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Abstract

The problem of controller reduction has a rich history in control theory. Yet, many questions remain
open. In particular, there exist very few results on the order reduction of general non-observer based
controllers and the subsequent quantification of the closed-loop performance. Recent developments
in model-free policy optimization for Linear Quadratic Gaussian (LQG) control have highlighted the
importance of this question. In this paper, we first propose a new set of sufficient conditions ensuring
that a perturbed controller remains internally stabilizing. Based on this result, we illustrate how to
perform order reduction of general (non-observer based) output feedback controllers using balanced
truncation and modal truncation. We also provide explicit bounds on the LQG performance of the
reduced-order controller. Furthermore, for single-input-single-output (SISO) systems, we introduce
a new controller reduction technique by truncating unstable modes. We illustrate our theoretical
results with numerical simulations. Our results will serve as valuable tools to design direct policy
search algorithms for control problems with partial observations.
Keywords: Optimal control, model reduction, controller reduction, policy optimization

1. Introduction
In many control applications, low-order controllers are often preferred over high-order controllers,
because they are simpler to maintain, more interpretable, and computationally less demanding
(Anderson and Liu, 1989). Thus, given a high-order controller, one often would like to find a
lower-order approximation that still stabilizes the plant whilst performing similarly on relevant
closed-loop performance metrics, such as the Linear Quadratic Gaussian (LQG) cost. This problem
is known as controller reduction. Traditional approaches to controller reduction in LQG control have
focused on reducing the order of observer-based controllers and providing error bounds between the
performance of the truncated controller and that of the original controller (Zhou and Chen, 1995).

However, the problem of order-reduction for general non-observer based controllers has been less
studied, especially in the context of LQG control. Recent progress in model-free policy optimization
for linear control has highlighted the importance of order-reduction for general output feedback
controllers (Zheng et al., 2022). In particular, a natural problem in model-free policy optimization
is to learn an optimal policy iteratively using policy gradient methods (Hu et al., 2022). It has
recently been shown that the optimization landscape of LQG control may contain saddle points
in state-space dynamic controllers (Tang et al., 2021). While vanilla policy gradient ensures the
convergence to stationary points under mild assumptions, these stationary points may be saddle points
that are sub-optimal. As shown recently in Zheng et al. (2022), when a saddle point corresponds to a
non-minimal controller, it is possible to escape the saddle point by finding a lower-order controller
and adding a suitable random perturbation during policy gradient. It is thus natural to consider
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order-reduction for general dynamic controllers, such that we find a lower-order controller with
approximately equivalent or lower LQG cost. Moreover, policy gradient for LQG control may meet
unstable controllers1, but the results on order-reduction for unstable controllers are far less complete
(Anderson and Liu, 1989; Liu and Anderson, 1986). This motivates the main questions in this paper:

1. Can we perform controller reduction on general, possibly unstable, LQG controllers, such that
the reduced-order controller remains internally stabilizing?

2. Can we provide explicit error bounds on the LQG performance of the reduced-order controller
compared to the original controller?

These questions are not only relevant for the reasons relating to policy optimization of LQG control
(Tang et al., 2021), but are interesting in their own right for the model and controller reduction
literature (Anderson and Liu, 1989; Obinata and Anderson, 2012).
Our contributions. In this paper, we provide positive answers to both questions. We first identify
a novel set of sufficient conditions that ensure the stability of a perturbed controller (Theorem 1),
and then derive a new bound on the LQG cost of a perturbed controller under the assumption that
the truncated component is stable and appropriately small (Theorem 2). For general multiple-input
and multiple-output (MIMO) systems, building on Theorem 1 and Theorem 2, we then show (in
Section 4 and Section 5.1 respectively) how balanced truncation and modal truncation may be applied
to general (non observer-based, possibly unstable) LQG controllers to yield lower-order controllers
with bounded LQG performance gap (compared to that of the original controller). Furthermore,
for single-input single-output (SISO) systems, we discuss in Section 5.2 how internal stability may
be preserved even when the reduced-order controller has fewer unstable poles than the original
controller. This opens the path of controller reduction via truncating unstable poles, a novel controller
reduction technique that we illustrate both theoretically and empirically.
Related work. A common approach to controller reduction is to truncate the stable part of a
controller, whilst keeping its unstable part intact (Anderson and Liu, 1989). Popular methods
to perform truncation of the stable part of a controller include modal truncation (Skelton, 1988),
balanced truncation (Enns, 1984), and Hankel norm approximation (Glover and Limebeer, 1983).
When the difference of the stable portion and its truncated portion satisfies a (frequency-weighted)
error bound (see Lemma 3), it guarantees that the truncated controller remains internally stabilizing.
However, there appear to be no existing results providing an error bound on the LQG cost of the
truncated controller from such a procedure for general (possibly non observer-based) controllers. In
contrast, for observer-based controllers, there has been a significant line of work based on coprime
factorizations (Vidyasagar, 1975), which not only yields reduced-order controllers that are internally
stabilizing but also guarantees LQG performance bounds for the resulting truncated controllers
(cf. Liu and Anderson (1986); Anderson and Liu (1989)). However, these methods only work for
observer-based controllers.

A closely related but distinct research direction to controller reduction is the topic of open-loop
model reduction (Obinata and Anderson, 2012; Benner et al., 2017; Antoulas et al., 2001; Antoulas,
2005). For space reasons, we defer discussion of model reduction to our full report (Ren et al.,
2022). Another important related topic is policy optimization for linear control problems. There
has been significant recent work studying policy optimization for linear quadratic control problems,
for linear-quadratic-regulator (LQR) (Fazel et al., 2018), H2 linear control with H∞ guarantees
(Zhang et al., 2020; Hu and Zheng, 2023), as well as LQG problems (Tang et al., 2021; Zheng
et al., 2022). In particular, as we explained earlier, the considerations outlined in Zheng et al. (2022)
on escaping saddle points of the LQG problem was an important motivation for our work, where
controller reduction is required. See Hu et al. (2022) for a recent review.

1. A dynamic controller that has unstable modes itself but internally stabilizes the plant.
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Paper outline. The rest of this paper is structured as follows. We present the problem statement in
Section 2. In Section 3, we first introduce Theorem 1, which provides sufficient conditions such that a
perturbed controller Kr of K is internally stabilizing. We further derive an upper bound on the LQG
cost J(Kr) (Theorem 2). In Section 4, we study balanced truncation on the stable part of a controller.
In Section 5, we discuss modal truncation, where Section 5.1 studies modal truncation on the stable
part of a controller, and Section 5.2 discusses controller reduction via truncation of unstable poles
for SISO systems. Finally, we end with numerical experiments illustrating our theoretical results in
Section 6. Many technical proofs are postponed to our full report (Ren et al., 2022).

Notation: We denote the set of real-rational proper stable transfer functions as RH∞ (i.e., all the
poles are on the open left-half complex plane). For simplicity, we omit the dimension of transfer
matrices. We define the L∞ norm for a transfer function G(s) as ∥G∥L∞

:= supw∈R σmax(G(jw)),
where σmax(·) denotes the maximum singular value. When G ∈ RH∞, its H∞ norm is the same
as its L∞ norm (Zhou et al., 1996, Chapter 4.3). We define the L2 norm for G(s) as ∥G∥L2

:=√︂
1
2π

∫︁∞
−∞ Tr(G(−jw)TG(jw)dw. When G is stable and strictly proper, its H2 norm is the same as

its L2 norm (Zhou et al., 1996, Chapter 4.3).

2. Preliminaries and Problem Statement
2.1. General non-observer based controllers
Consider a strictly proper linear time-invariant (LTI) plant2

ẋ(t) = Ax(t) +Bu(t) +Bw(t),

y(t) = Cx+ v(t),
(1)

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rp are the state vector, control action, and measurement
vector at time t, respectively; w(t) ∈ Rm and v(t) ∈ Rp are external disturbances on the state and
measurement vectors at time t, respectively. One basic yet fundamental control problem is to design
a feedback controller (or policy) to stabilize the plant (1). A standard approach for this problem is to
use an observer-based controller of the form

ξ̇(t) = Aξ(t) +Bu(t) + L(y(t)− Cξ(t))

u(t) = −Kξ(t),
(2)

where ξ(t) ∈ Rn is an estimated state, L ∈ Rn×p is an observer gain, and K ∈ Rm×n is a feedback
gain. The observer and feedback gains are chosen such that A−LC and A−BK are stable, and this
guarantees the closed-loop internal stability when applying the controller (2) to the plant (1) (Zhou
et al., 1996, Chapter 3.5). Note that the order of this observer-based controller must be the same as
the system plant (i.e., the controller state ξ(t) and the system state x(t) have the same dimension).
Order reduction for controllers in the form of (2) is discussed in Liu and Anderson (1986); Anderson
and Liu (1989); Zhou and Chen (1995). In this paper, we consider a general non-observer based
dynamic controller of the form

ξ̇(t) = AKξ(t) +BKy(t),

u(t) = CKξ(t),
(3)

where ξ(t) ∈ Rq is the internal state of the controller, and AK, BK, CK are matrices of proper
dimensions that specify the dynamics of the controller. The dimension q of the internal control
variable ξ is called the order of the dynamic controller (3). The controller in (3) is more suitable for
model-free policy optimization as it does not explicitly depend on the system dynamics (Tang et al.,

2. For simplicity, we assume that there is a common B matrix in front of both the input term u(t) and noise term w(t).
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2021; Zheng et al., 2022). It is clear that the observer-based controller (2) is a special case of (3)
by taking q = n, and AK = A− BK − LC,BK = L,CK = −K. By combining (3) with (1), the
closed-loop system is internally stable if and only if the following closed-loop matrix is stable (Zhou
et al., 1996, Lemma 5.2):

Acl :=

[︃
A BCK

BKC AK

]︃
. (4)

2.2. Problem statement
Given an internally stabilizing controller (AK, BK, CK), the controller reduction problem is to find a
new controller (ÂK, B̂K, ĈK) of lower order q̂ < q such that it still internally stabilizes the plant and
does not significantly affect the closed-loop performance. In particular, we consider a normalized
LQG control performance (Mustafa and Glover, 1991; Jonckheere and Silverman, 1983), defined as

J = lim
T→∞

E
[︃
1

T

∫︂ T

0
(Cx(t))T(Cx(t)) + u(t)Tu(t)dt

]︃
, (5)

We make the following two assumptions.
Assumption 1 The plant (1) is minimal, i.e., (A,B) is controllable and (C,A) is observable.

Assumption 2 In plant (1), the signals w(t) ∈ Rm and v(t) ∈ Rp are zero mean Gaussian white
noise, each with a spectrum equal to the identity.

Assumption 1 is standard and guarantees the existence of internally stabilizing controllers3. If
the plant is not minimal, we can always perform a lower-order minimal realization before designing
a controller. Assumption 2 was used to define the normalized LQG control problem in (Mustafa and
Glover, 1991; Jonckheere and Silverman, 1983). As we shall see next, this assumption simplifies
the expression of LQG cost (5) in the frequency domain. For the controller reduction problem, it
may not be easy to work directly with the internal stability condition (4) in the state-space domain
due to non-uniqueness of state-space realizations. It is more convenient to consider equivalent
conditions in the frequency domain. In particular, the controller (3) can be represented as a transfer
function K := CK(sI −AK)

−1BK. Let us define a new performance signal ỹ = Cx. Some simple
manipulations show that the closed-loop transfer function from (w, v) to (ỹ, u) is[︃

ỹ
u

]︃
=

[︃
(I −GK)−1G (I −GK)−1GK
K(I −GK)−1G K(I −GK)−1

]︃ [︃
w
v

]︃
, (6)

where G(s) = C(sI −A)−1B. Then, we have the following condition for internal stability.
Lemma 1 ((Zhou et al., 1996, Lemma 5.3)) The controller K in (3) internally stabilizes the plant (1)
if and only if the closed-loop transfer function from (w, v) to (ỹ, u) is stable4, i.e.,[︃

(I −GK)−1G (I −GK)−1GK
K(I −GK)−1G K(I −GK)−1

]︃
∈ RH∞

Furthermore, the normalized LQG control cost (5) can be expressed conveniently in the frequency
domain. For completeness, we provide a proof of Lemma 2 in our full report (Ren et al., 2022).

Lemma 2 Under Assumption 2, given an internally stabilizing controller K in (3), the normalized
LQG cost (5) can be expressed as follows

J(K) =

⃦⃦⃦⃦[︃
(I −GK)−1G (I −GK)−1GK
K(I −GK)−1G K(I −GK)−1

]︃⃦⃦⃦⃦2
H2

.

3. The existence of internally stabilizing controllers only requires stabilizability and detectablity.
4. The standard result in (Zhou et al., 1996, Lemma 5.3) uses a slightly different set of closed-loop transfer functions.

Simple manipulations via (I −GK)−1 = I + (I −GK)−1GK can show the equivalence.
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3. Robust stability and LQG performance
Our main goal is to properly perturb the controller K to get a lower-order controller Kr such
that the closed-loop performance remains similar. In this section, we present two technical results
that underpin our controller reduction results in Sections 4 and 5: 1) a new robust stability result
(Theorem 1), and 2) an upper bound on the LQG performance for the new controller Kr (Theorem 2).

3.1. A novel sufficient condition for internal stability
Classical results on controller reduction often study the case when the truncated controller Kr has
the same number of unstable poles as the original controller K (cf. Liu and Anderson (1986)). In
particular, a widely-used condition is as follows.
Lemma 3 ((Anderson and Liu, 1989, Section II.A)) Let G be the transfer function of an LTI
plant (1), the controller K (3) internally stabilize the plant, and Kr be another controller. Denote
∆ := Kr −K. If

1. K and Kr have the same number of poles in Re(s) > 0, and no poles on the imaginary axis,

2. either
⃦⃦
∆G(I−KG)−1

⃦⃦
L∞

<1 or
⃦⃦
(I−GK)−1G∆

⃦⃦
L∞
<1,

then Kr also internally stabilizes the plant (1).

This classical result underpins many controller reduction techniques in the literature; see Anderson
and Liu (1989) for a review. Lemma 3 can be proved via Nyquist stability criterion; see the
discussions in (Doyle and Stein, 1981, Section IV). If the controller K is stable in the first place, then
the first condition in Lemma 3 can be naturally satisfied by using any stable controller Kr. When the
controller K is unstable (i.e., AK in (3) is unstable), we might always need to preserve the unstable
part in K in order to use Lemma 3. However, it is unclear if it is necessary for a lower-order truncated
controller Kr to have the same number of unstable poles as K in order to maintain closed-loop
stability. In this section, we provide a novel set of sufficient conditions in Theorem 1 ensuring that
Kr is still stabilizing, which makes no explicit assumptions on whether Kr and K have the same
number of unstable poles. This technical result may be of independent interest.

Theorem 1 Let G be the transfer function of an LTI plant (1), the controller K (3) internally
stabilize the plant, and let Kr denote another controller. Denote ∆ := Kr −K. If ∆(I −GK)−1

is stable and

max
{︂⃦⃦

(I −GK)−1G∆
⃦⃦
H∞

,
⃦⃦
∆(I −GK)−1G

⃦⃦
H∞

}︂
< 1, (7)

then, Kr also internally stabilizes G.

Unlike the proof of Lemma 3 that is based on Nyquist stability (Doyle and Stein, 1981, Section
IV), Theorem 1 can be proved directly from Lemma 1. If we can show[︃

(I −GKr)
−1G (I −GKr)

−1GKr

Kr(I −GKr)
−1G Kr(I −GKr)

−1

]︃
∈ RH∞, (8)

Lemma 1 confirms that Kr internally stabilizes G. Since K internally stabilizes G, we know that[︃
(I −GK)−1G (I −GK)−1GK
K(I −GK)−1G K(I −GK)−1

]︃
∈ RH∞ (9)

Motivated by (Zheng et al., 2021, Appendix C), the key idea in our proof is to relate the transfer
functions in (8) with those in (9), and then to show that all four subblocks in (8) are stable. For
example, it is not difficult to verify

(I −GKr)
−1G = (I −X∆)−1(I −GK)−1G, (10)
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where X := (I − GK)−1G. The condition (7) is equivalent to ∥X∆∥H∞
< 1, ∥∆X∥H∞

< 1.
According to the small-gain theorem (Zhou et al., 1996, Theorem 9.1), we know that both (I−X∆)−1

and (I −∆X)−1 exist and they are stable. Thus, we know that (I −GKr)
−1G is stable. Similarly,

we can show all four subblocks in (8) are stable under the conditions in Theorem 1. For space reasons,
we defer the full proof, as well as a remark comparing Lemma 3 and Theorem 1, to our full report
(Ren et al., 2022).

3.2. A new bound on the perturbed LQG cost

Theorem 1 presents sufficient conditions to guarantee the closed-loop stability using the reduced-order
controller Kr. In many situations (such as policy optimization for LQG in Tang et al. (2021); Zheng
et al. (2022)), we also need to understand the closed-loop performance under this new controller
Kr. Our next technical result show that if the error ∆ := Kr −K is stable with an appropriately
bounded H∞ norm, the change of the LQG cost (5) can also be bounded. The proof builds on the
analysis techniques in Theorem 1, and we defer the proof to our full report (Ren et al., 2022).

Theorem 2 Let G be the transfer function of an LTI plant (1), the controller K (3) internally
stabilize the plant, and Kr denote another controller. Denote ∆ := Kr −K. If

∥∆∥H∞
<

1

∥(I −GK)−1G∥H∞

, (11)

then the controller Kr internally stabilizes the plant (1), and the resulting LQG cost (5) satisfies

J(Kr) ≤
1(︁

1− ∥X∥H∞
∥∆∥H∞

)︁2 (J(K) + S1 + S2), (12)

where with the notation Y := (I −GK)−1, and X := (I −GK)−1G, we have

S1 := 2∥∆∥H∞
∥X∥H2

(∥XK∥H2
) + 2∥∆∥H2

(∥KY∥H2
∥Y∥H∞

+∥KX∥H2
∥X∥H∞

)(1+∥KX∥H∞
),

S2 := ∥∆∥2H∞
∥X∥2H2

+∥∆∥2H2
(∥Y∥2H∞

+ ∥X∥2H∞
)(1+∥KX∥H∞

)2. (13)

Theorem 2 shows that as long as the truncation error is bounded as in (11), the reduced-order
controller Kr still internally stabilizes the plant. Furthermore, the upper bound (12) implies that⃓⃓⃓⃓

J(Kr)− J(K)

J(K)

⃓⃓⃓⃓
≤ O(∥∆∥H∞

).

When the truncation error is small (measured by ∥∆∥H∞
), the change of LQG cost is also small.

Similar bounds like (12) seem to be less studied for general non-observer based controllers in the
literature (Anderson and Liu, 1989). Most existing bounds assume an observed-based controller in
(2) (cf. Liu and Anderson (1986); Anderson and Liu (1989); Zhou and Chen (1995)), and most of the
techniques therein rely on coprime factorization (Vidyasagar, 1975). Theorem 1 and Theorem 2 work
for any perturbed controller Kr satisfying the assumptions therein. In the next two sections, we show
how to use balanced and modal truncation strategies to derive suitable reduced-order controllers Kr.

4. Controller reduction via balanced truncation
In this section, we discuss controller reduction strategies using balanced truncation and apply
Theorem 1 and Theorem 2 to derive stability and performance guarantees.

4.1. Balanced truncation
We first recall that for asymptotically stable transfer functions, under appropriate assumptions, a
reduced-order transfer function resulting from balanced truncation is also asymptotically stable.
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Lemma 4 ((Pernebo and Silverman, 1982, Theorem 3.2), (Antoulas, 2005, Theorem 7.9)) Let
P be an asymptotically stable transfer function with a balanced minimal state-space realization 5.

P =

[︄
A11 A12 B1

A21 A22 B2

C1 C2 D

]︄
, s.t.

[︃
A11 A12

A21 A22

]︃[︃
Σ1 0
0 Σ2

]︃
+

[︃
Σ1 0
0 Σ2

]︃[︃
A11 A12

A21 A22

]︃T
=−

[︃
B1

B2

]︃[︃
B1

B2

]︃T
[︃
Σ1 0
0 Σ2

]︃[︃
A11 A12

A21 A22

]︃
+

[︃
A11 A12

A21 A22

]︃T[︃
Σ1 0
0 Σ2

]︃
=−

[︃
CT

1

CT
2

]︃[︃
CT

1

CT
2

]︃T
where Σi ≻ 0 is a positive-definite diagonal matrix for each i ∈ {1, 2}. If Σ1 and Σ2 share no
eigenvalues in common, then A11 and A22 are both asymptotically stable. Furthermore,

∥P−Pr∥H∞ ≤ 2trace(Σ2), where Pr=

[︃
A11 B1

C1 D

]︃
. (14)

4.2. Controller reduction
In general, the dynamic controller K is not stable itself, i.e., AK in (3) has unstable eigenvalues. The
standard balanced truncation procedure cannot be applied to unstable systems directly. Our strategy
is to divide the controller K into a stable part and unstable part

K = K< +K≥, (15)

where K< of order n1 contains all stable poles (i.e., those on the open left-half plane) and K≥ of
order n2 contains the remaining poles (i.e., those on the closed right-half plane), and n1 + n2 = n.
In this section, we assume the controller contains at least one stable pole (n1 ≥ 1).

The separation (15) is always possible by computing the Jordan normal form of AK such that

AK = QKÂKQ
−1
K , with ÂK =

[︃
ÂK,< 0

0 ÂK,≥

]︃
, (16)

where QK ∈ Rn×n is an invertible coordinate transformation6, the eigenvalues of ÂK,< ∈ Rn1×n1

are in the open left-half plane, and the eigenvalues of ÂK,≥ ∈ Rn2×n2 are in the closed right-half
plane, and n1 + n2 = n. Therefore, the stable and unstable parts in (15) can be expressed as

K< =

[︃
ÂK,< B̂K,<

ĈK,< 0

]︃
, K≥ =

[︃
ÂK,≥ B̂K,≥
ĈK,≥ 0

]︃
, (17)

where ĈK := CKQK and B̂K := Q−1
K BK are partitioned into ĈK =

[︁
ĈK,< ĈK,≥

]︁
, B̂K =

[︃
B̂K,<

B̂K,≥

]︃
with ĈK,< ∈ Rm×n1 , ĈK,≥ ∈ Rm×(n−n1), and B̂K,< ∈ Rn1×p, B̂K,≥ ∈ R(n−n1)×p. We can then
perform a balanced truncation on the stable part K< and get a reduced-order controller K<,r =[︃
Ã<,11 B̃<,1

C̃<,1 0

]︃
, where the order is nr < n1. The final reduced-order controller becomes

Kr = K<,r +K≥ =

⎡⎣ Ã<,11 0 B̃<,1

0 ÂK,≥ B̂K,≥
C̃<,1 ĈK,≥ 0

⎤⎦ (18)

which has order r := nr + n2 < n. For space reasons, we omit a summary of this procedure
here, and summarize it instead in algorithmic form in our full report (Ren et al., 2022). Based
on Theorems 1 and 2, under appropriate conditions, the resulting controller Kr in (18) remains a
stabilizing controller and has a similar LQG cost compared to the original controller K.

5. Any stable transfer function has a balanced minimal realization. For completeness, we review this in (Ren et al., 2022)
6. Since any real-valued matrix can be expressed in a Jordan canonical form, such a transformation QK always exists.
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Algorithm 1 Modal truncation

Require: 1) A controller K with a minimal order-n state-space realization K =

[︃
AK BK

CK 0

]︃
; 2)

the order reduction parameter rred (a positive integer less than k)
1: Convert AK into the standard Jordan normal form AK = diag(A1, . . . , Ak), where each Ai is a

Jordan block of order ni, and
∑︁k

i=1 ni = n. Let λi denote the eigenvalue associated with Ai.
2: Decompose K as K(s) =

∑︁k
i=1Ci(sI −Ai)

−1Bi.
3: For each i, compute

di =

{︄⃦⃦
Ci(sI −Ai)

−1Bi

⃦⃦
H∞

if λi < 0⃦⃦
CiA

−1
i Bi

⃦⃦
2

if λi > 0.
(20)

4: Let oi be the ranking of i based on {di}ki=1, i.e. oi := j if di is the j-th smallest value in {di}ki=1.

5: Set ∆ =
∑︁

i∈[k],oi≤rred
Ci(sI −Ai)

−1Bi.
6: return the reduced order controller Kr := K−∆.

Corollary 1 Consider a minimal n-th order controller K which stabilizes the plant G. Suppose
we obtain an r-th order controller Kr where r < n, such that Kr = K<,r +K≥, where K<,r is a
lower-order balanced truncation of K<. Suppose that Σ<,1 and Σ<,2 in the balanced truncation of
K< share no eigenvalues. If

σnr+1 + · · ·+ σn1 <
1

2∥(I −GK)−1G∥H∞

, (19)

where σnr+1, . . . , σn1 are the diagonal elements of Σ<,2 in the balanced truncation of K<, then the
reduced-order controller Kr internally stabilizes (1), and the resulting LQG cost (5) satisfies

J(Kr) ≤
1(︁

1− ∥X∥H∞
∥∆∥H∞

)︁2 (J(K) + S1 + S2),

where S1 and S2 are defined in (13).

The proof is based on the analysis in Theorem 2. The only difference is that Corollary 1 truncates the
singular values in the stable part Kr and imposes the condition (19), which is the same as condition
(11) in Theorem 2 when applying the bound from (14) in Lemma 4.

5. Controller reduction via modal truncation
In this section, we proceed to discuss controller reduction by modal truncation, which may apply to
the truncation of either stable or unstable component(s) in a controller. In particular, we first apply
modal truncation on the stable part of a controller in Section 5.1, and then discuss the performance
of modal truncation on possibly unstable component(s) for SISO systems in Section 5.2.

5.1. Modal truncation on stable component(s)
The basic idea of modal truncation begins with writing the controller K (3) into K(s) =∑︁k

i=1Ci(sI −Ai)
−1Bi, where Ai contains a mode corresponding to an eigenvalue of λi in K. We

then directly remove some modes that are less significant according the criterion defined in (20). The
detailed steps are listed in Algorithm 1. As a counterpart to balanced truncation, we can derive upper
bounds on the LQG cost when performing modal truncation on the stable part of a controller K.

8
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Corollary 2 Consider a minimal n-th order controller K which stabilizes the plant G. Consider
the decomposition K = K< +K≥ in (15), and suppose we obtain a lower-order approximation
Kr,< of K< using the modal truncation algorithm in Algorithm 1. Let Kr := Kr,< +K≥. Denote
∆ = K< −Kr,<. Suppose that

∥∆∥H∞
<

1

∥(I −GK)−1G∥H∞

. (21)

Then, we have that Kr internally stabilizes G, and the resulting LQG cost (5) satisfies

J(Kr) ≤
1(︁

1− ∥X∥H∞
∥∆∥H∞

)︁2 (J(K) + S1 + S2),

where S1 and S2 are defined in (13).

Since (21) holds, the condition in (7) holds, and it follows from Theorem 1 that Kr internally
stabilizes G. Then, the same calculations in Theorem 2 can show the upper bound on J(Kr).

5.2. Modal truncation on unstable component(s)
Next, we introduce the following result, which studies the LQG cost change when truncating unstable
mode(s) of a controller K, for single-input single-output (SISO) systems.

Theorem 3 (Order reduction of unstable SISO controllers) Consider a minimal n-th order con-
troller K which stabilizes the plant G. Suppose both G(s) and K(s) are univariate rational
polynomial functions (SISO systems). Suppose we obtain an r-order controller Kr via Algorithm 1,
where r < n, where we denote ∆ = K − Kr as in Algorithm 1; note that ∆ may be unstable.
Suppose ∆ has no unstable mode at 0, and⃦⃦⃦⃦

1

1− (1−GK)−1G∆

⃦⃦⃦⃦
H∞

< ∞, (22)

Then, we have that Kr internally stabilizes G, and

J(Kr) ≤
⃦⃦
(1− (I −GK)−1G∆)−1

⃦⃦2
H∞

(J(K) + S1 + S2),

where with the notation Y := (I −GK)−1, X := (I −GK)−1G, we have

S1 :=2∥∆∥L∞
∥X∥H2

∥XK∥H2
+ 2∥KY∥H2

(︁
∥∆∥L2

∥Y∥H∞

)︁
+ 2∥KY∥H2

(︁
∥∆∥L∞

(︁
∥Y∥H2

+ ∥KX∥H2
∥Y∥H∞

+∥KX∥H∞
∥X∥H2

)︁)︁
S2 :=∥∆∥2L∞

∥X∥2H2
+
(︁
∥Y∥H∞

(︁
∥∆∥L∞

∥KX∥H2
+ ∥∆∥L2

)︁)︁2
+ ∥X∥2H2

(︁
∥∆∥L∞

∥KX∥H∞
+ ∥∆∥L∞

)︁2
.

The proof is similar to those of Theorems 1 and 2 but the details are technically involved. We defer
the details as well as a discussion of benefits and limitations to our full report (Ren et al., 2022).

6. Numerical Examples
For space reasons, we defer more extensive simulations, including a comparison of balanced trunca-
tion and modal truncation, to the full report (Ren et al., 2022).

6.1. Scaling effect of ∥∆∥H∞
.

We study how the performance gap behaves as a function of the size of the truncated component. For
this analysis, we (randomly) generate five stable and minimal SISO systems of order 4 (which we
denote as K(1)

r ,K
(2)
r ,K

(3)
r ,K

(4)
r ,K

(5)
r ) and augment the system by adding a stable mode ∆, where

∆=

[︃
−1

√
ϵ√

ϵ 0

]︃
.
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Figure 1: Relationship between LQG cost gap
J(Kr) − J(K) and the H∞ norm of the
truncated component.

For each i ∈ [5], we denote the augmented sys-
tem as K(i) := K

(i)
r + ∆. We then generate

a stabilizing controller, G(i), which stabilizes
K(i). Viewing G(i) as the system plant, we then
compare the LQG cost of K(i) and K

(i)
r on the

system G(i), as the H∞ norm of the truncated
component, i.e. ∥∆∥H∞

, varies (to be precise,
we plot 30 ∆’s, each corresponding to a dif-
ferent ϵ, where we let ϵ range (equally spaced)
between 0.0001 and 0.05). As seen in Figure 1,
for the five set of controllers, there is a linear
relationship (with different slopes) between the

LQG cost gap ratio J(K
(i)
r )−J(K(i))

J(K(i))
and the H∞

norm of the truncated component, i.e. ∥∆∥H∞
;

this is consistent with the upper bound on J(Kr)
in Theorem 2.

6.2. Truncating unstable mode(s)
We here consider an example to illustrate Theorem 3. Consider the following plant G

G =

⎡⎢⎣
[︄−5.86 −9.50 0.56

1 0 0
0 1 0

]︄ [︄
1
0
0

]︄
[−7.18 −25.61 −8.41] 0

⎤⎥⎦ ,

It can be verified that the controller K =

[︃
AK BK

CK 0

]︃
, with

AK=

⎡⎣1.37 0 0
0 −0.37 0
0 0 0.34

⎤⎦ , BK=

⎡⎣0.190.04
0.04

⎤⎦ , CK=

⎡⎣ 3.79
4.14
−1.57

⎤⎦T

.

internally stabilizes G. Applying Algorithm 1, we obtain an order 2 controller Kr, which removes
the last (unstable) mode of AK, with an unstable truncated component ∆ taking the form ∆ =[︃

0.34 0.04
−1.57 0

]︃
, which satisfies the bound (22). Thus, Theorem 3 guarantees that the reduced-

order controller Kr still internally stabilizes the plant. Indeed, numerical computation shows that the
LQG cost of the original controller, J(K), is 343.2, while the LQG cost of the truncated controller,
J(Kr), is 58.2. In this case , modal truncation not only yields a stabilizing lower-order controller,
but also a cost of lower LQG cost.7

7. Conclusion
We have presented controller reduction for general non observer-based controllers using balanced
and modal truncation. For SISO systems, we demonstrate how LQG control may be performed even
when there are no stable components in the controller. We hope our work will be useful not only for
policy optimization in LQG control but also for the controller reduction community. Two interesting
future directions are 1) extending truncation of unstable modes to MIMO systems and 2) applying
the results to escape saddle points in the LQG policy optimization (Zheng et al., 2022).

7. For this instance, the theoretical upper bound in Theorem 3 is significantly larger than the original cost.
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