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Abstract. We study the black-box function inversion problem, which
is the problem of finding € [N] such that f(z) = y, given as input
some challenge point y in the image of a function f : [N] — [N], using T’
oracle queries to f and preprocessed advice o € {0, 1}S depending on f.
We prove a number of new results about this problem, as follows.

1. We show an algorithm that works for any 7" and S satisfying
TS? - max{S, T} = O(N®) .

In the important setting when S < T', this improves on the celebrated
algorithm of Fiat and Naor [STOC, 1991], which requires T.S* > N?3.
E.g., Fiat and Naor’s algorithm is only non-trivial for S > N?/3,
while our algorithm gives a non-trivial tradeoff for any S > N/2.
(Our algorithm and analysis are quite simple. As a consequence of
this, we also give a self-contained and simple proof of Fiat and Naor’s
original result, with certain optimizations left out for simplicity.)

2. We observe that there is a very simple non-adaptive algorithm

(i.e., an algorithm whose ith query x; is chosen based entirely
on o and y, and not on the f(x1),...,f(zi—1)) that improves
slightly on the trivial algorithm. It works for any 7" and S sat-
isfying S = O(Nlog(N/T)), for example, T = N/polylog(N),
S = O(N/loglog N). This answers a question due to Corrigan-Gibbs
and Kogan [TCC, 2019|, who asked whether non-trivial non-adaptive
algorithms exist; namely, algorithms that work with parameters T
and S satisfying T'+.5/log N < o(N). We also observe that our non-
adaptive algorithm is what we call a guess-and-check algorithm, that
is, it is non-adaptive and its final output is always one of the oracle
queries Ti,...,xT.
For guess-and-check algorithms, we prove a matching lower bound,
therefore completely characterizing the achievable parameters (S, T')
for this natural class of algorithms. (Corrigan-Gibbs and Kogan
showed that any such lower bound for arbitrary non-adaptive al-
gorithms would imply new circuit lower bounds.)



3. We show equivalence between function inversion and a natural deci-
sion version of the problem in both the worst case and the average
case, and similarly for functions f : [N] — [M] with different ranges.
Some of these equivalence results are deferred to the full version
[ECCC, 2022].

All of the above results are most naturally described in a model with
shared randomness (i.e., random coins shared between the preprocessing
algorithm and the online algorithm). However, as an additional contri-
bution, we show (using a technique from communication complexity due
to Newman [IPL, 1991]) how to generically convert any algorithm that
uses shared randomness into one that does not.
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Revisiting Time-Space Tradeoffs for Function Inversion 1
1 Introduction

We revisit the fundamental problem of black-box function inversion. That is, we
study the problem of finding = € [N] such that f(z) = y, given as input some
challenge point y in the image of f : [N] — [IN] and oracle access to f.

Of course, given only oracle access to f, inverting general functions f will
clearly require roughly N queries, which is not very interesting. However, if we
allow our inversion algorithm access to some additional information about f,
then inversion might be possible with much fewer queries. So, we consider the
following model. First, using unlimited computational power, a preprocessing
algorithm P analyzes f and outputs S bits of advice ¢ € {0,1}°. Then, an
online algorithm A is given a point y in the image of f, the advice o, and oracle
access to f and, using at most T oracle queries, must output some z such that
f(z) = y. We wish to design such algorithms that minimize the complexity
measures S and 7T, which are often referred to informally as “space” and “time.”
For example, notice that it is trivial to invert f if S/log N +T > N, by simply
including the first S/log N values of f as advice and querying the remaining
N — S/log N < T values.

This model is very well studied, since it arises naturally in a number of
contexts, from cryptography [6-10, 12, 13, 17, 27, 29, 30] (where an appropri-
ate version of this problem corresponds to the problem of breaking a black-box
one-way function in the non-uniform model) to data structures and complexity
theory [8, 11, 14, 30]. Indeed, many variants of the problem have been stud-
ied. For example, we might ask for algorithms that invert arbitrary functions
f [12], random functions f [17] (in which case the algorithm should work with
reasonable probability over the function f), or special classes of functions f,
like permutations [30]; or one might place restrictions on the algorithm by, e.g.,
requiring the oracle queries to be non-adaptive [3, 8] or requiring that the al-
gorithm otherwise has some special structure [2]. Other work has considered
stronger models of computation, such as quantum algorithms [4, 5, 22].

In his celebrated 1980 work, Hellman [17] published the first non-trivial func-
tion inversion algorithm. Hellman’s algorithm inverts random functions for any
S and T satisfying T'S? > N2, under certain heuristic assumptions. (Here and
elsewhere in the introduction, we use 2 to represent an inequality that holds up
to factors polylogarithmic in NV.) In their seminal 1991 paper, Fiat and Naor [12]
presented an algorithm that (1) provably achieves Hellman’s tradeoff for random
functions f; and (2) achieves a different non-trivial tradeoff for any function f.
Specifically, their algorithm can invert any function f provided that S and T
satisfy

TS%> N3 . (1)

For example, when T' = S, this works for any S = T > N3/4, while the result
becomes trivial for S < N?/3 (since in that case they require 7' > N, which can
be matched by the trivial algorithm).

Despite thirty years of effort, no improvements have been made to Eq. (1).
This has naturally led to a search for matching lower bounds. Indeed, Barkan,
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Biham, and Shamir showed that Hellman’s algorithm (or Fiat and Naor’s variant
with proven correctness) gives essentially the optimal tradeoff between S and T
for inverting random functions if we restrict our attention to a certain rather
specific class of algorithms [2]. However, the best known lower bound [9, 13,
30] against arbitrary algorithms (which applies for random functions and even
random permutations) only says that S and T must satisfy

STZ N, (2)

which is much weaker than Eq. (1). (While the lower bound in Eq. (2) is quite far
from the best upper bounds known for arbitrary functions or even for random
functions, Hellman proved it is tight in the special case when the function f is
a permutation [17].)

Corrigan-Gibbs and Kogan explained the lack of progress on lower bounds by
showing that any significant improvement to the lower bound in Eq. (2) would
yield a breakthrough in circuit lower bounds [8]. (See also [11], which showed that
lower bounds on function inversion are closely related to many other major open
problems, such as the hardness of sorting and the Network Coding Conjecture.)
In fact, Corrigan-Gibbs and Kogan [8] showed that even a lower bound against
non-adaptive algorithms that improves upon Eq. (2) would imply new circuit
lower bounds. An online algorithm A is non-adaptive if the queries x1,...,zp
that it makes to its oracle are functions only of its input y, the preprocessed
advice o, and shared randomness r—i.e., if x;41 is chosen independently of the
answers f(x1),..., f(x;) to the previous queries. This result is quite tantaliz-
ing because (1) all of the non-trivial algorithms described above rely crucially
on adaptive queries; (2) very strong lower bounds are in fact known for slightly
weaker models [3]; and (3) it seems intuitively clear that non-adaptive algorithms
should not be able to do much better than the trivial algorithm, which requires
S/log N + T > N. (Notice that in the context of non-adaptive algorithms,
we do not leave out logarithmic factors, as even small improvements are inter-
esting here.) Indeed, Corrigan-Gibbs and Kogan naturally speculated that no
non-adaptive algorithm can do significantly better than the trivial algorithm—
specifically, that no non-adaptive algorithm can solve function inversion with
S <o(NlogN) and T < o(N).

1.1 Our results

Improving on the Fiat-Naor algorithm for T' > S. Our first main result
is an algorithm that inverts any function f : [N] — [N] on any challenge y in its
image for any T and S satisfying

T25% > N3 . (3)

Recall that the original Fiat-Naor algorithm requires 7'S® > N3 (as in
Eq. (1)). So, our algorithm is better than Fiat and Naor’s algorithm if (and
only if) T' > S. This is arguably the most interesting setting, since non-uniform
advice is arguably a more expensive resource than queries (as Hellman pointed
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out in [17]).* In particular, our algorithm remains non-trivial (i.e., outperforms
the trivial algorithm that requires S +7 > N) as long as S > N'/2, whereas the
original Fiat-Naor algorithm is trivial for § < N2/3.

In fact, our algorithm is a surprisingly simple variant of Fiat and Naor’s orig-
inal. Our presentation of the algorithm and its analysis is also notably simpler.
So, as an additional benefit, we also give a significantly simpler presentation of
the original result in [12].°> Indeed, we present the two algorithms together, as
a single algorithm (that behaves differently in one step depending on whether
S > T') that solves function inversion for any S and T satisfying

TS? max{S,T} > N*. (4)

In other words, we give a unified presentation that achieves the best of both
worlds, matching the original tradeoff achieved by Fiat and Naor in Eq. (1) and
our new tradeoff in Eq. (3).

A lower bound against guess-and-check (non-adaptive) algorithms.
We next address Corrigan-Gibbs and Kogan’s question about whether non-
trivial non-adaptive algorithms are possible. Corrigan-Gibbs and Kogan nat-
urally guessed the answer was negative. But, surprisingly, we observe that there
is a very simple algorithm that (slightly) outperforms the trivial algorithm.® Re-
call that the trivial algorithm simply stores inverses for as many range elements
as it can, and achieves parameters S/log N + T = N.

The simple algorithm, by contrast, stores only part of an inverse for each
range element. Specifically, for each y € [N] having at least one inverse, the
preprocessing algorithm stores the first log(IN) — log(T') = log(NN/T') bits of an
inverse x,. On challenge y, the online algorithm queries all T' = 20e T elements
whose first log(/N/T') bits match the stored prefix of x,. One of these queries will
discover that f(x,) = y. This simple algorithm evidently achieves the tradeoff

S = Nlog(N/T) . (5)

For example, setting T'= N/ logC(N ) for any constant C' > 0, the simple algo-
rithm uses S = O(N loglog N) bits of advice, beating the trivial algorithm by a
polylogarithmic factor in both time and space.

4 However, a big part of the reason that advice is considered to be expensive is be-
cause memory is often considered to be more expensive than computing time. Unfor-
tunately, though our algorithm can use much less than T" bits of advice, our online
algorithm still must use roughly T bits of space. So, though we do show an algorithm
that uses less advice, we do not show an algorithm that uses less space.
Admittedly, this simplicity is partially (though not entirely) due to the fact that we
chose not to optimize for parameters other than S and 7', while Fiat and Naor were
quite careful to optimize, e.g., the actual running time and space of both the query
algorithm and the preprocessing algorithm. See Section 1.4 for more discussion.

In fact, we also missed this algorithm. An earlier version of this paper described
a much more complicated algorithm that achieves the same parameters. We are
very grateful to the anonymous CRYPTO reviewer who reviewed that version and
discovered the simple algorithm.

ot
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The simple algorithm is very straightforward by any standard, and in partic-
ular, it always outputs one of the points z; that it queries. We call non-adaptive
algorithms with this property guess-and-check algorithms, since such an algo-
rithm can be viewed as making T' guesses x1,...,zr up front, and then using
its queries to check whether any of its guesses is in fact a inverse of y.

To our knowledge, we are the first to consider this class of algorithms, though
we find them to be quite natural. For example, we note in passing that guess-
and-check algorithms can be thought of as “highly parallel algorithms” in the
sense that they capture the model in which T processors independently compute
and check one potential preimage z; of y (i.e., one “guess”), and the algorithm
succeeds if and only if any of these processors discovers that x; is in fact a
preimage of y. Indeed, Corrigan-Gibbs and Kogan [8] introduced non-adaptive
algorithms in part because of their relationship with parallelism. (Other special
classes of non-adaptive algorithms were studied in [8] and [3]|, but none of the
previously defined classes captures guess-and-check algorithms, as we explain in
Section 1.3.)

Our second contribution is a lower bound showing that no guess-and-check
algorithm can do significantly better than Eq. (5) (even for inverting permu-
tations). Specifically, we show that Eq. (5) is tight up to a constant factor in
S and T'. We therefore characterize the query-preprocessing tradeoff for guess-
and-check non-adaptive function inversion up to a constant factor. If our lower
bound could be extended to general non-adaptive algorithms, it would imply new
strong circuit lower bounds, using the result of Corrigan-Gibbs and Kogan [8].

Search-to-decision reductions. Next, we consider a natural variant of func-
tion inversion, which we call decision function inversion (DFI). In DFI, the goal
is simply to determine whether the input point y € [M] is in the image of a func-
tion f: [N] — [M], given oracle access to f, shared randomness 7, and S bits of
preprocessed advice ¢ that may depend on r and f. (Notice that in the context
of DFI, it is natural to consider functions with a range [M] for M > N. In the
full version [15], we show that many versions of function inversion are equiv-
alent to their respective variants when the range is changed.) Given the very
slow progress on the search function inversion (SFI) problem that we discussed
above, it is natural to ask whether the decision variant is any easier.
Unfortunately, we show that this cannot be the case—for either random
functions or worst-case functions. Specifically, we show a reduction from average-
case SFI to average-case DFI (in which both the function and the target are
uniformly random, as in definitions Definitions 4 and 5), and a reduction from
worst-case SFI to worst-case DFI. These reductions incur very little overhead—
only increasing S and T by a factor that is polylogarithmic in N—and both
reductions are non-adaptive, in the sense that they convert non-adaptive DFI
algorithms into non-adaptive SFI algorithms. (See Remarks 1 and 2.)

These reductions can be viewed as variants of a reduction presented by
Corrigan-Gibbs and Kogan in [8] (as we discuss in Sections 1.2 and 1.3). In
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the full version [15], we show another search-to-decision reduction for injective
functions, which is a more direct adaptation of the reduction in [8].

Removing shared randomness. Our final contribution is a generic way to
convert a function inversion algorithm with shared randomness into an algorithm
without shared randomness, at the expense of a small (additive) increase in
S. Indeed, prior work used slightly different models for function inversion—
depending on whether the preprocessing and query algorithms are allowed access
to a shared random string, which does not count as part of the preprocessed
advice. Often, this shared random string is represented by shared access to a
random oracle.

E.g., Corrigan-Gibbs and Kogan [8] allowed their query and preprocessing
algorithms access to the same random oracle. In contrast, Fiat and Naor [12] did
not allow for this. Even in this more conservative setting, however, it is often
far more convenient to first describe algorithms that do have access to shared
randomness, typically in the form of a random oracle, and then to describe how
to remove this shared randomness by, e.g., replacing the random oracle with a
suitable carefully chosen hash function (with a suitably short key that can be
included as part of the preprocessed advice) and arguing that this has little to
no effect on the correctness of the algorithm.

We show a generic way to convert any function inversion algorithm with
shared randomness into a function inversion algorithm without shared random-
ness. Our conversion is quite simple (and actually applies to a more general class
of problems; see Section 6), as it simply replaces the shared randomness r with
a string r; chosen by the preprocessing algorithm from a relatively small num-
ber of fixed strings r1,...,7,. (In fact, a random list of strings will work with
high probability.”) Because the number of such strings is relatively low (e.g.,
k < N - polylog(N) in all of our settings), the index ¢ can be appended to the
preprocessed advice essentially for free (costing only an additional log k ~ log N
bits of advice).

In particular, nearly all of the results listed are most naturally presented us-
ing shared randomness, but this procedure shows that this shared randomness
can be removed without changing any of our stated results (up to a lower-order
additive term in S)! And, this shows that the carefully chosen hash functions
in much prior work were in some sense not necessary. (In particular, our result
implies that it is not necessary to use these hash functions to remove shared ran-
domness. However, these hash functions are still useful for optimizing additional

T At first, this statement might sound trivial, since we started with an algorithm that
works with shared randomness r, and we seem to have converted into an algorithm
with more shared randomness. The difference, however, is in the order of quanti-
fiers. In the shared randomness model, we ask that for any function f with high
probability over the randomness r, the algorithm inverts f. Here, we show that with
high probability over the random strings r1, ..., rk, for every function f there exists
i such that the algorithm inverts f with randomness ;.
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complexity measures that we ignore in this work, like the size of the description
of the (nonuniform) preprocessing algorithm. See Section 1.4.)

Our proof of this result is an adaptation to our setting of a celebrated result in
communication complexity. Specifically, we adapt Newman’s beautiful technique
for converting public-coin protocols to private-coin protocols [23].

This does not come completely for free, however. Our proof shows that a ran-
dom list of strings rq,...,r, will work with high probability. But, these strings
still need to be stored somehow. So, while our conversion process does not in-
crease the number of queries T' and only (additively) increases the size S of the
advice by a very small amount, it does require both the preprocessing algorithm
P and the online algorithm A to be non-uniform.

Since non-uniformity is often assumed in this setting, this does not bother
us much. But, there do exist practical applications of function inversion algo-
rithms, e.g., in cryptanalysis, for which truly non-uniform algorithms are an
unreasonable model. We note, however, that in practical applications it is typi-
cally sufficient to simply use a cryptographic hash function as a replacement for
a random oracle. If this is done, our algorithm becomes uniform, while retaining
the desirable property from Fiat and Naor’s algorithm that preprocessing only
requires O(N ) time. Thus our improvement over Fiat and Naor’s algorithm in
the low-space regime S < T also applies in this setting.

1.2 Our techniques

Improving Fiat-Naor. Our improvement to Fiat and Naor’s algorithm starts
by recalling the following. In the original Fiat-Naor procedure, the preprocessing
algorithm first generates a list of nearly S “heavy hitters”—that is, elements in
the image of f having many inverses—and it includes this list together with a
preimage for each heavy hitter in its advice to the online algorithm.

The online algorithm then operates in two phases. It first checks this list
to see if its input y is a heavy hitter, in which case it immediately outputs the
corresponding preimage contained in the advice. Otherwise, (ignoring important
technical details for simplicity) the algorithm effectively runs a function inversion
algorithm on the function f restricted to elements whose images are not heavy
hitters. With the heavy hitters removed, the new restricted function is much
better behaved than the original, allowing for the final tradeoff. (In particular,
the restricted function will have relatively low collision probability, which Fiat
and Naor show is sufficient for a Hellman-like algorithm to invert it with the
desired tradeoff. See Section 3 for the details.)

In fact, as Fiat and Naor observe, it is sufficient to simply include a list
of nearly S pairs (z;, f(7i))1<i<s for uniformly random z; ~ [N] as part of the
advice, rather than explicitly looking for heavy hitters. (Notice that any elements
y € [N] with very many preimages will still be contained in such a list with high
probability, which is why this works.)

At this high (and slightly misleading) level of detail, our modification to Fiat
and Naor’s algorithm is straightforward: rather than having the preprocessing
algorithm include many random queries (x;, f(z;)); as part of the preprocessing,
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we have the online algorithm generate this list itself. This allows us to replace
a list of length S with a list of length T, which gives us our advantage over the
original algorithm when T" > S.

Of course, many details must be worked out to make this actually work.
Most significantly, it is crucial that the same list (z;, f(z;)); is known to both
the preprocessing algorithm and the online algorithm, so that they both work
with the same restricted function f’. For this, we rely on shared randomness
(which can then be removed quite painlessly using the result from Section 6),
allowing the online algorithm and the preprocessing algorithm to share the same
list (x;); of random query points.

Our reliance on shared randomness also greatly simplifies the description
and analysis of both our algorithm and Fiat and Naor’s original. Indeed, as we
mentioned above, we give a simple presentation of a single unified algorithm that
works whenever

ST - max{S,T} > N* .

This simplified presentation might itself be of independent interest.

A tight bound against guess-and-check algorithms. The proof of our
lower bound against guess-and-check algorithms follows the high-level frame-
work used by [9] and [10]. The idea here is to show that a function inversion
algorithm with certain properties would imply an unreasonably succinct way to
encode a function f : [N] — [N]—i.e., a succinct bit string that can be used
to recover f. (In this high-level description, we ignore for simplicity the fact
that our algorithms (P,.A) may be randomized and the related fact that they
might fail some fraction of the time. To fix this, we must work with randomized
encodings that themselves have some chance of failure.) In fact, we restrict our
attention to permutations f, so that in order to encode f, it suffices to encode
the unique inverse of each element y € [N]. (This only makes our lower bound
stronger.)

Our encoding will consist of the S bits of preprocessed advice o € {0,1}°
together with some additional information. Recall that a non-adaptive algorithm
has the property that the queries xgy), . xT ) made by A on input y are fixed for
fixed o (where here we are ignoring any randomness for simplicity). Furthermore,
if a guess-and-check (non-adaptive) algorithm succeeds, then one of the x; must
be a preimage of y. Our encoding will therefore simply record for each y € [N]

the index 4, € [T] such that x(y) is the unique preimage of y. Notice that
this information, together with o, 'is actually enough to completely reconstruct
the function f. (Notice also that this argument relies quite heavily on guess-
and-check non-adaptivity. For a general non-adaptive algorithm, it might be
necessary to include the responses to all queries :rgy), .. ,xgy).)

This gives an encoding of f that uses only N logT + S bits. Since there are
N! permutations over [N], this is a contradiction unless N logT'+S > log(N!) >
£2(Nlog N). Rearranging gives our lower bound of S > (N log(N/T)).
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Search-to-decision reductions. Corrigan-Gibbs and Kogan [8] observed that
there is a reduction from SFI on injective functions f : [N] — [M] to (a different
version of ) DFI on worst-case functions, where the reduction works by essentially
“asking the DFI oracle for the ith bit of the unique preimage.” Specifically, at
a high level their reduction works by essentially running the DFI algorithm
separately on the functions f; : [N/2] — [M] corresponding to f restricted to
inputs whose ith bit is, say, zero. By solving DFI on the functions f; and target
point y;, they can recover the unique preimage to y “one bit at a time.”® Notice
in particular that this reduction is careful to only work with a small number of
functions f; that are defined independently of the target point, which allows the
SFT algorithm to work with preprocessed advice from the DFI algorithm for a
small number of functions.

Both of our search-to-decision reductions start with the simple (and, on its
own, not particularly interesting) observation that the above idea can be gener-
alized to invert any function f : [N] — [M], provided that the target point y that
we are inverting has a unique preimage.

At a high level, our reduction from worst-case SFI to worst-case DFI then
works by directly reducing from worst-case SFI with a general target point y
to the variant in which y is promised to have a unique preimage. For this, we
use an idea inspired by Valiant and Vazirani’s celebrated Isolation Lemma [28].
Specifically, we find a small number of subsets U; C [N] of the domain of f
(which are chosen independently of y!) such that with high probability y has
exactly one preimage when f is restricted to U;. Then, (ignoring many technical
details) we can use the ideas described above to solve this search problem using
only a DFTI algorithm.

For our reduction from average-case SFI to average-case DFI, we can more-
or-less assume that the target point y has a unique preimage, since a large
fraction of the elements in the image of a random function f have a unique
preimage. However, here we run into a different problem: an average-case DFI
oracle is only guaranteed to work with some reasonable probability when the
function f : [N] — [M] is uniformly random (see Section 5.2 for the details).
While the restrictions f; (as described above) of a uniformly random function
f are themselves uniformly random, they are certainly not independent. This
means that a DFI oracle could potentially have very high success probability
but still could, e.g., always fail on one (or even many) of the functions f; (out
of log N total functions f1,..., fiog ), which would cause our search-to-decision
reduction to always fail to find the ith bit of the preimage (and therefore to fail).

We solve the above problem by using good error-correcting codes. That is,
instead of working with the functions f; corresponding to the bits of elements in
[N] written in binary, we work with a larger number of functions f/ correspond-

8 We are oversimplifying quite a bit here and leaving out many important details.
Perhaps most importantly, we are assuming here for simplicity that the DFI oracle
always outputs the correct answer, while Corrigan-Gibbs and Kogan worked with a
much weaker DFI oracle. They were also careful to keep the domain of the functions
fi the same as the domain of the function f, while we are not concerned with this.
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ing to the bits of encodings of elements in [N] using a good error-correcting code.
That is, f/ is the function f restricted to the set of elements in [N] whose corre-
sponding codeword has ith bit equal to zero. By using a good enough code, we
can recover a preimage of the target by solving just O(log N) decision problems,
even if a 1/4 — ¢ fraction of the answers are wrong. (Indeed, we can even decode
efficiently, though we mostly do not worry about this.)

1.3 Related work

Here, we describe some of the related work that has not already been discussed,
as it relates to the present work.

De, Trevisan, and Tulsiani [9] showed improvements to Fiat and Naor’s algo-
rithm along a different axis. Specifically, they showed how to achieve surprisingly
small values of S and T in the setting in which the algorithm is only required to
invert y := f(«) for uniformly random z ~ [N] with some very small probabil-
ity . (In contrast, all of our algorithms invert such a y with high probability.)
They show a slight variant of Fiat and Naor’s algorithm that works for any 5,
T, and ¢ satisfying ST > eN for ¢ < N~'/3 (which they show is optimal) and
TS3 > 5 N3 otherwise.

Like us, Chawin, Haitner, and Mazor [3] showed lower bounds on special
cases of non-adaptive algorithms. In particular, they considered the function
Jo.y + [IN]T — [N] that maps the responses f(x1),..., f(zr) to the queries made
by A to the final output of A (i.e., the guess that A makes for the preimage of
y). For example, they showed that S > £2(N) (regardless of T') if g, is an affine
function. They also showed that dSlog N+T > 2(N) if g, , can be implemented
by a depth-d affine decision tree. We note that neither of these models captures
guess-and-check algorithms, for which go (Y1, ...,yr) = ;, where ¢ is such that
y; = y. (Such a g, 4 is certainly not affine, and it seems that it requires depth
d =~ T to implement such a function as an affine decision tree, as one must
sequentially check whether y; = y for all 4.)

Corrigan-Gibbs and Kogan also defined a special case of non-adaptive algo-
rithms, which they call strongly non-adaptive [§]. For a strongly non-adaptive
algorithm, the function g, , may be arbitrary, but the queries z1, ...,z must be
computed independently of the preprocessing (and non-adaptively), so that they
are effectively completely independent of the function f. [8] showed that lower
bounds against even such weak models would imply new circuit lower bounds.
However, strongly non-adaptive algorithms are incomparable to our model of
guess-and-check algorithms, so that our lower bound on guess-and-check algo-
rithms unfortunately does not directly apply.

For general non-adaptive algorithms, Dvorak, Koucky, Kral, and Slivova [11]
showed a conditional lower bound of T > 2(log N/loglog N) for any S <
eNlog N for some small constant £ > 0, assuming the Network Coding Con-
jecture. Notice that this lower bound holds in a more general setting than our
lower bound or those of [3] but it requires an unproven conjecture and is quantita-
tively weaker than ours and those in of [3]. (E.g., for guess-and-check algorithms
with S < eNlog N, our lower bound implies that 7 > N*=9() )
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There is also a long line of work [6-10, 16] studying a different version of DFI
than the one that we study, which is sometimes simply called the PRG prob-
lem. Here, the goal is to distinguish (perhaps with relatively small distinguishing
advantage) a uniformly random element y ~ [M] from f(z) for uniformly ran-
dom x ~ [N], where f : [N] — [M]. In particular, Corrigan-Gibbs and Kogan
show a search-to-to-decision reduction from SFI over injective functions to the
worst-case PRG problem. Our search-to-decision reductions are essentially gen-
eralizations of their reduction from [8] to the setting of non-injective functions.
We pay for this non-injectivity by requiring our DFI algorithm to solve prob-
lems that are harder than the PRG problem, and by requiring significantly more
complicated reductions.

1.4 A note on the many facets of function inversion

There are many variants of the function inversion problem and many different
complexity measures that one can use to assess algorithms in this context. The
landscape is therefore quite complicated. Indeed, our search-to-decision reduc-
tions and our proof that shared randomness can be removed (as well as the re-
ductions between versions of SFI with different range sizes in the full version [15]
) can be viewed as small steps towards simplifying the picture a bit.

But, there are still certainly many variants and complexity measures that we
simply do not address in this work. E.g., while we mostly focus on the number
of queries T and the length S of the preprocessed advice, much prior work was
also interested in the time and space complexity of the algorithms P and A,
which we largely ignore. E.g., prior work of Fiat and Naor, and of De, Trevisan,
and Tulsiani [9, 12| used specialized hash functions to replace shared random-
ness because removing shared randomness is itself a worthy goal, but also to
optimize the running time of their algorithms (which is not the same as the
query complexity T'). For the sake of simplicity, we have chosen to largely ignore
these additional complexity measures in our algorithms, and we have therefore
not optimized our algorithms for these complexity measures at all. (We do note
that our algorithms run in essentially optimal time when they are implemented
with shared randomness in the form of shared access to a random oracle. In
particular, the preprocessing algorithms can be implemented in time O(N), and
the online algorithms can be implemented in time T - poly log(NV).)

As another example, as we discussed above, De, Trevisan, and Tulsiani [9]
studied the dependence of S and T in terms of the fraction € of inputs z € [IV]
for which the algorithm successfully inverts f(x). They showed that for small e
one can do much better than Eq. (1), using essentially the same algorithm. It
is natural to ask whether their techniques can be applied to our new version of
the Fiat-Naor algorithm; we believe that they can be, but we leave this to future
work.
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2 Preliminaries

We define 1, as 1, = 1 if p is true, and 0 otherwise. All logarithms are base 2,
ie., log2™ =n.

2.1 Definitions of function inversion problems

In the following definitions, M and N are positive integers, and (P, .A) is a pair
of randomized algorithms. For a set X C [N], f(X) denotes the image of X
under f, and for y € [N], f~*(y) denotes the preimage of y under f. The first
few definitions are core to our study of function inversion.

Definition 1. We say that

1. (P, A) uses S bits of preprocessing if for all inputs, the output of P has
bitlength at most S.
2. (P, A) uses T queries if for all inputs, A makes at most T queries to f.

Definition 2. We say that (P,A) solves (N, M)-search function-inversion
((N, M)-SFI) with success probability 6 € (0,1] if for all f : [N] — [M] and
y € F(IND),

Pr [A(P(f,r),y,r) € [7H(y)] = 0.

r~{0,1}

Here 7 is the shared randomness between the algorithms A and P. It has
some (typically unspecified) finite bitlength .

Definition 3. We say that (P,.A) solves (N, M)-decision function-inversion
((N, M)-DFI) with advantage e € (0,1/2] if for all f : [N] = [M] and y € [M],

Twﬁ)rl}l[Af(P(f, r),yr) =Lyepqnpl 2 1/2 + e

In words, A is likely to output 1 when y is in the image of f, but is unlikely to
output 1 when y is in [M]\ f([N]).

We will abuse terminology slightly and simply refer to (P,.4) as an algo-
rithm when the meaning is clear from context. When N = M, we will drop the
parameters and just write SFI or DFI. We will also sometimes write “worst-case
SFT” or “worst-case DFI” to distinguish from the average-case variants that we
define next.

Definition 4. We say that (P,.A) solves average-case (N, M)-SFI with success
probability § if

P AP ) € 1) 2 6
Frlg[NI=[M]}
z~ [Ny« f(x)
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Definition 5. We say that (P,.A) solves average-case (N, M)-DFI with advan-
tage € if

Pr  [A(P(f.r)yr) =1 > 12+,
TN{Oxl}
f~{g:[N]—[M]}
z~[N]y<f(2)

and
Pr  [AN(P(f,r),y,r) =01 >1/2+¢.
r~{0,1}
frA{g:IN]—[M]}
y~[M\f(IN])
In order to state our results removing shared randomness, we need the fol-
lowing definition of function-inversion algorithms without shared randomness.

Definition 6. We say that (P, .A) solves (N, M)-SFI with success probability &
without shared randomness if for all f : [N] — [M] and all y € f([N]),
Pr [Af(P(f7 7’1)71/77"2) € f_l(y)] > d.
r1,m2~{0,1}
We make analogous definitions for the 3 other problems ((N, M)-DFI, average-
case (N, M)-SFI, average-case (N, M)-DFI).

Note that we will say, for example, “(N, M)-SFT for injective functions”, when
we mean Definition 2, but with the function f ranging over all injective functions
from [N] — [M]. Finally, we define some special classes of algorithms that will
be studied in Section 4.

Definition 7. An algorithm A is non-adaptive if Af (c,y,7) only queries f on
points x1(o,y,r),...,x7(0,y,r) depending only on the inputs o,y, and r (i.e.,
not depending on the results of previous queries).

Definition 8. An algorithm A is a guess-and-check algorithm if it is non-
adaptive and whenever x + Af(o,y,7), then = is one of the points queried

by A7,

We will say that (P,.A) is non-adaptive (resp. a guess-and-check algorithm)
if A is non-adaptive (resp. a guess-and-check algorithm).

2.2 Some basic probability results
We will use the following version of Chernoff’s bound (see, e.g., [20]).

Lemma 1. Suppose X1,..., X, are independent random variables taking values
in {0, 1}. Let X denote their sum, and p := E[X]. Then for any 6 > 0,

Pr[X > (1+9)u] < exp (—52#).
- - 2456
Moreover, for 0 <e <1,
&2
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We will also need the following simple bound.

Lemma 2. For any integers N > 1 and M > 2,

Pr 2 €[N] : f(z)= f(z)} =1] > e N/M-N/M*
o DE €N ¢ @) = f) =12

Proof. This is exactly equal to

Pr Vi, yi £ 0] = (1 — 1/M)N=1 > ¢ N/M-N/M?
Y1 yN—1~[M]

For the last inequality, it suffices to show that 1 — x > e for 0 <z <1/2
Indeed, plugging in z = 1/M gives 1 — 1/M > e_l/M_l/Mz, which implies
(1—=1/M)¥=1 > (1 = 1/M)N > e~ N/M=N/M* T4 prove this, let f(z) = 1 —
z,g(x) = e " and h(z) = f(z)/g(x). Computing L Jog(h(z)) = 4L (log(1 —
)~ (—r—2%) =-1/(1 —2)+ 1+ 22 = 2(1 — 22)/(1 — ), we see that it is
nonnegative on [0,1/2]. Since the logarithm is increasing, it follows that %h(x)
is also nonnegative on [0,1/2], and so h(z) > h(0) = 1 on [0,1/2]. But this
implies f(z) > g(x) for all 0 < x < 1/2, which is what we wanted to prove. [

2.3 Binary linear codes

Recall that a binary linear code C with rank n is an n-dimensional subspace C C
FZ', and C € F3'*" is a generator matrix for C if C = CF}. For x € F3", we write
|||z for the Hamming weight of x (i.e., the number of non-zero coordinates).
. The notation m,, . < O.(n) means that there exists a function f(g) such that
Mn.e < f(e)O(n).

Theorem 1 ([1, 18, 19, 25]). For every constant € > 0, there exists a family
Cn.e CFL with rank n and m = my, . < Oc(n), an efficiently computable genera-
tor matrices C,, e € F5™*", and an efficient decoding algorithm Dec such that for
every x € FY and every e € F* with ||e||g < (1/4—¢)-m, Dec(C, .xDe) = x.

For any C C FJ* and 1 < ¢ < m, we can easily define the subcode C; := {c =
(c1,...,em) €C : ¢; = 0}. Notice that we have either |C;| = |C| or |C;| = |C|/2
(where the first case only occurs if all ¢ € C have zero ith coordinate), and
that given a generator matrix C € Fy**"™ for a code C, it is trivial to compute a
generator matrix for C;. Notice also that we may assume without loss of generality
that the codes C := C,, - in Theorem 1 satisfy |C;| = |C|/2 for all i (since we may
simply remove any coordinates that are always zero).

3 An improvement to Fiat and Naor’s algorithm

From our perspective, there are two core techniques used in Fiat and Naor’s al-
gorithm [12]. First, Fiat and Naor’s algorithm generates a list L of pairs (z, f(z))
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for random domain elements = € [N], which effectively serves as a list of preim-
ages of “heavy hitters"—i.e., elements = such that f(x) has many preimages. In
the original algorithm, L is included as part of the preprocessed advice. Sec-
ond, (following Hellman [17]) Fiat and Naor describe a randomized subroutine
(P, A’) that takes L as auxiliary input and for all y € f([N]), inverts y with
some small probability. This subroutine is then run many times to boost its
success probability (with a fixed list L but independent randomness for P’ and
A’). Our improvement differs from the original only in the first part, and the
difference can be described in one sentence: if T' > S, instead of including the
list L in the preprocessed advice, we reconstruct it using queries to f. This can
be done because the random domain elements z can be derived from shared
randomness (which we also show in Corollary 1 is available in the non-uniform
model for essentially no cost). This allows us to construct a larger list L in the
case when T' > S, with |L| ~ T instead of |L| = S.
Our formal theorem is the following.

Theorem 2. For all S,T satisfying S*T max{S,T} > N3, there exists an al-
gorithm that solves SFI with success probability 1 using O(Slog2 N) bits of pre-
processing and O(T log? N) queries.

As mentioned above, this improves on Fiat and Naor’s tradeoff in the im-
portant setting where S < 7. On the other hand, when S > T our algorithm
is essentially just Fiat and Naor’s algorithm. However, even in this case, we be-
lieve that our presentation and analysis is significantly simpler, which we view
as an additional contribution. Some (though certainly not all) of this simplicity
is because of our choice to optimize only for 7" and .S and not for additional com-
plexity measures like the running time of the online algorithm (see Section 1.4)
or the use of shared randomness (which we show is essentially without loss of
generality in Section 6). Fiat and Naor made careful use of k-wise independent
hash functions in order to optimize these parameters.

Below, we present an algorithm which succeeds with probability 1 —O(1/N).
By Corollary 1, this implies the result.

3.1 The algorithm

Let K := max{S, T}, and let o := 2K [log N'|. Let z1, ..., zq ~ [N] be uniformly
random and independent elements generated using the shared randomness. Let
L = {(z;, f(z:)) : ¢ € [o]}. Intuitively, we think of L as a list of inverses for
“heavy hitters,” that is, elements y in the image of f that have many preimages.
Let L :={y: (xz,y) € L}, and let D := {a € [N] : f(x) ¢ L} be the domain
elements whose images are not trivially inverted by lookup in L. Finally, let
N’ :=|D|.

We will show a subroutine (P’, A’) that takes L as input and, provided that
L contains all points with at least N/K preimages, inverts any challenge y €
f(D) with small but decent probability. It uses parameters m := |N/3T| and
t := | N'/3S5]. The subroutine works by constructing m chains of length ¢ as in
Figure 1.
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using (z;, h'(z;))
2 m T TS )
f g f g ! 9

Fig. 1. The picture captures the basic workings of chain-based algorithms, including
Hellman’s algorithm, Fiat and Naor’s algorithm, and our improvement. Here h = g o
f, where g is randomly sampled from some appropriate distribution. Preprocessing
constructs the green chain C(z;) by sampling a random point x; and iterating h.
It stores the pair (z;,h*(x;)). On challenge y, online assumes y is a blue point, and
follows the red arrows. That is, it proceeds by computing g(y), then iterating h until
it reaches the stored endpoint h’(x;). Once there, it jumps back to x; and iterates h
until z* € f~!(y) is found.

At a high level, the full algorithm (P,.4) then works by constructing L,
and running (P’, A’) many times to boost the success probability. More pre-
cisely, let ¢ := [100ST log(N)/N1], and let r1,...,7; be independent random
strings derived from shared randomness. On input a function f, the preprocess-
ing algorithm P first constructs L as described above, then for ¢ € [¢], it runs
st; « P'(L, f,ry). If S > T, P outputs ¢ := (L, stq,...,sty). Otherwise, it just
outputs o := (stq,...,sty).

On input a challenge y and preprocessed advice o, the online algorithm A
first recovers L as follows. If S > T', A just reads L from o. Otherwise, it queries
f on the points zq, ..., 2, to recover L. Then A checks if y € L; if so, it returns
the corresponding inverse. If not, for i € [£], it runs o; < AY (L, st;,y, ;). If any
run i returns o; # 1, A outputs o;. Otherwise, it outputs L.

The subroutine It remains to describe the subroutine (LA, P’). The subroutine
receives L as input, but we will view it as receiving g as input instead, where
g : [N] = [D] is a uniformly random function, constructed using L as follows.
Let J := [N/N'-2log N], and let ¢’ : [N] x [J] = [N] be a random function
sampled independently using the shared randomness of P’ and A’. We say that
g’ is bad if there exists an ¢ € [N] such that ¢'(i,j) ¢ D for all j € [J]. If ¢’ is
bad, our subroutine will simply fail. But, it is easy to see that for our choice of
J this happens with probability at most 2/N. We will therefore assume below
that ¢’ is not bad, which will cost us at most an additive factor of 2/N in the
success probability of our subroutine. Now, define g(y) := ¢'(y, k), where k € [J]
is minimal such that ¢'(y, k) € D. Notice that g is a uniformly random function



16 A. Golovnev, S. Guo, S. Peters, and N. Stephens-Davidowitz

g : [N] — D, and that, given L, g(y) can be computed using at most J queries
to f by finding the minimal i such that f(g(y,i)) ¢ L. °

Finally, let h := g o f, and for each € [N] and s > 1, define the chain
C*(z) := {z,h(x),...,h*(z)}. (Here and below, we use the notation h? to rep-
resent h composed with itself ¢ times.) See Figure 1.

Preprocessing: Stores (z;, h'(z;)) for independent w1, . .., 2., ~ D. The ht(z;)
will be called endpoints.

o~

Online: On challenge y € f(D) (recall that f(D) = f([N])—L), online computes
Cy, = C*7'(g(y)) and checks if there is a unique i € [m] such that h'(z;) €
Cy.'Y If not, it gives up. Then it computes C*~!(z;) and checks whether any
x* € C'~1(x;) satisfies f(z*) = y. If so, it returns z*; else it returns L.

3.2 Analysis

First we analyze the resource costs. It is clear that the sub-algorithm stores at
most 2m[log N bits of advice, and makes at most 2¢ - J queries to f. Hence the

data structures stq, ..., sty have total bitlength at most
100ST log N Tlog® N N
¢-2m[log N = [OOSTOg] -(2m[log N1) < W%ﬁ = 1005 log? N.

If S > T, storing the list L, which consists of o = 25[log N'| pairs of elements
of [N], requires at most an additional 105 log? N bits. So (P,.A) uses at most
110S[log N|?bits of preprocessing. And the total number of queries to f made
by A is at most

IOOSTlogNW . {NIJ Nlog N < 200Tlog? N .

N 351 N

To analyze the success probability, we first observe that

Lemma 3. Ezcept with probability 2/N, all x € D satisfy |f~1(f(z))| < N/K.

0-(2tJ) < 0-5¢(N/N")log N = {

Proof. The condition above is equivalent to the list L containing all u € [N] with
|f~Y(u)] > N/K. But since o := 2K [log N, we have N/K > 2log N - N/a, and
so for any u with |f~1(u)] > N/K, there exists i € [a] with f(z;) = u (which
implies u € Z) except with probability 2/N2. The lemma then follows by union
bound. O

9 Indeed, this is the whole purpose of this rather subtle construction of g (which is
only a slight variant of the construction in Fiat and Naor [12])—to provide P’ and
A’ with access to a shared random function from [N] to D without requiring A’
to make too many queries. Notice that this is non-trivial because the set D is not
known to A’ and might not have a succinct description. (A’ instead only knows the
image L of [N] — D under f.)

10 The requirement of uniqueness substantially simplifies the analysis. However, it is
possible to use a weaker condition.
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We claim that the subalgorithm satisfies the following guarantee:

Theorem 3. Let f : [N] — [N] for some N > 1. Let U > 1, and suppose that
for all x € D, |f~Y(f(z))| < U. Let y € f(D). Then the sub-algorithm with
parameters 0 < m,t < N finds an inverse of y with probability at least

(1 —6mt*U/N")- (1 —t*U/N") - |f ' (y)| - mt/N' —2/N .

In particular, if N is sufficiently large, the bound U = N/K from Lemma 3
holds, and the parameter settings are m = |[N/3T|, t = |[N'/3S] as above, the

probability is at least
mt/(2N") > N/(100ST).

Using Theorem 3, it is straightforward to show Theorem 2.

Proof of Theorem 2 assuming Theorem 3.

Lemma 3 states that all x € D satisfy |f~(f(z))| < U except with probability
2/N over the random choices of z1,...,2,. Assuming this holds, Theorem 3
says that for all y € f(D) (i.e., all y ¢ Z), the subalgorithm (P’, A’) inverts y
with probability at least N/(100ST'). Thus, for all y ¢ Z, except with probability
O(1/N), at least one of the £ = [1001log N - (ST /N)] iterations of (P’, A’) inverts
y. Of course, the points y € L are trivially inverted by lookup in L. Hence for
ally € f([V]), (P, A) inverts y except with probability O(1/N). By Corollary 1,
this implies the result. O

It remains to prove Theorem 3.

Proof of Theorem 3. The particular statement easily follows from the general
statement. Indeed,
mt*U/N' < (N/3T) - (N'/35)* - (N/K)/N'
< N2N'/(27S*TK) < N3/(27S*TK) < 1/27.

And for sufficiently large N, it follows that

(1 —6mt*U/N")- (1 —t*U/N") - |f*(y)| - mt/N' —2/N
(1 —7mt*U/N’)-mt/N' —2/N
(1—17/27)-mt/N' —2/N

>1/2- (mt/N)

> (N/3T) - (N'/35)/(2N')

> N/(18ST).

2
>

We now prove the general statement of Theorem 3. Fix f,U, and y as in the
theorem statement. In what follows, we will assume that ¢’ is not bad (so that
g is a random function from [N] to [D]), at the cost of an additive 2/N in the
success probability. By inspection, the subalgorithm inverts y if and only if the
following event E; occurs for some i € [m]: (1) y is contained in f(C*~!(z;))
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(which implies hf(z;) € Cy), and (2), for all j # i, h'(z;) ¢ C,. Moreover, these
events F; are disjoint and symmetric. So the probability that the subalgorithm
inverts y is exactly m Pr[E;].

Let E} be the event that h(z;) ¢ C, for all j # 1, and let E? be the event
that y € f(C*~!(x1)); then By = E1 N Ef. To lower bound Pr[E;], we will first
lower bound Pr[E?], then lower bound Pr[E} | Ef].

We claim that

Lemma 4.
Pr(Ef] :=Prly € f(C""'(x1))] > (1 = *U/N') - |f "} (y)| - t/N'.
For convenience, define
(Z1,...,Z;) == (21, h(21),..., W x1)) = C* 7 (zy) .

Let Ap be the universal event (i.e., Pr[4g] = 1) and for 1 < ¢ < ¢t —1
let A; be the event that (1) A;_; holds, (2) Z; ¢ f~(y), and (3) f(Z;) ¢
f{Z1,...,Z;—1}). More explicitly, for 1 <4 < ¢ — 1, A; is the event that (1)
Zy,Zoy ..., Z; ¢ f71(y), and (2) the values f(Z1), f(Z2),..., f(Z;) are all dis-
tinct.

It is not hard to see that for all 1 < i < ¢, conditioned on A;_1, Z;
is uniformly random and independent of (Zi,...,Z;_1). (Here the probabil-
ity is over z1,...,Z, and the random function g.) Indeed, the claim is triv-
ial for ¢+ = 1. For ¢ > 1, observe that conditioned on A;_;, it holds that
f(Zi—1) ¢ f({Z1,...,Zi—2}), so Z; = g(f(Z;—1)) is a fresh uniform sample
from D, independent of (Z1,...,Z;_1).

For 1 <i <t, let B; be the event that (1) A;_; holds, and (2) Z; € f~1(y).
That is, B; is the event that (1) Z; € f~(y), (2) Z; ¢ f~(y) for all j < i, and
(3), the values f(Z1), f(Z2),...,f(Z;—1) are all distinct. By construction, the
events B; are mutually exclusive. So,

Priy € f(C' ' (1)) = Pr [ JBi] =) Pr[Bi] > Z_:Pr[A,»] Pr[Bi1 | A .
i=1 =0

First we obtain a lower bound on Pr[A4;].

Pr{Aipy | Ai] = Pr[Zisa & f7H(y) and f(Zin1) ¢ f({Z1, ..., Z:}) | All
=Pr[Zipr & (f () U (F(Z0)) U= U FTH(f(Z0) | Al
=1 ) U (f(Z0) U U f(Z)| /N
>1—((i+1)U)/N’
>1—tU/N'.

It follows that for all 0 < ¢ <t —1,

Pr[4;] > (1 —tU/N")" > 1 - t*U/N’".
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By a similar calculation, for all 0 <7 <t —1,
Pr[Bi1 | Aj] = Pr[Ziy1 € f7H(y) | Al = [fH (w)l/N .
Putting everything together, we have the desired lower bound:
Pr[EY] := Prly € f(C7 1 (x1))] = (1= 2U/N') - |[f 7 (w)| - /N
Next we turn to lower bounding Pr[E] | E?]. We claim that

Lemma 5.
Pr[E} | E?] > 1 — 6mt*U/N’ .

It suffices to prove this claim. Indeed, combining it with Lemma 4 gives
Pr[I] > mPr[E;] > m Pr[E?] - Pr[E] | E}]
> m(1 — 6mt>U/N') - (1 —t*U/N") - |f " (y)| - /N’ .
Next we prove Lemma 5. By union bound and symmetry,
Pr(E} | B2 = Pr[¥j # 1,h(z;) ¢ C, | E2)
> 1—m-Pr[hl(z2) € Cy |y € (O (z1))] . (6)

Thus, our goal is to upper bound Pr[h(z2) € Cy | y € f(C*"*(z1))]. We reason
similarly to the proof of Lemma 4.

Notice that, if y € f(C'"!(x1)), then g(y) € C'(x1), and so Cp :=
C'1(g(y)) C C%(x1). It follows that

Pr[h'(a2) € Cy |y € f(C'H(21))] < Pr{h(w2) € C*(21) |y € F(C* (1)) -

This is convenient, since we have combined two events that would otherwise need
to be considered separately; namely, the event that the chain C*(x2) starting at
T intersects Cy, and the event that C*(x3) intersects C*~!(z1). Next, we reason
as follows.

Pr[h!(z2) € C*(21) | y € f(C'7 (a1))]
< Pr[f(h'(z2)) € f(C*(21)) | y € F(C' ™ (21))]

< Pr[\/ f(W (22)) € f(C*(21)) | y € F(C' (1))

§=0
<Y Pr[f(h(x2)) € F(C*(a1)) |
§=0

Vk < j, f(h*(22)) & F(C*(21)),y € F(C'(z1))] -

Intuitively, the j-th term in the sum corresponds to the chain starting at xo
intersecting the chain starting at x; after j steps, but not before. We write

COND, ; := Vk < j, f(h*(29)) ¢ f(C?"(21)) and CONDy :=y € f(C*"(z1))
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We claim that for all 0 < j < ¢, the j-th term satisfies the following bound:
Prf(h/ (22)) € f(C*(x1)) | CONDy ;, CONDo] < [f~'(f(C* (21)))|/N" .

Notice that if j = 0, then COND; ; is vacuous, hi(x2) = x5 is a fresh independent
uniform sample from D, and the claimed bound holds with equality.

For j > 1, consider the event CONDj ; that, for some k < j—1, f(hI™(z2)) =
f(h¥(z2)). Tt is not hard to see that

Pr[f(h?(x2)) € f(C?*(x1)) | COND; ;, COND2, COND;3 ;] =0 .

Indeed, applying f o g to both sides of CONDs3 ; gives f(h'(z2)) = f(hFT1(x2)),
but COND; ; implies f(h**1(22)) & f(C*(x1)).

On the other hand, if we condition on ~COND3 ; (and COND; ; and COND,),
we know that v; := f(h/~!(x2)) is distinct from the values f(h¥(x3)) for 0 <
k < j—1. By COND; ; and CONDsy, v, is also distinct from the values f(h'(x1))
for 0 <4 < 2t. In other words, v; is not in the set V; defined by

Vi = {f(h"(22)) [0 <k < j =1} U{f(h'(x1)) | 0 < < 2t}

But it is not difficult to verify that the events COND; ;, COND2, and CONDs ;
can be expressed solely in terms of z1, x5, and the random variables g(z) for
z € Vj. (As a sanity check, it is helpful to note that h/=1(z2) = g(f(h?=2(z2)))
only depends on the random variables g(f(h*(x3))) for k < j — 1.) In particu-
lar, these events are independent of g(v;). It follows that, even conditional on
COND; j, CONDy, and =COND3_j, b7 (z2) = g(v;) is a fresh uniform sample from
D, independent of the random variables in the conditional. So we have

Pr[f(h?(22)) € f(C*(x1)) | COND; ;, CONDy, ~COND3 ;]
=1 F(C @)|/N,

and we have established the claimed bound on the terms of the sum. Plugging
the bound in, we see

Pr[h!(z2) € C*(21) | y € f(C'7(21))]

<D @)/
§=0

<M U@t +1)/N
1=0
<U-(t+1)-(2t+1)/N' <6t2U/N’.

(The last line only holds if ¢ > 0, but otherwise Lemma 5 is trivial.) Com-
bining this with Eq. (6) concludes the proof of Lemma 5 and hence the proof of
Theorem 3. U
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4 A lower bound against guess-and-check non-adaptive
algorithms

In this section, we prove our lower bound against guess-and-check non-adaptive
algorithms. The precise statement is as follows.

Theorem 4. Any guess-and-check algorithm that solves SFI for permutations
with success probability at least 3/4 using S bits of preprocessing and T queries
must have S > (N/2)log (N/6T) —

Following De et al. [9] and Dodis et al. [10], we will consider randomized
encoding and decoding procedures for a set of functions, and rely on the following
lemma which lower bounds the encoding length.

Lemma 6. (/9, 10]) Suppose there exist randomized encoding and decoding pro-
cedures (Enc, Dec) for a set F. We say such an encoding has recovery probability

6 if for all f € F,

| Pr. [Dec(Buc(f.r).r) = f] 2 4.

The encoding length of (Enc,Dec), defined to be maxy {|Enc(f,7)|}, is at least
log |F| —log1/é.

Our main lemma gives a randomized encoding for the family of permutations
given a guess-and-check inversion algorithm.

Lemma 7. Suppose that there exists a guess-and-check algorithm (P, A) that
solves SFI for permutations with success probability 3/4 using S bits of prepro-
cessing and T queries. Then there exists a randomized encoding for the set of all
permutations from [N] to [N], with recovery probability at least 1/2 and encoding
length at most

N!
S+ [N/2] -logT +log ——=7+3.
[N/2]!
We first observe that Theorem 4 follows immediately from the above lemmas.

Indeed, combining the two lemmas and recalling that there are N! permutations
from [N] to [N], we have

+ [N/2] - logT +log ————=— +3 > log N! —log2 .

N!
[N/2]!
Hence,

N N
S >log [N/2]! = [N/2] -log T — 4>?10g6T 4,

where the second inequality is due to the fact m! > (m/e)™ > (m/3)™ (by
Stirling’s approximation) and [N/2] > N/2.
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Proof. Fix an arbitrary permutation f: [N] — [N]. We encode f as follows.
Given f and randomness r, the encoder simulates (P, .A) on every y € [N]. Let
st be the output of P(f,r) and G be the set of y such that A/ (st,y, ) = f~1(y).
By an averaging argument,

1

fq — f1 > ] >
B B G = £ 2 gl 2

N | =

In other words, with probability at least 1/2 the size of G is at least N' := [N/2].
Assuming |G| > N’ we pick a set G’ C G with size exactly N’ and encode f as
follows,

1. Include st, and a description of G’. This requires S + [log (]va,ﬂ bits.

2. For each y € G’ (in lexicographic order), run A/ (st,y,r) and include the
index 4 such that the answer to the ¢th oracle query is y. This requires
[N’ -log T bits in total.

3. Store the mapping from [N]\ f~1(G’) to [N]\G’ corresponding to f restricted
to [N]\ f~1(G’) using [log(N — N')!7 bits.

Given the shared randomness r, the decoder does the following:

1. Recover st and G'.

2. For each y € G, run A(st,y,7) to generate T non-adaptive queries
Z1,...,27, recover the index i and set f(x;) = y. We remark that this
step heavily relies on the guess-and-check property of A.

3. After the above two steps, the decoder reconstructs f~1(G’) and G’ (hence
[N]\ f71(G") and [N]\ G’). Then the decoder recovers the values of [N] \
f71(G’) using the remainder of the encoding.

Assuming |G| > N/2, the decoding procedure recovers f. The encoding length
is

N NI
S+ [log <N’>] + [N’ -logT] + [log(N — N')!IT < S+N’~logT+logm +3,

as claimed. O

5 Comparing variants of function inversion

In this section, we prove that different formulations of the function inversion
problem are equivalent (up to polylogarithmic factors in S and T). First, we
prove that the decision version of the Function Inversion problem, that merely
asks to check whether a query y is in the image of the preprocessed function f, is
as hard as the search version of the problem where the goal is to find a preimage
of y. We prove this equivalence for three different settings: for arbitrary (i.e.,
worst-case) functions in Section 5.1, for random functions in Section 5.2, and
for injective functions in the full version [15].!* Also, [8, Lemma 21] proves that

11 We remark that the result for injective functions is very similar to [8, Theorem §].
We simply include it for completeness.
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for worst-case functions and M > N, inverting f: [N] — [M] is as hard as
inverting f’: [N] — [N]. (Of course, for M < N, inverting worst-case functions
f: [N] = [M] trivially reduces to inverting worst-case functions f’: [N] — [N].)
In the full version [15], we show that this result can be extended to the setting
of random functions.

These equivalences suggest that the hardness of function inversion is specified
by the domain size and the class of functions (worst-case/injective/random), but
not by the search/decision type of the problem or the range size.

5.1 Search-to-decision reduction for arbitrary functions

In this section, we prove an essentially tight search-to-decision reduction for
worst-case function inversion. Namely, given an algorithm that solves DFI (for
all functions; see Definition 3) in query time T and preprocessing S, we design
an algorithm that solves SFI (for all functions) in query time T - poly(log N') and
preprocessing S - poly(log N) (or even query time O(T -log N) and preprocessing
O(S -log N), see Remark 1).

First, in Lemma 8 we observe that, given an algorithm for DFI, one can solve
SFT on all inputs y that have unique preimages. Then, in Theorem 5 we use the
Isolation Lemma [21, 26, 28] to reduce the general case of SFI to the case where
y has a unique preimage.

Lemma 8. Let N = 2" and € := ¢(N) € (0,1/2]. Suppose there exists an al-
gorithm (P, A) that solves (N, M)-DFI with advantage € using S bits of pre-
processing and T queries. Then there exists an algorithm (P’, A’) that uses
S" < O(Sn(logn)/e?) bits of preprocessing and T' < O(Tn(logn)/e?) queries
with the following guarantees. For every f: [N] — [M] and every y € [M] satis-
fying [{f~' ()} =1,

P e (P ¢ ) =) 2 1 1/

Furthermore, for every f: [N] = [M] and every y € [M],

{Pr} [ (AN (P (f,r),y,r) : o' # L and f(z') #y] < 1/(10n?) .12
re~{0,1}¢

For space reasons, we defer the proofs of Lemma 8 and the other results in
this section to the full version [15]. We can now state the main result of this
section. The main difference in the statements of Lemma 8 and Theorem 5 is
that the SFI algorithm in Lemma 8 is only guaranteed to succeed on queries
that have a unique preimage, while the SFI algorithm in Theorem 5 works for
all queries.

12 One could reduce the latter probability of failure to 0 with an adaptive reduction,
but we prefer to keep the reduction non-adaptive with a small probability of error.
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Theorem 5. Let N = 2", and let ¢ := e(N) € (0,1/2]. Suppose there exists
an algorithm (P, A) that solves (N, M)-DFI with advantage € using S bits of
preprocessing and T queries. Then there exists an algorithm (P”, A") that solves
(N, M)-SFI with success probability 0.9, S” < O(Sn*(logn)/e?) bits of prepro-
cessing, and T" < O(Tn*(logn)/e?) queries.

Remark 1. A few extensions of Theorem 5 are in order.

1. This search-to-decision reduction is non-adaptive, so a non-adaptive algo-
rithm for DFI implies a non-adaptive algorithm for SFI (and an adaptive
algorithm for DFI implies an adaptive algorithm for SFI). See the full ver-
sion [15].

2. In the proof of Lemma 8 in the full version [15], the logn factor in the advice
length and the number of queries comes from the amplification of the success
probability of the assumed DFI algorithm from 1/2 + ¢ to 1 — O(1/n?). We
remark that one can get rid of this logn factor by recovering the bits of
C'(z) rather than the bits of = for a good linear code C' (similarly to how it
is done in the proof of Theorem 6). This modification will also improve the
parameters S” and 7" in Theorem 5 by a logn factor (though unfortunately
it does not preserve non-adaptivity).

5.2 Search-to-decision reduction for average-case functions

In this section, we show a different search-to-decision reduction for average-case
function inversion. (See Definition 4 for the formal definition of average-case
SFI and Definition 5 for the formal definition of average-case DFI.) The proof
of Theorem 5 does not work for the case of average-case functions as Lemma 8
heavily relies on the fact that the assumed DFT algorithm works for all functions.
Nevertheless, we can extend the techniques of the previous section to recover
bits of a certain encoding of = rather than the individual bits of x and prove an
essentially tight search-to-decision reduction for average-case function inversion
in Theorem 6.

Theorem 6. Let N = 2". Suppose there exists an algorithm (P, A) that solves
average-case (2N, M)-DFI with advantage ¢ > 1/2—exp (—2N/M — 2N/M?)/4,
using S bits of preprocessing and T queries. Then for any constant 6 € (0,1/4),
there exists an algorithm (P’, A’) that solves average-case (N, M)-SFI with suc-
cess probability exp (—2N/M — 2N/M?)—(1/2—¢)/(1/4—0) using S" < Os(nS)
bits of preprocessing and T' < Os(nT') queries.

Remark 2.

1. Similarly to the reduction in Theorem 5, the search-to-decision reduction of
Theorem 6 is non-adaptive.

2. A drawback of Theorem 6 is that it requires the DFI algorithm to have
very large advantage €. This is because we actually need the DFI algorithm
to have non-negligible advantage in distinguishing between (1) uniformly
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random y that is not in the image of f; and (2) uniformly random y with
|f~1(y)| =1 (i.e., a random image that has a unique preimage). We could
have worked directly with this assumption on the DFI algorithm, but we
prefer the simpler (but strictly stronger) assumption in Theorem 6.

6 Removing shared randomness

In this section, we adapt to our setting Newman’s technique for converting
public-coin protocols to private-coin protocols [23] in the context of commu-
nication complexity. We first define a general notion of a computational problem
with preprocessing to which our technique will apply.

Definition 9. Let F be a set of functions f : D — R, and let Y, X be sets. A
preprocessing-queries tradeoff problem is a function g : F x Y — 2%, where 2%
denotes the powerset of X. Let (P, A) be a pair of randomized algorithms. We
say that

1. (P, A) solves g with success probability § € (0,1] if for all f € F andy € Y,

Pr [AT(P(f.r),y.7) € g(f,y)] > 6.

r~{0,1}

2. (P, A) solves g without shared randomness with success probability § € (0, 1]
if forall f e F andy € ),

Pr [Af(P(fa Tl)ay,TQ) € g(fa y)] Z J.

T1,7‘2N{071}1’I
Our generic lemma for removing shared randomness is as follows.

Lemma 9. Suppose there exists an algorithm that solves a preprocessing-queries
tradeoff problem g : F xY — 2% with success probability 1 —e using preprocessing
S and T. Then there exists another algorithm that solves g without shared ran-
dommness, with success probability 1—2e, preprocessing S+log(K/e?)+O(1), and
T queries, where K = log|F x Y|. If the first algorithm is non-adaptive (resp.
guess-and-check) then so is the second. Moreover, the success probability can be
increased to 1 at the cost of an additional 4¢|Y|[log |V|] bits of preprocessing.

Proof. The proof is adapted from the proof of Newman’s technique given in [24].
Sample k = O(2K/<?) independent random strings r1,...,7% € {0, 1}

We claim that with probability at least 1 — 27, these random strings satisfy
the following property: For all functions f € F and inputs y € ), we have

lfﬁg][Af(P(fa Ti)ay,ri) € g(fa y)] Z 1-—2e. (7)

From the claim, it follows that % fixed strings r},...,r; with this property
must exist. Then the algorithms (A’, P’) are simple. On input f, P’ first samples
i ~ [k], then simulates P to compute st := P(f,rf). It outputs advice (st,17).
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On input y, A simply returns A7 (st,y,r}). Clearly A’ is non-adaptive (resp.
guess-and-check) if A is.

It remains to prove the claim. Fix a function f and an input y. For each
independent random string r; we have

PrlAT(P(f,ri),y.mi) € g(f,y)] =1 —e.

Hence by the Chernoff bound (Lemma 1), the probability that 2ek strings r;
satisfy Af (P(f,7:),y,7:) & g(f,y) is at most 292(=*k) < 2-2K Gince there are at
most 2% possible pairs (f,y), by union bound, the probability that this occurs
for any f,y is at most 275 as claimed.

For the “Moreover”, fix a function f € F. Notice that by an averaging argu-
ment, Eq. (7) implies that for some i* € [k], 7% satisfies

i*

Pr [*Af(lp(ffr;’k)’yar;k) € g(f>y)] > 1-—2¢.
yey

Thus there are only b = 2¢|))| inputs y1, . .., yp for which AS(P(f,r5),y;,75) ¢
g(f,y). P’ outputs (st,i*, E), where E := {(y;,;)};ep), and for each j € [b],
z; € g(f,y). (Such an z; is guaranteed to exist because the original algorithm
(A, P) is assumed to have positive success probability on all input-challenge pairs
(f,y).) Given challenge y, A'f first checks if (y,2) € E for some z € X. If so,
it returns . Otherwise, it returns A7 (st,y,7%) as before. It is easy to see that
(P, A") always succeeds, uses at most S+log(K/e2)+4e|Y|[log|V|]+O(1) bits of
preprocessing, and uses at most T' queries. And again, A’ is clearly non-adaptive
(resp. guess-and-check) if A is. O

It’s worth noting that while the proof uses the probabilistic method (and
so is nonconstructive), it is essentially constructive in the sense that choosing
the required strings at random works with very high probability. (Of course,
choosing the strings at random will not allow us to obtain success probability
1.) The following is an immediate corollary in our setting.

Corollary 1. Suppose that for some class F of functions f : [N] — [M]
there exists a function-inversion algorithm that solves (N, M)-SFI (resp. solves
(N, M)-DFI) for F with success probability 1 — e, using preprocessing S, and
queries T'. Then there exists a function-inversion algorithm that solves (N, M)-
SFET (resp. solves (N,M)-DFI) for F with success probability 1 — 2 without
shared randomness, using S +log(N/e?) +loglog M + O(1) bits of preprocessing
and T queries. If the first algorithm is non-adaptive (resp. guess-and-check) then
so is the second. Moreover, the success probability can be made 1 at the cost of
an additional 4 N log N bits of preprocessing.

Proof. 1t is easy to check that each of these function-inversion problems is a
preprocessing-queries tradeoff problem, with Y = [M]. Thus Lemma 9 applies.
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So it suffices to observe that

log(K /&%) = log K — log e?
= loglog | F x Y| — log&?
= loglog MN*! —loge?
=log((N + 1)log M) — log &*
= log(N + 1) + loglog M — log £*
= 0(1) +log N —loge? + loglog M
= O(1) + log(N/e?) + log log M. O
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