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Abstract. We consider the stochastic score classification problem.
There are several binary tests, where each test i is associated with a
probability pi of being positive, a cost ci, and a weight ai. The score of
an outcome is a weighted sum of all positive tests, and the range of possi-
ble scores is partitioned into intervals corresponding to different classes.
The goal is to perform tests sequentially (and possibly adaptively) so
as to identify the class at the minimum expected cost. We provide the
first constant-factor approximation algorithm for this problem, which
improves over the previously-known logarithmic approximation ratio.
Moreover, our algorithm is non adaptive: it just involves performing tests
in a fixed order until the class is identified. Our approach also extends
to the d-dimensional score classification problem and the “explainable”
stochastic halfspace evaluation problem (where we want to evaluate
some function on d halfspaces). We obtain an O(d2 log d)-approximation
algorithm for both these extensions. Finally, we perform computational
experiments that demonstrate the practical performance of our algorithm
for score classification. We observe that, for most instances, the cost of
our algorithm is within 50% of an information-theoretic lower bound on
the optimal value.

Keywords: Stochastic optimization · Approximation algorithms ·
Stochastic probing · Adaptivity

1 Introduction

The problem of diagnosing complex systems often involves running a large num-
ber of tests for each component of such a system. One option to diagnose such sys-
tems is to perform tests on all components, which can be prohibitively expensive
and slow. Therefore, we are interested in a policy that tests components one by
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one, and minimizes the average cost of testing. (See [23] for a survey.) Concretely,
we consider a setting where the goal is to test various components, in order to
assign a risk class to the system (e.g., whether the system has low/medium/high
risk).

The stochastic score classification (SSClass) problem introduced by [14]
models such situations. There are n components in a system, where each compo-
nent i is “working” with independent probability pi. While the probabilities pi

are known a priori, the random outcomes Xi ∈ {0, 1} are initially unknown. The
outcome Xi of each component i can be determined by performing a test of cost
ci: Xi = 1 if i is working and Xi = 0 otherwise. The overall status of the system
is determined by a linear score r(X) :=

∑n
i=1 aiXi, where the coefficients ai ∈ Z

are input parameters. We are also given a collection of intervals I1, I2, . . . , Ik

that partition the real line (i.e., all possible scores). The goal is to determine the
interval Ij (also called the class) that contains r(X), while incurring minimum
expected cost. A well-studied special case is when there are just two classes,
which corresponds to evaluating a halfspace or linear-threshold-function [11].

Example: Consider a system which must be assigned a risk class of low, medium,
or high. Suppose there are five components in the system, each of which is work-
ing with probability 1

2 . The score for the entire system is the number of working
components. A score of 5 corresponds to the “Low” risk class, scores between 2
and 4 correspond to “Medium” risk, and a score of at most 1 signifies “High”
risk. Suppose that after testing components {1, 2, 3}, the system has score 2
(which occurs with probability 3

8 ) then it will be classified as medium risk irre-
spective of the remaining two components: so testing can be stopped. Instead,
if the system has score 3 after testing components {1, 2, 3} (which occurs with
probability 1

8 ) then the class of the system cannot be determined with certainty
(it may be either medium or low), and so further testing is needed.

A related problem is the d-dimensional stochastic score classification problem
(d-SSClass), which models the situation when a system has d different functions,
each with an associated linear score (as above). We must now perform tests on
the underlying components to simultaneously assign a class to each of the d
functions.

In another related problem, a system again has d different functions. Here,
the status (working or failed) of each function is determined by some halfspace,
and the overall system is considered operational if all d functions are working.
The goal of a diagnosing policy is to decide whether the system is operational,
and if not, to return at least one function that has failed (and therefore needs
maintenance). This is a special case of a problem we call explainable stochastic
halfspace evaluation (EX-SFE).

Solutions for all these problems (SSClass, d-SSClass, and EX-SFE) are
sequential decision processes. At each step, a component is tested and its out-
come (working or failed) is observed. The information from all previously tested
components can then be used to decide on the next component to test; this
makes the process adaptive. This process continues until the risk class can be
determined with certainty from the tested components. One simple class of solu-
tions are non-adaptive solutions, which are simply described by a priority list:
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we then test components in this fixed order until the class can be uniquely
determined. Such solutions are simpler and faster to implement, compared to
their adaptive counterparts: the non-adaptive testing sequence needs to be con-
structed just once, after which it can be used for all input realizations. However,
non-adaptive solutions are weaker than adaptive ones, and our goal is to bound
the adaptivity gap, the multiplicative ratio between the performance of the non-
adaptive solution to that of the optimal adaptive one. Our main result shows
that SSClass has a constant adaptivity gap, thereby answering an open question
posed by [14]. Additionally, we show an adaptivity gap of O(d2 log d) for both
the d-SSClass and EX-SFE problems.

Before we present the results and techniques, we formally define the problem.
For any integer m, we use [m] := {1, 2, . . . ,m}. An instance of SSClass consists
of n independent {0, 1} random variables X = X1, . . . , Xn, where variable Xi has
Pr[Xi = 1] = E[Xi] = pi. The cost to probe/query Xi is ci ∈ R+; both pi, ci are
known to us. We are also given non-negative weights ai ∈ Z+, and the score of
the outcome X = (X1, . . . , Xn) is r(X) =

∑n
i=1 aiXi. In addition, we are given

B + 1 integers α1, . . . , αB+1 such that class j corresponds to the interval Ij :=
{αj , . . . , αj+1 − 1}. The score classification function h : {0, 1}n → {1, . . . , B}
assigns h(X) = j precisely when r(X) ∈ Ij . The goal is to determine h(X) at
minimum expected cost. We assume non-negative weights only for simplicity:
any instance with positive and negative weights can be reduced to an equivalent
instance with all positive weights (see full version for details). Let W :=

∑n
i=1 ai

denote the total weight. In our algorithm, we associate two numbers (β0
j , β1

j ) ∈
Z
2
+ with each class j, where β0

j = W − αj+1 + 1 and β1
j = αj .

1.1 Results and Techniques

Our main result is the following algorithm (and adaptivity gap).

Theorem 1. There is a polynomial-time non-adaptive algorithm (called NaCl)
for stochastic score classification with expected cost at most a constant factor
times that of the optimal adaptive policy.

This result improves on the prior work from [11,14] in several ways. Firstly,
we get a constant-factor approximation, improving upon the previous O(log W )
and O(B) ratios, where W is the sum of weights, and B the number of classes.
Secondly, our algorithm is non-adaptive in contrast to the previous adaptive
ones. Finally, our algorithm has nearly-linear runtime, which is faster than the
previous algorithms.

An added benefit of our approach is that we obtain a “universal” solution
that is simultaneously O(1)-approximate for all class-partitions. Indeed, the non-
adaptive list produced by NaCl only depends on the probabilities, costs, and
weights, and not on the class boundaries {αj}; these αj values are only needed
in the stopping condition for probing.

Algorithm Overview. To motivate our algorithm, suppose that we have
probed a subset S ⊆ [n] of variables, and there is a class j such that

∑
i∈S aiXi ≥

αj and
∑

i∈S ai(1 − Xi) ≥ W − αj+1 + 1. The latter condition can be rewritten
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as
∑

i∈S aiXi +
∑

i�∈S ai ≤ αj+1 − 1. So, we can conclude that the final score
lies in {αj , . . . , αj+1 − 1} irrespective of the outcomes of variables in [n] \ S.
This means that h(X) = j. On the other hand, if the above condition is not
satisfied for any class j, we must continue probing. Towards this end, we
define two types of rewards for each variable i ∈ [n]: R0(i) = ai · (1 − Xi) and
R1(i) = ai ·Xi. (See Fig. 1.) The total R0-reward and R1-reward from the probed
variables correspond to upper and lower bounds on the score, respectively. Our
non-adaptive algorithm NaCl probes the variables in a predetermined order
until

∑
i∈S R0(i) ≥ β0

j = W − αj+1 + 1 and
∑

i∈S R1(i) ≥ β1
j = αj for some

class j (at which point it determines h(X) = j).

(a) The R0 reward (upper bound) and
R1 reward (lower bound) lie in class j
and hence probing can be stopped.

(b) Here f(X) could be j or j + 1, so
probing must continue.

Fig. 1. Illustration of non-adaptive approach

To get this ordering we first build two separate lists: list Lb for the Rb-rewards
(for b = 0, 1) minimizes the cost required to cover some target amount of Rb-
reward. Finally, interleaving lists L0 and L1 gives the final list. The idea behind
list L0 is as follows: if we only care about a single class j, we can set a target of β0

j

and use the non-adaptive algorithm for stochastic knapsack cover [21]. Since the
class j is unknown, so is the target β0

j on the R0-reward. Interestingly, we show
how to construct a “universal” non-adaptive list L0 that works for all targets
simultaneously. The construction proceeds in phases: in each phase � ≥ 0, the
algorithm adds a subset of variables with cost O(2�) that (roughly) maximizes
the expected R0 reward. Naıvely using the expected rewards can lead to poor per-
formance, so a natural idea is to use rewards truncated at logarithmically-many
scales (corresponding to the residual target); see for example, [12]. Moreover, to
get a constant-factor approximation, we use the critical scaling idea from [21].
Roughly speaking, this identifies a single scale κ such that with constant proba-
bility (1) the algorithm obtains large reward (truncated at scale κ), and (2) any
subset of cost 2� has small reward.

Analysis Overview. The analysis of Theorem 1 relates the “non-completion”
probabilities of our algorithm after cost γ · 2� to that of the optimal adaptive
algorithm after cost 2�, for each phase � ≥ 0. The factor γ corresponds to the
approximation ratio of the algorithm. In order to relate these non-completion
probabilities, we consider the R0 and R1-rewards obtained by an optimal adap-
tive algorithm, and argue that the non-adaptive algorithm obtains a higher R0 as
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well as R1 reward (with constant probability). Thus, if the optimal adaptive algo-
rithm decides h(X), so does the non-adaptive algorithm. Our algorithm/analysis
also use various properties of the fractional knapsack problem.

Extensions. Next, we consider the d-dimensional score classification problem
(d-SSClass) and obtain the following result:

Theorem 2. There is a non-adaptive O(d2 log d)-approximation algorithm for
d-dimensional stochastic score classification.

We achieve this by extending the above approach (for d = 1). We now define
two rewards (corresponding to R0 and R1) for each dimension d. Then, we apply
the list building algorithm for each of these rewards, resulting in 2d separate lists.
Finally, we interleave these lists to obtain the non-adaptive probing sequence.
The analysis is also an extension of the d = 1 case. The main differences are
as follows. Just accounting for the 2d lists results in an extra O(d) factor in
the approximation. Furthermore, we need to ensure (for each phase �) that with
constant probability, our non-adaptive algorithm achieves more reward than the
optimum for all the 2d rewards. We incur another O(d log d) factor in the approx-
imation in order to achieve this stronger property.

In a similar vein, our main result for EX-SFE is the following:

Theorem 3. There is a non-adaptive O(d2 log d)-approximation algorithm for
explainable stochastic halfspace evaluation.

The non-adaptive list for EX-SFE is constructed in the same manner as for
d-SSClass, but the stopping rule relies on the oracle for verifying witnesses of
f ◦ h. As a special case, we obtain:

Corollary 1. There is a non-adaptive O(d2 log d)-approximation algorithm for
the explainable stochastic intersection of half-spaces problem.

The stochastic intersection of halfspaces problem (in a slightly different model)
was studied previously by [6], where an O(

√
n log d)-approximation algorithm

was obtained assuming all probabilities pi = 1
2 . The main difference from our

model is that [6] do not require a witness at the end. So their policy can stop if
it concludes that there exists a violated halfspace (even without knowing which
one), whereas our policy can only stop after it identifies a violated halfspace (or
determines that all halfspaces are satisfied). We note that our approximation
ratio is independent of the number of variables n and holds for arbitrary prob-
abilities. The proofs of Theorems 2 and 3 are omitted in this extended abstract
and appear in the full version of the paper.

Computational Results. Finally, we evaluate the empirical performance of
our algorithm for score classification. In these experiments, our non-adaptive
algorithm performs nearly as well as the previous-best adaptive algorithms, while
being an order of magnitude faster. In fact, on many instances, our algorithm
provides an improvement in both the cost as well as the running time. On most
instances, the cost of our algorithm is within 50% of an information-theoretic
lower bound on the optimal value.



282 R. Ghuge et al.

1.2 Related Work

The special case of SSClass with B = 2 classes is the well-studied stochastic
Boolean function evaluation for linear threshold functions (SBFT). Here, the goal
is to identify whether a single halfspace is satisfied (i.e., the score is above or
below a threshold). [11] gave an elegant 3-approximation algorithm for SBFT
using an adaptive dual greedy approach. Prior to their work, only an O(log W )-
approximation was known, based on the more general stochastic submodular
cover problem [15,20].

The general SSClass problem was introduced by [14], who showed that it can
be formulated as an instance of stochastic submodular cover. Then, using gen-
eral results such as [15,20], they obtained an adaptive O(log W )-approximation
algorithm. Furthermore, [14] obtained an adaptive 3(B −1)-approximation algo-
rithm for SSClass by extending the approach of [11] for SBFT; recall that B is
the number of classes. A main open question from this work was the possibility
of a constant approximation for the general SSClass problem. We answer this
in the affirmative. Moreover, our algorithm is non-adaptive: so we also bound
the adaptivity gap.

The stochastic knapsack cover problem (SKC) is closely related to SBFT. Given
a set of items with random rewards and a target k, the goal is to (adaptively)
select a subset of items having total reward at least k. The objective is to mini-
mize the expected cost of selected items. [11] gave an adaptive 3-approximation
algorithm for SKC. Later, [21] gave a non-adaptive O(1)-approximation algo-
rithm for SKC. In fact, the result in [21] applied to the more general stochastic
k-TSP problem [12]. Our algorithm and analysis use some ideas from [12,21].
We use the notion of a “critical scale” from [21] to identify the correct reward
truncation threshold. The approach of using non-completion probabilities in the
analysis is similar to [12]. There are also a number of differences: we exploit
additional structure in the (fractional) knapsack problem and obtain a simpler
and nearly-linear time algorithm.

More generally, non-adaptive solutions (and adaptivity gaps) have been
used in solving various other stochastic optimization problems such as max-
knapsack [5,10], matching [2,4], probing [18,19] and orienteering [3,16,17]. Our
result shows that this approach is also useful for SSClass.

SSClass and EX-SFE also fall under the umbrella of designing query strategies
for “priced information”, where one wants to evaluate a function by sequentially
querying variables (that have costs). There are two lines of work here: comparing
to an optimal strategy (as in our model) [1,6,14,22], and comparing to the min-
cost solution in hindsight (i.e., competitive analysis) [7–9]. We note that the
“explainable” requirement in the EX-SFE problem (that we solve) is similar to
the requirement in [22].

2 Preliminaries

We first state some basic results for the deterministic knapsack problem. In an
instance of the knapsack problem, we are given a set T of items with non-negative
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costs {ci : i ∈ T} and rewards {ri : i ∈ T}, and a budget D on the total cost.
The goal is to select a subset of items of total cost at most D that maximizes
the total reward. The LP relaxation is the following:

g(D) = max
{∑

i∈T ri · xi

∣
∣

∑
i∈T ci · xi ≤ D, x ∈ [0, 1]T

}
, ∀D ≥ 0.

The following algorithm AKS solves the fractional knapsack problem and also
obtains an approximate integral solution. Assume that the items are ordered so
that r1

c1
≥ r2

c2
≥ · · · . Let t index the first item (if any) so that

∑t
i=1 ci ≥ D. Let

ψ := 1
ct

(D − ∑t−1
i=1 ci) which lies in (0, 1]. Define

xi =

⎧
⎨

⎩

1 if i ≤ t − 1
ψ if i = t
0 if i ≥ t + 1

.

Return x as the optimal fractional solution and Q = {1, · · · , t} as an integer
solution. We use the following well-known result (proved in the full version, for
completeness).

Theorem 4. Consider algorithm AKS on any instance of the knapsack problem
with budget D.

1. 〈r, x〉 =
∑t−1

i=1 ri + ψ · rt = g(D) and so x is an optimal LP solution.
2. The derivative g′(D) = rt

ct
.

3. Solution Q has cost c(Q) ≤ D + cmax and reward r(Q) ≥ g(D).
4. g(D) is a concave function of D.

3 The Stochastic Score Classification Algorithm

Our non-adaptive algorithm creates two lists L0 and L1 separately. These lists are
based on the R0 and R1 rewards of the variables, where R0(i) = ai(1 − Xi) and
R1(i) = aiXi. It interleaves lists L0 and L1 together (by power-of-2 costs) and
then probes the variables in this non-adaptive order until the class is identified.

3.1 The Algorithm

We first explain how to build the lists L0 and L1. We only consider list L0

below (the algorithm/analysis for L1 are identical). The list building algorithm
operates in phases. For each phase � ≥ 0 it gets a budget of O(2�), and it
solves several instances of the deterministic knapsack problem, where rewards
are truncated expectations of R0. We will use the following truncation values,
also called scales.

G :=
{
θ� : 0 ≤ � ≤ 1 + logθ W

}
, where θ > 1 is a constant.

For each scale τ ∈ G, we find a deterministic knapsack solution with reward
E[min{R0/τ, 1}] (see Equation 1 for the formal definition) and budget ≈ C2�
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(where C > 1 is a constant). Including solutions for each scale would lead to
an O(log W ) loss in the approximation factor. Instead, as in [21], we identify
a “critical scale” and only include solutions based on the critical scale. To this
end, each scale τ is classified as either rich or poor. Roughly, in a rich scale,
the knapsack solution after budget C2� still has large “incremental” reward
(formalized by the derivative of g being at least some constant δ). The critical
scale is the smallest scale κ that is poor, and so represents a transition from rich
to poor. For our analysis, we will choose constant parameters C, δ and θ so that
Cδ
θ > 1. We note however, that our algorithm achieves a constant approximation

ratio for any constant values C > 1, δ ∈ (0, 1) and θ > 0.

Algorithm 1. PickReps(�, τ, r)
1: let T ⊆ [n] denote the variables with non-zero reward and cost at most 2�

2: run algorithm AKS (Theorem 4) on the knapsack instance with items T and budget
D = C2�

3: let f = g′(D) be the derivative of the LP value and Q ⊆ T the integral solution
from AKS

4: if f > δ2−� then
5: scale τ is rich
6: else
7: scale τ is poor

8: return Q

Subroutine PickReps (Algorithm 1) computes the knapsack solution for
each scale τ , and classifies the scale as rich/poor. The subroutine BuildList(R)
(Algorithm 2) builds the list for any set of random rewards {R(i) : i ∈ [n]}.
List Lb (for b = 0, 1) is obtained by running BuildList(Rb). Finally, the non-
adaptive algorithm NaCl involves interleaving the variables in lists L0 and L1;
this is described in Algorithm 3. The resulting policy probes variables in the
order given by NaCl until the observed upper and lower bounds on the score lie
within the same class. Note that there are O(log(ncmax)) phases and O(log W )
scales: so the total number of deterministic knapsack instances solved is poly-
logarithmic. Moreover, the knapsack algorithm AKS runs in O(n log n) time. So
the overall runtime of our algorithm is nearly linear.

3.2 The Analysis

Lemma 1. The critical scale κ in Step 6 of Algorithm 2 is always well defined.

Proof. To prove that there is a smallest poor scale, it suffices to show that not all
scales can be rich. We claim that the last scale τ ≥ W cannot be rich. Suppose
(for a contradiction) that scale τ is rich. Then, by concavity of g (see property
4 in Theorem 4), we have g(D) ≥ D · g′(D) > D · δ2−� = Cδ ≥ 1. On the other
hand, the total deterministic reward at this scale,

∑n
i=1 rτ

i ≤ W
τ ≤ 1. Thus,

g(D) ≤ 1, a contradiction.
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Algorithm 2. BuildList({R(i) : i ∈ [n]})
1: list Π ← ∅
2: for phase � = 0, 1, . . . do
3: for each scale τ ∈ G do
4: define truncated rewards

rτ
i =

{
E

[
min

{
R(i)

τ
, 1

}]
, if i /∈ Π

0, otherwise
(1)

5: S�,τ ← PickReps(�, τ, rτ )

6: let κ be the smallest poor scale in G (this is called the critical scale)
7: Π� ← S�,κ and Π ← Π ◦ Π�

8: return list Π

Algorithm 3. NaCl (Non-Adaptive Classifier)
1: list Lb ← BuildList({Rb(i) : i ∈ [n]}) for b = 0, 1
2: let L�

b denote the variables in phase � for list Lb

3: for each phase �, set S� ← L�
0 ∪ L�

1

4: return list S0, S1, · · · , S� · · ·

Lemma 2. The cost c(S�,τ ) ≤ (C + 1)2� for any phase �. Hence, the cost
incurred in phase � of NaCl is at most (C + 1)2�+1.

Proof. Consider any call to PickReps in phase �. We have S�,τ = Q where
Q is the integer solution from Theorem 4. It follows that c(S�,τ ) = c(Q) ≤
C2� + maxi∈T ci ≤ (C + 1)2�; note that we only consider variables of cost at
most 2� (see Step 1 of Algorithm 1). Finally, the variables S� in phase � of
NaCl consist of the phase-� variables of both L0 and L1. So the total cost of
these variables is at most (C + 1)2�+1. �

We now analyze the cost incurred by our non-adaptive strategy NaCl. We
denote by OPT an optimal adaptive solution for SSClass. To analyze the algo-
rithm, we use the following notation.

– u�: probability that NaCl is not complete by end of phase �.
– u∗

� : probability that OPT costs at least 2�.

We can assume by scaling that the minimum cost is 1. So u∗
0 = 1. For ease

of notation, we use OPT and NA to denote the random cost incurred by OPT
and NaCl respectively. We also divide OPT into phases: phase � corresponds to
variables in OPT after which the cumulative cost is between 2�−1 and 2�. The
following lemma forms the crux of the analysis.

Lemma 3. For any phase � ≥ 1, we have u� ≤ q · u�−1 + u∗
� where q ≤ 0.3.

Given Lemma 3, the proof of Theorem 1 is standard (see, for example, [12]).
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3.3 Proof of Lemma 3

Recall that NaCl denotes the non-adaptive algorithm, and NA its random cost.
Fix any phase � ≥ 1, and let σ denote the realization of the variables probed in
the first � − 1 phases of NaCl. We further define the following conditioned on
σ:

– u�(σ): probability that NaCl is not complete by end of phase �.
– u∗

� (σ): probability that OPT costs at least 2�, i.e., OPT is not complete by end
of phase �.

If NaCl does not complete before phase � then u�−1(σ) = 1, and we will prove

u�(σ) ≤ u∗
� (σ) + 0.3. (2)

We can complete the proof using this. Note that u�−1(σ) is either 0 or 1. If
u�−1(σ) = 0 then u�(σ) = 0 as well. So, Eq. (2) implies that u�(σ) ≤ u∗

� (σ) +
0.3u�−1(σ) for all σ. Taking expectation over σ gives Lemma 3. It remains to
prove Eq. (2).

We denote by R0 and R∗
0 the total R0 reward obtained in the first � phases by

NaCl and OPT respectively. We similarly define R1 and R∗
1. To prove Equation

(2), we will show that the probabilities (conditioned on σ) P(R∗
0 > R0) and

P(R∗
1 > R1) are small. Intuitively, this implies that with high probability, if OPT

finishes in phase �, then so does NaCl. Formally, we prove the following key
lemma.

Lemma 4 (Key Lemma). For b ∈ {0, 1}, we have P(Rb < R∗
b | σ) ≤ 0.15.

Using these lemmas, we prove Equation (2).

Proof (Proof of Equation (2)). Recall that we associate a pair (β0
j , β1

j ) with every
class j. If OPT finishes in phase �, then there exists some j such that R∗

0 ≥ β0
j

and R∗
1 ≥ β1

j . Thus,

P(OPT finishes in phase � | σ) = 1 − u∗
� (σ) = P(∃j : R∗

0 ≥ β0
j and R∗

1 ≥ β1
j | σ).

From Lemma 4 and union bound, we have P(R0 < R∗
0 or R1 < R∗

1 | σ) ≤
0.3. Then, we have

1 − u�(σ) = P(NA finishes in phase � | σ)

≥ P
(
(OPT finishes in phase �)

∧
R0 ≥ R∗

0

∧
R1 ≥ R∗

1

∣
∣ σ

)

≥ P(OPT finishes in phase � | σ) − P(R0 < R∗
0 or R1 < R∗

1 | σ)
≥ (1 − u∗

� (σ)) − 0.3

Upon rearranging, this gives u�(σ) ≤ u∗
� (σ) + 0.3 as desired. �
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Proof Sketch of the Key Lemma. We now provide an intuition for the proof
of Lemma 4 with b = 0 (the case b = 1 is identical). Henceforth, reward will
only refer to R0. Observe that in phase � of Algorithm 2, the previously probed
variables Π ⊆ σ. For ease of notation, let σ also represent the set of variables
probed in the first � − 1 phases. Recall that S� is the set of variables probed by
NaCl in phase �. Let O� be the variables probed by OPT in phase �; so the total
cost of O� is at most 2�. Note that O� can be a random subset as OPT is adaptive.
Also, S� is a deterministic subset as NaCl is a non-adaptive list. Roughly, we
show that (conditioned on σ) the probability that O� has more reward than S�

is small. The key idea is to use the critical scale κ (in phase �) to argue that the
following hold with constant probability (1) reward of O� \ (S� ∪ σ) is at most
κ, and (2) reward of S� \ O� is at least κ. This would imply that with constant
probability, NaCl gets at least as much reward as OPT by the end of phase �.
Formally, we show:

Lemma 5. If A is any adaptive policy of selecting variables from [n] \ (S� ∪ σ)
with total cost ≤ 2� then P [R0(A) < κ] ≥ 1 − δ. Hence,

P [R0(O� \ (S� ∪ σ)) ≥ κ] ≤ δ.

Lemma 6. We have P (R0(S� \ O�) < κ) ≤ e−(μ−lnμ−1). Here, μ := (C−1)δ/θ.

Combining these two lemmas with an appropriate choice of constants C, δ and
θ, we obtain Lemma 4. We defer the proofs to the full version.

4 Computational Results

We provide a summary of computational results of our non-adaptive algorithm
for the stochastic score classification problem. We conducted all of our computa-
tional experiments using Python 3.8 with a 2.3 GHz Intel Core i5 processor and
16 GB 2133MHz LPDDR3 memory. We use synthetic data to generate instances
of SSClass for our experiments.

Instance Generation. We test our algorithm on synthetic data generated as
follows. We first set n ∈ {100, 200, . . . , 1000}. Given n, we generate n Bernoulli
variables, each with probability chosen uniformly from (0, 1). We set the costs
of each variable to be an integer in [10, 100]. To select cutoffs (when B �= 2), we
first select B ∈ {5, 10, 15} and then select the cutoffs (based on the value of B)
uniformly at random in the score interval. We provide more details and plots
in the full version of the paper. For each n we generate 10 instances. For each
instance, we sample 50 realizations in order to calculate the average cost and
average runtime.

Algorithms. We compare our non-adaptive SSClass algorithm (Theorem 1)
against a number of prior algorithms. For SBFT instances, we compare to
the adaptive 3-approximation algorithm from [11]. For unweighted SSClass
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instances, we compare to the non-adaptive 2(B − 1)-approximation algorithm
from [14]. For general SSClass instances, we compare to the adaptive O(log W )-
approximation algorithm from [14]. As a benchmark, we also compare to a naive
non-adaptive algorithm that probes variables in a random order. We also com-
pare to an information-theoretic lower bound (no adaptive policy can do better
than this lower bound). We obtain this lower bound by using an integer linear
program to compute the (offline) optimal probing cost for a given realization
(see full version for details), and then taking an average over 50 realizations.

Parameters C, δ, and θ. As noted in Sect. 3, our algorithm achieves a constant
factor approximation guarantee for any constant C > 1, δ ∈ (0, 1) and θ > 1.
For our final computations, we (arbitrarily) choose values C = 2, δ = 0.01, and
θ = 2.

Reported Quantities. For every instance, we compute the cost and runtime
of each algorithm by taking an average over 50 independent realizations. For
the non-adaptive algorithms, note that we only need one probing sequence for
each instance. On the other hand, adaptive algorithms need to find the prob-
ing sequence afresh for each realization. Thus, the non-adaptive algorithms are
significantly faster (see full version for corresponding runtime plots).

In Table 1, we report the average performance ratio (cost of the algorithm
divided by the information-theoretic lower bound) of the various algorithms.
For each instance type (SBFT, Unweighted SSClass and SSClass), we report the
performance ratio averaged over all values of n (10 choices) and all instances (10
each). Note that values closer to 1 demonstrate better performance.

Table 1. Average performance ratios relative to the lower bound.

Instance type Our Alg. GGHK Alg. Random list

Unweighted SSClass, B = 5 1.50 1.48 1.80

Unweighted SSClass, B = 10 1.25 1.24 1.33

Unweighted SSClass, B = 15 1.13 1.13 1.19

SSClass, B = 5 1.59 1.94 2.43

SSClass, B = 10 1.34 1.45 1.73

SSClass, B = 15 1.22 1.39 1.47

Instance type Our Alg. DHK Alg. Random list

SBFT 2.18 1.74 5.63

We observe that for unweighted SSClass instances, our algorithm performs
nearly as well as the 2(B − 1)-approximation algorithm. For general (weighted)
SSClass instances, our algorithm performs considerably better than the adaptive
O(log W )-approximation algorithm. For SBFT instances, the performance of our
algorithm is about 25% worse than the adaptive 3-approximation algorithm while
its runtime is an order of magnitude faster.
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