
Degree Sequence Bound for Join Cardinality

Estimation

Kyle Deeds #

University of Washington, Seattle, WA, USA

Dan Suciu #

University of Washington, Seattle, WA, USA

Magda Balazinska #

University of Washington, Seattle, WA, USA

Walter Cai #

University of Washington, Seattle, WA, USA

Abstract

Recent work has demonstrated the catastrophic effects of poor cardinality estimates on query

processing time. In particular, underestimating query cardinality can result in overly optimistic

query plans which take orders of magnitude longer to complete than one generated with the true

cardinality. Cardinality bounding avoids this pitfall by computing an upper bound on the queryŠs

output size using statistics about the database such as table sizes and degrees, i.e. value frequencies.

In this paper, we extend this line of work by proving a novel bound called the Degree Sequence

Bound which takes into account the full degree sequences and the max tuple multiplicity. This work

focuses on the important class of Berge-Acyclic queries for which the Degree Sequence Bound is tight.

Further, we describe how to practically compute this bound using a functional approximation of the

true degree sequences and prove that even this functional form improves upon previous bounds.

2012 ACM Subject ClassiĄcation Information systems → Query optimization; Information systems

→ Query planning; Theory of computation → Database query processing and optimization (theory);

Theory of computation → Data modeling

Keywords and phrases Cardinality Estimation, Cardinality Bounding, Degree Bounds, Functional

Approximation, Query Planning, Berge-Acyclic Queries

Digital Object IdentiĄer 10.4230/LIPIcs.ICDT.2023.8

Related Version Full Version: https://arxiv.org/pdf/2201.04166 [4]

Funding This work is supported by National Science Foundation grants NSF IIS 1907997 and

NSF-BSF 2109922.

1 Introduction

The weakest link in a modern query processing engine is the cardinality estimator. There

are several major decisions where the system needs to estimate the size of a queryŠs output:

the optimizer uses the estimate to compute an effective query plan; the scheduler needs the

estimate to determine how much memory to allocate for a hash table and to decide whether

to use a main-memory or an out-of-core algorithm; a distributed system needs the estimate

to decide how many servers to reserve for subsequent operations. TodayŠs systems estimate

the cardinality of a query by making several strong and unrealistic assumptions, such as

uniformity and independence. As a result, the estimates for multi-join queries commonly

have relative errors up to several orders of magnitude. An aggravating phenomenon is that

cardinality estimators consistently underestimate (this is a consequence of the independence

assumption), and this leads to wrong decisions for the most expensive queries [15, 3, 10].

A signiĄcant amount of effort has been invested in the last few years into using machine

© Kyle Deeds, Dan Suciu, Magda Balazinska, and Walter Cai;
licensed under Creative Commons License CC-BY 4.0

26th International Conference on Database Theory (ICDT 2023).
Editors: Floris Geerts and Brecht Vandevoort; Article No. 8; pp. 8:1Ű8:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl Ű Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kdeeds@cs.washington.edu
https://orcid.org/0000-0003-2267-3276
mailto:suciu@cs.washington.edu
mailto:magda@cs.washington.edu
mailto:wzcai92@gmail.com
https://doi.org/10.4230/LIPIcs.ICDT.2023.8
https://arxiv.org/pdf/2201.04166
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 Degree Sequence Bound for Join Cardinality Estimation

Name ...
Alice ...
Alice ...
Bob ...
Carlos ...
Carlos ...
Carlos ...
David ...
Eseah ...
Eseah ...
Eseah ...
Eseah ...
Eseah ...
Vivek ...
Vivek ...
Vivek ...
Gael ...
Hans ...
Hans ...
John ...
Karl ...
Lee ...

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10

Degree Sequence

Functional Representation

Compressed Representation

Figure 1 The degree sequence of Name. The Ąrst rank represents Eseah whose degree is 5, the next

two ranks are for Carlos and Vivek whose degrees are 3. The degree sequence can be represented

compactly using a staircase functions, and even more compactly using lossy compression.

learning for cardinality estimation [20, 22, 23, 24, 21, 16, 17], but this approach still faces

several formidable challenges, such as the need for large training sets, the long training time

of complex models, and the lack of guarantees about the resulting estimates.

An alternative approach to estimating the cardinality is to compute an upper bound for

the size of the query answer. This approach originated in the database theory community,

through the pioneering results by Grohe and Marx [8] and Atserias, Grohe, and Marx [1].

They described an elegant formula, now called the AGM bound, that gives a tight upper

bound on the query result in terms of the cardinalities of the input tables. This upper bound

was improved by the polymatroid bound, which takes into account both the cardinalities, and

the degree constraints and includes functional dependencies as a special case [7, 13, 14, 18].

In principle, an upper bound could be used by a query optimizer in lieu of a cardinality

estimator and, indeed, this idea was recently pursued by the systems community, where the

upper bound appears under various names such as bound sketch or pessimistic cardinality

estimator [3, 11]. In this paper, we will call it a cardinality bound. As expected, a cardinality

bound prevents query optimizers from choosing disastrous plans for the most expensive

queries [3], however, their relative error is often much larger than that of other methods [19, 6].

While the appeal of a guaranteed upper bound is undeniable, in practice overly pessimistic

bounds are unacceptable.

In this paper, we propose a new upper bound on the query size based on degree sequences.

By using a slightly larger memory footprint, this method has the potential to achieve much

higher accuracy than previous bounds. Given a relation R, an attribute X, and a value

u ∈ ΠX(R), the degree of u is the number of tuples in R with u in the X attribute, formally

d(u) = ♣σX=u(R)♣. The degree sequence of an attribute X in relation R is the sorted sequence

of all degrees for the values of that attribute, d(u1) ≥ d(u2) ≥ · · · ≥ d(un). Going forward, we

drop any reference to values and instead refer to degrees by their index in this sequence,

also called their rank, i.e. d1 ≥ · · · ≥ dn.1 A degree sequence can easily be computed

1 Note that the degree sequence is very similar to a rank-frequency distribution in the probability literature
and has been extensively used in graph analysis [2, 9].

K. Deeds, D. Suciu, M. Balazinska, and W. Cai 8:3

offline, and can be compressed effectively, with a good space/accuracy tradeoff due to its

monotonicity; see Fig. 1 for an illustration. Degree sequences offer more information on the

database instance than the statistics used by previous upper bounds. For example, the AGM

bound uses only the cardinality of the relations, which is
∑

i di, while the extension to degree

constraints [14] uses the cardinality,
∑

i di, and the maximum degree, d1.

For this new bound we had to develop entirely new techniques over those used for the

AGM and the polymatroid bounds. Previous techniques are based on information theory. If

some relation R(X, Y) has cardinality N , then any probability space over R has an entropy

that satisĄes H(XY) ≤ log N ; if the degree sequence of the attribute X is d1 ≥ d2 ≥ . . ., then

H(Y ♣X) ≤ log d1. Both the AGM and the polymatroid bound start from such constraints

on the entropy. Unfortunately, these constraints do not extend to degree sequences, because

H is ignorant of d2, d3, . . . Information theory gives us only three degrees of freedom, namely

H(XY), H(X), H(Y), while the degree sequence has an arbitrary number of degrees of

freedom. Rather than using information theory, our new framework models relations as

tensors, and formulates the upper bound as a linear optimization problem. This framework

is restricted to Berge-acyclic, fully conjunctive queries [5] (reviewed in Sec. 2); throughout

the paper we will assume that queries are in this class. As we explain in Appendix A.1 [4]

these are the most common queries found in applications.

The Worst-Case Instance. Our main result (Theorems 3.2 and 4.1) is a tight cardinality

bound given the degree sequences of all relations. This bound is obtained by evaluating

the query on a worst-case instance that satisĄes those degree constraints.2 Intuitively, each

relation of the worst-case instance is obtained by matching the highest degree values in

the different columns, and the same principle is applied across relations. For example,

consider the join R(X, . . .) ⋊⋉ S(X, . . .), where the degree sequences of R.X and S.X are

a1 ≥ a2 ≥ · · · and b1 ≥ b2 ≥ · · · respectively. The true cardinality of the join is
∑

i aibτ(i) for

some unknown permutation τ , while the maximum cardinality is3
∑

i aibi, and is obtained

when the highest degree values match. Our degree sequence bound holds even when the

input relations are allowed to be bags. Furthermore, we prove (Theorem 4.6) that this bound

is always below the AGM and polymatroid bounds, although the latter restrict the relations

to be sets. To prove this we had to develop a new, explicit formula for the polymatroid

bound for Berge-acyclic queries, which is of independent interest (Theorem 4.3).

Compact Representation. A full degree sequence is about as large as the relation instance,

while cardinality estimators need to run in sub-linear time. Fortunately, a degree sequence

can be represented compactly using a piece-wise constant function, called a staircase function,

as illustrated in Fig. 1. Our next result, Theorem 5.2, is an algorithm for the degree sequence

bound that runs in quasi-linear time (i.e. linear plus a logarithmic factor) in the size of

the representation, independent of the size of the instance. The algorithm makes some

rounding errors (Lemma 5.1), hence its output may be slightly larger than the exact bound,

however we prove that it is still lower than the AGM and polymatroid bounds (Theorem 5.5).

The algorithm can be used in conjunction with a compressed representation of the degree

sequence. By using few buckets and upper-bounding the degree sequence one can trade off

the memory size and estimation time for accuracy. At one extreme, we could upper bound

2 In graph theory, the problem of computing a graph satisfying a given degree sequence is called the
realization problem.

3 For example, if a1 ≥ a2, b1 ≥ b2, then a1b1 + a2b2 ≥ a1b2 + a2b1.

ICDT 2023

8:4 Degree Sequence Bound for Join Cardinality Estimation

the entire sequence using a single bucket with the constant d1, at the other extreme we could

keep the complete sequence. Neither the AGM bound nor the polymatroid bound have this

tradeoff ability.

Max Tuple Multiplicity. Despite using more information than previous upper bounds, our

bound can still be overly pessimistic, because it needs to match the most frequent elements in

all attributes. For example, suppose a relation has two attributes whose highest degrees are a1

and b1 respectively. Its worst-case instance is a bag and must include some tuple that occurs

min(a1, b1) times. Usually, a1 and b1 are large, since they represent the frequencies of the

worst heavy hitters in the two columns, but in practice they rarely occur together min(a1, b1)

times. To avoid such worst-case matchings, we use one additional piece of information on

each base table: the max multiplicity over all tuples, denoted B. Usually, B is signiĄcantly

smaller than the largest degrees, and, by imposing it as an additional constraint, we can

signiĄcantly improve the queryŠs upper bound; in particular, when B = 1 then the relation

is restricted to be a set. Our main results in Theorems 3.2 and 4.1 extend to max tuple

multiplicities, but in some unexpected ways. The worst-case relation, while still tight, is

not a conventional relation: it may have tuples that occur more than B times, and, when

the relation has 3 or more attributes it may even have tuples with negative multiplicities.

Nevertheless, these rather unconventional worst-case relations provide an even better degree

sequence bound than by ignoring B.

▶ Example 1.1. To give a taste of our degree-sequence bound, consider the full conjunctive

query Q(· · ·) = R(X, · · ·) ⋊⋉ S(X, Y, · · ·) ⋊⋉ T (Y, · · ·), where we omit showing attributes

that appear in only one of the relations. Alternatively, we can write Q(X, Y) = R(X) ⋊⋉

S(X, Y) ⋊⋉ T (Y) where R, S, T are bags rather than sets. Assume the following degree

sequences:

d(R.X) = (3, 2, 2) d(T.Y) = (2, 1, 1, 1) d(S.X) = (5, 1) d(S.Y) = (3, 2, 1) (1)

The AGM bound uses only the cardinalities, which are:

♣R♣ = 7 ♣S♣ = 6 ♣T ♣ = 5

The AGM bound4 is ♣R♣ · ♣S♣ · ♣T ♣ = 210. The extension to degree constraints in [14] uses in

addition the maximum degrees:

deg(R.X) = 3 deg(S.X) = 5 deg(S.Y) = 3 deg(T.Y) = 2

and the bound is the minimum between the AGM bound and the following quantities:

|R| · deg(S.X) · deg(T.Y) = 7 · 5 · 2 = 70

deg(R.X) · |S| · deg(T.Y) = 3 · 6 · 2 = 36

deg(R.X) · deg(S.Y) · |T | = 3 · 3 · 5 = 45

Thus, the degree-constraint bound is improved to 36.
Our new bound is given by the answer to the query on the worst-case instance of the

relations R, S, T , shown here together with their multiplicities (recall that they are bags):

R =

a 3

b 2

c 2

, S =

a u 3

a v 2

b w 1

, T =

u 2

v 1

w 1

z 1

,

4 Recall that each of the three relations has private variables, e.g. R(X, U), S(X, Y, V, W), T (Y, Z). The
only fractional edge cover is 1, 1, 1.

K. Deeds, D. Suciu, M. Balazinska, and W. Cai 8:5

The three relations have the required degree sequences, for example S.X consists of 5 aŠs
and 1 b, thus has degree sequence (5, 1). Notice the matching principle: we assumed that the
most frequent element in R.X and S.X are the same value a, and that the most frequent
values in S.X and in S.Y occur together. On this instance, we compute the query and obtain
the answer Q.

Q =

a u 3 · 3 · 2 = 18

a v 3 · 2 · 1 = 6

b w 2 · 1 · 1 = 2

S′ =

a u 2

a v 2

a w 1

b u 1

The upper bound is the size of the answer on this instance, which is 18 + 6 + 2 = 26, and

it improves over 36. Here, the improvement is relatively minor, but this is a consequence

of the short example. In practice, degree sequences often have a long tail, i.e. with a few

large leading degrees d1, d2, . . . followed by very many small degrees dm, dm+1, . . . , dn (with

a large n). In that case the improvements of the new bound can be very signiĄcant.

Suppose now that we have one additional information about S: every tuple occurs at

most B = 2 times. Then we need to reduce the multiplicity of (a, u), and the new worst-case

instance, denoted S′, is the following relation which decreases the cardinality bound to 25.

2 Problem Statement

Tensors. In this paper, it is convenient to deĄne tensors using a named perspective, where

each dimension is associated with a variable. We write variables with capital letters X, Y, . . .

and sets of variables with boldface, X, Y , . . . We assume that each variable X has an

associated Ąnite domain DX
def
= [nX] for some number nX ≥ 1. For any set of variables X

we denote by DX
def
=
∏

Z∈X DZ . We use lower case for values, e.g. z ∈ DZ and boldface

for tuples, e.g. x ∈ DX . An X-tensor, or simply a tensor when X is clear from the

context, is M ∈ R
DX . We say that M has ♣X♣ dimensions. Given two X-tensors M , N ,

we write M ≤N for the component-wise order (Mx ≤ Nx, for all x). If X, Y are two sets

of variables, then we denote their union by XY . If, furthermore, X, Y are disjoint, and

x ∈ DX , y ∈ DY , then we denote by xy ∈ DXY the concatenation of the two tuples.

▶ DeĄnition 2.1. Let M , N be an X-tensor, and a Y -tensor respectively. Their tensor

product is the following XY -tensor:

∀z ∈ DXY : (M ⊗N)z
def
=MπX (z) ·NπY (z) (2)

If X, Y are disjoint and M is an XY -tensor then we deĄne its X-summation to be the

following Y -tensor:

∀y ∈ DY : (SUMX(M))y
def
=
∑

x∈DX

Mxy (3)

If M , N are XY and Y Z tensors, where X, Y , Z are disjoint sets of variables, then their

dot product is the XZ-tensor:

∀x ∈ DX , z ∈ DZ : (M ·N)xz
def
=SUMY (M ⊗N)xz =

∑

y∈DY

MxyNyz (4)

In other words, in this paper we use ⊗ like a natural join. For example, if M is an

IJ-tensor (i.e. a matrix) and N is an KL-tensor, then M ⊗N is the Kronecker product;

if P is an IJ-tensor (like M) then M ⊗ P is the element-wise product. The dot product

ICDT 2023

8:6 Degree Sequence Bound for Join Cardinality Estimation

sums out the common variables, for example if a is a J-tensor, then M · a is the standard

matrix-vector multiplication, and its result is an I-tensor. The following is easily veriĄed. If

M is an X-tensor, N is a Y -tensor and X, Y are disjoint sets of variables, then:

∀X0 ⊆X,∀Y0 ⊆ Y : SUMX0Y0
(M ⊗N) =SUMX0

(M)⊗ SUMY0
(N) (5)

Permutations. A permutation on D = [n] is a bijective function σ : D → D; the set of

permutations on D is denoted SD, or simply Sn. If D = D1 × · · · ×Dk then we denote by

SD
def
= SD1

× · · · × SDk
. Given an X-tensor M ∈ R

DX and permutations σ ∈ SDX
, the

σ-permuted X-tensor is M ◦ σ ∈ R
DX :

∀x ∈ DX : (M ◦ σ)x
def
=Mσ(x)

Sums are invariant under permutations, for example if a, b ∈ R
DZ are Z-vectors and σ ∈ SDZ

,

then (a ◦ σ) · (b ◦ σ) = a · b, because
∑

i∈DZ
aσ(i)bσ(i) =

∑

i∈DZ
aibi.

Queries. A full conjunctive query Q is:

Q(X) = ⋊⋉R∈R R(XR) (6)

where R
def
= R(Q) denotes the set of its relations, X is a set of variables, and XR ⊆ X

for each relation R ∈ R. The incidence graph of Q is the following bipartite graph: T
def
=

(R∪X, E
def
= ¶(R, Z) ♣ Z ∈XR♢). It can be shown that Q is Berge-acyclic [5] iff its incidence

graph is an undirected tree (see Appendix A.1 [4]). Unless otherwise stated, all queries in

this paper are assumed to be full, Berge-acyclic conjunctive queries. We use bag semantics

for query evaluation, and represent an instance of a relation R ∈ R by an XR-tensor, M (R),

where M
(R)
t is deĄned to be the multiplicity of the tuple t ∈ DXR

in the bag R. The number

of tuples in the answer to Q is:

♣Q♣ = SUMX

(

⊗

R∈R

M (R)



(7)

▶ Example 2.2. Consider the following query:

Q(X, Y, Z, U, V, W) =R(X, Y) ⋊⋉ S(Y, Z, U) ⋊⋉ T (U, V) ⋊⋉ K(Y, W)

Its incidence graph is T = (¶R, . . . , K♢ ∪ ¶X, . . . , W♢, ¶(R, X), (R, Y), (S, Y), . . . , (K, W)♢)

and is an undirected tree. An instance of R(X, Y) is represented by a matrix M (R) ∈

R
DX ×DY , where M

(R)
xy = the number of times the tuple (x, y) occurs in R. Similarly, S is

represented by a tensor M (S) ∈ R
DY ×DZ ×DU . The size of the queryŠs output is:

♣Q♣ =
∑

x,y,z,u,v,w

M (R)
xy M (S)

yzuM (T)
uv M (K)

yw

Degree Sequences. We denote by R+
def
= ¶x ♣ x ∈ R, x ≥ 0♢ and we say that a vector

f ∈ R
[n]
+ is non-increasing if fr−1 ≥ fr for r ∈ [2, . . . , n].

▶ DeĄnition 2.3. Fix a set of variables X, with domains DZ , Z ∈ X. A degree sequence

associated with the dimension Z ∈ X is a non-increasing vector f (Z) ∈ R
DZ

+ . We call the

index r the rank, and f
(Z)
r the degree at rank r. An X-tensor M is consistent w.r.t. f (Z) if:

SUMX−¶Z♢(M) ≤f (Z) (8)

K. Deeds, D. Suciu, M. Balazinska, and W. Cai 8:7

M is consistent with a tuple of degree sequences f (X) def
= (f (Z))Z∈X , if it is consistent with

every f (Z). Furthermore, given B ∈ R+ ∪ ¶∞♢, called the max tuple multiplicity, we say

that M is consistent w.r.t. B if Mt ≤ B for all t ∈ DX . We denote:

Mf(X),B

def
=¶M ∈ R

DX ♣M is consistent with f (X), B♢

M+
f(X),B

def
=¶M ∈ R

DX

+ ♣M is non-negative and consistent with f (X), B♢ (9)

For a simple illustration consider two degree sequences f ∈ R
[m], g ∈ R

[n]. Mf ,g,∞ is the

set of matrices M whose row-sums and column-sums are ≤ f and ≤ g respectively; M+
f ,g,∞

is the subset of non-negative matrices; M+
f ,g,B is the subset of matrices that also satisfy

Mij ≤ B, ∀i, j.

Problem Statement. Fix a query Q. For each relation R, we are given a set of degree

sequences f (R,XR) def
=
(

f (R,Z)
)

Z∈XR
, and a tuple multiplicity B(R) ∈ R+ ∪ ¶∞♢. We are

asked to Ąnd the maximum size of Q over all database instances consistent with all degree

sequences and tuple multiplicities. To do this, we represent a relation instance R by an

unknown tensor M (R) ∈M+
f (R,XR),B(R) and an unknown set of permutations σ(R) ∈ SDXR

,

and solve the following problem:

▶ Problem 1 (Degree Sequence Bound). Solve the following optimization problem:

Maximize: ♣Q♣ = SUMX

(

⊗

R∈R

(M (R) ◦ σ(R))



(10)

Where: ∀R ∈ R, σ(R) ∈ SDXR
, M (R) ∈M+

f(R,XR),B(R)

This is a non-linear optimization problem: while the set M+ deĄned in Eq. (9) is a set

of linear constraints, the objective (10) is non-linear. In the rest of the paper we describe an

explicit formula for the degree sequence bound, which is optimal (i.e. tight) when B(R) =∞,

for all R, and is optimal in a weaker sense in general.

▶ Example 2.4. Continuing Example 1.1, the four degree sequences in (1) correspond to the

variables in each relation R.X, S.X, S.Y , and T.Y . Since S.X has a shorter degree sequence

than R.X, we pad it with a 0, so it becomes d(S.X) = (5, 1, 0); similarly for d(S.Y). Instead

of values c, b, a, we use indices 1, 2, 3, similarly u, v, w, z becomes 1, 2, 3, 4. For example,

S =
3 1 3
3 2 2
2 3 1

is isomorphic to the instance in Example 1.1. It is represented by M ◦ (σ, τ)

where the matrix M =

(

3 2 0 0
0 0 1 0
0 0 0 0



, (its row-sums are 5, 1, 0 and column-sums are 3, 2, 1, 0,

as required) and the permutations are, in two-line notation, σ
def
=
(

1 2 3
3 2 1



and τ
def
= the

identity. Similarly, the relations R, T , are represented by vectors a, b and permutations θ, ρ.

The bound of Q is the maximum value of
∑

i=1,3

∑

j=1,4 Mσ(i)τ(j)aθ(i)bρ(j), where M , a, b

are consistent with the given degree sequences, and σ, τ, θ, ρ are permutations. This is a

special case of Eq. (10).

ICDT 2023

8:8 Degree Sequence Bound for Join Cardinality Estimation

3 The Star Query

We start by computing the degree sequence bound for a star query, which is deĄned as:

Qstar =S(X1, . . . , Xd) ⋊⋉ R(1)(X1) ⋊⋉ · · · ⋊⋉ R(d)(Xd) (11)

Assume that the domain of each variable Xp is [np] for some np > 0, and denote by

[n]
def
= [n1]× · · · × [nd]. Later, in Sec. 4, we will use the bound for Qstar as a building block

to compute the degree sequence bound of a general query Q. There, S will be one of the

relations of the query, for which we know the degree sequences f (Xp) ∈ R
[np]
+ , p = 1, . . . , d

and tuple bound B, while the unary relations R(1), . . . , R(d) will be results of subqueries,

which are unknown. The instance of each R(p) is given by an unknown vector a(p) ∈ R
[np]
+ ,

which we can assume w.l.o.g. to be non-increasing, by permuting the domain of Xp in both

S and in R(p). Therefore, S will be represented by M ◦ σ, where M ∈ M+
f(X),B

is some

tensor and σ some permutation, and the size of Qstar is:

♣Qstar♣ =
∑

(i1,...,id)∈[n]

(M ◦ σ)i1···id
· a

(X1)
i1
· · · a

(Xd)
id

(12)

Equivalently: ♣Qstar♣ = SUMX

(

(M ◦ σ)⊗
⊗

p a(Xp)


= (M ◦ σ) · a(X1) · · ·a(Xd).

Our goal is to Ąnd the unknown M ◦ σ for which ♣Qstar♣ is maximized, no matter what

the unary relations are. It turns out that σ can always be chosen the identity permutation,

thus it remains to Ąnd the optimal M , which we denote by C. This justiĄes:

▶ Problem 2 (Worst-Case Tensor). Fix f (X), B. Find a tensor C ∈Mf(X),∞ such that, for

all σ ∈ S[n], M ∈M+
f(X),B

, and all non-increasing vectors a(X1) ∈ R
[n1]
+ , . . . , a(Xd) ∈ R

[nd]
+ :

(M ◦ σ) · a(X1) · · ·a(Xd) ≤ C · a(X1) · · ·a(Xd) (13)

In the rest of this section we describe the solution C. If all entries in C are ≥ 0 and ≤ B,

then C ∈M+
f(X),B

and, by setting M
def
= C and σ

def
= the identity permutations, the relation

S represented by M ◦ σ maximizes ♣Qstar♣, achieving our goal. But, somewhat surprisingly,

we found that sometimes this worst-case C has entries > B or < 0, yet it still achieves our

goal of a tight upper bound for ♣Qstar♣. This is why we allow C ∈Mf(X),∞.

Let ∆Z denote the discrete derivative of an X-tensor w.r.t. a variable Z ∈X, and ΣZ

denote the discrete integral. Formally, if a ∈ R
[n] is a Z-vector, then, setting a0

def
= 0:

∀i ∈ [n] : (∆Za)i
def
=ai − ai−1 (ΣZa)i =

∑

j=1,i

aj (14)

Notice that:

ΣZ(∆Za) =∆Z(ΣZa) = a SUMZ(∆Za) = an (15)

The subscript in ∆, Σ indicates on which variable they act. For example, if M is an XY Z-

tensor, then (∆Y M)xyz
def
= Mxyz − Mx(y−1)z. One should think of the three operators

∆X , ΣX , SUMX as analogous to the continuous operators d···
dx

,
∫

· · · dx,
∫ n

0
· · · dx.

K. Deeds, D. Suciu, M. Balazinska, and W. Cai 8:9

▶ DeĄnition 3.1. The value tensor, V f(X),B ∈ R
[n]
+ , is deĄned by the following linear

optimization problem:

∀m ∈ [n] : V f(X),B
m

def
= Maximize:

∑

s≤m

Ms (16)

Where: M ∈M+
f(X),B

The worst-case tensor, Cf(X),B ∈ R
[n], is deĄned as:

Cf(X),B def
=∆X1 · · ·∆Xd

V f(X),B (17)

We will drop the superscripts when clear from the context, and write simply V , C. Our

main result in this section is:

▶ Theorem 3.2. Let f (X), B be given as above, and let V , C deĄned by (16)-(17). Then:

1. C is a solution to Problem 2, i.e. C ∈Mf(X),∞ and it satisĄes Eq. (13). Furthermore,

it is tight in the following sense: there exists a tensor M ∈M+
f(X),B

and non-increasing

vectors a(p) ∈ R
[np]
+ , p = 1, d, such that inequality (13) (with σ the identity) is an equality.

2. If there exists any solution C ′ ∈M+
f(X),B

to Problem 2, then C ′ = C.

3. When the number of dimensions is d = 2 then C is integral and non-negative. If d ≥ 3,

C may have negative entries.

4. If B <∞, then C may not be consistent with B, even if d = 2.

5. For any non-increasing vectors a(Xp) ∈ R
[np]
+ , p = 2, d, the vector C · a(X2) · · ·a(Xd) is

in R
[n1]
+ and non-increasing.

6. Assume B =∞. Then the following holds:

∀m ∈ [n] : Vm = min
(

F (X1)
m1

, . . . , F (Xd)
md



(18)

where F
(Xp)
r

def
=
∑

j≤r f
(Xp)
j is the CDF associated to the PDF f (Xp), for p = 1, d.

Moreover, C can be computed by Algorithm 1, which runs in time O(
∑

p np). This further

implies that C ≥ 0, in other words C ∈M+
f(X),∞

.

Algorithm 1 Efficient construction of C when B = ∞.

∀p = 1, d : sp ← 1; C = 0;

while ∀p : sp < np do

pmin ← arg minp(f
(Xp)
sp) dmin ← minp(f

(Xp)
sp)

Cs1,...,sd
← dmin

∀p = 1, d : f
(Xp)
sp ← f

(Xp)
sp − dmin

spmin
← spmin

+ 1

end while

return C

In a nutshell, the theorem asserts that the tensor C deĄned in (17) is the optimal solution

to Problem 2; this is stated in item 1. Somewhat surprisingly, C may be inconsistent w.r.t.

B, and may even be negative. When that happens, then, by item 2, no consistent solution

exists to Problem 2, hence we have to make do with C. In that case C may not represent

a traditional bag S, for example if it has entries < 0. However, this will not be a problem

for computing the degree sequence bound in Sec. 4, because all we need is to compute the

ICDT 2023

8:10 Degree Sequence Bound for Join Cardinality Estimation

product C · a(X2) · · ·a(Xd), which we need to be non-negative, and non-increasing: this is

guaranteed by item 5. The last item gives more insight into V and, by extension, into

C. Recall that Vm, deĄned by (16), is the largest possible sum of values of a consistent

m1 ×m2 × · · · ×md tensor M . Since the sum in each hyperplane X1 = r of M is ≤ f
(X1)
r ,

it follows that
∑

s≤m Ms ≤
∑

r=1,m1
f

(X1)
r

def
= F

(X1)
m1 . Repeating this argument for each

dimension Xp implies that Vm ≤ minp=1,d(F
(Xp)
mp). Item 6 states that this becomes an

equality, when B =∞.

▶ Example 3.3. Suppose that we want to maximize aT ·M · b, where M is a 3× 4 matrix
with degree sequences f = (6, 3, 1) and g = (4, 3, 2, 1); assume B =∞. The vectors a, b are
non-negative and non-increasing, but otherwise unknown. The theorem asserts that this
product is maximized by the worst-case matrix C. We show here the matrices C and V

deĄned by (16) and (17), together with degree sequences f , g next to C, and the cumulative
sequences F = Σf , G = Σg next to V :

C =





4 3 2 1

6 4 2 0 0

3 0 1 2 0

1 0 0 0 1



 V =





4 7 9 10

6 4 6 6 6

9 4 7 9 9

10 4 7 9 10





We can check that Vm1m2 = min(Fm1 , Gm2); for example V31 = min(10, 4) = 4. The

worst-case matrix C is deĄned as the second discrete derivative of V , more precisely

Cm1m2
= Vm1m2

− Vm1−1,m2
− Vm1,m2−1 + Vm1−1,m2−1. Alternatively, C can be computed

greedily, using Algorithm 1: start with C11 ← min(f1, g1) = 4, decrease both f1, g1 by 4,

set the rest of column 1 to 0 (because now g1 = 0) and continue with C12, etc. Another

important property, which we will prove below in the Appendix (Eq. 35 [4]), is that, for all

m1, m2,
∑

i≤m1,j≤m2
Cij = Vm1m2

; for example
∑

i≤2,j≤3 Cij = 4 + 2 + 1 + 2 = 9 = V23.

While the proof of Theorem 3.2 provides interesting insight into the structure of the

degree sequence bound, it is not necessary for understanding the remainder of the paper and

requires the introduction of additional notation and machinery. Therefore, for the sake of

space and clarity, we omit it from the main text and instead include a proof of each item in

the appendix Section A.2 [4].

4 The Berge-Acyclic Query

We now turn to the general problem 1. Fix a Berge-acyclic query Q with relations R
def
= R(Q),

degree sequences fR,Z , and max tuple multiplicities B(R) as in problem 1.

4.1 The Degree Sequence Bound

▶ Theorem 4.1. For any tensors M (R) ∈M+
f(R,XR),B(R) and permutations σ(R), for R ∈ R,

the following holds:

SUMX

(

⊗

R∈R

(M (R) ◦ σ(R))



≤SUMX

(

⊗

R∈R

Cf(R,XR),B(R)



def
= DSB(Q) (19)

where Cf(R,XR),B(R)

is the worst-case tensor from Def. 3.1.

The theorem simply says that the upper bound to the query Q can be computed by

evaluating Q on the worst case instances, represented by the worst case tensors Cf(R,XR),B(R)

.

We call this quantity the degree sequence bound and denote it by DSB(Q). When all max

K. Deeds, D. Suciu, M. Balazinska, and W. Cai 8:11

Algorithm 2 Computing DSB(Q) = SUMX

(

⊗

R∈R
Cf(R,XR),B(R)



.

for each variable X ∈X and non-root relation R ∈ R, R ̸= root, in bottom-up order do

a(X) def
=
⊗

R∈children(X) w(R) // element-wise product

w(R) def
= Cf(R,XR),B(R)

· a(X2) · · ·a(Xk) // where XR = (X1, . . . , Xk), X1 = parent(R)

end for

return Cf(root,XROOT),B(ROOT)

· a(X1) · a(X2) · · ·a(Xk)

tuple multiplicities B(R) are∞, then the bound is tight, because in that case every worst-case

tensor Cf(R,XR),∞ is in M+
f(R,XR),∞

(by Th. 3.2 item 6); otherwise the bound may not be

tight, but it is locally tight, in the sense of Th. 3.2 item 1.

Before we sketch the main idea of the proof, we note that an immediate consequence is that

the degree sequence bound can be computed using a special case of the FAQ algorithm [12]. We

describe this brieĆy in Algorithm 2. Recall that the incidence graph of Q is a tree T . Choose

an arbitrary relation ROOT ∈ R(Q) and designate it as root, then make T a directed tree by

orienting all its edges away from the root. Denote by parent(R) ∈XR the parent node of a

relation R ̸= ROOT, associate an X-vector a(X) to each variable X, and a parent(R)-vector

w(R) to each relation name R, then compute these vectors by traversing the tree bottom-up,

as shown in Algorithm 2. Notice that, when X is a leaf variable, then children(X) = ∅ and

a(X) = (1, 1, . . . , 1)T ; similarly, if R(X) is leaf relation of arity 1 with variable X, then w(R)

is the degree sequence of its variable, because w(R) = C(f(R,X),B(R)) = f (R,X). We provide

an example in [4], Appendix A.3. It follows:

▶ Corollary 4.2. The degree sequence bound DSB(Q) can be computed in time polynomial

in the size of the largest domain (data complexity).

In the rest of this section we sketch the proof of Theorem 4.1, mostly to highlight the

role of item 5 of Theorem 3.2, and defer the formal details to Appendix A.3 [4]. Fix tensors

M (R) and permutations σ(R), for each R ∈ R. Choose one relation, say S ∈ R, assume it

has k variables X1, . . . , Xk, then write the LHS of (19) as:

SUMXS

((

M (S) ◦ σ(S)


⊗ b1 ⊗ · · · ⊗ bk



(20)

where each bp is a tensor expression sharing only variable Xp with S, where we sum out all

variables except Xp (using Eq. (5)). Compute the vectors bp Ąrst, sort them in non-decreasing

order, let τp be the permutation that sorts bp, and τ
def
= (τ1, . . . , τk). Then (20) equals:

SUMXS

((

M (S) ◦ σ(R) ◦ τ


⊗ (b1 ◦ τ1)⊗ · · · ⊗ (bk ◦ τk)


(21)

because sums are invariant under permutations. Since each bp ◦ τp is sorted, by item 1 of

Theorem 3.2, the expression above is ≤ to the expression obtained by replacing M (S)◦σ(S)◦τ

with the worst-case tensor Cf(S,XS),B(S)

. Thus, every tensor could be replaced by the worst-

case tensor, albeit at the cost of applying some new permutations τp to other expressions.

To avoid introducing these permutations, we proceed as follows. We choose an orientation of

the tree T , as in Algorithm 2, then prove inductively, bottom-up the tree, that each tensor

M ◦ σ can be replaced by the worst-case tensor C without decreasing the LHS of (19),

and that the resulting vector (in the bottom-up computation) is sorted. To prove this, we

re-examine Eq. (20), assuming X1 is the parent variable of S. By induction, all the tensors

occurring in b2, . . . , bk have already been replaced with worst-case tensors, and their results

ICDT 2023

8:12 Degree Sequence Bound for Join Cardinality Estimation

are non-increasing vectors. Then, in Eq. (21) it suffices to apply the permutation τ to the

parent expression b1 (which still has the old tensors M ◦ σ), use item 1 of Theorem 3.2 to

replace M (S) ◦ σ(S) ◦ τ by Cf(S,XS),B(S)

, and, Ąnally, use item 5 of Theorem 3.2 to prove

that the result returned by the node S is a non-decreasing vector, as required.

4.2 Connection to the AGM and Polymatroid Bounds

We prove now that DSB(Q) is always below the AGM [1] and the polymatroid bounds [14, 18].

The AGM bound is expressed in terms of the cardinalities of the relations. For each

relation R, let NR be an upper bound on its cardinality. Then the AGM bound is AGM(Q)
def
=

minw

∏

R NwR

R , where the vector w = (wR)R∈R ranges over the fractional edge covers of the

hypergraph associated to Q. If a database instance satisĄes ♣R♣ ≤ NR for all R, then the

size of the query is ♣Q♣ ≤ AGM(Q), and this bound is tight, i.e. there exists an instance for

which we have equality.

The polymatroid bound uses both the cardinality constraints NR and the maximum

degrees. The general bound in [14] considers maximum degrees for any subset of variables, but

throughout this paper we restrict to degrees of single variables, in which case the polymatroid

bound is expressed in terms of the quantities NR and f
(R,X)
1 , one for each relation R and

each of its variables X. The AGM bound is the special case when f
(R,X)
1 = NR for all

R. We review the general deĄnition of the polymatroid bound in [4], Appendix A.4, but

will mention that no closed formula is known for polymatroid bound, similar to the AGM

bound. We give here the Ąrst such closed formula, for the case of Berge-acyclic queries. Let

Q be a Berge-acyclic query with incidence graph T (which is a tree). Choose an arbitrary

relation ROOT ∈ R(Q) to designate as the root of T , and for each other relation R, denote by

ZR
def
= parent(R), i.e. its unique variable pointing up the tree. Denote by:

PB(Q, ROOT)
def
=NROOT

∏

R ̸=ROOT

f
(R,ZR)
1 (22)

One can immediately check that the query answer on any database instance consistent with

the statistics satisĄes ♣Q♣ ≤ PB(Q, ROOT). A cover of Q is set W = ¶Q1, Q2, . . . , Qm♢, for

some m ≥ 1, where each Qi is a connected subquery of Q, and each variable of Q occurs in

at least one Qi, and we denote by:

PB(W)
def
=
∏

i=1,m

min
ROOT∈R(Qi)

PB(Qi, ROOTi) (23)

Since ♣Q♣ ≤ ♣Q1♣ · ♣Q2♣ · · · ♣Qm♣, we also have ♣Q♣ ≤ PB(W). We prove in [4], Appendix A.4:

▶ Theorem 4.3. The polymatroid bound of a Berge-acyclic query Q is PB(Q)
def
=

minW PB(W), where W ranges over all covers.

▶ Example 4.4. Let Q = R(X, Y), S(Y, Z), T (Z, U), K(U, V). Then PB(Q, S) =

f
(R,Y)
1 NSf

(T,Z)
1 f

(K,U)
1 , PB(¶R, TK♢) = NR · min

(

NT f (K,U), f (T,U)Nk

)

, and

PB(¶R, T, K♢) = NRNT NK .

If we restrict the formula to the AGM bound, i.e. all max degrees are equal to the

cardinalities, f
(R,X)
1 = NR, then Eq. (22) becomes

∏

R∈R(Q) NR, while the polymatroid

bound (23) becomes minW

∏

R∈W NR, where W ranges over integral covers of Q. In

particular, the AGM bound of a Berge-acyclic query can be obtained by restricting to integral

edge covers, although this property fails for α-acylic queries. For example, consider the query

K. Deeds, D. Suciu, M. Balazinska, and W. Cai 8:13

R(X, Y), S(Y, Z), T (Z, X), K(X, Y, Z); when ♣R♣ = ♣S♣ = ♣T ♣ = ♣K♣ then the AGM bound is

obtained by the edge cover 0, 0, 0, 1, but when ♣R♣ = ♣S♣ = ♣T ♣ ≪ ♣K♣ one needs the fractional

cover 1/2, 1/2, 1/2, 0. Next, we prove next that the degree sequence bound is always better.

▶ Lemma 4.5.

(1) For any choice of root relation, ROOT ∈ R(Q): DSB(Q) ≤ PB(Q, ROOT).

(2) For any cover Q1, . . . , Qm of Q, DSB(Q) ≤ DSB(Q1) · · ·DSB(Qm)

Proof. (1) Referring to Algorithm 2, we prove by induction on the tree that, for all R ≠ ROOT,

and every index i, w
(R)
i ≤

∏

S∈tree(R) f
(S,ZS)
1 . In other words, each element of the vector

w(R) is ≤ the product of all max degrees in the subtree rooted at R. Assuming this holds for

all children of R, consider the deĄnition of w(R) in Algorithm 2. By induction hypothesis,

for each vector a(Xp) we have a
(Xp)
ip

≤
∏

S∈tree(Xp) f
(S,ZS)
1 , a quantity that is independent of

the index ip, and therefore we obtain the following:

w
(R)
i1

=
(

C
f(R,XR),B(R)

· a
(X2) · · · a

(Xk)


i1

≤

(

∑

i2i3···ik

Cf(R,XR),B(R)

i1i2i3···ik



·
∏

S∈tree(R),S ̸=R

f
(S,ZS)
1

and we use the fact that
∑

i2i3···ik
Cf(R,XR),B(R)

i1i2···ik
≤ f

(R,X1)
i1

because, by Theorem 3.2 item 1,

Cf(R,XR),B(R)

is consistent with the degree sequence f
(R,X1)
1 , and, Ąnally, f

(R,X1)
i1

≤ f
(R,X1)
1 .

This completes the inductive proof. The algorithm returns Cf(root,XROOT),B(ROOT)

· a(X1) ·

a(X2) · · ·a(Xk) ≤ SUM(Cf(root,XROOT),B(ROOT)

) ·
∏

R ̸=ROOT
f

(R,ZR)
1 ≤ ♣ROOT♣ ·

∏

R ̸=ROOT
f

(R,ZR)
1 , which

is = PB(Q, ROOT), as required.

(2) We prove the statement only for m = 2 (the general case is similar) and show

that DSB(Q) ≤ DSB(Q1) ·DSB(Q2). Since DSB is the query answer on the worst case

instance, we need to show that ♣Q1 ⋊⋉ Q2♣ ≤ ♣Q1♣ · ♣Q2♣. This is not immediately obvious

because the worst case instance may have negative multiplicities. Let X be the unique

common variable of Q1, Q2, and let a, b be the X-vectors representing the results of Q1 and

Q2 respectively. It follows from Theorem 3.2 item 5 that a, b are non-negative, therefore,

♣Q♣ =
∑

i aibi ≤ (
∑

i ai)(
∑

i bi) = ♣Q1♣ · ♣Q2♣. ◀

Our discussion implies:

▶ Theorem 4.6. Let Q be a Berge-acyclic query. We denote by DSB(Q, f , B) the DSB

computed on the statistics f
def
= (fR,Z)R∈R(Q),Z∈XR

and B
def
= (B(R))R∈R(Q). Then:

♣Q♣ ≤ DSB(Q, f , 1) ≤ DSB(Q, f , B) ≤ DSB(Q, f , ∞) ≤ PB(Q) ≤ AGM(Q) (24)

where ♣Q♣ is the answer to the query on an database instance consistent with the given

statistics.

Recall that both AGM and PB bounds are deĄned over set semantics only. While the

AGM bound is tight, the PB bound is known to not be tight in general, and it is open

whether it is tight for Berge-acyclic queries. Our degree sequence bound under either set or

bag semantics improves over PB and, in the case of bag semantics (B =∞) DSB is tight.

5 Functional Representation

A degree sequence requires, in general, Ω(n) space, where n = maxX∈X nX is the size of the

largest domain, while cardinality estimators require sublinear space and time. However, a

degree sequence can be represented compactly, using a staircase function as illustrated in

ICDT 2023

8:14 Degree Sequence Bound for Join Cardinality Estimation

Fig. 1. In this section we show how the degree sequence bound, DSB, be approximated in

quasi-linear time in the size of the functional representation. We call this approximate bound

FDSB, show that DSB ≤ FDSB ≤ PB, and show that the staircase functions can be further

compressed, allowing a tradeoff between the memory size and computation time on one hand,

and accuracy of the FDSB on the other hand. We restrict our discussion to B(R) =∞.

In this section we denote a vector element by F (i) rather than Fi. For a non-decreasing

vector F ∈ R
[n]
+ , we denote by F −1 : R+ → R+ any function satisfying the following, for all

v, 0 ≤ v ≤ F (n): if F (i) < v then i < F −1(v), and if F (i) > v then i > F −1(v). Such a

function always exists5, but is not unique. Then:

▶ Lemma 5.1. Let F1 ∈ R
[n1]
+ , . . . , Fd ∈ R

[nd]
+ be non-decreasing vectors satisfying F1(0) = 0

and, for all p = 1, d, F1(n1) ≤ Fp(np). Let a1 ∈ R
[n1]
+ , . . . , ad ∈ R

[nd]
+ be non-increasing

vectors. Denote by C, w the following tensor and vector:

Ci1···id

def
= ∆i1

· · ·∆id
max(F1(i1), . . . , Fd(id)) (25)

w(i1)
def
=

n2
∑

i2=1

. . .

nd
∑

id=1

Ci1···id

∏

p∈[2,d]

ap(ip) (26)

Then the following inequalities hold:

w(i1) ≥ (∆i1
F1(i1))

∏

p∈[2,d]

ap

(⌊

F −1
p (F1(i1))

⌋

+ 1
)

(27)

w(i1) ≤ (∆i1
F1(i1))

∏

p∈[2,d]

ap

(⌈

F −1
p (F1(i1 − 1))

⌉)

(28)

We give the proof in Appendix [4]. The lemma implies that, in Algorithm 2, we can

use inequality (28) to upper bound the computation w(R) = C · a(X2) · · ·a(Xk). Indeed, in

that case each Fp(r)
def
=
∑

i=1,r fp(r) is the cdf of a degree sequence fp, hence Fp(0) = 0 and

Fp(np) = the cardinality of R, while the tensor C is described in item 6 of Theorem 3.2,

hence the assumptions of the lemma hold.

We say that a vector f ∈ R
n
+ is represented by a function f̂ : R+ → R+ if f(i) = f̂(i) for

all i = 1, n. A function f̂ is a staircase function with s steps, in short an s-staircase, if there

exists dividers m0
def
= 0 < m1 < · · · < ms

def
= n such that f̂(x) is a nonnegative constant on

each interval ¶x ♣ mq−1 < x ≤ mq♢, q = 1, s. The sum or product of an s1-staircase with

an s2-staircase is an (s1 + s2)-staircase. We denote the summation of a staircase f̂(x) as

F̂ (x) =
∫ x

0
f̂(t)dt which is then an increasing piecewise-linear function. Its standard inverse

F̂ −1 : R+ → R+ is also increasing and piecewise-linear. If F̂ represents the vector F , then

F̂ −1 is an inverse F −1 of that vector (as discussed above).

Fix a Berge-acyclic query Q, and let each degree sequence f (R,Z) be represented by some

sR,Z -staircase f̂R,Z , and we denote by F̂ (R,Z) its summation. Fix any relation ROOT ∈ R(Q)

to designated as root. The Functional Degree Sequence Bound at ROOT, FDSB(Q, ROOT), is

the value returned by Algorithm 3. This algorithm is identical to Algorithm 2, except that it

replaces both w(R) with a functional upper bound justiĄed by the inequality 28 of Lemma 5.1,

and similarly for the returned result. All functions â(X) and ŵ(R) are staircase functions,

and can be computed in linear time, plus a logarithmic time need for a binary search to

lookup a segment in a staircase. Using this, we prove the following in Appendix A.6 [4]:

5 E.g. deĄne it as follows: if ∃i s.t. F (i − 1) < v < F (i) then set F −1(v)
def
= i − 1/2, otherwise set

F −1(v) = i for some arbitrary i s.t. F (i) = v.

K. Deeds, D. Suciu, M. Balazinska, and W. Cai 8:15

Algorithm 3 F DSB(Q, ROOT).

for each variable X ∈X and non-root relation R ∈ R, R ̸= root, in bottom-up order do

â(X) def
=
⊗

R∈children(X) ŵ(R)

∀i1 : ŵ(R)(i1)
def
=
(

f̂ (R,X1)(i1)


∏

p∈[2,d] a(Xp)
(

max(1, (F̂ (R,Xp))−1(F̂ (R,X1)(i1 − 1)))


end for

return
∑

i=1,♣ROOT♣

∏

p=1,k a(Xp)(max(1, (F ROOT,Xp)−1(i− 1)))

▶ Theorem 5.2.

(1) FDSB(Q, ROOT) ≥ DSB(Q).

(2) FDSB(Q, ROOT) can be computed in time TFDSB
def
= Õ(m ·

∑

R,Z(arity(R) ·sR,Z)), where

Õ hides a logarithmic term, and m = ♣R(Q)♣ is the number of relations in Q.

The theorem says that FDSB(Q, ROOT) is still an upper bound on ♣Q♣, and can be

computed in quasi-linear time in the size of the functional representations of the degree

sequences. Next, we check if FDSB is below the polymatroid bound. Consider the com-

putation of ŵ(R)(i1) by the algorithm. On one hand f̂ (R,X1)(i1) ≤ f̂ (R,X1)(1); on the other

hand a(Xp)(max(1, . . .)) ≤ a(Xp)(1). This allows us to prove (inductively on the tree, in [4],

Appendix A.7):

▶ Lemma 5.3. FDSB(Q, ROOT) ≤ PB(Q, ROOT), where PB is deĄned in (22).

When we proved DSB ≤ PB in Lemma 4.5, we used two properties of DSB:

DSB(Q, ROOT) is independent of the choice of ROOT, and DSB(Q1 ⋊⋉ · · · ⋊⋉ Qm) ≤

DSB(Q1) · · ·DSB(Qm), for any cover W = ¶Q1, . . . , Qm♢. Both hold because DSB(Q) is

standard query evaluation: it is independent of the query plan (i.e. choice of ROOT) and

it can only increase if we remove join conditions. But FDSB is no longer standard query

evaluation and these properties may fail. For that reason we introduce a stronger functional

degree sequence bound:

FDSB(Q) = min
W

∏

i=1,m

min
ROOT ∈R(Q)

FDSB(Qi, ROOT) (29)

where W range over the covers of Q. We prove in Appendix A.6.1 [4]:

▶ Theorem 5.4. FDSB(Q) can be computed in time O(2m · (2m + m · TF DSB)) (where

TF DSB is deĄned in Theorem 5.2).

Mirroring our results from Theorem 4.6, we prove the following in Appendix A.8 [4]:

▶ Theorem 5.5. Suppose Q is a Berge-acyclic query. Then the following hold:

♣Q♣ ≤ FDSB(Q) ≤ PB(Q) ≤ AGM(Q) (30)

Together, Theorems 5.4 and 5.5 imply that we can compute in quasi-linear time in the

size of the representation an upper bound to the query Q that is guaranteed to improve over

the polymatroid bound. In practice, we expect this bound to be signiĄcantly lower than the

polymatroid bound, because it accounts for the entire degree sequence f , not just f1.

Finally, we show that one can tradeoff the size of the representation for accuracy, by

simply choosing more coarse staircase approximations of the degree sequences. They only

need to be non-increasing, and lie above the true degree sequences.

ICDT 2023

8:16 Degree Sequence Bound for Join Cardinality Estimation

▶ Theorem 5.6. Fix a query Q, let f (R,Z), B(R) be statistics as in Problem 1, and let U be

the cardinality bound deĄned by (10). Let f̂ (R,Z), B̂(R) be a new set of statistics, and Û the

resulting cardinality bound. If f (R,XR) ≤ f̂ (R,XR) and B(R) ≤ B̂(R) for all R, Z ∈ XR, then

U ≤ Û .

Proof. The proof follows immediately from the observation that the set of feasible solutions

can only increase (see Def. 2.3): M+
f(R,XR),B(R) ⊆M

+

f̂(R,XR),B̂(R)
. ◀

6 Conclusions

We have described the degree sequence bound of a conjunctive query, which is an upper bound

on the size of its answer, given in terms of the degree sequences of all its attributes. Our

results apply to Berge-acyclic queries, and strictly improve over previously known AGM

and polymatroid bounds [1, 14]. On one hand, our results represent a signiĄcant extension,

because they account for the full degree sequences rather than just cardinalities or just the

maximum degrees. On the other hand, they apply only to a restricted class of acyclic queries,

although, we argue, this class is the most important for practial applications. While the full

degree sequence can be as large as the entire data, we also described how to approximate

the cardinality bound very efficiently, using compressed degree sequences. Finally, we have

argued for using the max tuple multiplicity for each relation, which can signiĄcantly improve

the accuracy of the cardinality bound.

References

1 Albert Atserias, Martin Grohe, and Dániel Marx. Size bounds and query plans for relational

joins. In 49th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2008,

October 25-28, 2008, Philadelphia, PA, USA, pages 739Ű748. IEEE Computer Society, 2008.

doi:10.1109/FOCS.2008.43.

2 Douglas Bauer, Haitze J Broersma, Jan van den Heuvel, Nathan Kahl, A Nevo, E Schmeichel,

Douglas R Woodall, and Michael Yatauro. Best monotone degree conditions for graph

properties: a survey. Graphs and combinatorics, 31(1):1Ű22, 2015.

3 Walter Cai, Magdalena Balazinska, and Dan Suciu. Pessimistic cardinality estimation: Tighter

upper bounds for intermediate join cardinalities. In Peter A. Boncz, Stefan Manegold, Anastasia

Ailamaki, Amol Deshpande, and Tim Kraska, editors, Proceedings of the 2019 International

Conference on Management of Data, SIGMOD Conference 2019, Amsterdam, The Netherlands,

June 30 - July 5, 2019, pages 18Ű35. ACM, 2019. doi:10.1145/3299869.3319894.

4 Kyle Deeds, Dan Suciu, Magda Balazinska, and Walter Cai. Degree sequence bound for join

cardinality estimation. arXiv preprint, 2022. arXiv:2201.04166.

5 Ronald Fagin. Degrees of acyclicity for hypergraphs and relational database schemes. J. ACM,

30(3):514Ű550, 1983. doi:10.1145/2402.322390.

6 Amir Gilad, Shweta Patwa, and Ashwin Machanavajjhala. Synthesizing linked data under

cardinality and integrity constraints. In Guoliang Li, Zhanhuai Li, Stratos Idreos, and Divesh

Srivastava, editors, SIGMOD Š21: International Conference on Management of Data, Virtual

Event, China, June 20-25, 2021, pages 619Ű631. ACM, 2021. doi:10.1145/3448016.3457242.

7 Georg Gottlob, Stephanie Tien Lee, Gregory Valiant, and Paul Valiant. Size and treewidth

bounds for conjunctive queries. J. ACM, 59(3):16:1Ű16:35, 2012. doi:10.1145/2220357.

2220363.

8 Martin Grohe and Dániel Marx. Constraint solving via fractional edge covers. In Proceedings

of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2006,

Miami, Florida, USA, January 22-26, 2006, pages 289Ű298. ACM Press, 2006. URL: http:

//dl.acm.org/citation.cfm?id=1109557.1109590.

https://doi.org/10.1109/FOCS.2008.43
https://doi.org/10.1145/3299869.3319894
http://arxiv.org/abs/2201.04166
https://doi.org/10.1145/2402.322390
https://doi.org/10.1145/3448016.3457242
https://doi.org/10.1145/2220357.2220363
https://doi.org/10.1145/2220357.2220363
http://dl.acm.org/citation.cfm?id=1109557.1109590
http://dl.acm.org/citation.cfm?id=1109557.1109590

K. Deeds, D. Suciu, M. Balazinska, and W. Cai 8:17

9 S Louis Hakimi and Edward F Schmeichel. Graphs and their degree sequences: A survey. In

Theory and applications of graphs, pages 225Ű235. Springer, 1978.

10 Yuxing Han, Ziniu Wu, Peizhi Wu, Rong Zhu, Jingyi Yang, Liang Wei Tan, Kai Zeng, Gao

Cong, Yanzhao Qin, Andreas Pfadler, et al. Cardinality estimation in dbms: A comprehensive

benchmark evaluation. arXiv preprint arXiv:2109.05877, 2021.

11 Axel Hertzschuch, Claudio Hartmann, Dirk Habich, and Wolfgang Lehner. Simplicity done

right for join ordering. In 11th Conference on Innovative Data Systems Research, CIDR

2021, Virtual Event, January 11-15, 2021, Online Proceedings. www.cidrdb.org, 2021. URL:

http://cidrdb.org/cidr2021/papers/cidr2021_paper01.pdf.

12 Mahmoud Abo Khamis, Hung Q. Ngo, and Atri Rudra. FAQ: questions asked frequently. In

Tova Milo and Wang-Chiew Tan, editors, Proceedings of the 35th ACM SIGMOD-SIGACT-

SIGAI Symposium on Principles of Database Systems, PODS 2016, San Francisco, CA, USA,

June 26 - July 01, 2016, pages 13Ű28. ACM, 2016. doi:10.1145/2902251.2902280.

13 Mahmoud Abo Khamis, Hung Q. Ngo, and Dan Suciu. Computing join queries with functional

dependencies. In Tova Milo and Wang-Chiew Tan, editors, Proceedings of the 35th ACM

SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS 2016, San

Francisco, CA, USA, June 26 - July 01, 2016, pages 327Ű342. ACM, 2016. doi:10.1145/

2902251.2902289.

14 Mahmoud Abo Khamis, Hung Q. Ngo, and Dan Suciu. What do shannon-type inequalities,

submodular width, and disjunctive datalog have to do with one another? In Emanuel Sallinger,

Jan Van den Bussche, and Floris Geerts, editors, Proceedings of the 36th ACM SIGMOD-

SIGACT-SIGAI Symposium on Principles of Database Systems, PODS 2017, Chicago, IL,

USA, May 14-19, 2017, pages 429Ű444. ACM, 2017. doi:10.1145/3034786.3056105.

15 Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz, Alfons Kemper, and Thomas

Neumann. How good are query optimizers, really? Proc. VLDB Endow., 9(3):204Ű215, 2015.

doi:10.14778/2850583.2850594.

16 Jie Liu, Wenqian Dong, Dong Li, and Qingqing Zhou. Fauce: Fast and accurate deep ensembles

with uncertainty for cardinality estimation. Proc. VLDB Endow., 14(11):1950Ű1963, 2021. URL:

http://www.vldb.org/pvldb/vol14/p1950-liu.pdf, doi:10.14778/3476249.3476254.

17 Parimarjan Negi, Ryan C. Marcus, Andreas Kipf, Hongzi Mao, Nesime Tatbul, Tim Kraska,

and Mohammad Alizadeh. Flow-loss: Learning cardinality estimates that matter. Proc. VLDB

Endow., 14(11):2019Ű2032, 2021. URL: http://www.vldb.org/pvldb/vol14/p2019-negi.pdf,

doi:10.14778/3476249.3476259.

18 Hung Q. Ngo. Worst-case optimal join algorithms: Techniques, results, and open problems.

In Jan Van den Bussche and Marcelo Arenas, editors, Proceedings of the 37th ACM SIGMOD-

SIGACT-SIGAI Symposium on Principles of Database Systems, Houston, TX, USA, June

10-15, 2018, pages 111Ű124. ACM, 2018. doi:10.1145/3196959.3196990.

19 Yeonsu Park, Seongyun Ko, Sourav S. Bhowmick, Kyoungmin Kim, Kijae Hong, and Wook-

Shin Han. G-CARE: A framework for performance benchmarking of cardinality estimation

techniques for subgraph matching. In David Maier, Rachel Pottinger, AnHai Doan, Wang-Chiew

Tan, Abdussalam Alawini, and Hung Q. Ngo, editors, Proceedings of the 2020 International

Conference on Management of Data, SIGMOD Conference 2020, online conference [Portland,

OR, USA], June 14-19, 2020, pages 1099Ű1114. ACM, 2020. doi:10.1145/3318464.3389702.

20 Ji Sun, Guoliang Li, and Nan Tang. Learned cardinality estimation for similarity queries.

In Guoliang Li, Zhanhuai Li, Stratos Idreos, and Divesh Srivastava, editors, SIGMOD Š21:

International Conference on Management of Data, Virtual Event, China, June 20-25, 2021,

pages 1745Ű1757. ACM, 2021. doi:10.1145/3448016.3452790.

21 Xiaoying Wang, Changbo Qu, Weiyuan Wu, Jiannan Wang, and Qingqing Zhou. Are we

ready for learned cardinality estimation? Proc. VLDB Endow., 14(9):1640Ű1654, 2021. URL:

http://www.vldb.org/pvldb/vol14/p1640-wang.pdf, doi:10.14778/3461535.3461552.

ICDT 2023

http://cidrdb.org/cidr2021/papers/cidr2021_paper01.pdf
https://doi.org/10.1145/2902251.2902280
https://doi.org/10.1145/2902251.2902289
https://doi.org/10.1145/2902251.2902289
https://doi.org/10.1145/3034786.3056105
https://doi.org/10.14778/2850583.2850594
http://www.vldb.org/pvldb/vol14/p1950-liu.pdf
https://doi.org/10.14778/3476249.3476254
http://www.vldb.org/pvldb/vol14/p2019-negi.pdf
https://doi.org/10.14778/3476249.3476259
https://doi.org/10.1145/3196959.3196990
https://doi.org/10.1145/3318464.3389702
https://doi.org/10.1145/3448016.3452790
http://www.vldb.org/pvldb/vol14/p1640-wang.pdf
https://doi.org/10.14778/3461535.3461552

8:18 Degree Sequence Bound for Join Cardinality Estimation

22 Peizhi Wu and Gao Cong. A uniĄed deep model of learning from both data and queries for

cardinality estimation. In Guoliang Li, Zhanhuai Li, Stratos Idreos, and Divesh Srivastava,

editors, SIGMOD Š21: International Conference on Management of Data, Virtual Event,

China, June 20-25, 2021, pages 2009Ű2022. ACM, 2021. doi:10.1145/3448016.3452830.

23 Zongheng Yang, Amog Kamsetty, Sifei Luan, Eric Liang, Yan Duan, Xi Chen, and Ion Stoica.

Neurocard: One cardinality estimator for all tables. Proc. VLDB Endow., 14(1):61Ű73, 2020.

doi:10.14778/3421424.3421432.

24 Rong Zhu, Ziniu Wu, Yuxing Han, Kai Zeng, Andreas Pfadler, Zhengping Qian, Jingren Zhou,

and Bin Cui. FLAT: fast, lightweight and accurate method for cardinality estimation. Proc.

VLDB Endow., 14(9):1489Ű1502, 2021. URL: http://www.vldb.org/pvldb/vol14/p1489-zhu.

pdf, doi:10.14778/3461535.3461539.

https://doi.org/10.1145/3448016.3452830
https://doi.org/10.14778/3421424.3421432
http://www.vldb.org/pvldb/vol14/p1489-zhu.pdf
http://www.vldb.org/pvldb/vol14/p1489-zhu.pdf
https://doi.org/10.14778/3461535.3461539

	1 Introduction
	2 Problem Statement
	3 The Star Query
	4 The Berge-Acyclic Query
	4.1 The Degree Sequence Bound
	4.2 Connection to the AGM and Polymatroid Bounds

	5 Functional Representation
	6 Conclusions

