new PIR schemes (Sections 4 and 5), along
with our set-membership data structure (Section 6), to solve
the problem of privately auditing signed certificate timestamps
in deployments of Certificate Transparency [63, 64, 74].

PIR Adv. false-
Probes size positive rate

PIR by keywords [26] 2 3𝜆𝑁 0
Standard Bloom filter [15] 𝑂 (𝜆) 𝑂 (𝜆𝑁) 0
1-hash-fn Bloom filter [15] 1 2𝑁 1 (insecure)

This work 1 8𝑁 1/2

Table 5: Private set-membership data structures, for sets of 𝑁 elements
from universe U , on security parameter 𝜆. The data structures may fail
with probability |U | 2−𝜆, over their random choice of hash functions,
modeled as random oracles.

7.1 Problem statement

Background: Certificate Transparency. The goal of Certifi-
cate Transparency is to store every public-key certificate that
every certificate authority issues in a set of publicly accessible
logs. To this end, certificate authorities submit the certificates
they issue to log operators, who respond with a signed certifi-
cate timestamp (SCT). The SCT is a promise to include the
new certificate in the log maintained by this operator within
some bounded period of time.
Later on, when a TLS server sends a public-key certificate

to a client, the server attaches a number of SCTs according to
the client’s policy (e.g., Chrome and Safari both require SCTs
from three distinct log operators). By verifying the SCTs, the
client can be sure that each of the log operators has seen the
new certificate and—if the operator is honest—will eventually
log it. Domain operators can then use the logs to detect whether
a certificate authority has mistakenly or maliciously issued a
certificate for their domain. In this setting, the log contents are
public; related work investigates scenarios where this is not
the case, as in end-user key distribution [75].
SCT auditing. To keep the logs honest, some party in the
system must verify that the log operators are fulfilling the
promise implicit in the SCTs that they issue. In particular, if a
client receives an SCT for some certificate 𝐶 signed by a log
operator, the client would like to verify that 𝐶 appears in that
operator’s public log. This process is SCT auditing.
Clients must be involved in SCT auditing, as they are the

only participants who see SCTs “in the wild.” However, the set
of SCTs that a client sees reveals information about the client’s
browsing history: the fact that a client has seen an SCT for
example.com reveals that the client has visited example.com.
Thus, to protect its privacy, the client should not reveal which
SCTs it has seen to the log operators or to any other entity.
Google’s recent solutions for SCT auditing [35, 89] involve

an SCT auditor (run by Google) that is separate from the client.
In their model, the auditor maintains the entire set of SCTs
for non-expired certificates from all Certificate Transparency
logs. Every SCT that a client sees for a live website should
appear in the auditor’s set. To determine whether an SCT is
valid, a client can check whether it (or really, its SHA256 hash)
appears in the set of valid SCTs maintained by the auditor:
• If the client’s SCT appears in the auditor’s set, then the log

10

server that issued the SCT correctly fulfilled its promise.
• If not, the client can report the problematic SCT to the
auditor to investigate further. Prior work shows how this
can be done while keeping the SCT in question hidden [41].
A privacy-protecting solution for SCT auditing must allow

the client to test whether its SCT appears in the auditor’s set,
without revealing its SCT to the auditor. This is a private set-
membership problem [91]. While on its surface this problem
resembles other applications of PIR in the literature [59,71],
the fact that many clients engage in the protocol with the same
auditor means that we can tolerate false positives. That is, it is
acceptable for a client to incorrectly believe that an SCT is in the
auditor’s set, since over many clients we can expect that missing
SCTs are eventually identified. To summarize, we require the
following properties, which we state only informally:
• Correctness with false positives.When an honest client
holding string 𝜎, chosen independently of the client’s secret
randomness, interacts with an honest auditor holding set 𝑆:
– if 𝜎 ∈ 𝑆, then the client always outputs “valid,” and
– if 𝜎 ∉ 𝑆, then the client outputs “valid” with probability
at most 1/2, over the choice of the client’s randomness.

• Privacy for the client.When an honest client interacts with
a malicious auditor, the auditor learns nothing about the
client’s private input string 𝜎.
We do not require correctness to hold against a malicious

auditor; such an auditor could trivially lie about its set of SCTs.
System parameters. There are roughly five billion active SCTs
in the web today [35]. Roughly six million of these are added or
removed each day as certificate authorities issue certificates and
as certificates expire [3]. Google Chrome’s current proposal
for SCT auditing has a false-positive rate of essentially zero:
when a client audits an SCT, it correctly learns whether the
SCT is valid. However, Chrome’s proposal has a detection rate
of 1/10,000: the Chrome client randomly samples 0.01% of the
SCTs associated with its TLS connections, and audits only this
small fraction of all SCTs [2]. This random sampling reduces
the amortized cost of auditing by 10,000×, but also reduces
the chance that any single auditing client catches a cheating
log. Still, across many auditing clients, this randomized SCT
auditing catches—with high probability—widely distributed
invalid SCTs. After 10,000 clients observe an invalid SCT, in
expectation one will audit it and implicate the cheating log.
Existing approaches. Two notable proposals for SCT
auditing—which do not provide cryptographic privacy—are:
Opt-out SCT auditing. Chrome’s current approach [35] has
the client reveal the first 20 bits of the hash of its SCT to the
auditor [1]. The auditor replies with all roughly 1000 SCTs
in its set that match this 20-bit prefix. This method achieves
𝑘-anonymity for 𝑘 = 1000, i.e., it leaks that the client visited
one of a set of 1000 sites.
Anonymizing proxy. The client could use proxy servers, such as
in Tor [37], to send its SCT to the auditor anonymously [32];

the auditor could reply with the bit indicating whether the
SCT appears in its set. This mechanism reveals the entire
distribution of clients’ SCTs to the auditor and is susceptible to
timing attacks, which could allow the auditor to deanonymize
particular clients.

7.2 Our approach
We propose a new scheme for SCT auditing that achieves
cryptographic privacy. The deployment is as follows:
1. Auditor: Data-set construction. The auditor prepares an ap-
proximate set-membership data structure holding all SHA256
hashes of all 𝑁 active SCTs. This data structure consists of
𝑎 = 768 arrays, each 8𝑁 bits in length, and has false-positive
rate 𝜖 = 1/2 (Proposition F.1). Then, the auditor runs the PIR
Setup routine on each of these 𝑎 arrays, producing 𝑎 PIR hints.
2. Client: Hint download. The client chooses a secret, random
index 𝑖∗ ←R [𝑎] and downloads the 𝑖∗-th hint from the auditor,
revealing 𝑖∗ to the auditor in the process. Whenever the client
wants to test whether some SCT appears in the auditor’s set,
the client can now read a single bit from the auditor’s 𝑖∗-th
array. The probability that a cheating log can trick the client
into accepting an invalid SCT is at most 𝜖 , the false-positive
rate of the underlying set-membership data structure.
If the client audits an 𝑓 -fraction of all of its TLS connections,

the detection rate is 𝑓 · (1− 𝜖). In our deployment, we take 𝑓 =
1/5,000 and 𝜖 = 1/2. This choice gives an overall detection rate
of 1/10,000—matching that of Chrome’s current approach [35].
3.Client and auditor: SCT lookup via PIR. Each time the client
decides to audit an SCT, the client computes the bit of the
auditor’s 𝑖∗-th array that it needs to check to verify the SCT’s
validity. The client reads this bit privately by running the PIR
protocol’s online phase with the auditor, over the 𝑖∗-th array.
In this approach, the client reuses the same secret index 𝑖∗ for

multiple SCT lookups.As a result, the events that a client fails to
detect invalid SCT 𝐴 and invalid SCT 𝐵 are correlated, whereas
in Chrome today these events are independent. However, in our
approach, the probability that a client catches the first invalid
SCT that it looks up remains 1 − 𝜖 = 1/2. As such, the client
will catch at least one invalid SCT with probability 1/10,000
and will thus implicate a cheating log with these odds. Any
log that cheats more than 10,000 clients will be caught in
expectation.
Database updates. In our proposal, the client holds a PIR hint
that depends on the auditor’s set of active SCTs. Whenever this
set changes, which happens continuously as certificates are
issued and expire, the auditor must update its set-membership
data structure. Without extra engineering, the client would
have to download a fresh PIR hint from the auditor each time.
Our approach has the client download a fresh hint only

periodically—once per month, for example. The auditor speci-
fies the range of certificate issue dates that each hint covers.
When the client decides to audit an SCT, it checks whether its
current hint covers the issue date of the SCT in question. If so,

11

100 KB1 MB10 MB
Communication

(amortized over 100 queries)

125
250
500

1000
2000
4000
8000

Th
ro
ug

hp
ut

(M
B/
s)

SimplePIR
DoublePIR

SealPIR
FastPIR

OnionPIR

Spiral
SpiralPack

SpiralStream

SpiralStreamPack

Bet
ter

Figure 6: Throughput vs. per-query communication, on a 1 GB
database. For each PIR scheme, we display the communication and
the corresponding throughput for two choices of entry size: one that
maximizes throughput, and another that minimizes communication.
(For schemes displayed only once, both entry sizes are the same.) The
communication cost is the total (i.e., offline and online) communica-
tion, amortized over 100 queries. We highlight prior work in yellow .

the client tests the SCT’s validity; if not, the client caches the
SCT so as to test its validity the next time it downloads a hint.
In this way, the client eventually audits its full random sample
of SCTs, but reuses each hint for multiple SCT lookups. The
server must now store multiple versions of the database, which
is relatively inexpensive; in a large-scale deployment, one or
more physical servers could hold each version in memory.

8 Evaluation

Implementation. We implement SimplePIR in fewer than
1,200 lines of Go code, along with 200 lines of C, and Dou-
blePIR in 210 additional lines of Go code. Our code does not
rely on any external libraries and is published under the MIT
open-source license at github.com/ahenzinger/simplepir.
We give sample code for SimplePIR in Appendix G.
We use the appropriate data types to natively support op-

erations over Z𝑞 (e.g., uint32 for 𝑞 = 232). We store the
database in memory in packed form and decompress it into
Z𝑝 elements on-the-fly, as otherwise the Answer routine is
memory-bandwidth-bound. In DoublePIR, we represent the
database as a rectangular (rather than square) matrix, so that
the first level of PIR dominates the computation.
We run all experiments using a single thread of execution,

on an AWS c5n.metal instance running Ubuntu 22.04. To
collect the throughput numbers for tables, we run each scheme
five times and report the average. All standard deviations in
throughput are smaller than 10% of the throughput measured.

Communication
Offline (MB) Online (KB) Throughput

Up.♣Down.♠ Up. Down. (MB/s)

SealPIR 5 0 91 181 97
FastPIR 0.06 0 33 000 64 217
OnionPIR 5 0 256 128 60
Spiral 15 0 14 20 259
SpiralPack 19 0 14 20 260
SpiralStream 0.34 0 15 000 20 485
SpiralStreamPack 15 0 29 000 99 1,370★

SimplePIR (§4) 0 121 121 121 10,138
DoublePIR (§5) 0 16 313 32 7,622

Table 8: PIR scheme performance on a database of 233× 1-bit entries.
We highlight in green cells that are within 5× of the best, and in red
cells that are within 5× of the worst, in their respective columns. (We
leave uncolored cells that are within 5× of the best and worst.) We
automatically “re-balance” schemes without an automatic parameter
selection tool (SealPIR, FastPIR, and OnionPIR), by executing them
on a database of 233/𝑑 entries, each of size 𝑑, where 𝑑 is the closest
valid power-of-2 to the scheme’s “optimal” entry size (see Table 10).
♣The offline upload is equal to the per-client server storage. ♠The
offline download is equal to the client storage. ★The throughput here
is slightly higher than in Table 1 due to variance in the measurements.

8.1 Microbenchmarks

Throughput. We first measure the maximal throughput of
each PIR scheme, on the database dimensions that suit it best.
In Table 1, we report the throughput measured for each scheme,
on a database roughly 1 GB in size, where we take the entry
size to be that for which the highest throughput was reported in
the corresponding paper (or in a related paper, if it is not made
explicit). These entry sizes appear in Table 10. We confirm that
these throughputs are indeed the best achievable by measuring
each scheme’s throughput on each entry size in Figure 7.
SimplePIR andDoublePIR achieve throughputs of 10.0GB/s

and 7.4 GB/s respectively, which is roughly 8× faster than the
best prior single-server PIR scheme designed for the streaming
setting (SpiralStreamPack) and 30× faster than the best prior
single-server PIR scheme designed for databases with short
entries (Spiral). SimplePIR and DoublePIR exceed the per-
server throughput1 of some prior two-server PIR schemes: two-
server PIR from DPFs [59] has a throughput of 5.3 GB/s/core.
Finally, we benchmark the throughput of performing only
XORs over a database to provide a hard upper bound on the
speed of linear-work, two-server PIR [13,27].When each server
performs a linear scan of XORs over the database, two-server
PIR’s throughput is 5.9 GB/s/core. When each server performs
a linear scan of XORs over a random half of the database, two-
server PIR’s throughput is 11.5 GB/s/core—but this requires a
non-constant-time implementation (see discussion in Table 1).
Communication. In Figure 7, we give each scheme’s total

1In computing the per-server throughput of two-server PIR (from DPFs and
from XOR), we divide the measured throughput by two.

12

github.com/ahenzinger/simplepir

1 10 100 100010000
Entry size (in bits)

100 KB

1 MB

10 MB

100 MB

1 GB

10 GB

Co
m
m
un

ic
at
io
n

(a
m
or
tiz

ed
ov

er
10

0
qu

er
ie
s)

SimplePIR

DoublePIR

SealPIR

FastPIR

OnionPIR
SpiralSpiralPack

SpiralStream

SpiralStreamPack

1 10 100 1000 10000
Entry size (in bits)

10

100

1000

10000

Th
ro
ug

hp
ut

(M
B/
s)

SimplePIR
DoublePIR

SealPIR
FastPIR

OnionPIR

Spiral
SpiralPack
SpiralStream

SpiralStreamPack

Figure 7: Throughput
and per-query commu-
nication for each PIR
scheme, on a 1 GB
database with entries
of increasing size. The
per-query communica-
tion cost is the total
(i.e., offline and online)
per-query communica-
tion, amortized over
100 queries.

communication, amortized over 100 queries, for increasing
entry sizes. On databases with short entries, DoublePIR’s
amortized communication is comparable to that of the most
communication-efficient schemes (Spiral, SpiralPack, SealPIR,
and OnionPIR). With larger entries, DoublePIR’s ammortized
communication costs increase, as the client must download
many hints. The two schemes with the closest throughput to
ours (SpiralStream and SpiralStreamPack), as well as Fast-
PIR, have much larger amortized communication than both
DoublePIR and SimplePIR on entry sizes less than a kilobit.
Throughput vs. communication trade-off. We summa-
rize these findings in Figure 6, which displays the through-
put/communication trade-off achieved by each PIR scheme.
Concretely, we run each scheme on a database of 233 bits with
increasing entry sizes (as also done in Figure 7). Then, for each
scheme, we display the per-query communication (amortized
over 100 queries) and the corresponding throughput for two
choices of the entry size: one that maximizes the through-
put, and another that minimizes the communication. Figure 6
demonstrates that our new PIR schemes achieve a novel point in
the design space: SimplePIR and DoublePIR have substantially
higher throughput than all prior single-server PIR schemes;
DoublePIR further has a per-query communication cost that is
competitive with the most communication-efficient schemes.
Comparison on a database of 233 × 1-bit entries. In Table 8,
we give a fine-grained comparison of the performance of each
scheme on a database relevant to our application, consisting
of 233 1-bit entries. On this database, SimplePIR and Dou-
blePIR again achieve much higher throughput than all other
schemes (9.9 GB/s and 7.4 GB/s respectively). SimplePIR has
high offline download and thus also client-side storage costs.
However, DoublePIR’s offline download is comparable to the
offline communication of other PIR schemes, and its online
communication is on the order of kilobytes.
For each scheme, we additionally compute its cost per query,

when the client makes 100 queries, using the AWS costs
for compute ($1.5 · 10−5/core-second) and data transfer out
of Amazon EC2 ($0.09/GB). SimplePIR’s per-query cost is
$1 · 10−4, while DoublePIR and the cheapest scheme from
related work (SpiralStreamPack) each achieve a per-query cost

1 4 16 64 2561024
Num. queries per batch

10

100

1000

Th
ro
ug

hp
ut

(G
B/
s)

Sim
ple

PIR
DoublePIR

Figure 9: Effective PIR
throughput (database size
× queries per second),
with increasing batch sizes
and a fixed-size hint, on
a database consisting of
233×1-bit entries. The
shading displays the stan-
dard deviation.

of $2 · 10−5. We note, however, that SpiralStreamPack requires
megabytes of online upload, which is not reflected in its per-
query cost, as AWS only charges for outgoing communication.
Batching queries. Finally, we evaluate how SimplePIR and
DoublePIR’s effective throughput scales when the client makes
a batch of queries for 𝑘 records at once, assuming the client
only needs to recover a constant fraction of the 𝑘 records. For
increasing values of 𝑘 , we compute the expected number of
“successful” queries (i.e., the expected number of queries that
fall into a distinct database chunk, as discussed in Section 4.3)
and we derive the expected “successful” throughput—that is,
the throughput measured when the server answers that number
of queries at once, with a single pass over the database.
Figure 9 shows that SimplePIR and DoublePIR’s throughput

increases when the client makes a batch of queries at once.
SimplePIR’s throughput scales linearly, achieving a value of
over 100 GB/s on batch size 𝑘 ≥ 16 and 1000 GB/s on batch
size 𝑘 ≥ 256. DoublePIR achieves a throughput over 50 GB/s
for 𝑘 ≥ 32; when 𝑘 ≥ 256, the throughput plateaus at roughly
100 GB/s, as the second level of PIR becomes a bottleneck.
In ??, we give additional benchmarks that measure the server

preprocessing time, the client time, and the non-amortized
communication of our new PIR schemes, along with tables
containing the data displayed in Figures 6, 7 and 9.

8.2 Certificate Transparency benchmark
We propose using DoublePIR for the SCT auditing application.
With our new data structure for private set membership, the task
of SCT auditing requires a single round of PIR over a database
with 1-bit entries. For such a database, our microbenchmarks

13

in Section 8.1 show that DoublePIR achieves both high server
throughput and small client storage and communication. SCT
auditing occurs in the background, and is not on the critical
path to web browsing. Thus, while using PIR may increase the
latency of auditing, we believe this is a desirable trade-off in
exchange for cryptographic privacy, as long as the computation
remains modest and the communication remains comparable.
To benchmark DoublePIR in this application context, we

evaluate the scheme on a database consisting of 236 × 1-bit
entries, which is the size of a Bloom filter in our approximate
set membership data structure when we instantiate it with all 5
billion active SCTs. (In our evaluation, each entry is a random
bit.) On this database size, we measure that DoublePIR has
a “hint” of size 16 MB, an online upload of 724 KB, and
an online download of 32 KB. The server can answer each
query in fewer than 1.3 core-seconds (and this work is fully
parallelizable).
As our client must audit one in every 5,000 TLS connections,

our proposal for SCT auditing then requires: (1) 16 MB of
client storage and download every month (to keep the client
hint), and (2) per TLS connection, an amortized overhead
of 0.0003 core-seconds of server compute and 150 bytes of
communication. Using the AWS costs for compute ($1.5 · 10−5

per core second) and data transfer ($0.09 per outgoing GB),
for each client, this amounts to a fixed cost of $0.001 per
month, along with $4 · 10−9 per TLS connection. For a typical
client making 104 TLS connections per week [4], we expect
this cost to be roughly $0.02 per year. Since (after sampling
its TLS connections) a typical client makes only few queries
to the auditor using each month’s hint, we can reduce the
client’s storage to less than 150 KB using the optimization
from Appendix E.3.
By comparison, Chrome’s SCT auditing scheme [35] pro-

vides only 𝑘-anonymity for 𝑘 =1,000: the server learns that a
client visited one of a set of 1,000 domains. Auditing incurs
an amortized overhead of 24 B of communication per con-
nection2, negligible server computation, and no client storage
(unless the client caches popular SCTs). Again assuming a
client making 104 TLS connections per week [4], we expect
this scheme to cost roughly $0.001/client/year. Our approach
using DoublePIR incurs 23× more communication to achieve
the goal of cryptographic privacy.

9 Conclusion
We show that the per-core throughput of single-server PIR
can approach the memory bandwidth of the machine and the
performance of two-server PIR. Two exciting directions remain
open: one is to reduce our schemes’ communication; another is
to combine our ideas with those of sublinear-time PIR [30,31]
to reduce the computation beyond the linear-server-time barrier.

2The communication may be smaller in practice as the total number of SCTs
and the number of SCTs matching each prefix varies.

Acknowledgements.We thank Martin Albrecht for answering
questions about LWE hardness estimates, Vadim Lyubashevsky
for advice on discrete gaussian sampling, and Adam Belay
and Zhenyuan Ruan for discussions about AVX performance.
We are grateful to Anish Athalye, Derek Leung, and Ryan
Lehmkuhl for reviewing a draft of this work, and to Dima
Kogan, David Wu, Jean-Philippe Bossuat, Samir Menon, Alex
Davidson, Sofía Celi, Emily Stark, Kevin Yeo, and Joe DeBla-
sio for helpful conversations and feedback. We thank Sebastian
Angel for constructive comments on the discussion ofmalicious
security in an earlier version of this work, and for suggestions
on how to improve the presentation. We thank Yuval Ishai and
Matan Hamilis for discussing how best to compare against two-
server PIR schemes. Yuval also helpfully suggested the “XOR
PIR fast” construction discussed in Table 1. This work was
supported in part by the National Science Foundation (Award
CNS-2054869), a gift from Google, a Facebook Research
Award, and MIT’s Fintech@CSAIL Initiative. Alexandra Hen-
zinger was supported by the National Science Foundation
Graduate Research Fellowship under Grant No. 2141064 and
an EECS Great Educators Fellowship. Matthew M. Hong was
funded by NIH R01 HG010959. Vinod Vaikuntanathan was
supported by DARPA under Agreement No. HR00112020023,
NSF CNS-2154149, MIT-IBM Watson AI, Analog Devices, a
Microsoft Trustworthy AI grant and a Thornton Family Faculty
Research Innovation Fellowship. Any opinions, findings and
conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views
of the United States Government or DARPA.

References
[1] Chrome SCT Auditing Hash Prefix Length.

https://source.chromium.org/chromium/

chromium/src/+/main:services/network/sct_

auditing/sct_auditing_reporter.cc;l=39;drc=

ab2806d582b36d2da8d2178aca83031ab99ed5da. Ac-
cessed 4 Nov 2022.

[2] Chrome SCT Auditing Sampling Rate. https:

//source.chromium.org/chromium/chromium/src/+/

main:chrome/common/chrome_features.cc;l=1007;

drc=50d8da971873550eb909b9c177cf6188e81ff4c3.
Accessed 4 Nov 2022.

[3] Merkle town. https://merkle.town/.

[4] Mozilla Telemetry Portal, Measurement Dash-
board. https://telemetry.mozilla.org/new-

pipeline/dist.html#!cumulative=0&end_date=

2022-07-17&include_spill=0&keys=__none__!__

none__!__none__&max_channel_version=nightly%

252F104&measure=HTTP_TRANSACTION_IS_SSL&min_

channel_version=nightly%252F104&processType=

*&product=Firefox&sanitize=1&sort_by_value=

14

https://source.chromium.org/chromium/chromium/src/+/main:services/network/sct_auditing/sct_auditing_reporter.cc;l=39;drc=ab2806d582b36d2da8d2178aca83031ab99ed5da
https://source.chromium.org/chromium/chromium/src/+/main:services/network/sct_auditing/sct_auditing_reporter.cc;l=39;drc=ab2806d582b36d2da8d2178aca83031ab99ed5da
https://source.chromium.org/chromium/chromium/src/+/main:services/network/sct_auditing/sct_auditing_reporter.cc;l=39;drc=ab2806d582b36d2da8d2178aca83031ab99ed5da
https://source.chromium.org/chromium/chromium/src/+/main:services/network/sct_auditing/sct_auditing_reporter.cc;l=39;drc=ab2806d582b36d2da8d2178aca83031ab99ed5da
https://source.chromium.org/chromium/chromium/src/+/main:chrome/common/chrome_features.cc;l=1007;drc=50d8da971873550eb909b9c177cf6188e81ff4c3
https://source.chromium.org/chromium/chromium/src/+/main:chrome/common/chrome_features.cc;l=1007;drc=50d8da971873550eb909b9c177cf6188e81ff4c3
https://source.chromium.org/chromium/chromium/src/+/main:chrome/common/chrome_features.cc;l=1007;drc=50d8da971873550eb909b9c177cf6188e81ff4c3
https://source.chromium.org/chromium/chromium/src/+/main:chrome/common/chrome_features.cc;l=1007;drc=50d8da971873550eb909b9c177cf6188e81ff4c3
https://merkle.town/
https://telemetry.mozilla.org/new-pipeline/dist.html#!cumulative=0&end_date=2022-07-17&include_spill=0&keys=__none__!__none__!__none__&max_channel_version=nightly%252F104&measure=HTTP_TRANSACTION_IS_SSL&min_channel_version=nightly%252F104&processType=*&product=Firefox&sanitize=1&sort_by_value=0&sort_keys=submissions&start_date=2022-06-27&table=1&trim=1&use_submission_date=0
https://telemetry.mozilla.org/new-pipeline/dist.html#!cumulative=0&end_date=2022-07-17&include_spill=0&keys=__none__!__none__!__none__&max_channel_version=nightly%252F104&measure=HTTP_TRANSACTION_IS_SSL&min_channel_version=nightly%252F104&processType=*&product=Firefox&sanitize=1&sort_by_value=0&sort_keys=submissions&start_date=2022-06-27&table=1&trim=1&use_submission_date=0
https://telemetry.mozilla.org/new-pipeline/dist.html#!cumulative=0&end_date=2022-07-17&include_spill=0&keys=__none__!__none__!__none__&max_channel_version=nightly%252F104&measure=HTTP_TRANSACTION_IS_SSL&min_channel_version=nightly%252F104&processType=*&product=Firefox&sanitize=1&sort_by_value=0&sort_keys=submissions&start_date=2022-06-27&table=1&trim=1&use_submission_date=0
https://telemetry.mozilla.org/new-pipeline/dist.html#!cumulative=0&end_date=2022-07-17&include_spill=0&keys=__none__!__none__!__none__&max_channel_version=nightly%252F104&measure=HTTP_TRANSACTION_IS_SSL&min_channel_version=nightly%252F104&processType=*&product=Firefox&sanitize=1&sort_by_value=0&sort_keys=submissions&start_date=2022-06-27&table=1&trim=1&use_submission_date=0
https://telemetry.mozilla.org/new-pipeline/dist.html#!cumulative=0&end_date=2022-07-17&include_spill=0&keys=__none__!__none__!__none__&max_channel_version=nightly%252F104&measure=HTTP_TRANSACTION_IS_SSL&min_channel_version=nightly%252F104&processType=*&product=Firefox&sanitize=1&sort_by_value=0&sort_keys=submissions&start_date=2022-06-27&table=1&trim=1&use_submission_date=0
https://telemetry.mozilla.org/new-pipeline/dist.html#!cumulative=0&end_date=2022-07-17&include_spill=0&keys=__none__!__none__!__none__&max_channel_version=nightly%252F104&measure=HTTP_TRANSACTION_IS_SSL&min_channel_version=nightly%252F104&processType=*&product=Firefox&sanitize=1&sort_by_value=0&sort_keys=submissions&start_date=2022-06-27&table=1&trim=1&use_submission_date=0
https://telemetry.mozilla.org/new-pipeline/dist.html#!cumulative=0&end_date=2022-07-17&include_spill=0&keys=__none__!__none__!__none__&max_channel_version=nightly%252F104&measure=HTTP_TRANSACTION_IS_SSL&min_channel_version=nightly%252F104&processType=*&product=Firefox&sanitize=1&sort_by_value=0&sort_keys=submissions&start_date=2022-06-27&table=1&trim=1&use_submission_date=0

0&sort_keys=submissions&start_date=2022-06-

27&table=1&trim=1&use_submission_date=0. Ac-
cessed 19 July 2022.

[5] Carlos Aguilar-Melchor, Joris Barrier, Laurent Fousse,
and Marc-Olivier Killijian. XPIR: Private information
retrieval for everyone. PoPETs, 2016.

[6] Ishtiyaque Ahmad, Yuntian Yang, Divyakant Agrawal,
Amr El Abbadi, and Trinabh Gupta. Addra: Metadata-
private voice communication over fully untrusted infras-
tructure. In OSDI, 2021.

[7] Martin Albrecht, Rachel Player, and Sam Scott. On the
concrete hardness of learning with errors. In Journal of
Mathematical Cryptology, 2015.

[8] Asra Ali, Tancrède Lepoint, Sarvar Patel, Mariana
Raykova, Phillipp Schoppmann, Karn Seth, and Kevin
Yeo. Communication–Computation trade-offs in PIR. In
USENIX Security, 2021.

[9] Sebastian Angel, Hao Chen, Kim Laine, and Srinath
Setty. PIR with compressed queries and amortized query
processing. In S&P, 2018.

[10] Sebastian Angel and Srinath Setty. Unobservable com-
munication over fully untrusted infrastructure. In OSDI,
2016.

[11] Michael Backes, Aniket Kate, Matteo Maffei, and Kim
Pecina. ObliviAd: provably secure and practical online
behavioral advertising. In S&P, 2012.

[12] W. Banaszczyk. Inequalities for convex bodies and polar
reciprocal lattices in R𝑛. Discrete & computational
geometry, 1995.

[13] Amos Beimel, Yuval Ishai, and Tal Malkin. Reducing
the servers’ computation in private information retrieval:
PIR with preprocessing. J. Cryptol., 2004.

[14] Mihir Bellare and Phillip Rogaway. Random oracles are
practical: A paradigm for designing efficient protocols.
In CCS, 1993.

[15] Burton H Bloom. Space/time trade-offs in hash coding
with allowable errors. Communications of the ACM,
1970.

[16] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function
secret sharing: Improvements and extensions. In CCS,
2016.

[17] Elette Boyle, Yuval Ishai, Rafael Pass, andMaryWootters.
Can we access a database both locally and privately? In
TCC, 2017.

[18] Elette Boyle, Lisa Kohl, and Peter Scholl. Homomorphic
secret sharing from lattices without fhe. In EUROCRYPT,
2019.

[19] Zvika Brakerski. Fully homomorphic encryption without
modulus switching from classical GapSVP. In CRYPTO,
2012.

[20] Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio
Malavolta. Leveraging linear decryption: Rate-1 fully-
homomorphic encryption and time-lock puzzles. In TCC,
2019.

[21] Christian Cachin, Silvio Micali, and Markus Stadler.
Computationally private information retrieval with poly-
logarithmic communication. In EUROCRYPT, 1999.

[22] Ran Canetti, Justin Holmgren, and Silas Richelson. To-
wards doubly efficient private information retrieval. In
TCC, 2017.

[23] Yan-Cheng Chang. Single database private information
retrieval with logarithmic communication. In ACISP,
2004.

[24] Melissa Chase, Sanjam Garg, Mohammad Hajiabadi,
Jialin Li, and Peihan Miao. Amortizing rate-1 OT and
applications to PIR and PSI. In TCC, 2021.

[25] Massimo Chenal and Qiang Tang. On key recovery at-
tacks against existing somewhat homomorphic encryption
schemes. Cryptology ePrint Archive, Report 2014/535,
2014.

[26] Benny Chor, Niv Gilboa, and Moni Naor. Private infor-
mation retrieval by keywords. Cryptology ePrint Archive,
Report 1998/003, 1998.

[27] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and
Madhu Sudan. Private information retrieval. In FOCS,
1995.

[28] David Clayton, Christopher Patton, and Thomas Shrimp-
ton. Probabilistic data structures in adversarial environ-
ments. In CCS, 2019.

[29] Don Coppersmith and Shmuel Winograd. Matrix multi-
plication via arithmetic progressions. In STOC, 1987.

[30] HenryCorrigan-Gibbs, AlexandraHenzinger, andDmitry
Kogan. Single-server private information retrieval with
sublinear amortized time. In EUROCRYPT, 2022.

[31] Henry Corrigan-Gibbs and Dmitry Kogan. Private infor-
mation retrieval with sublinear online time. In EURO-
CRYPT, 2020.

15

https://telemetry.mozilla.org/new-pipeline/dist.html#!cumulative=0&end_date=2022-07-17&include_spill=0&keys=__none__!__none__!__none__&max_channel_version=nightly%252F104&measure=HTTP_TRANSACTION_IS_SSL&min_channel_version=nightly%252F104&processType=*&product=Firefox&sanitize=1&sort_by_value=0&sort_keys=submissions&start_date=2022-06-27&table=1&trim=1&use_submission_date=0
https://telemetry.mozilla.org/new-pipeline/dist.html#!cumulative=0&end_date=2022-07-17&include_spill=0&keys=__none__!__none__!__none__&max_channel_version=nightly%252F104&measure=HTTP_TRANSACTION_IS_SSL&min_channel_version=nightly%252F104&processType=*&product=Firefox&sanitize=1&sort_by_value=0&sort_keys=submissions&start_date=2022-06-27&table=1&trim=1&use_submission_date=0

[32] Rasmus Dahlberg, Tobias Pulls, Tom Ritter, and
Paul Syverson. Privacy-preserving and incrementally-
deployable support for Certificate Transparency in Tor.
PoPETS, 2021.

[33] Ivan Damgård andMads Jurik. A generalisation, a simpli-
fication and some applications of Paillier’s probabilistic
public-key system. In PKC, 2001.

[34] Alex Davidson, Gonçalo Pestana, and Sofía Celi.
Frodopir: Simple, scalable, single-server private informa-
tion retrieval. Cryptology ePrintArchive, Paper 2022/981,
2022.

[35] Joe DeBlasio. Opt-out SCT auditing in Chrome.
https://docs.google.com/document/d/16G-

Q7iN3kB46GSW5b-sfH5MO3nKSYyEb77YsM7TMZGE/edit.

[36] Peter C. Dillinger and StefanWalzer. Ribbon filter: practi-
cally smaller than bloom and xor. CoRR, abs/2103.02515,
2021.

[37] Roger Dingledine, Nick Mathewson, and Paul Syverson.
Tor: The Second-Generation onion router. In USENIX
Security, 2004.

[38] Yevgeniy Dodis, Shai Halevi, Ron D. Rothblum, and
Daniel Wichs. Spooky encryption and its applications.
In CRYPTO, 2016.

[39] Nico Döttling, Sanjam Garg, Yuval Ishai, Giulio Mala-
volta, Tamer Mour, and Rafail Ostrovsky. Trapdoor hash
functions and their applications. In CRYPTO, 2019.

[40] Taher ElGamal. A public key cryptosystem and a signa-
ture scheme based on discrete logarithms. IEEE transac-
tions on information theory, 1985.

[41] Saba Eskandarian, Eran Messeri, Joseph Bonneau, and
Dan Boneh. Certificate Transparency with privacy. In
PETS, 2017.

[42] Junfeng Fan and Frederik Vercauteren. Somewhat prac-
tical fully homomorphic encryption. Cryptology ePrint
Archive, Paper 2012/144, 2012.

[43] Prastudy Fauzi, Martha Norberg Hovd, and Håvard Rad-
dum. A practical adaptive key recovery attack on the
LGM (GSW-like) cryptosystem. In PQCrypto, 2021.

[44] Prastudy Fauzi, Martha Norberg Hovd, and Håvard Rad-
dum. On the IND-CCA1 security of FHE schemes.
Cryptography, 2022.

[45] Mia Filić, Kenneth G. Paterson, Anupama Unnikrishnan,
and FernandoVirdia. Adversarial correctness and privacy
for probabilistic data structures. CCS, 2022.

[46] Michael J. Freedman, Kobbi Nissim, and Benny Pinkas.
Efficient private matching and set intersection. In EURO-
CRYPT, 2004.

[47] Craig Gentry. Fully homomorphic encryption using ideal
lattices. In STOC, 2009.

[48] Craig Gentry and Shai Halevi. Compressible FHE with
applications to PIR. In TCC, 2019.

[49] Craig Gentry and Zulfikar Ramzan. Single-database pri-
vate information retrieval with constant communication
rate. In ICALP, 2005.

[50] Niv Gilboa and Yuval Ishai. Distributed point functions
and their applications. In EUROCRYPT, 2014.

[51] Shafi Goldwasser and Silvio Micali. Probabilistic en-
cryption. Journal of Computer and System Sciences,
1984.

[52] Google. Safe BrowsingAPIs (v4). https://developers.
google.com/safe-browsing/v4.

[53] Thomas Mueller Graf and Daniel Lemire. Xor filters:
Faster and smaller than bloom and cuckoo filters. ACM
J. Exp. Algorithmics, 2020.

[54] Matthew Green, Watson Ladd, and Ian Miers. A protocol
for privately reporting ad impressions at scale. In CCS,
2016.

[55] Trinabh Gupta, Natacha Crooks, Whitney Mulhern, Sri-
nath Setty, Lorenzo Alvisi, andMichaelWalfish. Scalable
and private media consumption with Popcorn. In NSDI,
2016.

[56] Daniel Günther, Maurice Heymann, Benny Pinkas, and
Thomas Schneider. GPU-accelerated PIR with Client-
Independent preprocessing for Large-Scale applications.
In Usenix Security, 2022.

[57] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit
Sahai. Batch codes and their applications. In STOC, 2004.

[58] Ari Juels. Targeted advertising ... and privacy too. In
CT-RSA, 2001.

[59] Daniel Kales, OlamideOmolola, and SebastianRamacher.
Revisiting user privacy for certificate transparency. In
EuroS&P, 2019.

[60] Daniel Kales, Christian Rechberger, Thomas Schneider,
Matthias Senker, and Christian Weinert. Mobile private
contact discovery at scale. In USENIX Security, 2019.

[61] Dmitry Kogan and Henry Corrigan-Gibbs. Private block-
list lookups with Checklist. In USENIX Security, 2021.

16

https://docs.google.com/document/d/16G-Q7iN3kB46GSW5b-sfH5MO3nKSYyEb77YsM7TMZGE/edit
https://docs.google.com/document/d/16G-Q7iN3kB46GSW5b-sfH5MO3nKSYyEb77YsM7TMZGE/edit
https://developers.google.com/safe-browsing/v4
https://developers.google.com/safe-browsing/v4

[62] Eyal Kushilevitz and Rafail Ostrovsky. Replication is
not needed: Single database, computationally-private
information retrieval. In FOCS, 1997.

[63] Ben Laurie. Certificate transparency. Communications
of the ACM, 2014.

[64] Ben Laurie, Adam Langley, and Emilia Kasper. Certifi-
cate transparency. RFC 6962, 2013.

[65] François LeGall. Faster algorithms for rectangular matrix
multiplication. In FOCS, 2012.

[66] Lucy Li, Bijeeta Pal, Junade Ali, Nick Sullivan, Rahul
Chatterjee, and Thomas Ristenpart. Protocols for check-
ing compromised credentials. In CCS, 2019.

[67] Jilan Lin, Ling Liang, Zheng Qu, Ishtiyaque Ahmad, Liu
Liu, Fengbin Tu, Trinabh Gupta, Yufei Ding, and Yuan
Xie. INSPIRE: In-storage private information retrieval
via protocol and architecture co-design. In ISCA, 2022.

[68] Richard Lindner and Chris Peikert. Better key sizes (and
attacks) for LWE-based encryption. In CT-RSA, 2011.

[69] Helger Lipmaa. An oblivious transfer protocol with log-
squared communication. In International Conference on
Information Security, 2005.

[70] Jake Loftus, Alexander May, Nigel P. Smart, and Frederik
Vercauteren. On CCA-secure somewhat homomorphic
encryption. In Selected Areas in Cryptography, 2012.

[71] Wouter Lueks and Ian Goldberg. Sublinear scaling for
multi-client private information retrieval. In Interna-
tional Conference on Financial Cryptography and Data
Security, 2015.

[72] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On
ideal lattices and learning with errors over rings. Journal
of the ACM, 2013.

[73] Yiping Ma, Ke Zhong, Tal Rabin, and Sebastian Angel.
Incremental offline/online PIR. In USENIX Security,
2022.

[74] Sarah Meiklejohn, Joe DeBlasio, Devon O’Brien, Chris
Thompson, Kevin Yeo, and Emily Stark. SoK: SCT
auditing in Certificate Transparency. In PETS, 2022.

[75] Marcela S. Melara, Aaron Blankstein, Joseph Bonneau,
Edward W. Felten, and Michael J. Freedman. CONIKS:
Bringing key transparency to end users. In USENIX
Security, 2015.

[76] Samir Jordan Menon and David J. Wu. Spiral: Fast,
high-rate single-server PIR via FHE composition. In
S&P, 2022.

[77] Muhammad Haris Mughees, Hao Chen, and Ling Ren.
OnionPIR: Response efficient single-server PIR. In CCS,
2021.

[78] Moni Naor and Eylon Yogev. Bloom filters in adversarial
environments. In CRYPTO, 2015.

[79] Tatsuaki Okamoto and Shigenori Uchiyama. A new
public-key cryptosystem as secure as factoring. In EU-
ROCRYPT, 1998.

[80] Rafail Ostrovsky and William E Skeith. A survey of
single-database private information retrieval: Techniques
and applications. In PKC, 2007.

[81] Pascal Paillier. Public-key cryptosystems based on com-
posite degree residuosity classes. In EUROCRYPT, 1999.

[82] Bijeeta Pal, Mazharul Islam, Thomas Ristenpart, and
Rahul Chatterjee. Might I Get Pwned: A second gen-
eration password breach alerting service. In USENIX
Security, 2022.

[83] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters.
A framework for efficient and composable oblivious
transfer. In CRYPTO, 2008.

[84] Giuseppe Persiano and Kevin Yeo. Limits of preprocess-
ing for single-server PIR. In SODA, 2022.

[85] Joel Reardon, Jeffrey Pound, and Ian Goldberg.
Relational-complete private information retrieval. Tech-
nical report, University of Waterloo, CACR, 2007.

[86] Oded Regev. On lattices, learning with errors, random
linear codes, and cryptography. Journal of the ACM,
2009.

[87] Sacha Servan-Schreiber, Kyle Hogan, and Srinivas De-
vadas. AdVeil: A private targeted-advertising ecosystem.
Cryptology ePrint Archive, Report 2021/1032, 2021.

[88] Elaine Shi, Waqar Aqeel, Balakrishnan Chandrasekaran,
and Bruce Maggs. Puncturable pseudorandom sets and
private information retrieval with near-optimal online
bandwidth and time. In CRYPTO, 2021.

[89] Emily Stark and Chris Thompson. Opt-in SCT audit-
ing, 2020. https://docs.google.com/document/d/

1G1Jy8LJgSqJ-B673GnTYIG4b7XRw2ZLtvvSlrqFcl4A/

edit.

[90] Volker Strassen. Gaussian elimination is not optimal.
Numerische mathematik, 1969.

[91] Kurt Thomas, Jennifer Pullman, Kevin Yeo, Ananth
Raghunathan, Patrick Gage Kelley, Luca Invernizzi, Bor-
bala Benko, Tadek Pietraszek, Sarvar Patel, Dan Boneh,

17

https://docs.google.com/document/d/1G1Jy8LJgSqJ-B673GnTYIG4b7XRw2ZLtvvSlrqFcl4A/edit
https://docs.google.com/document/d/1G1Jy8LJgSqJ-B673GnTYIG4b7XRw2ZLtvvSlrqFcl4A/edit
https://docs.google.com/document/d/1G1Jy8LJgSqJ-B673GnTYIG4b7XRw2ZLtvvSlrqFcl4A/edit

and Elie Bursztein. Protecting accounts from creden-
tial stuffing with password breach alerting. In USENIX
Security, 2019.

[92] Vish Viswanathan, Karthik Kumar, Thomas
Willhalm, Blazej Filipiak Patrick Lu, and Sri
Sakthivelu. Intel Memory Latency Checker.
https://www.intel.com/content/www/us/en/

developer/articles/tool/intelr-memory-latency-

checker.html.

[93] Frank Wang, Catherine Yun, Shafi Goldwasser, Vinod
Vaikuntanathan, and Matei Zaharia. Splinter: Practical
private queries on public data. In NSDI, 2017.

[94] Ke Coby Wang and Michael K Reiter. Detecting stuffing
of a user’s credentials at her own accounts. In USENIX
Security, 2020.

[95] Virginia Vassilevska Williams. Multiplying matrices
faster than Coppersmith-Winograd. In STOC, 2012.

[96] Zhenfei Zhang, Thomas Plantard, and Willy Susilo. On
the CCA-1 security of somewhat homomorphic encryp-
tion over the integers. In Mark D. Ryan, Ben Smyth, and
Guilin Wang, editors, Information Security Practice and
Experience, 2012.

[97] Mingxun Zhou, Wei-Kai Lin, Yiannis Tselekounis, and
Elaine Shi. Optimal single-server private information
retrieval. Cryptology ePrint Archive, Paper 2022/609,
2022.

A Additional details on related work
For each PIR scheme from related work, we take its “optimal”
entry size to be that for which the highest throughput was
reported in the corresponding paper (or, if omitted, in a related
paper). For each of our new PIR schemes (SimplePIR and
DoublePIR), we compute its “optimal” entry size by executing
the scheme on entries of increasing size, and selecting the entry
size that yields the highest throughput. In Table 10, we display
these entry sizes, along with each PIR scheme’s measured
throughput on a database roughly 1 GB in size, with entries of
the optimal size.

B Client-state-recovery attacks on
some existing PIR schemes

We demonstrate that several recent PIR schemes, including
SealPIR and its descendants [6,8,9,76,77], are insecure against
a certain type of active attack that enables the server to recover
a client’s long-term, secret state. After such an attack, the server
can learn the contents of all of the client’s PIR queries—even
the ones made before the attacker compromised the server. In

Database size Max. achievable
𝑁 × 𝑑 throughput/core

Prior two-server PIR
DPF PIR [59] 225 32 B 5,381 MB/s∗
XOR PIR 233 1 bit 6,067 MB/s∗
XOR PIR fast 233 1 bit 11,797 MB/s∗

Prior single-server PIR
SealPIR [9] 222 288 B 97MB/s
MulPIR [8] 105 40 KB 69MB/s†
FastPIR [6] 220 1024 B 215MB/s
OnionPIR [77] 215 30 KB 104MB/s
Spiral [76] 214 100 KB 353MB/s
SpiralPack [76] 215 30 KB 303MB/s
SpiralStream [76] 215 30 KB 518MB/s
SpiralStreamPack [76] 215 30 KB 1,314 MB/s
FrodoPIR [34] 220 1 KB 1,256 MB/s

This work (single-server PIR)
SimplePIR 220 1 KB 10,305 MB/s
DoublePIR 233 1 bit 7,622 MB/s

Table 10: Maximal throughput measured for each PIR scheme, on
databases of size roughly 1 GB, consisting of 𝑁 entries each of size
𝑑. The entry sizes, 𝑑, are those for which the highest throughput was
reported in the corresponding paper. ∗The throughput is normalized
by the number of servers, i.e., divided by two for 2-server PIR schemes.
†We estimate MulPIR’s throughput from the measurements given in
the paper, as no implementation is publicly available at this date.

contrast, our PIR schemes are not vulnerable to this type of
attack (see Remark 3.2) and thus provide a form of forward
secrecy (Definition B.1).
Fully reasoning about the security of single-server PIR

schemes under active attack is nuanced and beyond the scope
of this paper. We point out this active attack to highlight the
fact that PIR schemes with secret long-term client state can
carry additional security risks that our schemes do not.
The active attack applies to schemes in which the client

holds and uses a persistent state across many queries. The
state is a secret key for a homomorphic-encryption scheme.
In particular, such schemes have the following syntax: first,
the client runs a setup algorithm, which we call Setup𝑐 . In
contrast, in our new PIR schemes, it is the server who runs the
setup algorithm. The Setup𝑐 algorithm generates two pieces
of information:
1. a public hint, 𝜎𝑠 , that the client transmits to the server, and
2. a private hint, 𝜎𝑐 , that the client keeps to itself.
Both 𝜎𝑠 and 𝜎𝑐 are re-used (by the server and the client
respectively) across many queries: each time the client
wants to query for some index 𝑗 ∈ [𝑁], the client runs
Query(𝜎𝑐 , 𝑗) → (st, qu) and sends qu to the server. The
server runs Answer(db, 𝜎𝑠 , qu) → ans and sends ans to the
client. Finally, the client runs Recover(st, 𝜎𝑐 , ans) → 𝑑 to
recover the database record of interest. As we will show in
the remainder of this section, this syntax can be problematic

18

https://www.intel.com/content/www/us/en/developer/articles/tool/intelr-memory-latency-checker.html
https://www.intel.com/content/www/us/en/developer/articles/tool/intelr-memory-latency-checker.html
https://www.intel.com/content/www/us/en/developer/articles/tool/intelr-memory-latency-checker.html

as it lends itself to active attacks in which a malicious server
recovers the client’s private, persistent state 𝜎𝑐 .
We note that the reason why SealPIR and related schemes

reuse a persistent, secret client state over many queries is to
save on communication. In these schemes, 𝜎𝑐 holds the client’s
secret key for a homomorphic encryption scheme, while 𝜎𝑠

holds some “key-switching hints” associated with this key.
The server uses these “key-switching hints” to perform query
compression [9] or response packing [6].

Definition B.1 (Forward secrecy against active attacks). Given
a database size 𝑁 ∈ N, a number of queries 𝑄 ∈ N, and a
PIR scheme (Setup𝑐 ,Query,Answer,Recover), consider the
following experiment between a challenger and an adversary,
1. The challenger computes (𝜎𝑠 , 𝜎𝑐) ← Setup𝑐 (1𝜆) and
sends 𝜎𝑠 to the adversary.

2. The adversary sends 𝑖0, 𝑖1 ∈ [𝑁] to the challenger.
3. The challenger runs Query(𝜎𝑐 , 𝑖𝑏) → (_, qu), and sends
the query qu to the adversary.

4. For 𝑞 ∈ {1, · · · , 𝑄}:
• The adversary chooses index 𝑗𝑞 ∈ [𝑁] and sends it to
the challenger.

• The challenger runs Query(𝜎𝑐 , 𝑗𝑞) → (st𝑞 , qu𝑞) and
sends the query qu𝑞 to the adversary.

• The adversary computes some (potentially malformed)
ans′𝑞 and sends it to the challenger.

• The challenger runs Recover(st𝑞 , 𝜎𝑐 , ans
′
𝑞) → 𝑑 and

sends it to the adversary. (Note that 𝑑 could be the failure
symbol, ⊥, if the Recover algorithm fails on ans′𝑞 .)

5. The adversary outputs a guess 𝑏 ∈ {0, 1}.
The PIR scheme satisfies (𝑇, 𝜖)-forward secrecy against

active attacks for𝑄 queries if, for all 𝑁 ∈ N and all adversaries
A running in time at most 𝑇 and making up to 𝑄 queries in
the above experiment, it holds that

|Pr[𝑊0] − Pr[𝑊1] | ≤ 𝜖,

where𝑊𝑏 denotes the event that A outputs “1” in Experiment
𝑏, for 𝑏 ∈ {0, 1}.

Active attacks on some stateful PIR schemes. Existing PIR
schemes, which let the client reuse a secret key for homomor-
phic encryption indefinitely, do not provide forward secrecy
against active attacks because their underlying homomorphic
encryption schemes are not CCA1-secure [25, 43,44, 70,96].
In the remainder of this section, we show that there exist
attacks that, with polynomially many PIR queries, recover
the entire client state. For instance, consider SealPIR with
𝑑 = 1 (i.e., no recursion) and recall that the scheme uses
BFV encryption [19, 42], where the secret keys are ring ele-
ments 𝑠 = 𝑠0 + 𝑠1𝑥 + 𝑠2𝑥

2 + · · · + 𝑠𝑛−1𝑥
𝑛−1 in the quotient ring

𝑅𝑞 := Z𝑞 [𝑥]/(𝑥𝑛 + 1) and 𝑝 denotes the plaintext modulus.
We modify the existing CCA attacks on BFV encryption [25]

to obtain Algorithm 1, which is an active attack on SealPIR.
Conceptually, this attack recovers the client’s secret key by
performing a binary search for each 𝑠𝑖 ∈ Z𝑞 , for 𝑖 ∈ [𝑛].
Algorithm 1 Active attack for recovering 𝑠𝑖 ∈ Z𝑞 in SealPIR

Setup: LetO(·) ← Recover(st, 𝜎𝑐 , ·). (To implementO(·)
in step 4 of the experiment in Definition B.1, first send C any
index in [𝑁], and then send C the desired input to O(·).)
Define Δ← ⌊𝑞/𝑝⌋.
Algorithm: Let 𝑔 ← O(−1, 0), where 𝑔 ∈ Z𝑞 [𝑥]/(𝑥𝑛 + 1).
Let 𝑡 ← 𝑔[𝑖] (where 𝑔[𝑖] denotes the coefficient of 𝑥𝑖 in 𝑔).
if 𝑡 ≠ 0 then
Define 𝑀 ← Δ.

else
Define 𝑀 ← (𝑞 mod 𝑝) + Δ.

end if
Perform binary search to find the smallest 𝑗 ∈ {0, 1, · · · , 𝑀}
such that O(−1, 𝑗 · 𝑥𝑖) [𝑖] = (𝑡 + 1) mod 𝑝.
Output ((𝑡 · Δ +

⌊︁
Δ
2

⌋︁
+ 1) − 𝑗) mod 𝑞.

Analysis of Algorithm 1. In SealPIR, when 𝑑 = 1, the client’s
private hint 𝜎𝑐 is the BFV secret key, i.e., a secret ring element
𝑠 ∈ 𝑅𝑞 , that the client uses to generate its queries. The
server answers each client query with a single BFV ciphertext
(𝑎, 𝑏) ∈ 𝑅2

𝑞 . Finally, it holds that

O(−1, 𝑗 · 𝑥𝑖) = Dec𝐵𝐹𝑉 (𝑠, (−1, 𝑗 · 𝑥𝑖))
= RoundΔ (𝑗 · 𝑥𝑖 + 𝑠)/Δ, (1)

where RoundΔ (𝑔) rounds each coefficient of the polynomial 𝑔
to the closest multiple of Δ := ⌊𝑞/𝑝⌋.
By Equation (1), we see that 𝑡 (defined as in Algorithm 1)

is equal to O(−1, 0) [𝑖], or, equivalently, RoundΔ (𝑠𝑖)/Δ ∈ Z𝑝 .
Therefore, 𝑠𝑖 must fall into the following ranges:
• If 𝑡 = 0, then

𝑠𝑖 ∈
{︃
𝑝 · Δ −

⌊︃
Δ

2

⌋︃
, · · · , 𝑞 − 1

}︃
∪

{︃
0, · · · ,

⌊︃
Δ

2

⌋︃}︃
.

• If 𝑡 ≠ 0, then 𝑠𝑖 ∈
{︁
𝑡 · Δ −

⌊︁
Δ
2

⌋︁
, · · · , 𝑡 · Δ +

⌊︁
Δ
2

⌋︁}︁
.

Let 𝑗 be the smallest value in {0, . . . , 𝑀} such thatRoundΔ (𝑗+
𝑠𝑖)/Δ = RoundΔ (𝑠𝑖)/Δ + 1 ∈ Z𝑝. The algorithm performs a
binary search to find 𝑗 , requiring roughly log 𝑞 queries toO(·).
We observe that, after this binary search, 𝑗 will be exactly
𝑇−𝑠𝑖 , where𝑇 = 𝑡 ·Δ+

⌊︁
Δ
2

⌋︁
+1 is the “next rounding boundary”

of RoundΔ (·). Finally, the algorithm outputs 𝑇 − 𝑗 , which is
equal to 𝑠𝑖 . Thus, it successfully recovers 𝑠𝑖 ∈ Z𝑞 , with roughly
log 𝑞 queries to O(·).
To recover the entire secret key 𝑠, an attacker can perform the

above binary search for all coefficients in {𝑠𝑖}𝑖∈[𝑛] in parallel.
In other words, instead of asking the oracle O for (−1, 𝑗 · 𝑥𝑖),
the attacker may ask for (−1,

∑︁𝑛
𝑖=1 𝑗𝑖 · 𝑥𝑖), where the { 𝑗𝑖}𝑖∈[𝑛]

are the query points checked by each of the 𝑛 parallel binary
searches. So, the total number of queries needed to recover
𝑠 ∈ 𝑅𝑞 remains roughly log 𝑞. After this attack, the adversary

19

knows the client’s secret key, 𝑠, and can thus learn all of the
client’s past and future PIR queries.

C Additional material on SimplePIR

C.1 Parameter selection

We instantiate SimplePIR with the parameter choices that max-
imize its throughput, while meeting the desired correctness and
security requirements. Given a database size 𝑁 , a correctness
failure probability 𝛿, an adversary’s runtime 𝑇 , and a security
failure probability 𝜖 , we proceed as follows:
1. We first fix the ciphertext modulus 𝑞 to be one of
{216, 232, 264}, as modern hardware natively supports oper-
ations over Z𝑞 with these moduli.

2. We use LWE hardness estimates [7] to pick the LWE secret
dimension 𝑛 along with the LWE error distribution 𝜒, such
that a collection of

√
𝑁 such LWE samples is (𝑇, 𝜖)-secure

against known attacks.
3. We compute the largest plaintext modulus, 𝑝, such that the
chosen LWE parameters support at least

√
𝑁 homomorphic

additions, with correctness error probability 𝛿.
In this work, we take 𝜒 to be a discrete Gaussian distribution.

We give concrete values for our parameters in Section 4.2.

C.2 Correctness and security of SimplePIR

We now give the formal SimplePIR theorem statement:

Theorem C.1 (SimplePIR). On database size 𝑁 ∈ N, correct-
ness failure probability 𝛿, adversary runtime 𝑇 , and security
failure probability 𝜖 , let
• 𝜒 be the discrete Gaussian distribution with variance 𝜎2,
• (𝑛, 𝑞, 𝜒) be LWE parameters achieving (𝑇, 𝜖)-security for√

𝑁 LWE samples, and
• 𝑝 ∈ N be a plaintext modulus chosen to satisfy

⌊𝑞/𝑝⌋ ≥
√

2 · 𝜎 · 𝑝 · 𝑁1/4 ·
√︁

ln(2/𝛿). (2)

Then, for a random LWE matrix A←R Z
√
𝑁×𝑛

𝑞 , SimplePIR is a
(𝑇 −𝑂 (

√
𝑁), 2𝜖)-secure PIR scheme on database size 𝑁 , over

plaintext space Z𝑝 , with correctness error 𝛿.

Proof. We prove correctness and security separately.

Correctness. Consider a client that interacts with the server
to query for the database value at (𝑖row, 𝑖col) ∈ [

√
𝑁]2. Let

u𝑖row denote the unit vector 𝑖row in Z
√
𝑁

𝑞 (i.e., the vector of all
zeros, with a single ‘1’ at index 𝑖row). The Recover routine in

SimplePIR computes:

𝑑 = ans[𝑖row] − hint𝑐 [𝑖row, :] · s
= u𝑇𝑖row · (ans − hint𝑐 · s)
= u𝑇𝑖row · (db · (As + e + Δ · u𝑖col) − (db · A) · s)
= u𝑇𝑖row · (db · e + Δ · db · u𝑖col)
= db[𝑖row, :] · e + Δ · db[𝑖row, 𝑖col],

where db[𝑖row, :] denotes row 𝑖row of the database matrix db,
and db[𝑖row, 𝑖col] denotes the element at (𝑖row, 𝑖col) in db. Re-
covery succeeds when RoundΔ (𝑑)/Δ is equal to db[𝑖row, 𝑖col].
This happens if and only if |db[𝑖row, :] · e| < Δ/2.
We can guarantee successful decryption by ensuring that
⌊𝑝/2⌋ ·

√
𝑁 · |e|∞ < Δ/2 (because we can store the database

entries—which are elements in Z𝑝—as values in the range
{− ⌊𝑝/2⌋ ,− ⌊𝑝/2⌋ + 1, . . . , ⌈𝑝/2⌉ − 1}, so that they have
maximal norm ⌊𝑝/2⌋). However, we instead use a tighter
bound on |db[𝑖row, :] · e| by relying on properties of the error
distribution, 𝜒. As a result, we will obtain a scheme in which
decryption succeeds with probability 1− 𝛿 (rather than 1) with
a larger plaintext modulus, 𝑝.
Indeed, as 𝜒 is the discrete Gaussian distribution with

variance 𝜎2 = 𝑠2

2𝜋 for some 𝑠 > 0, by [68, Lemma 2.2][12,
Lemma 2.4], for any 𝑇 > 0, it holds that,

Pr [|db[𝑖row, :] · e| ≥ 𝑇 · 𝑠 ∥db[𝑖row, :] ∥] < 2 exp(−𝜋 · 𝑇2),

where ∥·∥ denotes the Euclidean norm.
Taking 𝑇 = Δ/(2𝑠 · ∥db[𝑖row, :] ∥), we see that

Pr [|db[𝑖row, :] · e| ≥ Δ/2] < 𝛿,

as long as

2 exp

(︄
−𝜋 ·

(︃
Δ

2𝑠 · ∥db[𝑖row, :] ∥

)︃2
)︄
≤ 𝛿.

Equivalently, recovery fails with probability at most 𝛿, if

Δ ≥ 2𝑠 · ∥db[𝑖row, :] ∥ ·
√︃

ln(2/𝛿)
𝜋

.

Again, as we can store the elements in db in the range
[− ⌊𝑝/2⌋ , ⌊𝑝/2⌋], we have that∥︁∥︁db[𝑖row ,:]∥︁∥︁ ≤ √︂√

𝑁 · ⌊𝑝/2⌋2 = 𝑁1/4 · ⌊𝑝/2⌋ .

In addition, we know that Δ = ⌊𝑞/𝑝⌋ and 𝑠 = 𝜎 ·
√

2𝜋. Thus,
recovery fails with probability at most 𝛿, as long as:

⌊𝑞/𝑝⌋ ≥ 𝜎 ·
√

2𝜋 · 𝑝 · 𝑁1/4 ·
√︃

ln(2/𝛿)
𝜋

,

or, equivalently,

⌊𝑞/𝑝⌋ ≥
√

2 · 𝜎 · 𝑝 · 𝑁1/4 ·
√︁

ln(2/𝛿),

20

By Equation (2), this condition holds. Thus, SimplePIR is
correct, except with error probability at most 𝛿.
Security. Security follows from the fact that the LWE problem
is hard, even when the LWE matrix A is reused across many
independent trials, each using an independently generated
LWE secret s←R Z𝑛

𝑞 , as shown in prior work [83, Lemma 7.3].
We connect the security of SimplePIR to the hardness of LWE
with the following lemma:

Lemma C.2. Let 𝑁 ∈ N be the database size, (𝑛, 𝑞, 𝜒) be the
LWE parameters, and A ∈ Z

√
𝑁×𝑛

𝑞 be the random LWE matrix
used in SimplePIR. For any 𝑖 ∈ [𝑁], we define the distribution

Q𝑖 = {(A, qu𝑖) : _, qu𝑖 ← Query(𝑖)}.

If the (𝑛, 𝑞, 𝜒)-LWE problem with
√
𝑁 samples is (𝑇, 𝜖)-hard,

then any algorithm running in time 𝑇 − 𝑂 (
√
𝑁) can have

success probability at most 𝜖 in distinguishing Q𝑖 from the
distribution {(A, r) : r←R Z

√
𝑁

𝑞 }.

Proof. Consider any index 𝑖 ∈ [𝑁]. We decompose 𝑖 into the
pair of coordinates (𝑖row, 𝑖col) ∈ [

√
𝑁]2, as done in the Query

routine in SimplePIR, and let u𝑖col denote unit vector 𝑖col in
Z
√
𝑁

𝑞 . Additionally, we define the following distributions:

• D1 = {(A,As + e) : s←R Z𝑛
𝑞 , e←R 𝜒

√
𝑁 }, and

• D2 = {(A, r) : r←R Z
√
𝑁

𝑞 }.
Now, consider the simulator S that, given as input (A, v) ∈

Z
√
𝑁×𝑛

𝑞 × Z
√
𝑁

𝑞 , computes and outputs (A, v + ⌊𝑞/𝑝⌋ · u𝑖col).
We observe that:
• when (A, v) is sampled from D1, the simulator’s output is
distributed identically to Q𝑖 .

• when (A, v) is sampled from D2, the simulator’s output is
distributed identically to D2.

As the (𝑛, 𝑞, 𝜒)-LWE problem with
√
𝑁 samples is (𝑇, 𝜖)-hard,

we know that any algorithm running in time 𝑇 has advantage
at most 𝜖 in distinguishing between D1 and D2. Our simulator
S runs in time 𝑂 (

√
𝑁). Thus, it must hold that any algorithm

distinguishing betweenQ𝑖 and D2 in time at most 𝑇 −𝑂 (
√
𝑁)

can have success probability at most 𝜖 . □

Lemma C.2 shows that any algorithm running in time
𝑇 − 𝑂 (

√
𝑁) can distinguish the queries made by a client

in SimplePIR from random vectors in Z
√
𝑁

𝑞 with success
probability at most 𝜖 . Therefore, by the triangle inequality,
any algorithm running in time 𝑇 −𝑂 (

√
𝑁) can distinguish the

queries made by a client in SimplePIR to any pair of indices
𝑖 ∈ [𝑁] and 𝑗 ∈ [𝑁] with success probability at most 2𝜖 . In
other words, SimplePIR is (𝑇 −𝑂 (

√
𝑁), 2𝜖)-secure. □

We can extend the security definition in Section 3.2 to
handle 𝑄 queries by requiring that any two sequences of 𝑄
queries produce indistinguishable query distributions. A hybrid
argument proves the following corollary:

Corollary C.3 (𝑄-query security of SimplePIR). For any
sequence 𝐼 ∈ [𝑁]𝑄 of 𝑄 indices, we define D𝐼 to be the query
distribution that it induces, i.e.,

D𝐼 = {(A, qu𝑘) : _, qu𝑘 ← Query(𝐼𝑘)}𝑘∈[𝑄]
Also, we define the random query distribution, R:

R =

{︂
(A, r) : 𝑟 ←R Z

√
𝑁

𝑞

}︂
𝑘∈[𝑄]

If the (𝑛, 𝑞, 𝜒)-LWE problem with
√
𝑁 samples is (𝑇, 𝜖)-hard,

then D𝐼 is (𝑇 −𝑂 (𝑄𝑛
√
𝑁), 𝑄𝜖)-indistinguishable from R.

Proof. The proof follows by a standard hybrid argument. Let
𝐼 ∈ [𝑁]𝑄 be a sequence of 𝑄 indices. For any 𝑗 ∈ [𝑄], we
define the hybrid distribution, 𝐻 𝑗 :

𝐻 𝑗 =

{︂
(A, r) : 𝑟 ←R Z

√
𝑁

𝑞

}︂
𝑘∈{1,..., 𝑗 }

∪ {(A, qu𝑘) : _, qu𝑘 ← Query(𝐼𝑘)}𝑘∈{ 𝑗+1,...,𝑄} .

In other words, 𝐻 𝑗 is the distribution where the first 𝑗 queries
are truly random vectors, and the remaining (𝑄 − 𝑗) queries
are sampled from D𝐼 . As such, 𝐻0 = D𝐼 , while 𝐻𝑄 = R.
Now, consider any algorithm A that runs in time 𝑡 and

distinguishes between distributions 𝐻0 and 𝐻𝑄 with advantage
at least 𝑝. For any 𝑗 ∈ [𝑄], we define 𝑝 𝑗 to be the probability
that A outputs 1 when given samples from 𝐻 𝑗 . By definition,

𝑝 =
|︁|︁𝑝𝑄 − 𝑝0

|︁|︁ = |︁|︁|︁|︁|︁|︁
𝑄∑︂
𝑗=1

(𝑝 𝑗 − 𝑝 𝑗−1)

|︁|︁|︁|︁|︁|︁ .
Thus, there exists some 𝑗∗ ∈ [𝑄] such that|︁|︁𝑝 𝑗∗ − 𝑝 𝑗∗−1

|︁|︁ ≥ 𝑝/𝑄.

Using A as a subroutine, we then build an algorithm B
that distinguishes between the distributions Q𝐼 𝑗∗ (defined in

Lemma C.2) and
{︂
(A, r) : r←R Z

√
𝑁

𝑞

}︂
.

Algorithm 2 B, on input (A, b):
for 𝑗 = 1, . . . , 𝑗∗ − 1 do
Compute r 𝑗 ←R Z

√
𝑁

𝑞

end for
for 𝑗 = 𝑗∗ + 1, . . . , 𝑄 do
Compute qu 𝑗 ← Query(𝐼 𝑗)

end for
Output

A
(︂
(A, r1), · · · , (A, r 𝑗∗−1), (A, b), (A, qu 𝑗∗+1), · · · , (A, qu𝑄)

)︂
Then, we observe that:

• When B is given an input sampled from Q𝐼 𝑗∗ , the input
that B feeds to A is distributed following 𝐻 𝑗∗ . As such, B
outputs 1 with probability 𝑝 𝑗∗ .

21

• When B is given an input sampled from{︂
(A, r) : r←R Z

√
𝑁

𝑞

}︂
, the input that B feeds to A is

distributed following 𝐻 𝑗∗+1. As such, B outputs 1 with
probability 𝑝 𝑗∗+1.

So, B distinguishes between the distributions Q𝐼 𝑗∗ and{︂
(A, r) : r←R Z

√
𝑁

𝑞

}︂
with advantage at least

|︁|︁𝑝 𝑗∗ − 𝑝 𝑗∗−1
|︁|︁ ≥

𝑝/𝑄. Further, B runs in time 𝑡 + 𝑂 (𝑄𝑛
√
𝑁), as Query takes

time 𝑂 (𝑛
√
𝑁).

By Lemma C.2, we conclude that, if the (𝑛, 𝑞, 𝜒)-LWE
problem with

√
𝑁 samples is (𝑇, 𝜖)-hard and 𝑡 +𝑂 (𝑄𝑛

√
𝑁) ≤

𝑇 −𝑂 (
√
𝑁), it must hold that 𝑝/𝑄 < 𝜖 . In other words, if the

(𝑛, 𝑞, 𝜒)-LWE problem with
√
𝑁 samples is (𝑇, 𝜖)-hard, then

D𝐼 is (𝑂 (𝑇 −𝑄𝑛
√
𝑁), 𝑄𝜖)-indistinguishable fromR. □

C.3 Additional extensions and optimizations

Answering many client queries at once. To answer a
client query, the SimplePIR server multiplies the

√
𝑁-by-

√
𝑁

database matrix by the client’s dimension-
√
𝑁 query vector,

in 2𝑁 operations. If the server wants to answer
√
𝑁 client

queries at once, it can use fast matrix-multiplication algo-
rithms [29,95] to compute this more efficiently than answering
each query independently—in 𝑜(𝑁3/2) time. This observation
comes directly from prior work [13, 71]. We have not yet
experimented with this optimization, since it is not clear to us
that the asymptotic efficiency gain will translate to concrete
cost improvements.
Faster preprocessing. In its preprocessing step, the server
computes the matrix-matrix product of the database with the
LWE matrix, A. The asymptotic performance of this step can
be improved using fast matrix-multiplication algorithms [29,
65,90,95]. We suspect that such a refinement will not improve
the concrete performance for our parameter sizes.
Handling database updates. As discussed in Remark 3.1, if
the database changes, the server inherently needs perform some
of its preprocessing work again. In SimplePIR, the amount of
preprocessing work that needs to be repeated is proportional
to the number of rows in the database matrix whose contents
have changed. More specifically, the preprocessing phase in
SimplePIR computes hint𝑐 to be the product of the database
matrix, db, and the LWE matrix, A. Thus, when some row d
of the database changes, only the corresponding row in hint𝑐
changes and must be updated. In other words, it is sufficient
for the server to compute d · A ∈ Z1×𝑛

𝑞 (rather than the much
more expensive db ·A ∈ Z

√
𝑁×𝑛

𝑞) and send it back to the client.
Additions and deletions of rows in db can be handled similarly.
Decreasing the online download with local rounding. In
SimplePIR’s online phase, the client downloads a vector of√
𝑁 elements in the ciphertext space, Z𝑞 , performs a linear
computation on them, and finally rounds the result tomap it into
themessage space,Z𝑝 . Priorwork [38, Lemma3.2][39, Lemma
4.1][18, Lemma 1] observes that, for any value 𝑣 ∈ Z𝑞 that is

“close” to a multiple of Δ, and for a random 𝑟 ∈ Z𝑞 , it holds
with high probability that

RoundΔ (𝑣) = RoundΔ (𝑣 + 𝑟) − RoundΔ (𝑟).

Using this observation (with 𝑣 ← ans − hint𝑐 · 𝑠 and 𝑟 ←
hint𝑐 · 𝑠), the server and the client could each locally round the
values they contribute to the client’s final computation (ans
and hint𝑐 · s, respectively), decreasing the online download to
only

√
𝑁 elements in Z𝑝. If the LWE parameters are chosen

appropriately (namely, ⌊𝑞/𝑝⌋ ≥
√

2 · 4
𝛿
·𝜎 · 𝑝 ·𝑁1/4 ·

√︁
ln(8/𝛿)),

then this local rounding does not affect the scheme’s correctness
(i.e., recovery still succeeds, except with probability 𝛿).
In practice, this optimization decreases the online download

by a factor of log 𝑞
log 𝑝
≈ 3×, at the expense of requiring a much

smaller plaintext modulus, 𝑝, to maintain correctness and thus
markedly reducing SimplePIR’s throughput. Exploring other
approaches to local rounding [20] or to correcting the errors
that it introduces are interesting directions for future work.

D Linearly homomorphic encryption
with preprocessing

In this section, we abstract out the key property of Regev
encryption that enables SimplePIR’s high throughput. We
expect this primitive to have applications beyond PIR.
Specifically, we introduce the notion of linearly homomor-

phic encryption with preprocessing. This notion is similar to
standard linearly homomorhpic encryption: given an encryp-
tion of vector v ∈ Z𝑚

𝑝 (where the ring Z𝑝 and dimension
𝑚 are parameters of the scheme), it is possible to homomor-
phically evaluate any linear function 𝑓 : Z𝑚

𝑝 → Z𝑝 on the
encrypted values; after evaluation, the resulting ciphertext
decrypts to the function value 𝑓 (𝑣). What distinguishes our
use of Regev encryption from standard linearly homomorphic
encryption is that we can preprocess the function 𝑓 to speed
up the homomorphic-evaluation operation. In particular, given
a linear function 𝑓 , we compute a preprocessed hint, hint 𝑓 .
The hint enables homomorphic evaluation of 𝑓 on ciphertexts
encrypting any v ∈ Z𝑚

𝑝 at very low computational cost—nearly
the cost of evaluating 𝑓 on a plaintext vector.

D.1 Definition
Formally, a linearly homomorphic encryption scheme with
preprocessing consists of the following efficient algorithms,
which are implicitly parameterized by a security parameter
𝑛 ∈ N, a correctness parameter 𝛿 ∈ N, a plaintext dimension
𝑚 ∈ N, a key space K, and a plaintext space Z𝑝:
Setup() → pp. Sample and output the public parameters.
Enc(pp, sk, v) → ct. Given the public parameters pp, a secret
key sk ∈ K, and a vector v ∈ Z𝑚

𝑝 , output a ciphertext ct.
Preproc(pp, 𝑓) → hint 𝑓 . Given public parameters pp and a
linear function 𝑓 : Z𝑚

𝑝 → Z𝑝 , output a function hint hint 𝑓 .

22

Apply(pp, 𝑓 , ct) → ct 𝑓 . Given the public parameters pp, a
linear function 𝑓 : Z𝑚

𝑝 → Z𝑝 , and a ciphertext ct, produce
a ciphertext ct 𝑓 that encrypts the value of the function 𝑓

applied to the vector encrypted by ct.
Dec(sk, hint 𝑓 , ct 𝑓) → 𝑑. Given a secret key sk, the function
hint hint 𝑓 , and a ciphertext ct 𝑓 , output a decrypted value 𝑑.

Correctness. After encryption, preprocessing and applica-
tion of the linear function, and decryption are carried out
sequentially, the output should be the correct function value,
except with negligible probability in the implicit correctness
parameter. Formally, we say that the encryption scheme has
correctness error 𝛿 if, for all sk ∈ K, for all v ∈ Z𝑚

𝑝 , and
linear functions 𝑓 ∈ Z𝑚

𝑝 → Z𝑝 , the following probability is at
least 1 − 𝛿:

Pr

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
𝑑 = 𝑓 (v) :

pp← Setup()
ct← Enc(pp, sk, v)

hint 𝑓 ← Preproc(pp, 𝑓)
ct 𝑓 ← Apply(pp, 𝑓 , ct)
𝑑 ← Dec(sk, hint 𝑓 , ct 𝑓)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Security.We require semantic security [51]. In other words,
ct should reveal no information about the encrypted vector
v = (𝑣1, . . . , 𝑣𝑚). Formally, given vectors v0, v1 ∈ Z𝑚

𝑝 , for
𝑏 ∈ {0, 1}, we define the value𝑊𝑏 as:

𝑊𝑏 := Pr
⎡⎢⎢⎢⎢⎣A(pp, ct) = 1 :

pp← Setup()
sk← K
ct← Enc(pp, sk, v𝑏)

⎤⎥⎥⎥⎥⎦ .
Then, we say that the encryption scheme is secure if, for
all efficient adversaries A, for all v0, v1 ∈ Z𝑚

𝑝 , it holds that
|𝑊0 −𝑊1 | is negligible in the implicit security parameter.

D.2 Construction
In Figure 12, we construct a linear homomorphic encryp-
tion scheme with preprocessing from Regev encryption. The
construction yields the following theorem:

Theorem D.1. Assume the (𝑛, 𝑞, 𝜒)-LWE problem with 𝑚

samples is (𝑇, 𝜖)-hard, and let 𝑝 ∈ N be a suitable plaintext
modulus3 for Regev encryption with these parameters sup-
porting 𝑚 homomorphic additions. Then, the construction of
Figure 12 is a (𝑇 −𝑂 (𝑚), 2𝜖)-secure linearly homomorphic
encryption scheme with preprocessing for plaintext dimension
𝑚 and plaintext modulus 𝑝 where:
• the hint consists of 𝑛 elements of Z𝑞 ,
• the ciphertext encrypting a vector in Z𝑚

𝑝 consists of 𝑚
elements of Z𝑞 ,

• the evaluation routine Apply requires 𝑚 additions and 𝑚

multiplications in Z𝑞 , and
• the ciphertext thatApply outputs consists of oneZ𝑞 element.

3To support arbitrary linear functions, it is necessary to take 𝑝 |𝑞. To support
linear functions whose output will not wrap around mod 𝑝 (as is the case
for PIR), such a restriction on 𝑝 is not necessary.

Size Running time (per bit)

Hint Key Ct/bit Preproc Enc Apply Dec

Factoring [79, 81] n/a 𝜆5 𝜆2 n/a 𝜆2 𝜆2 𝜆2

EC ElGamal [40] n/a 𝜆 𝜆 n/a 𝜆2 𝜆 𝜆

Regev [83, 86] n/a 𝜆 1 n/a 𝜆 𝜆 𝜆

Ring LWE [72] n/a 𝜆 1 n/a 1 1 1
This work (LWE) 𝜆 𝜆 1 𝜆 𝜆 1 𝜆

Table 11: Comparison of linearly homomorphic encryption schemes
on plaintext dimension 𝑚. We suppress log𝜆 factors and we assume
that it is possible to perform modular multiplication in linear time.
Since our scheme uses plain LWE instead of ring LWE, it is simpler to
implement—there is no need for polynomial arithmetic, fast Fourier
transforms, or a modulus of special form.

It is worth emphasizing the efficiency of the construction
implied by Theorem D.1. By our choice of LWE parameters
in Equation (2), the number of bits encoding each ciphertext
element (i.e., log 𝑞) grows logarithmically with the plaintext
dimension 𝑚 and is independent of the security parameter 𝑛.
Thus, our construction has:

• a hint size that grows only logarithmically with the size of
the linear function 𝑓 ,

• ciphertext size that is only a log𝑚 factor larger than the
corresponding plaintext (and that is independent of the
security parameter), and

• a homomorphic evaluation routine that is essentially as fast
as plaintext evaluation of 𝑓 , as homomorphic evaluation
just requires computing 𝑓 over Z𝑞 instead of over Z𝑝 . This
evaluation time is independent of the security parameter.

In contrast, when using Paillier [81] or ElGamal-based [40]
linearly homomorphic encryption, the ciphertext size and eval-
uation time grow quadratically or cubically with the security
parameter (Table 11).

D.3 Abstract view of SimplePIR

In Figure 13, we re-express the SimplePIR construction of
Section 4 in the language of linear homomorphic encryption
with preprocessing. The PIR scheme of Figure 13 demonstrates
that, given a linearly homomorphic encryption scheme with
preprocessing, there exists a PIR scheme with

√
𝑁 commu-

nication cost and for which the server’s online computation
time consists of running the encryption’s Apply algorithm√
𝑁 times, each on a vector of dimension

√
𝑁 . The client’s

hint—which it must fetch in an offline phase—consists of
√
𝑁

hints for the encryption scheme, each computed for a linear
function with

√
𝑁 inputs.

An interesting task for future work would be to construct a
linear homomorphic encryption scheme with preprocessing
with smaller hints. This would reduce the offline communica-
tion in the resulting PIR schemes.

23

Parameters: LWE parameters (𝑛, 𝑞, 𝜒), a plaintext modu-
lus 𝑝 ≪ 𝑞. Define Δ := ⌊𝑞/𝑝⌋. The keyspace is K = Z𝑛

𝑞 .

Setup() → pp ∈ Z𝑚×𝑛
𝑞

• Sample A←R Z𝑚×𝑛
𝑞 .

• Return pp← A.

Enc(pp, sk, v) → ct ∈ Z𝑚
𝑞

• Parse (A ∈ Z𝑚×𝑛
𝑞) ← pp.

• Sample e←R 𝜒𝑚.
• Return ct← A · sk + e + Δ · v ∈ Z𝑚

𝑞 .

Preproc(pp, 𝑓) → hint 𝑓 ∈ Z1×𝑛
𝑞

• Parse (A ∈ Z𝑚×𝑛
𝑞) ← pp.

• Parse (f ∈ Z1×𝑚
𝑞) ← 𝑓 as a row vector.

• Return hint 𝑓 ← f · A.

Apply(pp, 𝑓 , ct) → ct 𝑓 ∈ Z𝑞

• Parse:
– (f ∈ Z1×𝑚

𝑞) ← 𝑓 as a row vector,
– (c ∈ Z𝑚

𝑞) ← ct.
• Return ct 𝑓 ← f · c ∈ Z𝑞 .

Dec(pp, sk, hint 𝑓 , ct 𝑓) → 𝑑 ∈ Z𝑝

• Compute 𝑑 ← ct 𝑓 − hint 𝑓 · sk ∈ Z𝑞 .
• Let 𝑣 ∈ Z𝑞 be RoundΔ (𝑑), which is 𝑑 rounded to the
nearest integral multiple of Δ.

• Return 𝑑 ← 𝑣/Δ ∈ Z𝑝 .

Figure 12: Regev Encryption expressed as linear homomorphic en-
cryption with preprocessing.

E Additional material on DoublePIR
We give a formal description of DoublePIR in Figure 14.

E.1 Parameter selection
As for SimplePIR, we take the ciphertext modulus, 𝑞, to be
232 and the LWE distribution, 𝜒, to be a discrete Gaussian in
DoublePIR.We use hardness estimates [7] to select appropriate
choices of 𝜒 and of the LWE dimension, 𝑛. Our selection
of the plaintext modulus, 𝑝, in DoublePIR is slightly more
conservative than that for SimplePIR, as for correctness to
hold, the recovery routine must succeed for:
• the single element read from the first-level database, and
• the (𝑛 + 1) elements read from the second-level database.
We detail our calculation of 𝑝 in Theorem E.1. Here, we
give sample choices of the plaintext modulus, 𝑝, for different
database sizes:

Database size 𝑁: 226 228 230 234 238 242

Plaintext modulus 𝑝: 929 781 657 464 328 231

Parameters: a database size 𝑁 , a linearly homomorphic encryp-
tion with preprocessing scheme (Setup,Enc,Preproc,Apply,
Dec) with plaintext dimension

√
𝑁 , plaintext space Z𝑝 , key

spaceK, and public parameters pp, computed as pp← Setup().
Our construction uses the following helper routine:

ToFuncs(db) → (𝑓1, . . . , 𝑓√𝑁):

• View the database db as vectors d1, . . . , d√𝑁 ∈ Z
√
𝑁

𝑝 .
• For all 𝑖 ∈ [

√
𝑁], define 𝑓𝑖 (x) := ⟨d𝑖 , x⟩ ∈ Z𝑝 .

(Here, 𝑓𝑖 is a linear function on Z
√
𝑁

𝑝 to Z𝑝 .)
• Output (𝑓1, . . . , 𝑓√𝑁).

Setup(db) → (hint𝑠 , hint𝑐).
• Let (𝑓1, . . . , 𝑓√𝑁) ← ToFuncs(db).
• For all 𝑖 ∈ [

√
𝑁], compute: hint𝑖 ← Preproc(pp, 𝑓𝑖).

• Set hint𝑐 ← (hint1, . . . , hint√𝑁).
• Return (_, hint𝑐).

Query(𝑖) → (st, qu).
• Write 𝑖 as a pair (𝑗 , 𝑘) ∈ [

√
𝑁] × [

√
𝑁].

• Sample sk←R K.
• Compute qu ← Enc(pp, sk, u 𝑗 ∈ Z

√
𝑁

𝑝), where u 𝑗 is
the vector of all zeros with a single ‘1’ at index 𝑗 .

• Set st← (sk, 𝑘) and return (st, qu).

Answer(db, hint𝑠 , qu) → ans.
• Let (𝑓1, . . . , 𝑓√𝑁) ← ToFuncs(db).
• For all 𝑖 ∈ [

√
𝑁], compute: ans𝑖 ← Apply(pp, 𝑓𝑖 , qu).

• Return ans← (ans1, . . . , ans√𝑁).

Recover(st, hint𝑐 , ans) → 𝑑 ∈ Z𝑝 .
• Parse (sk, 𝑘) ← st.
• Parse (hint1, . . . , hint√𝑁) ← hint𝑐 .
• Parse (ct1, . . . , ct√𝑁) ← ans.
• Return 𝑑 ← Dec(pp, sk, hint𝑘 , ct𝑘).

Figure 13: The SimplePIR protocol, expressed in terms of linearly
homomorphic encryption with preprocessing.

24

Construction: DoublePIR. The parameters of the construc-
tion are a database size 𝑁 , database dimensions ℓ and 𝑚
(such that ℓ · 𝑚 ≥ 𝑁), LWE parameters (𝑛, 𝑞, 𝜒), plain-
text modulus 𝑝 ≪ 𝑞, and LWE matrices A1 ∈ Z𝑚×𝑛

𝑞 and
A2 ∈ Zℓ×𝑛

𝑞 (sampled in practice using a hash function). The
database consists of 𝑁 values in Z𝑝 , represented as a matrix
in Zℓ×𝑚

𝑝 . We define the scalars 𝜅 :=
⌈︂

log 𝑞
log 𝑝

⌉︂
and Δ :=

⌊︂
𝑞

𝑝

⌋︂
.

We use the helper routines:
• Decomp : Z𝑎×𝑏

𝑞 → Z𝜅𝑎×𝑏
𝑞 , whichwrites eachZ𝑞 element

as its base-𝑝 decomposition,
• Recomp : Z𝜅𝑎×𝑏

𝑞 → Z𝑎×𝑏
𝑞 , which interprets each 𝜅 × 1

submatrix of its input as a base-𝑝 decomposition of a Z𝑞

element and outputs the matrix of these elements.
• RoundΔ : Z𝑎

𝑞 → Z𝑎
𝑞 , which rounds each entry to the

nearest integral multiple of Δ.

Setup(db ∈ Zℓ×𝑚
𝑝) → (hint𝑠 , hint𝑐).

• Compute

{︄
hint𝑠 ← Decomp(A𝑇

1 · db
𝑇) ∈ Z𝜅𝑛×ℓ

𝑞

hint𝑐 ← hint𝑠 · A2 ∈ Z𝜅𝑛×𝑛
𝑞

• Return (hint𝑠 , hint𝑐).

Query(𝑖 ∈ [𝑁]) → (st, qu).
• Write 𝑖 as a pair (𝑖row, 𝑖col) ∈ [ℓ] × [𝑚].

• Sample

{︄
s1 ←R Z𝑛

𝑞 , e1 ←R 𝜒𝑚 ∈ Z𝑚
𝑞 ,

s2 ←R Z𝑛
𝑞 , e2 ←R 𝜒ℓ ∈ Zℓ

𝑞 .

• Compute

{︄
c1 ← (A1 · s1 + e1 + Δ · u𝑖col) ∈ Z𝑚

𝑞 ,

c2 ← (A2 · s2 + e2 + Δ · u𝑖row) ∈ Zℓ
𝑞 ,

where u𝑖∗ is the vector of all zeros with a single ‘1’
at index 𝑖∗.

• Return (st, qu) ← ((s1, s2), (c1, c2)).

Answer(db, hint𝑠 , qu) → ans.
• Parse (c1 ∈ Z𝑚

𝑞 , c2 ∈ Zℓ
𝑞) ← qu.

• Compute

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
ans1 ← Decomp(c𝑇1 · db

𝑇) ∈ Z𝜅×ℓ
𝑞

h← ans1 · A2 ∈ Z𝜅×𝑛
𝑞 ,[︄

ansℎ

ans2

]︄
←

[︄
hint𝑠

ans1

]︄
· c2 ∈ Z𝜅 (𝑛+1)

𝑞 .

• Return ans← (h, ansℎ , ans2).

Recover(st, hint𝑐 , ans) → 𝑑.
• Parse:

– (s1 ∈ Z𝑛
𝑞 , s2 ∈ Z𝑛

𝑞) ← st,
– (h ∈ Z𝜅×𝑛

𝑞 , ansℎ ∈ Z𝜅×𝑛
𝑞 , ans2 ∈ Z𝜅

𝑞) ← ans.
• Compute:[︃

ĥ1
â1

]︃
←

[︃
ansℎ
ans2

]︃
−

[︃
hint𝑐
h

]︃
· s2 ∈ Z𝜅×(𝑛+1)

𝑞 ,[︃
h1
a1

]︃
← Recomp

(︃
RoundΔ

(︃ [︃
ĥ1
â1

]︃)︃
/Δ

)︃
∈ Z𝑛+1

𝑞 ,

𝑑 ← a1 − s𝑇1 h1 ∈ Z𝑞 .

• Return 𝑑 ← RoundΔ (𝑑)/Δ ∈ Z𝑝 .

Figure 14: The DoublePIR protocol.

E.2 Correctness and security of DoublePIR
We now prove the following theorem:

Theorem E.1 (DoublePIR). On database size 𝑁 ∈ N, correct-
ness failure probability 𝛿, adversary runtime 𝑇 , and security
failure probability 𝜖 , let
• ℓ, 𝑚 ∈ N be database dimensions (such that ℓ · 𝑚 ≥ 𝑁),
• 𝜒 be the discrete Gaussian distribution with variance 𝜎2,
• (𝑛, 𝑞, 𝜒) be LWE parameters achieving (𝑇, 𝜖)-security for

max(ℓ, 𝑚) LWE samples, and
• 𝑝 ∈ N be a plaintext modulus chosen to satisfy

⌊𝑞/𝑝⌋ ≥ 𝜎𝑝

√︄
2 max(𝑚, ℓ) · ln

(︃
2(𝜅(𝑛 + 1) + 1)

𝛿

)︃
, (3)

where 𝜅 ∈ Z is the scalar
⌈︂

log 𝑞
log 𝑝

⌉︂
.

Then, for random LWE matrices A1 ←R Z𝑚×𝑛
𝑞 and A2 ←R Zℓ×𝑛

𝑞 ,
DoublePIR is a (𝑇 −𝑂 (𝑛 · ℓ + 𝑚), 4𝜖)-secure PIR scheme on
database size 𝑁 , over plaintext space Z𝑝, with correctness
error 𝛿.

Proof. We prove correctness and security separately.
Correctness. Consider a client that queries for the database
value at index (𝑖row, 𝑖col) ∈ [ℓ] × [𝑚]. We observe that the
Recover routine in DoublePIR essentially runs 𝜅 · (𝑛 + 1) + 1
instances of SimplePIR’s recovery routine, to recover 𝜅 · (𝑛 +
1) + 1 elements in Z𝑝 , namely:
• one Z𝑝-element that encodes the database value at index
(𝑖row, 𝑖col) (in the “first level of PIR”),

• 𝜅𝑛 additional Z𝑝-elements that encode the 𝑛 Z𝑞-elements

25

in row 𝑖row of the first-level hint matrix, A𝑇
1 · db

𝑇 (in the
“second level of PIR”), and

• 𝜅 additionalZ𝑝-elements that encode the singleZ𝑞-element
at position 𝑖row in the first level answer vector, c𝑇1 · db

𝑇 (in
the “second level of PIR”).

For the recovery to succeed, all 𝜅 · (𝑛 + 1) + 1 invocations of
SimplePIR’s recovery must succeed. To bound this probability,
we compute the probabilities of two separate events:
• 𝐸1, the event that the recovery of the 𝜅 · (𝑛 + 1) elements in
the “second level of PIR” fails, i.e., that[︃

h1
a1

]︃
≠ Recomp

(︃ [︃
hint𝑠
ans1

]︃)︃
· u𝑖row ,

where right-multiplication by u𝑖row extracts the 𝑖row-th col-
umn of the matrix.

• 𝐸2, the event that the recovery of the single element in the
“first level of PIR” fails, i.e., that

RoundΔ (𝑑)/Δ ≠ db[𝑖row, 𝑖col] .

We make use of the following two propositions:
Proposition E.2: Under the parameters in Theorem E.1,

Pr[𝐸1] ≤
𝜅(𝑛 + 1)

𝜅(𝑛 + 1) + 1
· 𝛿.

Proof. DoublePIR’s recovery routine computes:[︃
h1
a1

]︃
← Recomp

(︃
RoundΔ

(︃ [︃
ĥ1
â1

]︃)︃
/Δ

)︃
∈ Z𝑛+1

𝑞 .

Define db2 =

[︃
hint𝑠
ans1

]︃
∈ Z𝜅 (𝑛+1)×ℓ

𝑞 and let 𝐸 be the event that

RoundΔ

(︃ [︃
ĥ1
â1

]︃)︃
/Δ ≠ db2 · u𝑖row . (4)

We have that Pr[𝐸] ≥ Pr[𝐸1] as 𝐸1 ⊂ 𝐸 . By rewriting terms:[︃
ĥ1
â1

]︃
=

[︃
ansℎ − hint𝑐 · s2
ans2 − h · s2

]︃
=

[︃
hint𝑠 · c2 − (hint𝑠 · A2) · s2
ans1 · c2 − (ans1 · A2) · s2

]︃
=

[︃
hint𝑠 · (A2 · s2 + e2 + Δ · u𝑖row) − hint𝑠 · A2 · s2
ans1 · (A2 · s2 + e2 + Δ · u𝑖row) − ans1 · A2 · s2

]︃
= db2 · e2 + Δ · db2 · u𝑖row .

Comparing this with Equation (4), we see that 𝐸 happens if and
only if ∥db2 · e2∥∞ ≥ Δ/2. The vector e ≔ db2 · e2 consists
of 𝜅 · (𝑛 + 1) elements, which we denote as 𝑒1, . . . , 𝑒𝜅 · (𝑛+1) .
As in our correctness proof for SimplePIR, we use a concen-
tration inequality [68, Lemma 2.2][12, Lemma 2.4] on each of
these terms: since 𝜒 is the discrete Gaussian distribution with

variance 𝜎2 = 𝑠2

2𝜋 for some 𝑠 > 0, for every 𝑗 ∈ [𝜅 · (𝑛 + 1)]
and for any 𝑇 > 0, it holds that,

Pr
[︁|︁|︁𝑒 𝑗

|︁|︁ ≥ 𝑇 · 𝑠 ∥db2 [𝑗 , :] ∥
]︁
< 2 exp(−𝜋 · 𝑇2),

where ∥·∥ is the Euclidean norm. Note that since we can
represent the elements in db2 in the range (−𝑝/2, 𝑝/2], we
have that ∥db2 [𝑗 , :] ∥ ≤

√︁
ℓ · (𝑝/2)2 =

√
ℓ · 𝑝/2. Therefore, for

every 𝑗 ∈ [𝜅 · (𝑛 + 1)], for any 𝑇 > 0, it holds that,

Pr
[︂|︁|︁𝑒 𝑗

|︁|︁ ≥ 𝑇 · 𝑠 ·
√
ℓ · 𝑝/2

]︂
< 2 exp(−𝜋 · 𝑇2).

Now, we take 𝑇 = Δ/(2𝑠 ·
√
ℓ · 𝑝/2), and we see that, for every

𝑗 ∈ [𝜅 · (𝑛 + 1)],

Pr
[︁|︁|︁𝑒 𝑗

|︁|︁ ≥ Δ/2
]︁
<

𝛿

𝜅(𝑛 + 1) + 1
, as long as

2 exp ⎛⎜⎝−𝜋 ·
(︄

Δ

2𝑠 ·
√
ℓ · 𝑝/2

)︄2⎞⎟⎠ ≤ 𝛿

𝜅(𝑛 + 1) + 1
.

Substituting Δ = ⌊𝑞/𝑝⌋ and 𝑠 = 𝜎 ·
√

2𝜋, we rewrite the
second equation as:

⌊𝑞/𝑝⌋ ≥ 𝜎 · 𝑝 ·

√︄
2ℓ · ln

(︃
2𝜅(𝑛 + 1) + 1

𝛿

)︃
.

By Equation (3), this condition holds. Thus, we have shown
that, for each 𝑗 ∈ [𝜅 · (𝑛 + 1)],

|︁|︁𝑒 𝑗

|︁|︁ < Δ/2 holds except
with probability 𝛿

𝜅 (𝑛+1)+1 . Therefore, by a union bound, all
𝑒1, . . . , 𝑒𝜅 · (𝑛+1) have an absolute value smaller than Δ/2 with
probability 𝜅 (𝑛+1)

𝜅 (𝑛+1)+1 · 𝛿, which completes the proof. □

Proposition E.3: Under the parameters in Theorem E.1,

Pr[𝐸2 |¬𝐸1] ≤
1

𝜅(𝑛 + 1) + 1
· 𝛿.

Proof. If ¬𝐸1 occurs, we know that[︃
h1
a1

]︃
= Recomp

(︃ [︃
hint𝑠
ans1

]︃)︃
· u𝑖row

=

[︃
A𝑇

1 · db
𝑇

c𝑇1 · db
𝑇

]︃
· u𝑖row .

Therefore,

𝑑 = a1 − s𝑇1 · h1

= (c𝑇1 · db
𝑇 − s𝑇1 · A

𝑇
1 · db

𝑇) · u𝑖row
= ((s𝑇1 · A

𝑇
1 + e

𝑇
1 + Δu

𝑇
𝑖col
) · db𝑇 − s𝑇1 · A

𝑇
1 · db

𝑇) · u𝑖row
= e𝑇 · db𝑇 · u𝑖row + Δu𝑇𝑖col · db

𝑇 · u𝑖row .

Thus, we see that Recover outputs the correct database
element, db[𝑖row, 𝑖col], if and only if

|︁|︁e𝑇 · db𝑇 · u𝑖row |︁|︁ < Δ/2.
By essentially the same analysis as in Proposition E.2, the event

26

that
|︁|︁e𝑇 · db𝑇 · u𝑖row |︁|︁ ≥ Δ/2 happens occurs with probability

at most 1
𝜅 (𝑛+1)+1 · 𝛿, given that the condition

⌊𝑞/𝑝⌋ ≥ 𝜎 · 𝑝 ·
√︃

2𝑚 · ln 2(𝜅(𝑛 + 1) + 1)
𝛿

holds, which is true by Equation (3). □

Combining the two propositions, we conclude that Dou-
blePIR’s correctness error is upper bounded by

Pr[𝐸1 ∨ 𝐸2] ≤ Pr[𝐸1] + Pr[𝐸2 |¬𝐸1] ≤ 𝛿.

Security. DoublePIR’s security follows from the hardness of
LWE with a reused LWE matrix [83]. We rely on the following
lemma:

Lemma E.4. Let 𝑁 ∈ N be the database size, ℓ, 𝑚 ∈ N be
the database dimensions (such that ℓ · 𝑚 ≥ 𝑁), (𝑛, 𝑞, 𝜒) be
the LWE parameters, and A1 ∈ Z𝑚×𝑛

𝑞 and A2 ∈ Zℓ×𝑛
𝑞 be the

random LWE matrices used in DoublePIR. For any 𝑖 ∈ [𝑁],
we define the distribution

𝑄𝑖 = {(A1,A2, qu𝑖) : _, qu𝑖 ← Query(𝑖)}.

If the (𝑛, 𝑞, 𝜒)-LWE problem with max(ℓ, 𝑚) samples is (𝑇, 𝜖)-
hard, then any algorithm running in time 𝑇 −𝑂 (𝑛 · ℓ +𝑚) has
success probability at most 2𝜖 in distinguishing 𝑄𝑖 from the
distribution D = {(A1,A2, (r1, r2)) : r1 ←R Z𝑚

𝑞 , r2 ←R Zℓ
𝑞}.

Proof. Consider any index 𝑖 ∈ [𝑁], and decompose 𝑖 into
the pair of coordinates (𝑖row, 𝑖col) ∈ [ℓ] × [𝑚] as done in
DoublePIR’s Query routine. Let u𝑖col ∈ Z𝑚

𝑞 denote unit vector
𝑖col in Z𝑚

𝑞 and u𝑖row denote unit vector 𝑖row in Zℓ
𝑞 . We define

the following distribution:

H𝑖 = {(A1,A2, (r1,A2s2+e2)) : r1 ←R Z𝑚
𝑞 , s2 ←R Z𝑛

𝑞 , e2 ←R 𝜒ℓ }

Now, consider any algorithm A that runs in time 𝑡 and
distinguishes between distributions Q𝑖 and D with probability
𝑝. Let 𝑝0, 𝑝1, and 𝑝2 be the probabilities that A outputs 1
when given samples fromQ𝑖 ,H𝑖 , andD respectively. Thus, by
definition, it must hold that |𝑝0 − 𝑝2 | = 𝑝. From the triangle
inequality we see that |𝑝0 − 𝑝1 | + |𝑝1 − 𝑝2 | ≥ 𝑝.
Then, using A as a subroutine, we build an algorithm B1

that distinguishes between the (𝑛, 𝑞, 𝜒)-LWE problem with 𝑚
samples and the uniform distribution, in time 𝑡+𝑂 (𝑚 ·𝑛+ℓ) and
with success probability |𝑝0 − 𝑝1 |. Because the (𝑛, 𝑞, 𝜒)-LWE
problemwith𝑚 samples is (𝑇, 𝜖)-hard, if 𝑡 ≤ 𝑇−𝑂 (𝑚 ·𝑛+ℓ), it
must hold that |𝑝0 − 𝑝1 | ≤ 𝜖 . Similarly, we build an algorithm
B2 that distinguishes between the (𝑛, 𝑞, 𝜒)-LWE problem with
ℓ samples and the uniform distibution in time 𝑡 +𝑂 (𝑚 + ℓ) and
with success probability |𝑝1 − 𝑝2 |. Because the (𝑛, 𝑞, 𝜒)-LWE
problem with ℓ samples is (𝑇, 𝜖)-hard, if 𝑡 ≤ 𝑇 −𝑂 (𝑚 + ℓ), it
must hold that |𝑝1 − 𝑝2 | ≤ 𝜖 .
Thus, if 𝑡 ≤ 𝑇 −𝑂 (𝑚 · 𝑛 + ℓ), we see that 2𝜖 ≥ |𝑝0 − 𝑝1 | +
|𝑝1 − 𝑝2 | ≥ 𝑝. We have shown that any algorithm A that runs

in time 𝑇 − 𝑂 (𝑚 · 𝑛 + ℓ) can distinguish between Q𝑖 and D
with probability at most 2𝜖 .

Algorithm 3 B1, on input A1, b1:
Compute c1 ← b1 + ⌊𝑞/𝑝⌋ · u𝑖col .
Sample s2 ←R Z𝑛

𝑞 , e2 ←R 𝜒ℓ .
Compute c2 ← (A2s2 + e2) + ⌊𝑞/𝑝⌋ · u𝑖row .
Output A(A1,A2, (c1, c2)).

Algorithm 4 B2, on input A2, b2:
Sample r1 ←R Z𝑚

𝑞 .
Compute c2 ← b2 + ⌊𝑞/𝑝⌋ · u𝑖row .
Output A(A1,A2, (r1, c2)).

□

LemmaE.4 states that any algorithm running in time𝑇−𝑂 (𝑛·
ℓ+𝑚) can distinguish the queriesmade by a client inDoublePIR
from random vectors with success probability at most 2𝜖 .
Therefore, any algorithm running in time 𝑇 − 𝑂 (𝑛 · ℓ + 𝑚)
can distinguish the queries made by a client in DoublePIR
to any pair of indices 𝑖 ∈ [𝑁] and 𝑗 ∈ [𝑁] with success
probability at most 4𝜖 . Thus, we have shown that DoublePIR
is (𝑇 −𝑂 (𝑛 · ℓ + 𝑚), 4𝜖)-secure. □

DoublePIR also meets the 𝑄-query security definition that
we give in Appendix C.2. A hybrid argument shows that:

Corollary E.5 (𝑄-query security of DoublePIR). For any
sequence 𝐼 ∈ [𝑁]𝑄 of 𝑄 indices, we define D𝐼 to be the query
distribution that it induces, i.e.,

D𝐼 = {(A1,A2, qu𝑘) : _, qu𝑘 ← Query(𝐼𝑘)}𝑘∈[𝑄]

If the (𝑛, 𝑞, 𝜒)-LWE problem with 𝑚𝑎𝑥(ℓ, 𝑚) samples is (𝑇, 𝜖)-
hard, thenD𝐼 is (𝑇−𝑂 (𝑄 · (𝑛 ·ℓ+𝑚)), 2𝑄𝜖)-indistinguishable
from the random query distribution.

E.3 Additional extensions and optimizations
The SimplePIR optimizations involving fast matrix multipli-
cation algorithms (that we outline in Appendix C.3) apply
to DoublePIR as well. We list some further extensions and
efficiency improvements to DoublePIR in this section.
Handling database updates. When the database contents
change, the server in DoublePIR needs to update its prepro-
cessed hints, hint𝑠 and hint𝑐 (see Remark 3.1). In more detail,
when 𝑐 rows of the database matrix change (for some number
𝑐 ≥ 0), the server needs to:
• perform 𝑂 (𝑐 · 𝑚 · 𝑛 + 𝑐 · 𝜅 · 𝑛) operations in Z𝑞 , and
• send min(𝑐 · 𝜅 · 𝑛, 𝜅 · 𝑛2) elements in Z𝑞 back to the client.
This update procedure works as follows. In DoublePIR, the
server computes the hints as hint𝑠 ← Decomp(A𝑇

1 · db
𝑇) and

hint𝑐 ← hint𝑠 · A2. For each row d ∈ Z𝑚
𝑞 of the database that

has changed, the server can update the corresponding columns
of hint𝑠 to be u← Decomp(A𝑇

1 · d
𝑇) ∈ Z𝜅𝑛

𝑞 . To update hint𝑐 ,

27

for each row of the database that has changed, the server would
then have to add the outer product between the column vector,
u, and the corresponding row of A2, to hint𝑐 . The server can
perform this computation and send the updated hint𝑐 back to
the client; or, if fewer than 𝑛 rows of the database were changed,
the server can send only the associated column vectors, u, back
to the client (to save on bandwidth) and have the client update
its hint𝑐 locally. Again, additions and deletions of rows from
the database can be handled similarly.
Reducing the client storage, when the client makes a
bounded number of queries. If the client knows ahead
of time that it will only make 𝑄 ≪ 𝑛 queries, it can reduce its
local storage to 𝑄 · 𝜅 · 𝑛 (rather than 𝜅 · 𝑛2) elements in Z𝑞 . To
do so, the client samples 𝑄 pairs of LWE secrets (s1, s2) in
advance (e.g., using a pseudorandom function). Then, rather
than store hint𝑐 in its entirety, the client precomputes and
stores only the information that it will need for recovery: for
each of the𝑄 queries it intends to make, the client precomputes
hint𝑐 · s2 ∈ Z𝜅𝑛

𝑞 (where 𝑠2 denotes the the secret key used for
the corresponding query). Finally, the client discards hint𝑐 .
In theory, the client storage could be reduced even further

by applying the local rounding trick (see Appendix C.3) to
the precomputed information, hint𝑐 · s2, stored by the client.
After doing so, the client would store only a single element
in Z𝑞—namely, s𝑇1 · Recomp(RoundΔ (hint𝑐 · s2))—for each
query it intends to make. However, doing so would require
using a much larger value of ⌊𝑞/𝑝⌋ to maintain correctness
and is thus not profitable in our parameter regime.

F Additional material on our private
set-membership data structure

F.1 Syntax and properties
We define the syntax and security properties for our approxi-
mate private set membership data structure. The data structure
is parameterized by a universe U ⊆ {0, 1}∗ of possible strings
and consists of two routines:
Setup(𝑆) → 𝐷. Take as input a set of strings 𝑆 ⊆ U and
output a data structure 𝐷 ∈ {0, 1}𝑎×𝑏 , where 𝑎, 𝑏 ∈ N can
depend on |𝑆 |.

Query(𝜎) → (𝑖, 𝑗). Given a candidate string 𝜎 ∈ U , output
an index (𝑖, 𝑗) ∈ [𝑎] × [𝑏] in the data structure 𝐷 to probe.
If 𝜎 ∈ 𝑆, it holds that 𝐷𝑖, 𝑗 = 1.

Properties. For a set 𝑆 ⊆ U and string 𝜎 ∈ U , define

Accept(𝑆, 𝜎) := Pr

[︄
𝐷𝑖, 𝑗 = 1 :

𝐷 ← Setup(𝑆)
(𝑖, 𝑗) ← Query(𝜎)

]︄
where the probability is taken only over the randomness of the
Query algorithm.
Correctness. An approximate membership test is correct if, for
all 𝑆 ⊆ U and 𝜎 ∈ 𝑆, Accept(𝑆, 𝜎) = 1.

Constant adversarial false-positive rate. An approximate mem-
bership test has adversarial false-positive rate 𝜖 if, for all
𝑆 ⊆ U and 𝜎 ∉ 𝑆, Accept(𝑆, 𝜎) ≤ 𝜖 .
Oblivious reads. An approximate membership test supports
oblivious reads if the row of the data structure that the Query
algorithm probes reveals no information about the query string
𝜎. In other words, for all strings 𝜎0, 𝜎1 ∈ U , the following
distributions of the row indices are identical:

{𝑖 : (𝑖, _) ← Query(𝜎0)} ≡ {𝑖 : (𝑖, _) ← Query(𝜎1)}.

In a deployment, to probe the element at row 𝑖 and column
𝑗 in the data structure, the client sends 𝑖 in the clear, along
with a PIR query for 𝑗 , to the server. The server executes the
PIR scheme over the 𝑖-th row, and sends the PIR answer (and,
if needed, the client hint for that row) back to the client. As
the reads are oblivious, the server learns nothing about 𝜎.
Performing PIR over only a row of the data structure (rather
than the whole data structure) will be the source of our 𝜆-fold
performance improvements compared to related approaches.

F.2 Our approximate membership test
Our construction is parameterized by integers 𝑎, 𝑘 ∈ N and
a set size 𝑁 . Our data structure then maps the set of strings
𝑆 into a matrix of 𝑎-by-(𝑘𝑁) bits. The construction uses
cryptographic hash functions 𝐻1, . . . , 𝐻𝑎 : U → [𝑘𝑁], which
we model as independent random oracles [14] and which are
chosen after the set 𝑆 has been fixed.
Setup(𝑆) → 𝐷 ∈ {0, 1}𝑎×𝑘𝑁 :
• Let 𝐷 ∈ {0, 1}𝑎×𝑘𝑁 be the all-zeros matrix.
• For each 𝑖 ∈ [𝑎] and 𝜎 ∈ 𝑆, set 𝐷𝑖,𝐻𝑖 (𝜎) = 1.
• Return 𝐷.

Query(𝜎) → (𝑖, 𝑗) ∈ [𝑎] × [𝑘𝑁]:
• Choose 𝑖 ←R [𝑎], and output (𝑖, 𝐻𝑖 (𝜎)).

F.3 Security analysis
Proposition F.1: The approximate membership-test data struc-
ture (Setup,Query), on parameters 𝑎 ≥ 2 (log(|U |) + 𝜆) and
𝑘 ≥ 8, is correct, has false-positive rate 1/2, and has oblivious
reads. The construction fails with probability 2−𝜆, over the
choice of the hash functions modeled as independent random
oracles. Concretely, on |U | = 2256, taking 𝑘 = 8 and 𝑎 = 768
gives false-positive rate 1/2 and failure probability 2−128.

Proof. Correctness and oblivious reads follow by construction.
Constant adversarial false-positive rate is proved in Lemma F.2,
which follows. □

Lemma F.2. The approximate membership-test data structure
(Setup,Query) on parameters 𝑎 and 𝑘 has adversarial false-
positive rate at most 𝑐 and fails with probability 2−𝜆, for any
𝑐 ∈ (0, 1) that satisfies |U |

(︁ 𝑎
𝑐𝑎

)︁
𝑘−𝑐𝑎 ≤ 2−𝜆.

28

When 𝑘 ≥ 8 and taking 𝑐 = 1/2, we get a data structure with
adversarial false-positive rate 1/2 and failure probability at
most 2−𝜆, as long as |U | 2−𝑎/2 ≤ 2−𝜆.

Proof. Fix any set 𝑆 ⊆ U and consider 𝐷 ← Setup(𝑆).
Consider any 𝑐 ∈ (0, 1) that satisfies |U |

(︁ 𝑎
𝑐𝑎

)︁
𝑘−𝑐𝑎 ≤ 2−𝜆.

For string 𝜎 ∈ U \𝑆, let Bad𝜎 be the event, over the random
choice of the random oracle, that there is a set of rows 𝑅 ⊆ [𝑎]
of size 𝑐𝑎, such that for all 𝑖 ∈ 𝑅, 𝐷𝑖,𝐻𝑖 (𝜎) = 1. First, we
bound the probability, over the choice of the random oracle,
that there exists any bad string 𝜎.
In particular, fix a string 𝜎 ∈ U \ 𝑆. Now we analyze the

eventBad𝜎 as follows. Each row of 𝐷 contains at most |𝑆 | = 𝑁

ones and has 𝑘𝑁 entries total. Thus, an independently sampled
random element in 𝐷 is non-zero with probability at most 𝑘−1.
For a particular set 𝑅 ⊆ [𝑎] of size 𝑐𝑎, let Bad𝜎,𝑅 be the event
that for all 𝑖 ∈ 𝑅, 𝐷 (𝑖, 𝐻𝑖 (𝜎)) = 1. Since the hash functions are
modelled as random oracles, we have that Pr[Bad𝜎,𝑅] ≤ 𝑘−𝑐𝑎.
By a union bound over all possible sets 𝑅,

Pr[Bad𝜎] = Pr

[︄⋁︂
𝑅

Bad𝜎,𝑅

]︄
≤

(︃
𝑎

𝑐𝑎

)︃
· 𝑘−𝑐𝑎

Let Bad :=
⋁︁

𝜎∈U\𝑆 Bad𝜎 . By a union bound over all possible
strings 𝜎, we get that:

Pr[Bad] ≤ |U | · Pr[Bad𝜎] ≤ |U | ·
(︃
𝑎

𝑐𝑎

)︃
· 𝑘−𝑐𝑎 .

So, with probability 1 − |U |
(︁ 𝑎
𝑐𝑎

)︁
𝑘−𝑐𝑎 over the choice of the

random oracles, there do not exist any bad strings 𝜎.
Now, consider the event ¬Bad (i.e., there exists no bad

string). In this case, for any 𝜎 ∈ U \ 𝑆, we know that, with
probability at most 𝑐 (over the random coins of Query), the
query algorithm will sample a row 𝑖 such that 𝐷𝑖,𝐻𝑖 (𝜎) = 1.
Thus, we know that:

Accept(𝑆, 𝜎) = Pr
𝑖
[𝐷𝑖,𝐻𝑖 (𝜎) = 1] ≤ 𝑐,

where the probability is taken over the random choice of 𝑖 by
the Query algorithm.
Finally, taking 𝑘 ≥ 8 and 𝑐 = 1/2, we see that

(︁ 𝑎
𝑎/2

)︁
≤ 2𝑎

and 𝑘−𝑐𝑎 ≤ 2−3𝑎/2, which completes the proof. □

G Additional implementation material
In Figure 15, we give a code listing for the core of SimplePIR

(without the extensions of Section 4.3). We do not include the
code for the following helper functions:
• MatrixRand, which takes as input a matrix height, a matrix
width, and the modulus to be used for the matrix entries, and
returns a uniformly random matrix of the given dimensions.

• MatrixGaussian, which takes as input a matrix height, a
matrix width, and the modulus to be used for the matrix

// Data types

type Matrix struct {

rows uint

cols uint

data []uint

}

type Params struct {

n uint // LWE secret dimension

db_height uint // DB height

db_width uint // DB width

q uint // ciphertext modulus

p uint // plaintext modulus

}

// SimplePIR methods

func Init(p Params) Matrix {

A := MatrixRand(p.db_height, p.n, p.q)

return A // 'A' is a public parameter

}

func Setup(DB Matrix, A Matrix) Matrix {

H := MatrixMul(DB, A)

return H // 'H' is the client hint

}

func Query(i uint, A Matrix,

p Params) (Matrix, Matrix) {

s := MatrixRand(p.n, 1, p.q)

err := MatrixGaussian(p.db_width, 1, p.q)

query := MatrixMul(A, s)

query.MatrixAdd(err)

query[i % p.db_width] += (p.q / p.p)

return s, query // 's' is the client state

} // 'query' is the client query

func Answer(DB Matrix, query Matrix) Matrix {

ans := MatrixMul(DB, query)

return ans // 'ans' is the server's answer

}

func Recover(i uint64, H, ans, s Matrix,

p Params) uint64 {

interm := MatrixMul(H, s)

ans.MatrixSub(interm)

noised := ans.data[i / p.db_width]

denoised := Round(noised, (p.q / p.p))

return denoised // the recovered database value

}

Figure 15: SimplePIR Go code.

29

entries, and returns a matrix of the given dimensions whose
entries were sampled from the discrete gaussian distribution
(with the appropriate, hard-coded standard deviation).

• MatrixMul, which takes as input two matrices and returns
their product, over the appropriate field.

• MatrixAdd, which takes as input two matrices and returns
their sum, over the appropriate field.

• MatrixSub, which takes as input two matrices and returns
their difference, over the appropriate field.

• Round, which takes as input a value and a base and returns
the value rounded to the nearest multiple of the base, and
then divided by the base.

30

	1 Introduction
	2 Related work and comparison
	3 Background and definitions
	3.1 Learning with errors (LWE)
	3.2 Private information retrieval with hints

	4 SimplePIR
	4.1 Technical ideas
	4.2 Parameter selection
	4.3 Extensions
	4.4 Fast linearly homomorphic encryption

	5 DoublePIR
	5.1 Construction
	5.2 Extensions

	6 Data structure for private approximate set membership
	6.1 Our approximate membership test
	6.2 Related approaches and comparison

	7 Application: Auditing in Certificate Transparency
	7.1 Problem statement
	7.2 Our approach

	8 Evaluation
	8.1 Microbenchmarks
	8.2 Certificate Transparency benchmark

	9 Conclusion
	References
	A Additional details on related work
	B Client-state-recovery attacks on some existing PIR schemes
	C Additional material on SimplePIR
	C.1 Parameter selection
	C.2 Correctness and security of SimplePIR
	C.3 Additional extensions and optimizations

	D Linearly homomorphic encryption with preprocessing
	D.1 Definition
	D.2 Construction
	D.3 Abstract view of SimplePIR

	E Additional material on DoublePIR
	E.1 Parameter selection
	E.2 Correctness and security of DoublePIR
	E.3 Additional extensions and optimizations

	F Additional material on our private set-membership data structure
	F.1 Syntax and properties
	F.2 Our approximate membership test
	F.3 Security analysis

	G Additional implementation material

