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Abstract—Human activity recognition (HAR) systems based
on millimeter wave (mmWave) technology have evolved in recent
years due to their better privacy protection and enhanced sensor
resolution. With the ever-growing HAR system deployment, the
vulnerability of such systems has been revealed. However, existing
efforts in HAR adversarial attacks only focus on untargeted
attacks. In this paper, we propose the first targeted adversarial
attacks against mmWave-based HAR through designed universal
perturbation. A practical iteration algorithm is developed to craft
perturbations that generalize well across different activity sam-
ples without additional training overhead. Different from existing
work that only develops adversarial attacks for a particular
mmWave-based HAR model, we improve the practicability of
our attacks by broadening our target to the two most common
mmWave-based HAR models (i.e., voxel-based and heatmap-
based). In addition, we consider a more challenging black-
box scenario by addressing the information deficiency issue
with knowledge distillation and solving the insufficient activity
sample with a generative adversarial network. We evaluate the
proposed attacks on two different mmWave-based HAR models
designed for fitness tracking. The evaluation results demonstrate
the efficacy, efficiency, and practicality of the proposed targeted
attacks with an average success rate of over 90%.

Index Terms—Millimeter Wave, Human Activity Recognition,
Adversarial Learning, Universal Targeted Attack, Black-box
Attack

I. INTRODUCTION

Human activity recognition (HAR) has attracted significant
attention since it is an essential technology to enable human-
computer interactions in many Internet of Things (IoT) and
security applications, including health monitoring and user
authentication. Many HAR systems have been developed us-
ing various sensing modalities. Traditional camera-based [1],
[2] and sensor-based [3], [4] HAR systems capture human
activities using video cameras and body sensors, respectively.
They usually intrigue privacy concerns or are not convenient.
Recently, wireless signals (e.g., WiFi [5], [6], sound [7],
[8], mmWave [9], [10]) have been proposed to track human
activities without attaching sensors to the human body. In this
direction, mmWave-based HAR systems stand out because
they can provide high resolution with their short wavelength
and large bandwidths.

Most mmWave-based HAR systems adopt deep learning
models for activity identification due to their high accuracy

and strong capability of handling interference in the real world.
However, recent research has revealed that deep learning mod-
els are susceptible to adversarial inputs [11]. Some researchers
have proposed introducing minor perturbations that cause deep
learning networks to make inaccurate predictions in image
classification [12] and voice recognition [13]. Nevertheless,
few studies have investigated the susceptibility of adversarial
targeted attacks in mmWave-based HAR systems. Because
mmWave-based HAR systems are usually integrated in many
crucial applications such as older patients monitoring and user
authentication [14], [15], we believe that studying adversarial
attacks on these systems is critical and urgent. Most recently,
Ozbulak et al. [16] have done an initial investigation with the
untargeted adversarial attack on mmWave-based HAR. The
proposed attack is only applicable to a particular HAR model
(i.e., heatmap-based) and cannot trigger the model to generate
designated classes. Moreover, many research problems, such
as how to design unnoticeable perturbations based on unique
patterns of mmWave signals [17], how to launch universal
target adversarial attacks [18], or more challenging black-box
attacks [19], are still worth further exploration. Therefore, a
more comprehensive study of systematically exploring differ-
ent types of adversarial attacks on different types of mmWave-
based HAR models is highly demanded.

In this work, we aim to systematically investigate and reveal
the severe security issues of mmWave-based HAR models
by developing the following effective adversarial attacks: (/)
Targeted and Untargeted attacks. Unlike existing work that
only studied the untargeted attack for a particular mmWave-
base HR model, we successfully design both targeted and
untargeted attacks for different mmWave-based HAR models.
(2) Universal Attack. Both targeted and untargeted attacks need
to train a unique adversarial perturbation for each activity
sample [20], which is inefficient and infeasible in time-
constrained scenarios. We design a universal adversarial attack
that can produce an adversarial perturbation applicable to
different activity samples, which is ready to be used in real-
time without additional training; (3) Black-box Attack. The ex-
isting adversarial attacks against mmWave-based HAR assume
white-box settings, wherein the attacker has full knowledge



of the target model, including architecture and parameters.

However, attackers may not have such information and need to

conduct attacks under more realistic conditions (e.g., the target

model is unavailable to the attacker). Therefore, we develop
an effective method to enable black-box targeted attacks in
such challenging scenarios.

Designing effective and practical adversarial attacks for
different mmWave-based HAR models is nontrivial. Different
from traditional replay attacks [21], our attack could fool
the HAR system without collecting data samples from the
target activity. In particular, we apply gradient-based machine
learning algorithms to generate adversarial perturbations for
targeted and untargeted attacks while minimizing their size.
The adversarial perturbation is generated by solving an opti-
mization problem to concurrently minimize the perturbation
loss, which constrains the perturbation size and adversarial
loss to ensure the success of the adversarial attacks without
being noticed. In addition, mmWave-based HAR systems may
use different data representations that require careful attention.
Our comprehensive study identifies two representative types of
mmWave-based HAR models (i.e., voxel-based and heatmap-
based). We propose a discretization method to ensure the
validity of adversarial samples and further optimize the form
of the adversarial samples with two distance metrics. The
main challenge for designing the universal adversarial attack is
deriving an effective adversarial perturbation for any activity
sample without online training. We propose an offline train-
ing strategy with an iteration algorithm that crafts universal
perturbation across the samples from a small pre-collected
activity set. Unlike the existing universal attack that needs
inserting padding frames between two successive activities
[22], our attack modifies the activity sample directly, which
enables the attack on a broader range of mmWave-based
HAR applications. Furthermore, to overcome the information
deficiency of the target model in black-box attacks, we utilize
a knowledge distillation (KD) approach to generate a robust
replacement model. We further develop a generative adversar-
ial network (GAN) to produce a sufficiently large number of
pseudo samples for substitute model construction.

We summarize the main contributions of this work as
follows:

« We propose a comprehensive assessment of the challenges
brought by adversarial attacks on various mmWave-based
HAR systems, including both untargeted and targeted at-
tacks. As far as we know, we are the first to implement
targeted attacks against mmWave-based HAR systems, es-
pecially for voxel-based mmWave models.

« We employ adversarial learning to reduce the magnitude of
the perturbation, ensuring that the generated perturbation is
undetectable by manual examinations while can successfully
attack mmWave-based HAR systems. We also develop a dis-
cretization method to enable adversarial attacks on different
representative models of mmWave-base HAR.

« To enable universal targeted attacks, we develop an iteration
method to construct well-designed universal perturbations
that can be applied to various unseen mmWave samples

directly without additional training for these samples.

o We further design a black-box attack that can attack
mmWave HAR systems without knowing the model archi-
tecture and parameters. We leverage knowledge distillation
to address the information deficiency of the target model. We
also develop a generative adversarial network to address the
lack of training data.

« We assess our proposed attack methods on two represen-
tative mmWave-based HAR models and demonstrate the
efficacy, efficiency, and practicality of the proposed attacks
with a high attack success rate of over 90%.

II. RELATED WORK

Because of its wide application, HAR has attracted great
attention for the past decade. Many HAR systems use cameras,
body sensors, acoustic sound, and WiFi signals to recognize
and track human activities [5], [6]. Recently, due to the high
resolution and bandwidth, mmWave has been proposed to
perform HAR [9], [10], [14]. Most mmWave-based HAR
systems adopt deep learning models for activity identification
due to their high performance and capability of handling real-
life interference. However, machine learning models such as
neural networks were susceptible to adversarial perturbations,
as pointed out by Szegedy et al. [11]. We discover that
the majority of current adversarial attacks are proven in
applications related to image recognition and speech authen-
tication [12], [18], [23]-[26]. However, it has seldom been
investigated how adversarial attacks will affect HAR systems
based on mmWave. Yang et al. [20] examine the adversarial
susceptibility of the Doppler-based HAR system. They an-
alyze the untargeted attack issues for the HAR system and
evaluated three white-box attack methods (i.e., FGSM, PGD,
and MIM), respectively. Then, Ozbulak er al. [22] examine
the vulnerability of radar-based HAR system to a universal
untargeted attack. Nevertheless, none of them explore the
feasibility of targeted adversarial attacks to control the HAR
system’s output, nor do they provide a comprehensive study
of adversarial attacks against mmWave-based HAR systems.
Moreover, since Ozbulak’s method only targets one heatmap-
based HAR model, how to launch universal targeted attack
on other types of mmWave-base HAR models are unknown.
Besides, based on unique patterns of mmWave activity data,
how to develop adversarial activity samples to assure their
validity and make them unnoticeable are necessary but seldom
be explored. In addition, how to enhance attack performance in
more challenging black-box scenarios is still an open problem.

In contrast to previous research, we propose a compre-
hensive study of the threats brought by adversarial attacks,
including both untargeted and targeted attacks. We broaden our
study on both heatmap-based and voxel-based mmWave-based
HAR systems. By optimizing perturbation based on the unique
patterns of mmWave activity data, inventing universal attacks
to make our attack approach more efficient, and examining the
robustness of attacks under black-box scenarios, we intend
to give a complete examination of the challenges posed by
adversarial attacks on mmWave-based HAR systems.
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Fig. 2: Two typical data representations for mmWave-

based HAR. (a) Voxels generation from the point cloud;

(b) Spatial-Temporal heatmaps of three different activities.
ITII. TARGET MACHINE LEARNING MODELS FOR HAR

Background. The main goal of the mmWave-based human
activity recognition system is to identify actions or gestures by
examining the dynamics of mmWave signals [10], [14], [27].
As shown in Figure 1, a typical mmWave-based HAR system
captures mmWave signals reflected from the human body. It
performs signal processing to determine activity characteristics
(e.g., velocity or posture) of users and then estimate the
activity class using deep learning models.

Existing mmWave-based HAR systems are usually based on
two different representations of the received mmWave signals.
One of the representations is the point cloud derived from
the received mmWave signals via a series of FFT operations
(i.e., Range-FFT, Doppler-FFT, and Angle-FFT). Each point
in the point clouds presents the z, y, and z coordinates of
a mmWave signal reflected from the human body [9], [14],
[15], [28], [29], which allows mmWave radars to generate a
rough contour of the human body. However, point clouds are
incompatible with neural network architecture as the number
of points varies over time. Prior mmWave-based HAR research
usually adopts voxelization to transform the point cloud into
a constant amount of voxels [9], [14] for HAR. The other
representation is the heatmap of the object-related information
(e.g., distance, velocity, angle, and energy) extracted from the
received mmWave signals. Many mmWave-based HAR sys-
tems have leveraged the heatmap to identify human activities
(e.g., doppler-range map [10], micro-Doppler map [30], spatial
spectrograms [27], spatial feature map [31], and projection
heatmap [32]) because it is easy to achieve a good accuracy
by applying pre-trained neural network models from the image

domain to mmWave-base sensing.

In this work, we investigate the attacks to two mmWave-
based HAR models using different types of representations,
which brings more challenges to design a generic attack
method because of their significant differences.

Voxel-based Machine Learning Model. We choose an
existing mmWave-based HAR system [9] as a representative
to study the vulnerability of voxel-based HAR model to ad-
versarial attacks. This model has been utilized as a benchmark
in numerous subsequent publications [33], [34]. In particular,
the point clouds data is subjected to voxelization to address
the non-uniformity issue in each frame, as shown in Figure
2a. After the voxelization, the point clouds of each frame is
transformed into a set of voxels in a three dimensional space.
A voxel is defined as [z, y, z,v], where x,y, z are the spatial
position of the voxel and v is number of cloud points in the
cube-shape voxel with a designated size. Each activity sample
is defined as t sets of voxels, where ¢ is the time dimension.
As for the machine learning model, they employ a Time-
distributed CNN plus Bi-directional LSTM model. This model
consists of 3 time-distributed convolutional layers followed by
a bidirectional LSTM layer and an output layer. This model
is directly trained on the input sample, which includes its
temporal and spatial dimensions.

Heatmap-based Machine Learning Model. In addition
to the voxel-based mmWave-based HAR system, we devise
a heatmap-based HAR system to study its vulnerability to
adversarial attacks. Similar as state-of-the-art mmWave-based
HAR methods (e.g., [10]), we first derive the Doppler-range
map of the users’ activity by calculating Range-FFT and
Doppler-FFT. Then, we generate heatmaps by accumulating
the velocity of every distance in every denoised Doppler-
range map together. Next, we normalize the derived velocity
information and present the velocity-distance relationship in
time dimension. In this way, we transfer the original instanta-
neous velocity-distance relationship to a more comprehensive
spatial-temporal heatmap which describes the process of a
whole activity as shown in Figure 2b. We utilize a CNN
model for activity classification. In particular, this model
consists of 3 convolutional layers, each followed by a max-
pooling layer. A 64-dimensional feature map is created after
3 rounds of upsampling and downsampling. The feature map
is then condensed into a one-dimensional array by integrating
a flattened layer.

IV. THREAT MODEL AND PROBLEM FORMALIZATION
A. Threat Model

Possible Attack Scenarios. Our attack is applicable to at-
tack scenarios where the attacker needs to create an adversarial
example offline and then insert it to the HAR systems at the
inference stage. Three insert points are taken into account
for our potential adversarial attacks to HAR systems. Firstly,
attackers might modify the adversarial samples during the data
preprocessing stage. For example, as shown in Figure 1, a
local adversary can launch attacks by modifying the gener-
ated voxel-based or heatmap-based activity sample directly.
Moreover, it is also possible to insert the adversarial sample



right before the recognition phase, where activity data are sent
as an input to the DNN model. In this case, the attackers can
generate adversarial samples in advance and fed them into
the machine learning models furtively. Furthermore, attacks
can seize the original activity samples during the transmission
from a local client to the server and then replace normal
samples with adversarial ones due to the widespread usage
of cloud computing and federated learning [35], [36].

Adversary Capability. The attacks can be classified as
white-box and black-box attacks. In the white-box scenario,
the attackers have full knowledge of the machine learning
model’s input, architecture and parameters. The adversary
may also continuously access the target model to produce
adversarial samples. In addition, the adversary may be familiar
with the HAR system’s data preprocessing techniques in
order to provide the proper perturbation. The possibility of
a white-box attack may be increased by a local adversary or
information leakage. In order to study adversarial attacks to
mmWave-based HAR, we first make the white-box assumption
as most previous studies [18], [20], [37]. Black-box is a more
challenging scenario. It assumes that the target machine learn-
ing model is unavailable to the attacker. The adversary only
knows the input and output of the model [19]. We investigate
our adversarial attacks on HAR in black-box settings, because
they are more realistic than white-box settings.

B. Problem Formalization

The adversarial goal of our work is to generate mmWave ad-
versarial samples to confuse the mmWave-based HAR system.
The mmWave-based HAR system can be conceptualized as a
function f that receives mmWave signals as input and output
the predicted activity class based on the probability score p
for all the enrolled activity classes. Specifically, suppose there
are n enrolled activities, where p; € [0,1] and >, p; = 1,
the deep learning model f identifies the mmWave input as the
class with the greatest probability score. We formalize various
adversarial attacks as following:

Untargeted Attack. In untargeted attacks, which is usually
designed for a specific sample (sample-specific untargeted
attack), the adversary aims to confuse the HAR system by
changing the output from the original activity prediction y to
a different one 3. Specifically, given a machine learning model
f and an activity sample x, a sample-specific untargeted attack
can be formulated as f(x + §) # y, where z is the original
activity sample, 0 is the generated perturbation, and y is the
original predicted activity of the classifier model. In order to
achieve this, we should modify the activity sample by inserting
0 to decrease the probability score of the original activity class
py till it is lower than other activities.

Targeted Attack. In targeted attacks for a specific sample
(sample-specific targeted attack), the adversary aims to make
the HAR systems output desired class. The targeted attack
can be formulated as f(xz + J) = =z, where = + 0 is the
adversarial sample and z is a pre-defined class. To enable this
objective, we should modify the activity sample to increase
the probability score of the desired activity p, till it is higher
than other enrolled activities.

Universal Attack. To further improve the efficiency of
targeted attacks and make it practical in time-constrained
context, we propose to develop universal attacks by generating
a well-designed general perturbation. Then, we can insert it
to different unseen activity samples directly without incurring
additional training efforts. In particular, the activity data sam-
ples gathered at various times or under different conditions
would often vary, thus the perturbation ¢; designed to attack
sample x; might not work for another sample x2, such as
f(xa 4+ 61) # =z. In addition, generating the perturbation
for a high-dimensional mmWave activity sample (e.g., voxel-
based data) is time-consuming, thus it is not always feasible
to produce a sample-specific perturbation that is tailored for
each activity sample. It is important to create some universal
perturbations §, such that f(x; + §) = z, where z; can be
different samples from the same type of activity.

Practical Black-box Attack. In order to launch adver-
sarial attack in practical, the attack method should also be
robust enough to work in more challenging scenarios, such as
attacking a black-box machine learning model. Specifically,
we would explore whether a perturbation generated based on
model f could still work on other model f/, where f’ has
different structures and parameters from f. This attack can
be formulated as f’(z’) = f(2'), where 2’ is the adversarial
sample generated based on model f.

Unnoticeable Perturbation. In order to make the adver-
sarial sample practical and it difficult for human to identify
the attack, the distortion brought on by the perturbation
should be as small as feasible. It can be formulated as
min [|d],,, s.t. f(z+3) = 2. Additionally, it brings additional
difficulties to produce reliable and undetectable adversarial
perturbations due to the unique characteristics of mmWave
signal representations (e.g., voxel-based data).

Since we should consider both the effectiveness of our
attack and the distortion of the perturbations, we formally
define the objective function as minimize D(x, 2 + ¢), such
that f(z 4+ 0) = z, where z can be different based on the
attack objective (i.e., untargeted attack or targeted attack). D
is the distance metrics |||, that evaluate the magnitude of
the generated perturbation. However, as discussed in previous
work [24], directly solve this non-linear constrained non-
convex problem is difficult. Thus we reformulate the objective
function as a gradient-based optimization instance:

minimize L(x + ) + A * D(z, z + 9), (1)
where the first component £ represent the adversarial loss
which measures the possibility of launching adversarial attacks

successfully and the second component D represents pertur-
bation loss which constraints the perturbation size.

V. METHODOLOGY

In this section, we discuss the detailed adversarial attack
algorithms to enable targeted attack and untargeted attack for
mmWave-based HAR systems. We also introduce how we
balance the trade off between attack effectiveness and pertur-
bation magnitude. We then analyze the unique characteristics
of mmWave activity samples and provide two distance metrics



to further optimize the perturbation. Moreover, we explore an
efficient and powerful universal attack approach for mmWave-
based HAR systems. In addition, we study the feasibility of
launching adversarial attacks on black-box scenarios.

A. Untargeted and Targeted Attack for Specific Samples

Adversarial Loss. For sample-specific untargeted attack,
we define £ = max (Z(z + 0)s — max;zs (Z(x +96);) , —k),
where Z(x + &), represent the possibility of estimating
the activity as the original activity class (i.e., the predicted
class without attack), and Z(z + J); represent the possibil-
ity of estimating the activity as another class (i.e., a class
that is different from the original-predicted activity class).
k is a configurable parameter which controls attack confi-
dence. For sample-specific targeted attack, we define £ =
max (max;z (Z(x +96);) — Z(x + 0)¢, —k), where Z(z+0);
is the possibility of estimating the activity as the class ¢ we
desired. By optimizing above adversarial loss functions, we
aims to make our attack method not only confuse the HAR
systems (untargted attack), but also force the HAR system
output our desired class (targeted attack). In practice, by
using different special-designed adversarial loss function, the
attacker could either launch untargeted attack or targeted attack
according to different attack strength requirements, which
makes our attack framework more powerful and dangerous
than previous studies [20], [22].

Perturbation Loss. Generally speaking, the perturbations
are the difference between the original activity sample and
the adversarial one. Lo, Norm which calculates the euclidean
distance between two sets has been commonly used as a metric
for adversarial perturbation evaluation [16], [24], [25]. In this
project, we define the perturbation loss D = ||§||3 and generate
the perturbation with minimal magnitude by optimizing the
perturbation loss. In order to ensure the effectiveness of
the perturbation and improve the efficiency of perturbation
generation, we set a dynamic threshold 7 for each activity
sample to ensure ||§]|3 < 7, s.t. f(z+6) = z. The threshold is
derived by analyzing the deviation between the normal activity
sample from other normal samples. For a specific sample, we
calculate the average Lo Norm between the sample and all
other available samples of the same type of activity, and set it
as the threshold 7 for perturbation generation.

Parameter Selection. The weight A\, which determines the
balance between the adversarial loss £ and perturbation loss
D, must be set to a suitable number in order to cause gradient
descent to minimize both components concurrently, as opposed
to optimizing over one term at a time. In practical, we do
a 12-step binary search to identify the appropriate A and its
accompanying adversarial perturbation ¢.

B. Optimization for Unnoticeable Perturbation

Clipping. In order to assure the validity of the adversarial
sample, there should be a clipping process after each training
iteration. The clipping process trims the value of the adversar-
ial sample to fall inside a valid range [«, 3], which should be
chosen based on the data representation of the activity samples
in the HAR system. For a voxel-based HAR (e.g., [9]), the
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Fig. 3: Overview of universal attack.
range should be [0, 0o], as the value of each voxel represents
the number of points within its limit. For a heatmap-based
HAR (e.g., [30]), the range is usually set to [0, 255].

Discretization. Discretization is a crucial processing that
usually be neglected in prior research [16], [23], [25]. How-
ever, due to the specific properties of mmWave data, we dis-
cover that perturbation discretization is necessary and cannot
be disregarded. Specifically, the value of each pixel in a valid
adversarial heatmap must be a discrete integer between 0
and 255, and a valid voxel often has a much lower upper
limit value (e.g., 5) because of the sparse point clouds. Using
previous method that simply rounding the value of each
adversarial voxel or heatmap to the nearest integer could
eliminate the minor perturbations and render the adversary’s
attack ineffective.

To handle this discrete optimization issue, we incorporate
another loss function L,o4e1(|2 +d]), where |z + J] rep-
resents the discrete adversarial sample. We mark the orig-
inal £ mentioned in Section V-A as L,4,, and reformu-
late the final adversarial loss function as £ = Lyg,(x +
8) + Limodei(| + d]). By simultaneously optimizing L4,
and L,04e1, Wwe could assure the validity and efficiency of
adversarial samples in different kinds of HAR systems.

Natural Style Optimization. Furthermore, we discovered
that the majority of existing approaches [16], [19], [20], [24]
only focus on minimizing perturbation magnitude. How to op-
timize adversarial activity samples into natural styles by con-
straining the form and position of the generated perturbation is
less studied or neglected. In this study, we suggest minimizing
the radius of the generated perturbation to make it unnoticeable
in heatmaps or voxels. We realize it by minimizing the pair-
wise euclidean distance between elements inside the perturba-
tion. We formulate it as Diyeqn(0) = maxy, nes |m — nll2,
where m, n are positions of any two elements (e.g., pixels in
the heatmap) inside the generated perturbation ¢. By reducing
the average pairwise distance inside the perturbation, the
radius of the perturbation can be reduced. We further reduce
the distance between the perturbation and the original activity
sample, allowing the perturbation to be concealed within the
normal samples. In particular, we calculate Chamfer Distance
which seeks the nearest pair-wise element euclidean distance
between the generated perturbation and activity sample and
takes the mean of all nearby element pair distances. It is
expressed as D.y(z, ) m > mes Millyeg |m — 7|3,
where z is the activity sample. By reducing the Chamfer
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Algorithm 1: Universal Perturbation Generation

Input: Training set Q = {Q1,Qs, - Q;}, HAR model
f, targeted activity class z, desired perturabtion
magnitude 7, desired attack success rate € on
training set.

Output: Universal perturbation 6.

1: Initialize 6 < O.

2: while Success Rate(Q2) < ¢ do

3: Q; < RS(Q) » Random Select a Sample

4: if f(x; +0) = z then

5: Calculate the perturbation that satisfies: § < 7.
6: else

7: Aéj < argminag, D(AJ;)

such that f(€; +0 +0;) = z.
8: 0 < (6 + Ad;). > Update the Perturbation
9: end if
10: end while
Distance, the inserted perturbation is pushed nearer the activity
sample. After integrating above two functions, we reformulate
the final perturbation loss function as follows:

D= Dmag(ilf,ilf+5) +Dmean(5) +Dcf(I,5), (2)

where D,y,q4(0) controls the magnitude of the perturbation as
mentioned in Section V-A.

C. Universal Perturbation Generation

In this part, we provide details on how to launch efficient
targeted attacks against HAR through universal perturbation
design. Our basic idea is to create universal perturbations
d, such that f(z; + §) = z, where z; can be any activity
samples from the same type of activity. The proposed universal
perturbation generation method consists of an offline training
phase in which a training activity set is utilized to produce a
universal perturbation, and an online test phase in which the
universal perturbation is directly applied to incoming activity
data for a targeted attack. As shown in Figure 3, we generate
universal perturbations § for each type of activity, such that
when the perturbation is applied to the majority of activity
data x from the same class, the HAR always recognizes it
as our desired class z. We generate the perturbation for each
activity sample in the training set using the same objective
function (Equation 1). To make the adversarial perturbation
work for the majority of activity examples in the training set,
we iteratively adjust the universal perturbation.

Specifically, the adversarial perturbation is started with
zeros and added to a mmWave activity sample. If the HAR’s
prediction does not match the desired activity class, the pertur-
bation will be modified in the direction of gradient descent, in
which the likelihood of the desired class increases. Otherwise,
the current perturbation is applied to a fresh training activity
sample. If the existing universal perturbation does not fit in
the new sample, a minimal magnitude perturbation revision
is calculated and added to the current universal perturbation.
The iteration process ends when the universal perturbation on
the training dataset exceeds an predefined success rate (e.g.,
70%). Notably, the objective of the technique is not to seek

After Perturbation
o | %
I
f 20

[
1
}
>

After Perturbation

AN

Prediction: Crunch

Before Perturbation

Prediction: Leg Raise

N

(b)

Fig. 4: Two representative adversarial samples generated
by adding universal perturbations directly. (a) Adversarial
voxel-based data generation with L2 Norm of 21; (b)
Adversarial heatmap-based data generation with L2 Norm
of 2083.

the smallest global perturbation that fools the majority of
activity samples, but rather to select one that is sufficiently
tiny. Figure 4 depicts the production of adversarial samples
by directly applying universal perturbation. We observe that
the adversarial instances deviate from the original sample
only slightly in terms of L2 Norm. The adversarial samples
looks natural which makes it hard to be noticed by naked
eyes. However, adversarial examples enable HAR systems
to efficiently predict the activity as our desired. Compared
with traditional sample-specific attack methods, our universal
perturbations would significantly shorten the attack launch
time, which make it more practical in time-constraint attack
scenarios. Different from existing universal untargeted attack
method that need to inserting padding frames between two
successive activities [22], our method modifies the activity
sample directly and thus broaden its applicability to various
of mmWave-based HAR systems. In addition, our universal
attack method is compatible to both untargeted and targeted
attacks by merely modifying the adversarial loss function.

D. Practical Attack in Black-box Scenario

Black-box attack is a more challenging scenario where the
attacker usually cannot access the target model but only the
input and output of the model [22]. Thus, the adversarial
perturbation cannot be created and updated by exploiting the
gradient from the target model. A potential approach of black-
box attack is to train a substitute model. Adversarial samples
generated by the substitute model can be exploited to launch
attacks towards the target model leveraging the transferability
of the adversarial sample.

We begin with a basic black-box setting where the training
data of the target model is fully accessible. The key challenge
is how to ensure the similarity between the target and the
substitute model. Directly training the substitute model on
the dataset usually get poor performance since the structure



of the substitute model is different [22]. To solve such a
problem, we take advantage of Knowledge Distillation (KD)
to learn a substitute model that can mimic the prediction
of the target model [38]. In black-box scenarios, although
the inner structure of the target model is inaccessible, it’s
output class and soft logits indicating the class probability
distribution for a given input is accessible [19]. Supposing
the soft logits of the target and substitute model is P and
Ps, respectively. The predicted class of substitute model is Z
and the ground truth is G. We formulate KD process as loss
function L = Ly + L4, where Ly = Cross_Entropy(Z, Q)
and Ly, = KL_Divergence(P,, Ps). By optimizing the loss
function, we transfer the dark knowledge from the target model
to the substitute model [38].

To ensure the robustness of the black-box attack, we utilize
a configurable parameter of k£ to control the confidence of
the attack as mentioned in Section V-A. With larger &k value,
the possibility that the adversarial sample being misclassified
by the target model will increase. We set k& = 0 in white-
box scenarios and set a larger k in black-box scenarios. We
evaluate the impact of k in Section VI-D.

We then move to a more challenging scenario where the
original training data of the target model is only partially
accessible. To deal with the problem of insufficient train-
ing data, we develop GAN to synthesize sufficient pseudo
training samples. GAN has been proved to generate high-
quality pseudo samples with limited amount of real samples
[30]. In this work, we implemented a GAN with a 3-layer
generator and a 3-layer discriminator to generate sufficient
activity samples using only 20% of the original training dataset
of the target model. Specifically, the generator seeks to learn
the distribution of the real samples so as to have the ability
of synthesizing pseudo sample. The discriminator tries to
discriminate whether a sample is a real or pseudo one. The
generator and discriminator are trained in turn to optimize each
other by updating parameters of their networks. The final state
is a Nash equilibrium where the synthesized pseudo samples
are similar to the real ones, and the discriminator fails to
identify whether the activity samples are real or not. After
obtaining enough high-quality pseudo training samples, we
exploit the KD method mentioned above to train the substitute
model and launch black-box attacks towards the target model.

VI. PERFORMANCE EVALUATION
A. Experimental Setup

Equipment. Our own dataset (i.e., heatmap-based) is col-
lected using TT AWR1642 mmWave radar [39], while the
public dataset (i.e., voxel-based) is collected using IWR1443
mmWave radar [9]. Both mmWave radar work at the frequency
in the range of 77 ~ 81GH z. The prototype of our proposed
attack method is implemented using Python along with Ten-
sorFlow.

Data Collection. Two datasets are used in our experiment.
The public voxel-based human activity dataset contains 15635
samples from 5 different activities. Our own heatmap-based
fitness activity dataset contains 8760 samples from 14 typical
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Fig. 5: (a) Success rate of sample-specific untargeted
attacks on voxel-based dataset; (b) Success rate of sample-
specific targeted attacks on voxel-based dataset (x-axis
represents the original classes).
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Fig. 6: (a) Success rate of sample-specific untargeted
attacks on heatmap-based dataset; (b) Success rate of
sample-specific targeted attacks on heatmap-based dataset
(x-axis represents the original classes).
workouts. Both dataset is splitted into training and testing
sets with a ratio of 7 to 3. For untargeted and targeted
attack, we randomly select 200 and 100 activity samples
of each type of activity from the voxel-based and heatmap-
based testing set, respectively. For the universal attack, half
of the selected samples are utilized for universal perturbation
generation (universal attack training set) and the others for
evaluation (universal attack testing set), respectively. The orig-
inal classification accuracy of voxel-based and heatmap-based
machine learning model is 90.47% and 97%, respectively.
Evaluation Metrics. We use three metrics to evaluate the
performance of our attack scheme. (1) Success Rate (SR): it
represents the number of succeeded adversarial attacks over
the total number of attack attempts. In untargeted attack, we
report a success when the predicted class is different from
the original class while in targeted attack, we only reported
a success if the predicted class matches the desired target
class; (2) L2 Norm: it indicates the euclidean distance between
the adversarial sample and original sample; Smaller L2 Norm
values indicate that the adversarial sample is similar to the
original activity sample and therefore harder to be noticed by
human eyes. (3) Confusion Matrix: Each cell in the matrix
indicates an original-target class pair that the actual class in
the row is classified as the target class in the column. The
value of each cell represent the average SR and L2 Norm of
corresponding universal attack on the testing set.

B. Evaluation of Attack Effectiveness

Untargeted Attack. Figure 5a and Figure 6a demonstrate
the attack success rate of untargeted attacks on the voxel-based
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Fig. 8: (a) Success rate of universal targeted attacks
on heatmap-based dataset; (b) L2 Norm of generated
universal perturbations on heatmap-based dataset.
HAR dataset and heatmap-based dataset, respectively. We can
learn that our method achieves nearly 100% attack SR for all
5 original classes in the voxel-based dataset and all 14 original
classes in the heatmap-based dataset, indicating that almost all
samples tested are class-flipped from the original class under
our attack scheme.

Targeted Attack. Figure 5b and Figure 6b demonstrate
the attack success rate of sample-specific targeted attacks on
the two dataset, respectively. Our method achieves an average
SR of 96% on both datasets. Note that attacks towards some
target classes have relatively lower SR (i.e., jack and walk
from the voxel dataset; and w4 (lunges) from the heatmap-
based dataset), this is because those classes have more different
patterns from others, making the attack relatively harder. But
even the lowest SR in targeted attack is still higher than 80%,
proving the effectiveness of our attack scheme.

Universal Attack. The performance of universal attacks
over the voxel-based HAR dataset is demonstrated in Fig-
ure 7a. We can learn that all universal attacks achieve over 80%
SR, with the highest SR reaching 98% (98% of walk samples
in the testing set has been classified as boxing using the same
universal perturbation). We note that SR of some original-
target pairs (e.g., jack-squats) is relatively low, this is because
the samples of the target class vary a lot from the original
class, making it harder to launch targeted attacks. Despite
this, our method still achieves an overall SR of 90%. For the
heatmap-based dataset, as is shown in Figure 8a, attacks on
most original-target pairs achieve higher than 90% SR. Few
pairs (e.g., w4-wl3, wl2-w3) have relatively low SR due to
large differences between original and target samples. But our
method still reaches an average SR of 94% over 182 original-
target pairs on the heatmap-based dataset.
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Fig. 9: (a) L2 Norm of perturbations generated in sample-
specific untargeted attacks on voxel-based dataset (The red
line represents the average threshold of all attack samples);
(b) L2 Norm of perturbations generated in sample-specific
targeted attacks on voxel-based dataset (x-axis represents
the original class).
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Fig. 10: (a) L2 Norm of perturbations generated in sample-
specific untargeted attacks on heatmap-based dataset; (b)
L2 Norm of perturbations generated in sample-specific
targeted attacks on heatmap-based dataset.

C. Impact of Perturbation Magnitude

Untargeted Attack. We first evaluate the impact of pertur-
bation magnitude on untargeted attack. Figure 9a demonstrates
the L2 Norm of untargeted attacks on the voxel-based dataset.
Note that each red line indicate the average value of the
threshold mentioned in Section V-A. We can learn that the
median L2 Norm of untargeted adversarial samples on all 5
original classes are below 10 and the maximum L2 Norm
values are all lower than 30, far below the 5 average thresholds,
which are all around 40 ~ 50. For the heatmap-based dataset,
as is shown in Figure 10a, the median L2 Norms between
adversarial and original samples are around 2000 ~ 2500.
Adversarial samples towards one workout, w4, have relatively
higher L2 Norm distribution due to high-specific features of
original heatmaps. But the highest L2 Norm is still lower than
4000, far below the average threshold of 14000 for w4.

Targeted Attack. We then evaluate the impact of perturba-
tion magnitude on targeted attack. Figure 9b demonstrates the
L2 Norm of targeted attacks on the voxel-based dataset. We
find that the median L2 Norm values of samples towards all 5
target classes are still around 20. But there is a significant
increase in the maximum L2 Norm value on all 5 classes
compared with untargeted attacks. This is because in targeted
attack, we not only need to flip the class but also need to turn
the class to the required one. Thus, for some samples larger
perturbation magnitude is needed. But even the maximum
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black-box attack.

L2 Norm values are still below the corresponding average
threshold (i.e., red lines in the Figure). On the heatmap-based
dataset, as is shown in Figure 10b, we also notice a larger
L2 Norm distribution compared with the result of untargeted
attacks. Samples aiming at the target class of w4 have a
relatively higher maximum L2 Norm value due to the highly-
specific features of the original heatmap from this class. But
even the maximum perturbation (i.e., 6300) of attack samples
(i.e., w4) still does not exceed the corresponding average
threshold.

Universal Attack. We next evaluate the impact of pertur-
bation magnitude on universal attack. The confusion matrix
of universal L2 Norm on voxel-based dataset and heatmap-
based dataset are shown in Figure 7b and 8b, respectively.
We can learn that the average L2 Norm for the adversarial
samples towards voxel-based dataset is between 12 to 29,
which is far below the average threshold of 5 classes (i.e.,
around 40 ~ 50). The average L2 Norm of universal samples
towards heatmap-based dataset over 182 original-target pairs
is 4000. Though some pairs (e.g,, w4d-w3, wl-wll) have
relatively higher perturbation magnitude due to relatively large
difference in heatmap patterns, these values are still below the
average threshold of corresponding original classes.

D. Evaluation of Black-box Attack

All black-box experiments are taken on the heatmap-based
dataset due to the page limit. We begin with the basic settings
where the target model are inaccessible but we assume that the
attacker has full access to the training data set. We use KD to
train a substitute model to generate adversarial samples and
launch attack towards the target model. Our substitute model
is a 2-layer CNN network with 3.20 trainable parameters.
We also trained the substitute model directly on the training
set without KD for comparison. As mentioned in Section V-D,
we exploit a confidence value of k to ensure the robustness
of our attack method. We change the %k value from 0 to 40

with a step size of 5 to study the impact of k. Figure 1la,
11b and 11c demonstrate the average SR and L2 Norm under
basic black-box settings for untargeted, targeted and universal
attacks, respectively. We can learn that substitute model trained
with KD outperforms directly-trained model for all k£ larger
than O in all types of attacks. When k£ = 40, attacks using
substitute model achieves higher than 80% SR for untargeted
and targeted attack as well as an SR of 75% for universal
attack. We can also notice a trade-off between SR, L2 Norm
and k values. As the k increases, we can obtain higher SR
but the L2 Norm will also increase accordingly, meaning the
adversarial samples will have relatively larger perturbations.
But our method still maintain lower than 6500 L2 Norm value
for all three types of attacks even when k = 40.

We next move to a more challenge setting where the
adversary can only access part of the training data used by
the target model. We exploit the GAN method mentioned in
section V-D to generate a pseudo training set with a size
similar to that of the original training set using only 20% of
original training data. The substitute model is trained using KD
and the generated training set. We set confidence value k£ = 40
since previous results have proven that this confidence value
can obtain relatively robust performance. For comparison, we
trained a baseline model without KD and GAN using only
20% of the original training data, similar to the black-box
model used in [22]. As is shown in Figure 11d, GAN-KD
trained substitute model outperforms the baseline model for
all 3 types of attacks, with the highest SR of 76.5% for
the untargeted attack. Due to higher requirements for the
adversarial samples, SR of targeted and universal attacks using
GAN-KD method are relatively low (i.e., 56% and 42%), but
the SR still outperforms baseline model with an increase of
23.4% and 20.22%, respectively.

VII. CONCLUSION

In this paper, we propose a comprehensive study of adver-
sarial attacks against mmWave-based HAR. Unlike existing
work that only explore the feasibility of untargeted attacks, we
are the first to design and investigate universal, yet practical
perturbations to enable targeted adversarial attack against vari-
ous mmWave-based HAR. We generate universal perturbation
via an iteration algorithm to make it generalizes very well
across different activity samples. We also assure the validity of
mmWave-based adversarial sample and tailor them into natural
style. In addition, we develop KD to address the information
deficiency of the machine learning model for HAR and GAN
to address the lack of training data in black-box scenarios.
Extensive experiments on two typical mmWave-based HAR
models demonstrate the efficacy, efficiency, and practicality
of the proposed targeted attacks with an average success rate
of over 90%.
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