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Abstract—Human activity recognition (HAR) systems based
on millimeter wave (mmWave) technology have evolved in recent
years due to their better privacy protection and enhanced sensor
resolution. With the ever-growing HAR system deployment, the
vulnerability of such systems has been revealed. However, existing
efforts in HAR adversarial attacks only focus on untargeted
attacks. In this paper, we propose the first targeted adversarial
attacks against mmWave-based HAR through designed universal
perturbation. A practical iteration algorithm is developed to craft
perturbations that generalize well across different activity sam-
ples without additional training overhead. Different from existing
work that only develops adversarial attacks for a particular
mmWave-based HAR model, we improve the practicability of
our attacks by broadening our target to the two most common
mmWave-based HAR models (i.e., voxel-based and heatmap-
based). In addition, we consider a more challenging black-
box scenario by addressing the information deficiency issue
with knowledge distillation and solving the insufficient activity
sample with a generative adversarial network. We evaluate the
proposed attacks on two different mmWave-based HAR models
designed for fitness tracking. The evaluation results demonstrate
the efficacy, efficiency, and practicality of the proposed targeted
attacks with an average success rate of over 90%.

Index Terms—Millimeter Wave, Human Activity Recognition,
Adversarial Learning, Universal Targeted Attack, Black-box
Attack

I. INTRODUCTION

Human activity recognition (HAR) has attracted significant

attention since it is an essential technology to enable human-

computer interactions in many Internet of Things (IoT) and

security applications, including health monitoring and user

authentication. Many HAR systems have been developed us-

ing various sensing modalities. Traditional camera-based [1],

[2] and sensor-based [3], [4] HAR systems capture human

activities using video cameras and body sensors, respectively.

They usually intrigue privacy concerns or are not convenient.

Recently, wireless signals (e.g., WiFi [5], [6], sound [7],

[8], mmWave [9], [10]) have been proposed to track human

activities without attaching sensors to the human body. In this

direction, mmWave-based HAR systems stand out because

they can provide high resolution with their short wavelength

and large bandwidths.

Most mmWave-based HAR systems adopt deep learning

models for activity identification due to their high accuracy

and strong capability of handling interference in the real world.

However, recent research has revealed that deep learning mod-

els are susceptible to adversarial inputs [11]. Some researchers

have proposed introducing minor perturbations that cause deep

learning networks to make inaccurate predictions in image

classification [12] and voice recognition [13]. Nevertheless,

few studies have investigated the susceptibility of adversarial

targeted attacks in mmWave-based HAR systems. Because

mmWave-based HAR systems are usually integrated in many

crucial applications such as older patients monitoring and user

authentication [14], [15], we believe that studying adversarial

attacks on these systems is critical and urgent. Most recently,

Ozbulak et al. [16] have done an initial investigation with the

untargeted adversarial attack on mmWave-based HAR. The

proposed attack is only applicable to a particular HAR model

(i.e., heatmap-based) and cannot trigger the model to generate

designated classes. Moreover, many research problems, such

as how to design unnoticeable perturbations based on unique

patterns of mmWave signals [17], how to launch universal

target adversarial attacks [18], or more challenging black-box

attacks [19], are still worth further exploration. Therefore, a

more comprehensive study of systematically exploring differ-

ent types of adversarial attacks on different types of mmWave-

based HAR models is highly demanded.

In this work, we aim to systematically investigate and reveal

the severe security issues of mmWave-based HAR models

by developing the following effective adversarial attacks: (1)

Targeted and Untargeted attacks. Unlike existing work that

only studied the untargeted attack for a particular mmWave-

base HR model, we successfully design both targeted and

untargeted attacks for different mmWave-based HAR models.

(2) Universal Attack. Both targeted and untargeted attacks need

to train a unique adversarial perturbation for each activity

sample [20], which is inefficient and infeasible in time-

constrained scenarios. We design a universal adversarial attack

that can produce an adversarial perturbation applicable to

different activity samples, which is ready to be used in real-

time without additional training; (3) Black-box Attack. The ex-

isting adversarial attacks against mmWave-based HAR assume

white-box settings, wherein the attacker has full knowledge



of the target model, including architecture and parameters.

However, attackers may not have such information and need to

conduct attacks under more realistic conditions (e.g., the target

model is unavailable to the attacker). Therefore, we develop

an effective method to enable black-box targeted attacks in

such challenging scenarios.

Designing effective and practical adversarial attacks for

different mmWave-based HAR models is nontrivial. Different

from traditional replay attacks [21], our attack could fool

the HAR system without collecting data samples from the

target activity. In particular, we apply gradient-based machine

learning algorithms to generate adversarial perturbations for

targeted and untargeted attacks while minimizing their size.

The adversarial perturbation is generated by solving an opti-

mization problem to concurrently minimize the perturbation

loss, which constrains the perturbation size and adversarial

loss to ensure the success of the adversarial attacks without

being noticed. In addition, mmWave-based HAR systems may

use different data representations that require careful attention.

Our comprehensive study identifies two representative types of

mmWave-based HAR models (i.e., voxel-based and heatmap-

based). We propose a discretization method to ensure the

validity of adversarial samples and further optimize the form

of the adversarial samples with two distance metrics. The

main challenge for designing the universal adversarial attack is

deriving an effective adversarial perturbation for any activity

sample without online training. We propose an offline train-

ing strategy with an iteration algorithm that crafts universal

perturbation across the samples from a small pre-collected

activity set. Unlike the existing universal attack that needs

inserting padding frames between two successive activities

[22], our attack modifies the activity sample directly, which

enables the attack on a broader range of mmWave-based

HAR applications. Furthermore, to overcome the information

deficiency of the target model in black-box attacks, we utilize

a knowledge distillation (KD) approach to generate a robust

replacement model. We further develop a generative adversar-

ial network (GAN) to produce a sufficiently large number of

pseudo samples for substitute model construction.

We summarize the main contributions of this work as

follows:

• We propose a comprehensive assessment of the challenges

brought by adversarial attacks on various mmWave-based

HAR systems, including both untargeted and targeted at-

tacks. As far as we know, we are the first to implement

targeted attacks against mmWave-based HAR systems, es-

pecially for voxel-based mmWave models.

• We employ adversarial learning to reduce the magnitude of

the perturbation, ensuring that the generated perturbation is

undetectable by manual examinations while can successfully

attack mmWave-based HAR systems. We also develop a dis-

cretization method to enable adversarial attacks on different

representative models of mmWave-base HAR.

• To enable universal targeted attacks, we develop an iteration

method to construct well-designed universal perturbations

that can be applied to various unseen mmWave samples

directly without additional training for these samples.

• We further design a black-box attack that can attack

mmWave HAR systems without knowing the model archi-

tecture and parameters. We leverage knowledge distillation

to address the information deficiency of the target model. We

also develop a generative adversarial network to address the

lack of training data.

• We assess our proposed attack methods on two represen-

tative mmWave-based HAR models and demonstrate the

efficacy, efficiency, and practicality of the proposed attacks

with a high attack success rate of over 90%.

II. RELATED WORK

Because of its wide application, HAR has attracted great

attention for the past decade. Many HAR systems use cameras,

body sensors, acoustic sound, and WiFi signals to recognize

and track human activities [5], [6]. Recently, due to the high

resolution and bandwidth, mmWave has been proposed to

perform HAR [9], [10], [14]. Most mmWave-based HAR

systems adopt deep learning models for activity identification

due to their high performance and capability of handling real-

life interference. However, machine learning models such as

neural networks were susceptible to adversarial perturbations,

as pointed out by Szegedy et al. [11]. We discover that

the majority of current adversarial attacks are proven in

applications related to image recognition and speech authen-

tication [12], [18], [23]–[26]. However, it has seldom been

investigated how adversarial attacks will affect HAR systems

based on mmWave. Yang et al. [20] examine the adversarial

susceptibility of the Doppler-based HAR system. They an-

alyze the untargeted attack issues for the HAR system and

evaluated three white-box attack methods (i.e., FGSM, PGD,

and MIM), respectively. Then, Ozbulak et al. [22] examine

the vulnerability of radar-based HAR system to a universal

untargeted attack. Nevertheless, none of them explore the

feasibility of targeted adversarial attacks to control the HAR

system’s output, nor do they provide a comprehensive study

of adversarial attacks against mmWave-based HAR systems.

Moreover, since Ozbulak’s method only targets one heatmap-

based HAR model, how to launch universal targeted attack

on other types of mmWave-base HAR models are unknown.

Besides, based on unique patterns of mmWave activity data,

how to develop adversarial activity samples to assure their

validity and make them unnoticeable are necessary but seldom

be explored. In addition, how to enhance attack performance in

more challenging black-box scenarios is still an open problem.

In contrast to previous research, we propose a compre-

hensive study of the threats brought by adversarial attacks,

including both untargeted and targeted attacks. We broaden our

study on both heatmap-based and voxel-based mmWave-based

HAR systems. By optimizing perturbation based on the unique

patterns of mmWave activity data, inventing universal attacks

to make our attack approach more efficient, and examining the

robustness of attacks under black-box scenarios, we intend

to give a complete examination of the challenges posed by

adversarial attacks on mmWave-based HAR systems.
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Fig. 1: Framework of mmWave-based human activity

recognition.

(a)

(b)

Fig. 2: Two typical data representations for mmWave-

based HAR. (a) Voxels generation from the point cloud;

(b) Spatial-Temporal heatmaps of three different activities.

III. TARGET MACHINE LEARNING MODELS FOR HAR

Background. The main goal of the mmWave-based human

activity recognition system is to identify actions or gestures by

examining the dynamics of mmWave signals [10], [14], [27].

As shown in Figure 1, a typical mmWave-based HAR system

captures mmWave signals reflected from the human body. It

performs signal processing to determine activity characteristics

(e.g., velocity or posture) of users and then estimate the

activity class using deep learning models.

Existing mmWave-based HAR systems are usually based on

two different representations of the received mmWave signals.

One of the representations is the point cloud derived from

the received mmWave signals via a series of FFT operations

(i.e., Range-FFT, Doppler-FFT, and Angle-FFT). Each point

in the point clouds presents the x, y, and z coordinates of

a mmWave signal reflected from the human body [9], [14],

[15], [28], [29], which allows mmWave radars to generate a

rough contour of the human body. However, point clouds are

incompatible with neural network architecture as the number

of points varies over time. Prior mmWave-based HAR research

usually adopts voxelization to transform the point cloud into

a constant amount of voxels [9], [14] for HAR. The other

representation is the heatmap of the object-related information

(e.g., distance, velocity, angle, and energy) extracted from the

received mmWave signals. Many mmWave-based HAR sys-

tems have leveraged the heatmap to identify human activities

(e.g., doppler-range map [10], micro-Doppler map [30], spatial

spectrograms [27], spatial feature map [31], and projection

heatmap [32]) because it is easy to achieve a good accuracy

by applying pre-trained neural network models from the image

domain to mmWave-base sensing.

In this work, we investigate the attacks to two mmWave-

based HAR models using different types of representations,

which brings more challenges to design a generic attack

method because of their significant differences.

Voxel-based Machine Learning Model. We choose an

existing mmWave-based HAR system [9] as a representative

to study the vulnerability of voxel-based HAR model to ad-

versarial attacks. This model has been utilized as a benchmark

in numerous subsequent publications [33], [34]. In particular,

the point clouds data is subjected to voxelization to address

the non-uniformity issue in each frame, as shown in Figure

2a. After the voxelization, the point clouds of each frame is

transformed into a set of voxels in a three dimensional space.

A voxel is defined as [x, y, z, v], where x, y, z are the spatial

position of the voxel and v is number of cloud points in the

cube-shape voxel with a designated size. Each activity sample

is defined as t sets of voxels, where t is the time dimension.

As for the machine learning model, they employ a Time-

distributed CNN plus Bi-directional LSTM model. This model

consists of 3 time-distributed convolutional layers followed by

a bidirectional LSTM layer and an output layer. This model

is directly trained on the input sample, which includes its

temporal and spatial dimensions.

Heatmap-based Machine Learning Model. In addition

to the voxel-based mmWave-based HAR system, we devise

a heatmap-based HAR system to study its vulnerability to

adversarial attacks. Similar as state-of-the-art mmWave-based

HAR methods (e.g., [10]), we first derive the Doppler-range

map of the users’ activity by calculating Range-FFT and

Doppler-FFT. Then, we generate heatmaps by accumulating

the velocity of every distance in every denoised Doppler-

range map together. Next, we normalize the derived velocity

information and present the velocity-distance relationship in

time dimension. In this way, we transfer the original instanta-

neous velocity-distance relationship to a more comprehensive

spatial-temporal heatmap which describes the process of a

whole activity as shown in Figure 2b. We utilize a CNN

model for activity classification. In particular, this model

consists of 3 convolutional layers, each followed by a max-

pooling layer. A 64-dimensional feature map is created after

3 rounds of upsampling and downsampling. The feature map

is then condensed into a one-dimensional array by integrating

a flattened layer.

IV. THREAT MODEL AND PROBLEM FORMALIZATION

A. Threat Model

Possible Attack Scenarios. Our attack is applicable to at-

tack scenarios where the attacker needs to create an adversarial

example offline and then insert it to the HAR systems at the

inference stage. Three insert points are taken into account

for our potential adversarial attacks to HAR systems. Firstly,

attackers might modify the adversarial samples during the data

preprocessing stage. For example, as shown in Figure 1, a

local adversary can launch attacks by modifying the gener-

ated voxel-based or heatmap-based activity sample directly.

Moreover, it is also possible to insert the adversarial sample



right before the recognition phase, where activity data are sent

as an input to the DNN model. In this case, the attackers can

generate adversarial samples in advance and fed them into

the machine learning models furtively. Furthermore, attacks

can seize the original activity samples during the transmission

from a local client to the server and then replace normal

samples with adversarial ones due to the widespread usage

of cloud computing and federated learning [35], [36].

Adversary Capability. The attacks can be classified as

white-box and black-box attacks. In the white-box scenario,

the attackers have full knowledge of the machine learning

model’s input, architecture and parameters. The adversary

may also continuously access the target model to produce

adversarial samples. In addition, the adversary may be familiar

with the HAR system’s data preprocessing techniques in

order to provide the proper perturbation. The possibility of

a white-box attack may be increased by a local adversary or

information leakage. In order to study adversarial attacks to

mmWave-based HAR, we first make the white-box assumption

as most previous studies [18], [20], [37]. Black-box is a more

challenging scenario. It assumes that the target machine learn-

ing model is unavailable to the attacker. The adversary only

knows the input and output of the model [19]. We investigate

our adversarial attacks on HAR in black-box settings, because

they are more realistic than white-box settings.

B. Problem Formalization

The adversarial goal of our work is to generate mmWave ad-

versarial samples to confuse the mmWave-based HAR system.

The mmWave-based HAR system can be conceptualized as a

function f that receives mmWave signals as input and output

the predicted activity class based on the probability score p

for all the enrolled activity classes. Specifically, suppose there

are n enrolled activities, where pi ∈ [0, 1] and
∑n

i=1
pi = 1,

the deep learning model f identifies the mmWave input as the

class with the greatest probability score. We formalize various

adversarial attacks as following:

Untargeted Attack. In untargeted attacks, which is usually

designed for a specific sample (sample-specific untargeted

attack), the adversary aims to confuse the HAR system by

changing the output from the original activity prediction y to

a different one y′. Specifically, given a machine learning model

f and an activity sample x, a sample-specific untargeted attack

can be formulated as f(x + δ) 6= y, where x is the original

activity sample, δ is the generated perturbation, and y is the

original predicted activity of the classifier model. In order to

achieve this, we should modify the activity sample by inserting

δ to decrease the probability score of the original activity class

py till it is lower than other activities.

Targeted Attack. In targeted attacks for a specific sample

(sample-specific targeted attack), the adversary aims to make

the HAR systems output desired class. The targeted attack

can be formulated as f(x + δ) = z, where x + δ is the

adversarial sample and z is a pre-defined class. To enable this

objective, we should modify the activity sample to increase

the probability score of the desired activity pz till it is higher

than other enrolled activities.

Universal Attack. To further improve the efficiency of

targeted attacks and make it practical in time-constrained

context, we propose to develop universal attacks by generating

a well-designed general perturbation. Then, we can insert it

to different unseen activity samples directly without incurring

additional training efforts. In particular, the activity data sam-

ples gathered at various times or under different conditions

would often vary, thus the perturbation δ1 designed to attack

sample x1 might not work for another sample x2, such as

f(x2 + δ1) 6= z. In addition, generating the perturbation

for a high-dimensional mmWave activity sample (e.g., voxel-

based data) is time-consuming, thus it is not always feasible

to produce a sample-specific perturbation that is tailored for

each activity sample. It is important to create some universal

perturbations δ, such that f(xi + δ) = z, where xi can be

different samples from the same type of activity.

Practical Black-box Attack. In order to launch adver-

sarial attack in practical, the attack method should also be

robust enough to work in more challenging scenarios, such as

attacking a black-box machine learning model. Specifically,

we would explore whether a perturbation generated based on

model f could still work on other model f ′, where f ′ has

different structures and parameters from f . This attack can

be formulated as f ′(x′) = f(x′), where x′ is the adversarial

sample generated based on model f .

Unnoticeable Perturbation. In order to make the adver-

sarial sample practical and it difficult for human to identify

the attack, the distortion brought on by the perturbation

should be as small as feasible. It can be formulated as

min ‖δ‖p , s.t. f(x+δ) = z. Additionally, it brings additional

difficulties to produce reliable and undetectable adversarial

perturbations due to the unique characteristics of mmWave

signal representations (e.g., voxel-based data).

Since we should consider both the effectiveness of our

attack and the distortion of the perturbations, we formally

define the objective function as minimizeD(x, x + δ), such

that f(x + δ) = z, where z can be different based on the

attack objective (i.e., untargeted attack or targeted attack). D

is the distance metrics ‖δ‖p that evaluate the magnitude of

the generated perturbation. However, as discussed in previous

work [24], directly solve this non-linear constrained non-

convex problem is difficult. Thus we reformulate the objective

function as a gradient-based optimization instance:

minimize L(x+ δ) + λ ∗ D(x, x + δ), (1)

where the first component L represent the adversarial loss

which measures the possibility of launching adversarial attacks

successfully and the second component D represents pertur-

bation loss which constraints the perturbation size.

V. METHODOLOGY

In this section, we discuss the detailed adversarial attack

algorithms to enable targeted attack and untargeted attack for

mmWave-based HAR systems. We also introduce how we

balance the trade off between attack effectiveness and pertur-

bation magnitude. We then analyze the unique characteristics

of mmWave activity samples and provide two distance metrics



to further optimize the perturbation. Moreover, we explore an

efficient and powerful universal attack approach for mmWave-

based HAR systems. In addition, we study the feasibility of

launching adversarial attacks on black-box scenarios.

A. Untargeted and Targeted Attack for Specific Samples

Adversarial Loss. For sample-specific untargeted attack,

we define L = max (Z(x+ δ)s −maxi6=s (Z(x+ δ)i) ,−k),
where Z(x + δ)s represent the possibility of estimating

the activity as the original activity class (i.e., the predicted

class without attack), and Z(x + δ)i represent the possibil-

ity of estimating the activity as another class (i.e., a class

that is different from the original-predicted activity class).

k is a configurable parameter which controls attack confi-

dence. For sample-specific targeted attack, we define L =
max (maxi6=t (Z(x+ δ)i)−Z(x+ δ)t,−k), where Z(x+δ)t
is the possibility of estimating the activity as the class t we

desired. By optimizing above adversarial loss functions, we

aims to make our attack method not only confuse the HAR

systems (untargted attack), but also force the HAR system

output our desired class (targeted attack). In practice, by

using different special-designed adversarial loss function, the

attacker could either launch untargeted attack or targeted attack

according to different attack strength requirements, which

makes our attack framework more powerful and dangerous

than previous studies [20], [22].

Perturbation Loss. Generally speaking, the perturbations

are the difference between the original activity sample and

the adversarial one. L2 Norm which calculates the euclidean

distance between two sets has been commonly used as a metric

for adversarial perturbation evaluation [16], [24], [25]. In this

project, we define the perturbation loss D = ‖δ‖22 and generate

the perturbation with minimal magnitude by optimizing the

perturbation loss. In order to ensure the effectiveness of

the perturbation and improve the efficiency of perturbation

generation, we set a dynamic threshold τ for each activity

sample to ensure ‖δ‖22 < τ, s.t. f(x+δ) = z. The threshold is

derived by analyzing the deviation between the normal activity

sample from other normal samples. For a specific sample, we

calculate the average L2 Norm between the sample and all

other available samples of the same type of activity, and set it

as the threshold τ for perturbation generation.

Parameter Selection. The weight λ, which determines the

balance between the adversarial loss L and perturbation loss

D, must be set to a suitable number in order to cause gradient

descent to minimize both components concurrently, as opposed

to optimizing over one term at a time. In practical, we do

a 12-step binary search to identify the appropriate λ and its

accompanying adversarial perturbation δ.

B. Optimization for Unnoticeable Perturbation

Clipping. In order to assure the validity of the adversarial

sample, there should be a clipping process after each training

iteration. The clipping process trims the value of the adversar-

ial sample to fall inside a valid range [α, β], which should be

chosen based on the data representation of the activity samples

in the HAR system. For a voxel-based HAR (e.g., [9]), the
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Fig. 3: Overview of universal attack.

range should be [0,∞], as the value of each voxel represents

the number of points within its limit. For a heatmap-based

HAR (e.g., [30]), the range is usually set to [0, 255].
Discretization. Discretization is a crucial processing that

usually be neglected in prior research [16], [23], [25]. How-

ever, due to the specific properties of mmWave data, we dis-

cover that perturbation discretization is necessary and cannot

be disregarded. Specifically, the value of each pixel in a valid

adversarial heatmap must be a discrete integer between 0
and 255, and a valid voxel often has a much lower upper

limit value (e.g., 5) because of the sparse point clouds. Using

previous method that simply rounding the value of each

adversarial voxel or heatmap to the nearest integer could

eliminate the minor perturbations and render the adversary’s

attack ineffective.

To handle this discrete optimization issue, we incorporate

another loss function Lmodel(⌊x+ δ⌋), where ⌊x+ δ⌋ rep-

resents the discrete adversarial sample. We mark the orig-

inal L mentioned in Section V-A as Ladv , and reformu-

late the final adversarial loss function as L = Ladv(x +
δ) + Lmodel(⌊x+ δ⌋). By simultaneously optimizing Ladv

and Lmodel, we could assure the validity and efficiency of

adversarial samples in different kinds of HAR systems.

Natural Style Optimization. Furthermore, we discovered

that the majority of existing approaches [16], [19], [20], [24]

only focus on minimizing perturbation magnitude. How to op-

timize adversarial activity samples into natural styles by con-

straining the form and position of the generated perturbation is

less studied or neglected. In this study, we suggest minimizing

the radius of the generated perturbation to make it unnoticeable

in heatmaps or voxels. We realize it by minimizing the pair-

wise euclidean distance between elements inside the perturba-

tion. We formulate it as Dmean(δ) = maxm,n∈δ ‖m − n‖2,

where m, n are positions of any two elements (e.g., pixels in

the heatmap) inside the generated perturbation δ. By reducing

the average pairwise distance inside the perturbation, the

radius of the perturbation can be reduced. We further reduce

the distance between the perturbation and the original activity

sample, allowing the perturbation to be concealed within the

normal samples. In particular, we calculate Chamfer Distance

which seeks the nearest pair-wise element euclidean distance

between the generated perturbation and activity sample and

takes the mean of all nearby element pair distances. It is

expressed as Dcf (x, δ) = 1

‖δ‖0

∑
m∈δ minn∈x ‖m − n‖2

2
,

where x is the activity sample. By reducing the Chamfer



Algorithm 1: Universal Perturbation Generation

Input: Training set Ω = {Ω1,Ω2, · · ·Ωi}, HAR model

f , targeted activity class z, desired perturabtion

magnitude τ , desired attack success rate ǫ on

training set.

Output: Universal perturbation δ.

1: Initialize δ ← 0.
2: while Success Rate(Ω) < ǫ do

3: Ωj ← RS(Ω) ⊲ Random Select a Sample

4: if f(xj + δ) = z then

5: Calculate the perturbation that satisfies: δ ≤ τ.

6: else

7: ∆δj ← argmin∆δj D(∆δj)
such that f(Ωj + δ + δj) = z.

8: δ ← (δ +∆δj). ⊲ Update the Perturbation

9: end if

10: end while

Distance, the inserted perturbation is pushed nearer the activity

sample. After integrating above two functions, we reformulate

the final perturbation loss function as follows:

D = Dmag(x, x + δ) +Dmean(δ) +Dcf(x, δ), (2)

where Dmag(δ) controls the magnitude of the perturbation as

mentioned in Section V-A.

C. Universal Perturbation Generation

In this part, we provide details on how to launch efficient

targeted attacks against HAR through universal perturbation

design. Our basic idea is to create universal perturbations

δ, such that f(xi + δ) = z, where xi can be any activity

samples from the same type of activity. The proposed universal

perturbation generation method consists of an offline training

phase in which a training activity set is utilized to produce a

universal perturbation, and an online test phase in which the

universal perturbation is directly applied to incoming activity

data for a targeted attack. As shown in Figure 3, we generate

universal perturbations δ for each type of activity, such that

when the perturbation is applied to the majority of activity

data x from the same class, the HAR always recognizes it

as our desired class z. We generate the perturbation for each

activity sample in the training set using the same objective

function (Equation 1). To make the adversarial perturbation

work for the majority of activity examples in the training set,

we iteratively adjust the universal perturbation.

Specifically, the adversarial perturbation is started with

zeros and added to a mmWave activity sample. If the HAR’s

prediction does not match the desired activity class, the pertur-

bation will be modified in the direction of gradient descent, in

which the likelihood of the desired class increases. Otherwise,

the current perturbation is applied to a fresh training activity

sample. If the existing universal perturbation does not fit in

the new sample, a minimal magnitude perturbation revision

is calculated and added to the current universal perturbation.

The iteration process ends when the universal perturbation on

the training dataset exceeds an predefined success rate (e.g.,

70%). Notably, the objective of the technique is not to seek

 

 

(a)



 



(b)

Fig. 4: Two representative adversarial samples generated

by adding universal perturbations directly. (a) Adversarial

voxel-based data generation with L2 Norm of 21; (b)

Adversarial heatmap-based data generation with L2 Norm

of 2083.

the smallest global perturbation that fools the majority of

activity samples, but rather to select one that is sufficiently

tiny. Figure 4 depicts the production of adversarial samples

by directly applying universal perturbation. We observe that

the adversarial instances deviate from the original sample

only slightly in terms of L2 Norm. The adversarial samples

looks natural which makes it hard to be noticed by naked

eyes. However, adversarial examples enable HAR systems

to efficiently predict the activity as our desired. Compared

with traditional sample-specific attack methods, our universal

perturbations would significantly shorten the attack launch

time, which make it more practical in time-constraint attack

scenarios. Different from existing universal untargeted attack

method that need to inserting padding frames between two

successive activities [22], our method modifies the activity

sample directly and thus broaden its applicability to various

of mmWave-based HAR systems. In addition, our universal

attack method is compatible to both untargeted and targeted

attacks by merely modifying the adversarial loss function.

D. Practical Attack in Black-box Scenario

Black-box attack is a more challenging scenario where the

attacker usually cannot access the target model but only the

input and output of the model [22]. Thus, the adversarial

perturbation cannot be created and updated by exploiting the

gradient from the target model. A potential approach of black-

box attack is to train a substitute model. Adversarial samples

generated by the substitute model can be exploited to launch

attacks towards the target model leveraging the transferability

of the adversarial sample.

We begin with a basic black-box setting where the training

data of the target model is fully accessible. The key challenge

is how to ensure the similarity between the target and the

substitute model. Directly training the substitute model on

the dataset usually get poor performance since the structure



of the substitute model is different [22]. To solve such a

problem, we take advantage of Knowledge Distillation (KD)

to learn a substitute model that can mimic the prediction

of the target model [38]. In black-box scenarios, although

the inner structure of the target model is inaccessible, it’s

output class and soft logits indicating the class probability

distribution for a given input is accessible [19]. Supposing

the soft logits of the target and substitute model is Pt and

Ps, respectively. The predicted class of substitute model is Z

and the ground truth is G. We formulate KD process as loss

function L = Ls + Ld, where Ls = Cross Entropy(Z,G)
and Ld = KL Divergence(Pt, Ps). By optimizing the loss

function, we transfer the dark knowledge from the target model

to the substitute model [38].

To ensure the robustness of the black-box attack, we utilize

a configurable parameter of k to control the confidence of

the attack as mentioned in Section V-A. With larger k value,

the possibility that the adversarial sample being misclassified

by the target model will increase. We set k = 0 in white-

box scenarios and set a larger k in black-box scenarios. We

evaluate the impact of k in Section VI-D.

We then move to a more challenging scenario where the

original training data of the target model is only partially

accessible. To deal with the problem of insufficient train-

ing data, we develop GAN to synthesize sufficient pseudo

training samples. GAN has been proved to generate high-

quality pseudo samples with limited amount of real samples

[30]. In this work, we implemented a GAN with a 3-layer

generator and a 3-layer discriminator to generate sufficient

activity samples using only 20% of the original training dataset

of the target model. Specifically, the generator seeks to learn

the distribution of the real samples so as to have the ability

of synthesizing pseudo sample. The discriminator tries to

discriminate whether a sample is a real or pseudo one. The

generator and discriminator are trained in turn to optimize each

other by updating parameters of their networks. The final state

is a Nash equilibrium where the synthesized pseudo samples

are similar to the real ones, and the discriminator fails to

identify whether the activity samples are real or not. After

obtaining enough high-quality pseudo training samples, we

exploit the KD method mentioned above to train the substitute

model and launch black-box attacks towards the target model.

VI. PERFORMANCE EVALUATION

A. Experimental Setup

Equipment. Our own dataset (i.e., heatmap-based) is col-

lected using TI AWR1642 mmWave radar [39], while the

public dataset (i.e., voxel-based) is collected using IWR1443

mmWave radar [9]. Both mmWave radar work at the frequency

in the range of 77 ∼ 81GHz. The prototype of our proposed

attack method is implemented using Python along with Ten-

sorFlow.

Data Collection. Two datasets are used in our experiment.

The public voxel-based human activity dataset contains 15635
samples from 5 different activities. Our own heatmap-based

fitness activity dataset contains 8760 samples from 14 typical
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Fig. 5: (a) Success rate of sample-specific untargeted

attacks on voxel-based dataset; (b) Success rate of sample-

specific targeted attacks on voxel-based dataset (x-axis

represents the original classes).
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Fig. 6: (a) Success rate of sample-specific untargeted

attacks on heatmap-based dataset; (b) Success rate of

sample-specific targeted attacks on heatmap-based dataset

(x-axis represents the original classes).

workouts. Both dataset is splitted into training and testing

sets with a ratio of 7 to 3. For untargeted and targeted

attack, we randomly select 200 and 100 activity samples

of each type of activity from the voxel-based and heatmap-

based testing set, respectively. For the universal attack, half

of the selected samples are utilized for universal perturbation

generation (universal attack training set) and the others for

evaluation (universal attack testing set), respectively. The orig-

inal classification accuracy of voxel-based and heatmap-based

machine learning model is 90.47% and 97%, respectively.

Evaluation Metrics. We use three metrics to evaluate the

performance of our attack scheme. (1) Success Rate (SR): it

represents the number of succeeded adversarial attacks over

the total number of attack attempts. In untargeted attack, we

report a success when the predicted class is different from

the original class while in targeted attack, we only reported

a success if the predicted class matches the desired target

class; (2) L2 Norm: it indicates the euclidean distance between

the adversarial sample and original sample; Smaller L2 Norm

values indicate that the adversarial sample is similar to the

original activity sample and therefore harder to be noticed by

human eyes. (3) Confusion Matrix: Each cell in the matrix

indicates an original-target class pair that the actual class in

the row is classified as the target class in the column. The

value of each cell represent the average SR and L2 Norm of

corresponding universal attack on the testing set.

B. Evaluation of Attack Effectiveness

Untargeted Attack. Figure 5a and Figure 6a demonstrate

the attack success rate of untargeted attacks on the voxel-based
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Fig. 7: (a) Success rate of universal targeted attacks on

voxel-based dataset; (b) L2 Norm of generated universal

perturbations on voxel-based dataset.
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Fig. 8: (a) Success rate of universal targeted attacks

on heatmap-based dataset; (b) L2 Norm of generated

universal perturbations on heatmap-based dataset.

HAR dataset and heatmap-based dataset, respectively. We can

learn that our method achieves nearly 100% attack SR for all

5 original classes in the voxel-based dataset and all 14 original

classes in the heatmap-based dataset, indicating that almost all

samples tested are class-flipped from the original class under

our attack scheme.

Targeted Attack. Figure 5b and Figure 6b demonstrate

the attack success rate of sample-specific targeted attacks on

the two dataset, respectively. Our method achieves an average

SR of 96% on both datasets. Note that attacks towards some

target classes have relatively lower SR (i.e., jack and walk

from the voxel dataset; and w4 (lunges) from the heatmap-

based dataset), this is because those classes have more different

patterns from others, making the attack relatively harder. But

even the lowest SR in targeted attack is still higher than 80%,

proving the effectiveness of our attack scheme.

Universal Attack. The performance of universal attacks

over the voxel-based HAR dataset is demonstrated in Fig-

ure 7a. We can learn that all universal attacks achieve over 80%
SR, with the highest SR reaching 98% (98% of walk samples

in the testing set has been classified as boxing using the same

universal perturbation). We note that SR of some original-

target pairs (e.g., jack-squats) is relatively low, this is because

the samples of the target class vary a lot from the original

class, making it harder to launch targeted attacks. Despite

this, our method still achieves an overall SR of 90%. For the

heatmap-based dataset, as is shown in Figure 8a, attacks on

most original-target pairs achieve higher than 90% SR. Few

pairs (e.g., w4-w13, w12-w3) have relatively low SR due to

large differences between original and target samples. But our

method still reaches an average SR of 94% over 182 original-

target pairs on the heatmap-based dataset.
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Fig. 9: (a) L2 Norm of perturbations generated in sample-

specific untargeted attacks on voxel-based dataset (The red

line represents the average threshold of all attack samples);

(b) L2 Norm of perturbations generated in sample-specific

targeted attacks on voxel-based dataset (x-axis represents

the original class).
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Fig. 10: (a) L2 Norm of perturbations generated in sample-

specific untargeted attacks on heatmap-based dataset; (b)

L2 Norm of perturbations generated in sample-specific

targeted attacks on heatmap-based dataset.

C. Impact of Perturbation Magnitude

Untargeted Attack. We first evaluate the impact of pertur-

bation magnitude on untargeted attack. Figure 9a demonstrates

the L2 Norm of untargeted attacks on the voxel-based dataset.

Note that each red line indicate the average value of the

threshold mentioned in Section V-A. We can learn that the

median L2 Norm of untargeted adversarial samples on all 5
original classes are below 10 and the maximum L2 Norm

values are all lower than 30, far below the 5 average thresholds,

which are all around 40 ∼ 50. For the heatmap-based dataset,

as is shown in Figure 10a, the median L2 Norms between

adversarial and original samples are around 2000 ∼ 2500.

Adversarial samples towards one workout, w4, have relatively

higher L2 Norm distribution due to high-specific features of

original heatmaps. But the highest L2 Norm is still lower than

4000, far below the average threshold of 14000 for w4.

Targeted Attack. We then evaluate the impact of perturba-

tion magnitude on targeted attack. Figure 9b demonstrates the

L2 Norm of targeted attacks on the voxel-based dataset. We

find that the median L2 Norm values of samples towards all 5
target classes are still around 20. But there is a significant

increase in the maximum L2 Norm value on all 5 classes

compared with untargeted attacks. This is because in targeted

attack, we not only need to flip the class but also need to turn

the class to the required one. Thus, for some samples larger

perturbation magnitude is needed. But even the maximum



(a) (b)

(c) (d)

Fig. 11: (a) Success rate and L2 Norm of untargeted black-

box attack; (b) Success rate and L2 Norm of targeted

black-box attack; (c) Success rate and L2 Norm of univer-

sal black-box attack; (d) Success rate of GAN-KD-based

black-box attack.

L2 Norm values are still below the corresponding average

threshold (i.e., red lines in the Figure). On the heatmap-based

dataset, as is shown in Figure 10b, we also notice a larger

L2 Norm distribution compared with the result of untargeted

attacks. Samples aiming at the target class of w4 have a

relatively higher maximum L2 Norm value due to the highly-

specific features of the original heatmap from this class. But

even the maximum perturbation (i.e., 6300) of attack samples

(i.e., w4) still does not exceed the corresponding average

threshold.

Universal Attack. We next evaluate the impact of pertur-

bation magnitude on universal attack. The confusion matrix

of universal L2 Norm on voxel-based dataset and heatmap-

based dataset are shown in Figure 7b and 8b, respectively.

We can learn that the average L2 Norm for the adversarial

samples towards voxel-based dataset is between 12 to 29,

which is far below the average threshold of 5 classes (i.e.,

around 40 ∼ 50). The average L2 Norm of universal samples

towards heatmap-based dataset over 182 original-target pairs

is 4000. Though some pairs (e.g,, w4-w3, w1-w11) have

relatively higher perturbation magnitude due to relatively large

difference in heatmap patterns, these values are still below the

average threshold of corresponding original classes.

D. Evaluation of Black-box Attack

All black-box experiments are taken on the heatmap-based

dataset due to the page limit. We begin with the basic settings

where the target model are inaccessible but we assume that the

attacker has full access to the training data set. We use KD to

train a substitute model to generate adversarial samples and

launch attack towards the target model. Our substitute model

is a 2-layer CNN network with 3.2M trainable parameters.

We also trained the substitute model directly on the training

set without KD for comparison. As mentioned in Section V-D,

we exploit a confidence value of k to ensure the robustness

of our attack method. We change the k value from 0 to 40

with a step size of 5 to study the impact of k. Figure 11a,

11b and 11c demonstrate the average SR and L2 Norm under

basic black-box settings for untargeted, targeted and universal

attacks, respectively. We can learn that substitute model trained

with KD outperforms directly-trained model for all k larger

than 0 in all types of attacks. When k = 40, attacks using

substitute model achieves higher than 80% SR for untargeted

and targeted attack as well as an SR of 75% for universal

attack. We can also notice a trade-off between SR, L2 Norm

and k values. As the k increases, we can obtain higher SR

but the L2 Norm will also increase accordingly, meaning the

adversarial samples will have relatively larger perturbations.

But our method still maintain lower than 6500 L2 Norm value

for all three types of attacks even when k = 40.

We next move to a more challenge setting where the

adversary can only access part of the training data used by

the target model. We exploit the GAN method mentioned in

section V-D to generate a pseudo training set with a size

similar to that of the original training set using only 20% of

original training data. The substitute model is trained using KD

and the generated training set. We set confidence value k = 40
since previous results have proven that this confidence value

can obtain relatively robust performance. For comparison, we

trained a baseline model without KD and GAN using only

20% of the original training data, similar to the black-box

model used in [22]. As is shown in Figure 11d, GAN-KD

trained substitute model outperforms the baseline model for

all 3 types of attacks, with the highest SR of 76.5% for

the untargeted attack. Due to higher requirements for the

adversarial samples, SR of targeted and universal attacks using

GAN-KD method are relatively low (i.e., 56% and 42%), but

the SR still outperforms baseline model with an increase of

23.4% and 20.22%, respectively.

VII. CONCLUSION

In this paper, we propose a comprehensive study of adver-

sarial attacks against mmWave-based HAR. Unlike existing

work that only explore the feasibility of untargeted attacks, we

are the first to design and investigate universal, yet practical

perturbations to enable targeted adversarial attack against vari-

ous mmWave-based HAR. We generate universal perturbation

via an iteration algorithm to make it generalizes very well

across different activity samples. We also assure the validity of

mmWave-based adversarial sample and tailor them into natural

style. In addition, we develop KD to address the information

deficiency of the machine learning model for HAR and GAN

to address the lack of training data in black-box scenarios.

Extensive experiments on two typical mmWave-based HAR

models demonstrate the efficacy, efficiency, and practicality

of the proposed targeted attacks with an average success rate

of over 90%.
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