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Abstract

In the Set Cover problem, we are given a set system with each set having a weight, and we want to find a
collection of sets that cover the universe, whilst having low total weight. There are several approaches known
(based on greedy approaches, relax-and-round, and dual-fitting) that achieve a Hk ≈ ln k+O(1) approximation
for this problem, where the size of each set is bounded by k. Moreover, getting a ln k−O(ln ln k) approximation
is hard.

Where does the truth lie? Can we close the gap between the upper and lower bounds? An improvement
would be particularly interesting for small values of k, which are often used in reductions between Set Cover
and other combinatorial optimization problems.

We consider a non-oblivious local-search approach: to the best of our knowledge this gives the first Hk-
approximation for Set Cover using an approach based on local-search. Our proof fits in one page, and gives a
integrality gap result as well. Refining our approach by considering larger moves and an optimized potential
function gives an (Hk − Ω(log2 k)/k)-approximation, improving on the previous bound of (Hk − Ω(1/k8)) (R.
Hassin and A. Levin, SICOMP ’05 ) based on a modified greedy algorithm.

1 Introduction

(Weighted) Set Cover is one of the most important problems in the approximation algorithms literature. Given a
set system (U,S) where each set S ∈ S has weight w(S) > 0, the Set Cover problem asks to find a subcollection
F ¦ S that covers the universe (i.e., ∪S∈FS = U) while minimizing the total weight

�

S∈F w(S). This problem is
NP-hard as long as the sets have size at least three (the edge-cover problem can be solved in polynomial time). As
the flagship problem in two standard textbooks in approximation algorithms [Vaz01, WS11], and as an abstract
setting capturing numerous covering problems, it has always been an important testbed for new algorithmic
techniques.

Let k-Set Cover be the special case of Set Cover where every set has at most k elements. The simple greedy
algorithm that iteratively selects the set maximizing the current density (i.e., the ratio of the number of uncovered
elements in the set to its weight) guarantees an Hk-approximation, where Hk = 1+ 1/2+ · · ·+ 1/k = ln k+O(1) is
the kth harmonic number [Joh74, Lov75, Chv79]. It can be analyzed by the dual-fitting method, upper bounding
the integrality gap of the standard LP relaxation by Hk as well. Another proof of the integrality gap comes via the
relax-and-round approach ([You22], see also §B). These algorithms are almost optimal due to the (1− o(1)) lnn-
hardness of Feige [Fei98] and its refinement to the ln k − O(ln ln k)-hardness for k-Set Cover [Tre01], which even
holds against nf(k)-time algorithms for any computable function f .

How about local search, one of the most intuitive and popular algorithm design techniques? It maintains a
solution (a set cover in this case), and in each iteration, it tries to find a local move that swaps at most p sets
between the current solution and the remaining sets. If there exists a local move that results in a better set
cover, execute the local move; otherwise, output the current set system. While it has been successfully applied for
many problems including bounded-degree network design [FR92, FR94], Facility Location [KPR00, CG05] and
k-Median [AGK+04, GT08], the local search cannot yield any finite approximation ratio for Set Cover, at least
when the local width is one; simply consider the example where the universe has k elements, the optimal solution
contains k singleton sets of weight ε, but the current solution consists of the set containing all the elements but
has large weight 1. As ε→ 0 for fixed k, the gap between the two solutions becomes unbounded.

Is there a way to “redeem” local search? One reason that the above example is bad for local search is that the
potential that the standard local search is trying to optimize, which is the same as the total weight of the current
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solution, is too rigid; while adding a singleton set from the optimal solution can be seen as a progress, since the
large set is still needed to cover all elements, adding the singleton set only worsens the total weight and is not
executed. To fix this issue, non-oblivious local search (NOLS) tries to find a local move improving a carefully
designed potential different from the objective function of the problem. Originally defined by Khanna, Motwani,
Sudan, and Vazirani [KMSV98], it has been recently shown to work well for problems including Submodular
Optimization [FW14], Tree Augmentation and Steiner Tree [TZ22] (which directly inspired this paper), Steiner
forest [GGK+18] and k-Median [CAGH+22]. Our first result is the following “redemption” of local search for Set
Cover showing that NOLS with a natural potential can exactly match the Hk-approximation guarantee, up to an
arbitrarily small constant error ε > 0 that ensures that the local search terminates in polynomial time.

Theorem 1.1. For any ε > 0, there exists a width-1 non-oblivious local search algorithm that can be implemented
in time poly(n, 1/ε) and yields an Hk + ε-approximation for k-Set Cover.

Our proof also shows that any local optimum has weight at most Hk times an optimal solution to the LP
relaxation for set cover, thereby giving yet another proof of its integrality gap.

We then explore the power of NOLS beyond the Hk-approximation. While Trevisan’s (ln k − O(ln ln k))-
hardness shows that we cannot dramatically improve it, there are still unanswered questions, especially for small
values of k, which are important for hardness of other well-known problems including Steiner Tree [BP89, Thi01].
For unweighted k-Set Cover, there is a long series of works [GHY93, Hal95, Hal96, DF97, Lev09, ACK09, FY11]
giving an (Hk − ´k)-approximation where ´k g 0.5 for every k g 3 and approaches to 0.6402. (Some of these
works even use a combination of oblivious local search to solve a packing problem, and greedy to extend the
solution to a matching.)

But the status for weighted k-Set Cover—which is the problem we focus on—is understood far poorly. The
best approximation ratio remains Hk − Ω(1/k8) [HL05], obtained by a variant of the greedy algorithm. We make
progress on this direction, and prove the following improved approximation guarantees for k-Set Cover.

Theorem 1.2. For any ε > 0, there exist width-2 and width-k non-oblivious local search algorithms for k-Set
Cover that yield (Hk − Ω(1/k) + ε) and (Hk − Ω((log k)2/k) + ε)-approximations respectively.

Note that a width-2 local search can be implemented in time poly(n, 1/ε) and a width-k one can be näıvely
implemented in time nO(k) poly(1/ε). We present clean locality gap results for width 1, 2, and k swaps in
Section 2, 3, 4 respectively and show how to implement them in polynomial time in Section 5. In Section 6, we
provide matching lower bounds showing that these two results are tight for a large class of natural potentials.

2 Set Cover

Consider a weighted set system (U,S) with weights w : S → R
+ where each S ∈ S has cardinality at most k.

Define the downwards closure S³ of the set system as containing all sets {T | ∃S ∈ S, T ¦ S}, where each subset
has the same cost as the original set. Letting S ← S³ does not change the optimal value, so we assume that S is
downwards-closed. With this assumption, we can further assume the optimal solution F∗ forms a partition of the
universe U , and our algorithms will maintain the solution F that also forms a partition of U . (Letting S ← S³

might significantly increase the number of sets. In Section 5, we show how to efficiently implement it.)
For any collection F of sets that partition U , define the Rosenthal potential [Ros73]:

Φ(F) :=
�

S∈F

w(S)H|S|.(2.1)

For each element e, let w̄F (e) := w(S)
|S| for the set S ∈ F that covers e. (We omit the subscript F if it is clear

from context.) Then
�

e w̄(e) = w(F).

2.1 An Hk-competitive Local Search Algorithm Consider the following single (set) local moves:

Add in a single set S ∈ S³, and then for each T ∈ F in the current solution, replace T by T \S to get
back a new set cover solution that is a partition.

If this move decreases the Rosenthal potential—i.e., if this is an improving local move—we move to this resulting
solution.
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Theorem 2.1. (Single-Set Moves) Suppose F is a local optimum, i.e., there are no improving local moves.
Then w(F) f Hk · w(F

∗).

Proof. To show the locality gap, we consider a specific set of local moves (called test moves). Since there are
no improving local moves, each of these test moves do not reduce the potential, thereby giving us relationships
between the costs of some solutions related to the local and optimal solution. Combining these then proves the
theorem.

Indeed, consider using any of the sets in the optimal solution S ∈ F∗ as a local move from F . The resulting
potential function change is

w(S)H|S| −
�

T∈F

w(T )
�
H|T | −H|T\S|

�
g 0.

Since F is a partition of U , the second term on the LHS is

�

T∈F

|T∩S|−1
�

i=0

w(T )

|T | − i
g

�

T∈F

w(T )

|T |
|T ∩ S| =

�

T∈F

�

e∈S∩T

w̄(e) =
�

e∈S

w̄(e).(2.2)

Therefore we have for each S ∈ F∗ that

w(S)Hk −
�

e∈S

w̄(e) g 0.(2.3)

Summing over all sets in F∗, which we also imagine is a partition, we get

Hk

�

S∈F∗

w(S)−
�

e

w̄(e) g 0 =⇒ w(F) f Hkw(F
∗).

2.2 An Integrality Gap Result A small change bounds the cost against any solution to the standard linear
programing relaxation:

min
��

S

w(S)xS |
�

S:e∈S

xS g 1, x g 0
�
.

Indeed, suppose x∗ is any feasible solution, and we consider local moves with each of the sets sets in the support
of x∗. Multiplying (2.3) with x∗

S and summing gives

�

S

H|S|w(S)x
∗
S −

�

e

w̄(e)
�

S:e∈S

x∗
S g 0.(2.4)

But
�

S:e∈S x∗
S g 1 by feasibility of the LP, so we infer that

�

e

w̄(e) = w(F) f
�

S∈F∗

w(S)x∗
S H|S| f Hk · (w

⊺x∗).

3 An Improvement Using Double Moves

The above analysis suggests one avenue for improvement: if the move adding set S ∈ F∗ removes more than one

element from some set T ∈ F , then the inequality (2.2) bounds the decrease in potential by |T∩S|
|T | , whereas the

actual decrease is H|T | −H|T\S|, which is possibly greater. Concretely, if |T | = k and |T ∩ S| = 2, then we claim
an improvement of 2/k, whereas the actual improvement is 1/k + 1/k−1. In this section we show how this idea can
be used to get an improvement.

The algorithm is now a natural “width-two” generalization of the above local search:

Add in two sets S, S′ ∈ S³ to F , and replace each existing set T ∈ F by T \ (S ∪ S′). If the resulting
partition has a smaller potential value, move to it.
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We allow S = S′, which captures the case of adding a single set. Hence local optima with these moves have cost
at most Hkw(F

∗) by the previous section; we want to show a better bound. Let us first do this for a special case,
and then show how to remove this assumption (in Lemma 3.1).

Theorem 3.1. (Double Moves) Consider a solution F that is a local optimum for the above width-two local
search with the Rosenthal potential. Let F1 ¦ F be the subcollection of sets in F having unit size, and suppose
w(F1) f 0.99w(F). Then

w(F) f Hk(1−Θ(1/k2)) · w(F∗).

Proof. The proof again goes via analyzing a collection of test moves; these try to add in at most two sets at a
time. To get the test moves, consider a bipartite graph whose nodes are the sets in F∗ and those in F , and there
is an edge between S ∈ F∗ and T ∈ F iff S ∩ T ̸= ∅. For a vertex S, let NS be the set of its neighbors. There
are two kinds of test moves:

1. For a set T ∈ F , let S0, S1, . . . , Sℓ−1 ∈ F
∗ be its neighbors in an arbitrary order. If ℓ = 1, then try to add

in S0 twice. Else, for each index 0 f i < ℓ, try to add in Si and S(i+1) mod ℓ together.

2. A set S ∈ F∗ is added exactly 2|NS | times above, twice for each T ∈ NS . Add in S another 2k − 2|NS |
number of times.

The local optimality ensures that none of the moves above decreases the potential. Let us consider the total
potential change caused by the above moves. Firstly, each set S ∈ F∗ is added exactly 2k times, so the total
potential increase by adding it is exactly 2kw(S)H|S| f 2kHk · w(S). Moreover, let us consider the potential
decrease due to the removal of elements from each set in F . Indeed, for a set T ∈ F , let ℓ denote its neighborhood
size in the bipartite graph.

� If ℓ = 1, then T is a subset of S0, its only neighbor. Thus the potential from T is decreased by w(T )H|T |

twice, for a total of 2w(T )H|T |. If ℓ > 1, then for each pair S, S′ added together, the potential from T
is decreased by w(T )(H|T | − H|T |−|(S∪S′)∩T |). Since |(S ∪ S′) ∩ T | = |S ∩ T | + |S′ ∩ T | g 2, the average
per-element decrease,

w(T )(H|T | −H|T |−|(S∪S′)∩T |)

|(S ∪ S′) ∩ T |
,

is at least what it would be if |(S ∪ S′) ∩ T | = 2, i.e., w(T )(H|T | −H|T |−2)/2. So the overall decrease is at
least

(|(S ∪ S′) ∩ T |) w(T ) (H|T | −H|T |−2)/2.

Since the sum of (|(S ∪ S′) ∩ T |) over all added pairs S, S′ is exactly 2|T |, the overall potential decrease is
at least |T |w(T )(H|T | −H|T |−2).

If |T | = 1, then ℓ = 1 and the potential decrease is 2w(T )H|T | = 2w(T ). If |T | g 2, then regardless of
whether ℓ = 1 or ℓ > 1, the potential decrease is at least |T |w(T )(H|T | −H|T |−2).

� In total, each S ∈ NT is added exactly 2k times, so each element of T is removed a total of 2k times. Two
of these 2k removals are accounted above, so the remaining potential decrease over all elements is at least
w(T ) · (2k − 2) · |T | · (H|T | −H|T |−1) = (2k − 2)w(T ).

The total potential decrease, which is at most 0, is at least

�

T∈F1

2w(T ) +
�

T∈F\F1

|T |w(T )(H|T | −H|T |−2) +
�

T∈F

(2k − 2)w(T )−Hk

�

S∈F∗

2kw(S),(3.5)

where F1 is the collection of sets in F of unit size. Observe that

|T |(H|T | −H|T |−2) = |T |

�
1

|T |
+

1

|T | − 1

�

= 2 +
1

|T | − 1
g 2 +

1

k − 1
.
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By assumption, w(F \ F1) g 0.01w(F), so the potential decrease is at least

�

T∈F

�

2 +
1

100(k − 1)

�

w(T ) +
�

T∈F

(2k − 2)w(T )−Hk

�

S∈F∗

2kw(S)

=
�

T∈F

�

2k +
1

100(k − 1)

�

w(T )−Hk

�

S∈F∗

2kw(S).

Since this decrease is at most 0, we conclude that

w(F) f
2k

2k + 1/(100(k−1))
Hk · w(F

∗) f (1−Θ(1/k2))Hk · w(F
∗).

To get a better-than-Hk approximation for all instances, we can go two ways: the first approach is to post-
process the locally optimal solution F using the following lemma (which we prove in §A) to handle the case not
handled by ?? 3.1:

Lemma 3.1. (Post-processing) Given any solution F with w(F) f Hkw(F
∗), let F1 be the subcollection of

sets in F of unit size. If w(F1) g 0.99w(F), there is an efficient algorithm that returns a new solution F ′ with
w(F ′) f 0.99Hk · w(F).

Hence, returning the better of the solutions F produced by the local-search procedure, and F ′ from using
Lemma 3.1 applied to F , gives a solution of cost at most

Hk · (1−Θ(1/k2)) · w(F∗).

The second—better and more principled approach—is to modify the potential function, which we do in the next
section.

3.1 An Improved Analysis using a Custom Potential Function Let us consider a somewhat generic
potential function: define f1 := 1, and let fi g 0 be values to be fixed later, satisfying fi g fi+1 for all i. Let
Fi :=

�i

j=1 fj , and define the following potential

Ψ(F) =
�

S∈F

w(S)F|S|.

We get back the Rosenthal potential by setting fi = 1/i, but now we can optimize over settings of fi to give better
results. We again consider the two-set local search algorithm, trying to reduce the value of the new potential
Ψ(F). The test moves remain unchanged.

Moreover, the calculations remain essentially unchanged beyond replacing Hi by Fi; the argument about the
average per-element decrease being largest for |(S ∪ S′) ∩ T | = 2 follows from the fi values being non-increasing.
Consequently, the total potential decrease, which is at most 0, is at least

�

T∈F1

2w(T ) +
�

T∈F\F1

|T |w(T )(F|T | − F|T |−2) +
�

T∈F

(2k − 2)|T |w(T )f|T | − Fk

�

S∈F∗

2k w(S).(3.6)

This equation can be compared to (3.5), where we had used the fact that the Rosenthal potential satisfies
ifi = i(1/i) = 1 and simplified the third summation above:

�

T∈F (2k − 2)|T |w(T )f|T | =
�

T∈F (2k − 2)w(T ).
Let us abstract (3.6) further: define

³t :=
1

w(F)
·

�

T∈F :|T |=t

w(T ),

and note that ³ = (³1, . . . , ³k) gives a probability distribution over the set sizes, and hence belongs to the
probability simplex △k. Dividing (3.6) through by 2k, simplifying slightly, and using that this decrease is at most
zero gives

w(F) ·

�

³1 +
�

tg2

t(Ft − Ft−2) + (2k − 2)tft
2k

� �� �

=:ϕt

³t

�

f Fk w(F
∗).
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Let ϕ1 := 1 and ϕt be the coefficient of ³t as shown above. Getting the best approximation becomes an
optimization problem: we want to set fi values to minimize max³∈△k

�
Fk�
t
ϕt³t

�
, or equivalently, to minimize

Fk ·maxt
�
1/ϕt

�
. Recall that we require f1 = 1; we set

ft :=
1

t
−

1

4kt(t− 1)
for t > 1.(3.7)

Then for t g 3,

t(Ft − Ft−2) = t

�
1

t
−

1

4kt(t− 1)
+

1

t− 1
−

1

4k(t− 1)(t− 2)

�

g 2 +
1

t− 1
−

1

2k(t− 1)
g 2 +

1

2(t− 1)
,

and the bound t(Ft − Ft−2) g 2 + 1
2(t−1) can be separately verified for t = 2. Observe that ϕ1 = 1 by definition,

and for t > 1, we have

ϕt =
t(Ft − Ft−2) + (2k − 2)tft

2k
g

1

2k

�

2 +
1

2(t− 1)
+ (2k − 2)

�

1−
1

4k(t− 1)

��

g 1.

Hence, the approximation guarantee is at most Fk maxt(1/ϕt) = Fk. Finally, we bound Fk f Hk − 1/8k since
for i = 2 alone, f2 beats the corresponding term 1/2 from Hk by 1/8k.

Theorem 3.2. (Two-Sets Moves) Any local optimum for the two-sets local search using the potential Ψ using
the fi values from (4.8) satisfies w(F) f (Hk − 1/(8k)) · w(F∗).

4 Further Improvements: Moves with Width k

We now consider the “width-k” generalization: add in sets S1, S2, . . . , Sk ∈ S
³ to F , and replace each existing set

T ∈ F by T \ (S1 ∪ · · · ∪ Sk). If the resulting partition has a smaller potential value, move to it. (Once again, we
allow repeats in the sets, or equivalently, we allow moves of fewer than k sets.)

Intuitively, if we choose sets S1, S2, . . . , Sk that cover a set T ∈ F of size k, then T disappears from F and
the improvement to the Rosenthal potential is 1 + 1/2+ · · ·+ 1/k, or an average of 1/k · (1 + 1/2+ · · ·+ 1/k), which
is even better than the average 1/2 · (1/k−1 + 1/k) in the width-2 case. We will actually use a custom potential
function as before, but the Rosenthal potential provides a good baseline intuition.

We now define the test moves. For T ∈ F , let NT := {S ∈ F∗ : |S ∩ T | ̸= 0} and similarly, for S ∈ F∗, let
NS := {T ∈ F : |S ∩ T | ≠ 0}.

1. For each T ∈ F , add the sets in NT together.

2. For each S ∈ F∗, add S. This move is multiplied by (k− |NS |) times so that each S participates in exactly
k moves.

The local optimality ensures that none of the moves above decreases the potential. Let us consider the total
potential change caused by the above moves. First, each S ∈ F∗ is added exactly k times, so the total potential
increase by adding it is exactly kw(S)F|S|, where we define the custom potential function fi later.

For T ∈ F , we consider the two types of moves separately.

� For the move when NT is added together, T is removed from F , so the potential from T is decreased by
w(T )F|T |.

� Other than this move, each S ∈ NT is added exactly k−1 times, so each element of T is removed k−1 times
more. Therefore, the total potential decrease for such moves is at least w(T ) · (k − 1) · |T | · (F|T | − F|T |−1).

Therefore, the total potential decrease, which is at most 0, is at least

�

T∈F

w(T )F|T | +
�

T∈F

(k − 1)|T |w(T )f|T | − Fk

�

S∈F∗

k w(S).
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We now follow the recipe from §3.1: dividing by k and defining the probability distribution ³t := 1
w(F) ·�

T∈F :|T |=t w(T ) gives

w(F) ·

�
�

tg1

Ft + (k − 1)tft
k

� �� �

=:ϕt

³t

�

f Fk w(F
∗).

Let ϕt be the coefficient of ³t as shown above. Getting the best approximation is again an optimization
problem: we want to set fi values to minimize max³∈△k

�
Fk�
t
ϕt³t

�
, or equivalently, to minimize Fk ·maxt

�
1/ϕt

�
.

We set

ft :=
1

t
−

log t

8kt
for t g 1.(4.8)

To verify that maxt{1/ϕt} f 1, we first bound Ft by

Ft =

t�

i=1

fi = Ht −
t�

i=1

log i

8ki
g Ht −

� t+1

x=1

log x

8kx
dx = Ht −

log2(t+ 1)

16k
g Ht −

log(t+ 1)

16

using log(t+ 1) f t f k for the last inequality. Therefore,

kϕt = Ft + (k − 1)tft = Ht −
log(t+ 1)

16
+ (k − 1)t

�
1

t
−

log t

8kt

�

g (k − 1) +Ht −
log(t+ 1)

16
−

log t

8
g k for t g 2.

We can show kϕ1 g k separately for t = 1 using F1 = f1 = 1. Therefore, the approximation ratio is at most
Fk = Hk −Θ((log k)2/k).

5 A Polynomial-Time Implementation

There are two issues with the running time of the above algorithms: (a) since we consider adding sets from the
exponentially-large subset-closed family of sets (i.e., we assumed S = S³), finding such a feasible local move may
not naively be polynomial-time implementable. Moreover, (b) reaching a local optimum may not be feasible in
polynomial time. The second issue can be handled using the standard technique of stopping when none of the
local moves decrease the potential by more than a ¶w(F) (see, e.g., [WS11, §9.1]). By setting ¶ = ε/|U | and
changing the RHS of (2.3) from 0 to ¶w(F) and using |F∗| f |U |, we can ensure that w(F) f Hk

1−ε
w(F ∗) when

there is no such improving move. Assuming the initial solution is poly(n)-approximate, one can ensure that the
running time is poly(n, ε).

For issue (a), let S be the original collection of sets, not necessarily downwards closed. Suppose that
we have the current solution F and S1, . . . , Sp ∈ S, and want to find appropriate pairwise disjoint subsets
S′
1 ¦ S1, . . . , S

′
p ¦ Sp such that the new solution that adds S′

1, . . . , S
′
p to F (and subtracts their union from every

S ∈ F) has a low potential. We do not know of an efficient way to compute the optimal choice of S′
1, . . . , S

′
p.

(One possible solution is, letting T1, . . . , Tq ∈ F be the sets intersecting ∪i∈[p]Si (so q f pk), to (1) guess |S′
i|

for every i ∈ [p], and |Tj ∩ (∪iS
′
i)| for every j ∈ [q] that exactly determine the potential change and (2) set up a

network flow testing whether such S′
1, . . . , S

′
p exist, but it takes time kO(pk) poly(n).)

A more efficient implementation without necessarily finding the optimal S′
1, . . . , S

′
p is this: in all our previous

proofs, when we considered adding S ∈ F∗ to the solution, the analysis always used Fkw(S) as (an upper bound
on) the increase of the potential by adding S instead of the exact increase F|S|w(S). This means that we can
indeed run more conservative local search; given S1, . . . , Sp, let A =

�

i∈[p] w(Si)Fk be the total increase from
adding them, compute the total decrease B caused by removing ∪i∈[p]Si from the current sets in F , and only
execute the local move when A is smaller than B (by ¶w(F)). All our analyses prove that we achieve the claimed
approximation guarantees even when such a more conservative local move is not possible. Of course, if S1, . . . , Sp

overlap, we can arbitrarily drop elements from them to ensure that the new solution is a partition as well; this
further drops the potential.
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6 Tight Lower Bounds

In this section, we show that the approximation ratios of Hk − Θ(1/k) and Hk − Θ((log k)2/k) achieved by the
width-2 and width-k local search respectively are optimal. In fact, they are optimal under any potential of the
form Φ(F) =

�

S∈F w(S)F|S| where Fℓ = f1+ · · ·+ fℓ for some f1 g · · · g fk. (We believe that the monotonicity
condition is unnecessary, but currently do not have a formal proof.)

6.1 Width-2 Lower Bounds We construct a collection of lower bound instances Iℓ, one for each ℓ ∈ [k]. The
instance Iℓ is the following:

1. The universe is U .
2. The optimum F∗ partitions U into sets of size exactly k where each set has cost 1.
3. The local optimum F partitions U into sets of size exactly ℓ where each set has cost ³ℓ, to be determined

below.
4. The set system is (U,F ∪ F∗).
5. Let Gℓ be a bipartite graph with F and F∗ as two sides, where each element u ∈ U corresponds an edge

connecting the two sets that contain u. We can ensure that the girth of Gℓ is at least a constant arbitrarily
larger than k [FLS+95].

Let us determine the value of ³ℓ so that F becomes a local optimum. When ℓ = 1, ³1 = Fk/k suffices, which
yields the approximation ratio Fk.

For ℓ g 2, there are essentially two kinds of moves: there are width-2 local moves that add sets S1, S2 ∈ F
∗

such that |(S1 ∪ S2) ∩ T | f 1 for all T ∈ F , or to add two distinct sets S1, S2 ∈ F
∗ that intersect a common

T ∈ F . (The girth condition ensures that there can be at most one such T , and |S1 ∩ T | = |S2 ∩ T | = 1.

(i) The potential increase due to adding S1, S2 is 2Fk.

(ii) Either each set T ∈ F intersecting S1∪S2 loses one element, or some T loses two elements and all the other
sets intersecting S1 or S2 lose exactly one element. So the potential decrease due to removing elements from
sets in F is

(fℓ + fℓ−1) + (2k − 2)fℓ.

(Here we use the fact that fℓ−1 g fℓ.)

(iii) Therefore, F is a local optimum as long as

³ℓ =
2Fk

(2k − 1)fℓ + fℓ−1
,

and the approximation ratio in this case is

k³k

ℓ
=

k

ℓ
·

2Fk

(2k − 1)fℓ + fℓ−1
=

Fk

ℓ(fℓ + fℓ−1−fℓ/2k)
.

Fixing f1 = 1 and optimizing f2, . . . , fk to minimize the worst-case approximation ratio over the k instances
I1, . . . , Ik shows that the best possible approximation ratio is determined by setting

fℓ =
1

ℓ
+

1

2k − 1

�
1

ℓ
− fℓ−1

�

for ℓ = 2, . . . , k. It yields fℓ = 1/ℓ−Θ(1/kℓ2) as in the upper bound proof in Section 3, showing that no potential
can guarantee strictly better than Hk −Θ(1/k).

6.2 Width-p Lower Bounds The lower bound for the case of width-p follows the same framework. Fix ℓ ∈ [k]
and consider the instance Iℓ defined in Section 6.1 (while ensuring that the girth k p), and determine the value
of ³ℓ so that F becomes a local optimum. When ℓ = 1, ³1 = Fk/k suffices, which yields the approximation ratio
Fk.

For ℓ g 2, let us consider what the best local width-p moves would be. For S1, . . . , Sp from the optimal
solution F∗, consider the bipartite graph where the left vertices are S1, . . . , Sp, the right vertices are the sets from
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the current solution F intersecting S1, . . . , Sp, and there is an edge if two sets intersect. Since the girth of the
instance is much larger than W , this bipartite graph is a tree with exactly Wk edges and Wk+1 vertices, so the
number of right vertices is P = W (k − 1) + 1. If we let d1 g · · · g dP be the degrees of the right vertices, the
potential decrease from the current set is

P�

i=1

(Fℓ − Fℓ−di
).

Since both P and
�P

i=1 di = Wk are fixed, the monotonicity of f1 g · · · g fk implies that the above is when the
degree is maximally skewed; defining t ∈ N and 1 f r < ℓ − 1 such that p − 1 = t(ℓ − 1) + r, we have t right
vertices have degree ℓ, one right vertex has degree r+1, and the remaining p(k− 1)− t right vertices have degree
1. As a sanity check, note that t · ℓ+ (r + 1) + p(k − 1)− t = (t(ℓ− 1) + r) + 1 + p(k − 1) = pk.

With this move,

(i) The potential increase due to adding S1, S2, . . . Sp is pFk.

(ii) The potential decrease due to removing elements from sets in F is

tFℓ + (Fℓ − Fℓ−r−1) + (p(k − 1)− t)fℓ.

(iii) Therefore, F becomes a local optimum if

³ℓ =
pFk

tFℓ + (Fℓ − Fℓ−r−1) + (p(k − 1)− t)fℓ
,

and the approximation ratio in this case is ³ℓ · (k/ℓ).

Again fixing f1 = 1 and optimizing f2, . . . , fk to minimize the approximation ratio for I1, . . . , Ik, yields
fℓ = 1/ℓ − Θ(log ℓ/kℓ) just like we used in §4 for the upper bound for k-moves. Intuitively, setting s = (p−1)/(ℓ−1)

so that t(ℓ− 1) + r = s(ℓ− 1), the approximation ratio ³ · (k/ℓ) becomes

k

ℓ
·

pFk

tFℓ + (Fℓ − Fℓ−r−1) + (p(k − 1)− t)fℓ

g
k

ℓ
·

pFk

sFℓ + (pk − sℓ)fℓ

=
Fk

ℓ

�

sFℓ

pk
+ (1− sℓ/pk)fℓ

�

=
Fk

Θ(Fℓ

k
) + (1−Θ(1/k))ℓfℓ

,

so that with Fℓ = Θ(log ℓ), the denominator becomes at least 1 when ℓfℓ = (1−Θ(log ℓ/k)). Therefore, no potential
can guarantee strictly better than Hk −Θ((log k)2/k).
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A The Post-processing Algorithm

Lemma 3.1. (Post-processing) Given any solution F with w(F) f Hkw(F
∗), let F1 be the subcollection of

sets in F of unit size. If w(F1) g 0.99w(F), there is an efficient algorithm that returns a new solution F ′ with
w(F ′) f 0.99Hk · w(F).

Proof. We assume that k g 3, else the resulting edge-cover problem can be solved exactly in polynomial time.
Suppose w(F) f 0.99Hk · w(F

∗), then we are already done, so assume otherwise. The assumption of the lemma
means w(F1) g 0.98Hk · w(F

∗).
Note that adding S ∈ F∗ immediately allows us to remove the singleton sets which are contained in S. For

a collection of sets C ¦ S, let NC,1 := {T ∈ F1 | T ¦ ∪S∈CS} be the collection of singletons from F1 that can be
removed from the solution by adding C.

We set up an instance of Knapsack Cover: we seek a collection C ¦ S with w(C) f w(F∗) that maximizes
the saving w(NC,1). Since F∗ is a feasible solution with saving at least w(F1) g 0.98Hk · w(F

∗), we can use an
(1 − 1/e)-approximation algorithm [Svi04] for knapsack cover to find a feasible solution C having weight at most
w(F∗) and savings at least (1− 1/e) · 0.98Hk · w(F

∗). This means F ∪ C \ NC,1 is a set cover with cost at most

�

1 +Hk(1− 0.98 (1− 1/e))

�

w(F∗) f 0.99Hkw(F
∗),

for all integers k g 3.

B The Hk Bound via Relax-and-Round

The traditional analysis of relax-and-round achieves a bound of O(ln k) [Hoc82], but one can tighten the bound
to Hk. Consider the following algorithm:

Solve the LP relaxation to get solution x∗. Repeatedly pick sets S1, S2, . . . from S, each time picking

set S with probability
x∗

S�
T
x∗

T

. Finally, let F be the sets Si that cover elements not covered by previous

sets S1, . . . , Si−1.

The following claim is proved in lecture notes of Young [You22]:

Theorem B.1. The algorithm above incurs expected cost at most Hk ·
�

S w(S)x∗
S.
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