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Abstract

Transformers hold tremendous promise in solving
offline reinforcement learning (RL) by formulat-
ing it as a sequence modeling problem inspired by
language modeling (LM). Prior works using trans-
formers model a sample (trajectory) of RL as one
sequence analogous to a sequence of words (one
sentence) in LM, despite the fact that each trajec-
tory includes tokens from three diverse modalities:
state, action, and reward, while a sentence contains
words only. Rather than taking a modality-agnostic
approach which uniformly models the tokens from
different modalities as one sequence, we propose a
multimodal sequence modeling approach in which
a trajectory (one “sentence”) of three modalities
(state, action, reward) is disentangled into three
unimodal ones (three “sentences”). We investigate
the correlation of different modalities during se-
quential decision-making and use the insights to
design a multimodal transformer, named Decision
Transducer (DTd). DTd outperforms prior art in
offline RL on the conducted D4RL benchmarks
and enjoys better sample efficiency and algorithm
flexibility. Our code is made publicly here.

1 INTRODUCTION

Reinforcement learning (RL) has been formulated as a se-
quential decision-making problem with wide applicability
in areas such as strategy games Ye et al. [2020], Vinyals
et al. [2019], robotics [Zeng et al., 2021, Agarwal et al.,
2022], and self-driving [Bojarski et al., 2016, Chen et al.,
2020]. Often, collecting data from online interactions can
be costly or risky. To address the data acquisition challenge,
offline RL seeks to learn an optimal policy by leveraging a
pre-collected dataset, without online interactions Fujimoto
et al. [2019], Kumar et al. [2019], Wu et al. [2019]. Conven-

tionally, offline RL is approached similarly to online RL via
temporal difference (TD) learning [Sutton and Barto, 2018].
While a wide literature Fujimoto et al. [2019], Kumar et al.
[2019], Wu et al. [2019] has investigated how to leverage TD
learning to solve offline RL, many of these methodologies
differ in their model architecture and objectives.

Recently, transformers [Vaswani et al., 2017] have achieved
remarkable success in language modeling (LM) [Radford
et al., 2018, Kaplan et al., 2020] by using a temporal trans-
former [Radford et al., 2019] to learn the distributions of
concepts given sequential inputs (i.e. sentences). Since sam-
ples in offline RL (i.e., trajectories) are also sequential, it
is natural to formulate offline RL as a sequence modeling
problem [Chen et al., 2021, Janner et al., 2021] and lever-
age a temporal transformer to model the distributions of
the behaviors within the pre-collected dataset, built on the
architectural advances in LM. In contrast to TD methods
[Fujimoto et al., 2019, Kostrikov et al., 2021] that tackle
offline RL with multiple components and objectives, a sin-
gle temporal transformer with a behavior cloning objective
achieves surprisingly competitive and promising results [Ko-
nan et al., 2022, Yamagata et al., 2022, Sudhakaran and Risi,
Wang et al., 2022, Xu et al., 2022].

However, prior works with transformers [Janner et al., 2021,
Chen et al., 2021] have not examined one major difference
between offline RL and LM: their sequential inputs are
inherently different in terms of modality. Specifically, the
transformers in LM regard a sentence as a unimodal se-
quence where every token belongs to one consistent modal-
ity. In contrast, offline RL includes a multimodal sequence
includes three distinct modalities: state, action, and reward
(return). Inspired by recent developments in robotics where
a sequential input involving observations, actions, and goals
are regarded as a multimodal sequence (see more detailed
discussions in the related work in Section 2), we hypothesize
that:

When treating offline RL as a sequence modeling task, it is
beneficial to take a multimodal approach.
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Offline RL via Multimodal Sequence Modeling? Be-
fore starting to design a multimodal transformer for offline
RL, we first investigate the importance of the multimodal
interactions that took place within the prior transformers
(e.g. the Decision Transformer (DT) [Chen et al., 2021]).

Our findings suggest that some interactions between modal-
ities are more weighted than others (shown in Figure 1),
according to the attention map of DT. Therefore, we capi-
talize on the important interactions of these modalities to
design our multimodal transformer for better performance
(a detailed discussion will be provided in Section 4.2). The
main contributions are as follows:

1. To obtain heuristics for multimodal architecture design,
we first quantify the cross-modal and intra-modal in-
teractions in the sequential decision-making process
(Section 4.2), by aggregating and analyzing the last-
layer attention scores of DT.

2. Using the heuristics from multimodal quantification
in Section 4.2, we propose a multimodal transformer
called Decision Transducer (DTd)1, which outperforms
prior art and enjoys better sample efficiency on the
D4RL [Fu et al., 2020] offline RL benchmarks.

3. Due to the multimodal design, DTd is more efficient
and flexible in leveraging diverse types of task goals,
such as long-term return, targeted physical locations,
and the value function over states, with comparisons
to prior arts (e.g., DT).

2 RELATED WORKS

Transformers for Offline RL. The popular model-free
DT achieves promising results on the D4RL benchmark by
offering return-conditioned sequence modeling for offline
RL [Fu et al., 2020]. Based on DT’s formulation, ConDT
[Konan et al., 2022] further improves DT’s performance
by introducing contrastive objectives to learn more dis-
criminative representations. Instead of return-conditioning,
other works of DT replace return by state distributions [Sud-
hakaran and Risi] or value function [Yamagata et al., 2022]
to tackle the sparse reward scenarios. Alternatively, popu-
lar model-based Trajectory Transformer (TT) [Janner et al.,
2021] fully exploits the power of autoregressive sequence
modeling by learning both the policy and the dynamic model
simultaneously. Not only does such an ability facilitate look-
ahead planning, but it can also be used to bootstrap TT
simulated data to improve coverage [Wang et al., 2022].

1DTd doesn’t have a “Transducer” objective, which is a se-
quence alignment objective proposed by Graves [2012]. The
“Transducer” here is to give credit to Transformer Transducer
[Zhang et al., 2020] and its neural biasing variant [Chang et al.,
2021], which motivates DTd’s architecture design.

Intra-modal attentions
Cross-modal attentions

Figure 1: Importance of Modality Interactions. On the
hopper domain with medium-expert dataset [Fu et al., 2020],
attention scores with respect to different types of modality
interactions from the last layer of a Decision Transformer
(DT) [Chen et al., 2021] are aggregated across one episode.
After normalizing scores into percentages, it is observed that
DT generally pays more attention to cross-modal (orange)
interactions (60%) compared to intra-modal (blue) interac-
tions (40%). Therefore, we design a multimodal transformer
to exploit the modality importance discovered by DT (see-
Section 4.2 for details) to enable more effective multimodal
sequence modeling.

Multimodal Transformers for Robotics. Transformers
for robotics usually adopt multimodal designs because the
input involves complex visual observations and sophisti-
cated robot actions. Besides, the agent may be given abstract
goals (e.g., language instruction) [Shridhar et al., 2022, Bro-
han et al., 2022, Pashevich et al., 2021, Guhur et al., 2022,
Lynch et al., 2022] instead of a scalar return. The multi-
modal architecture enables agents to process observations,
actions, and language instructions from different modalities.

3 PRELIMINARIES

Offilne Reinforcement Learning (RL). RL is often for-
mulated as sequential decision-making via the framework
of Markov Decision Processes (MDPs), which could be
described by a tuple (S,A, T ,R, γ). At each timestep t,
an agent will experience state st ∈ S and execute an ac-
tion at ∈ A, where S is the state space and A denotes
the action space. T is a transition function such that an
agent will be exposed to a new state at timestep t + 1
with a probability of 0 ≤ T (st+1|st, at) ≤ 1. A reward
will be given by the reward function rt = R(st, at) for
each timestep. Given a discount factor γ ∈ [0, 1) and a
horizon length of T , a discounted return R at timestep
t is defined by: Rt =

∑T
t′=t γ

t′−1rt′ . The goal is to
find a policy π(at|st) that maximizes the objective J =

Eat∼π(·|st),st+1∼T (·|st,at)[
∑T

t γt−1rt].

While online RL allows one to collect data (st, at, rt, st+1)
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Figure 2: Decision Transducer (DTd) Overview. We leverage the modality importance discovered by DT’s attention
mechanism to develop DTd’s architecture. We arrange more important modality interactions recognized by DT in higher
layers of DTd and less important ones in lower layers. We list the modality involved in each layer and the operation to
incorporate different modalities into the multimodal decision-making at the right side of the plot, grouped by (a), (b), (c),
and (d). More connections between modality importance and DTd’s choice of input modality are discussed in Section 4.2.

through online interactions, offline RL does not allow a pol-
icy to interact with the environment and generally learns
from a fixed dataset D pre-collected by an inaccessible be-
havior policy πb. In this work, we train a policy π on a
dataset D = {τi}Ni=1 with a number of N pre-collected tra-
jectories. Here, each trajectory is the result of the interaction
with the environment via the behavior policy πb, in the form
of τi = {(st, at, rt, st+1)}Tt=1.

4 DECISION TRANSDUCER

In this section, we first compare our multimodal formulation
to DT’s predecessor (Section 4.1), quantify the importance
of different modalities derived from DT’s attention map
(Section 4.2), and finally explain the connections between
the results of our multimodal quantification to the design of
DTd’s architecture (Section 4.3).

4.1 MULTIMODAL SEQUENCE MODELING

According to the sequence modeling formulation proposed
by DT Chen et al. [2021], each trajectory τ of length T
within an offline dataset D is transformed into a sequence
τ = (R1, s1, a1, ..., RT , sT , aT ) where Rt =

∑T
t′=t rt′ is

an un-discounted return (known as return-to-go in Chen
et al. [2021]). Given the similarity between sequence model-
ing and language modeling, a model-free decision-making
transformer such as DT only needs an autoregressive ob-
jective logPθ(at|τ<t) derived from LM, where τ<t =
(R1, s1, a1, ..., Rt, st).

However, a trajectory is inherently multimodal including
states, actions, and returns. Our formulation aligns better

with the multimodality of the input space by considering
a trajectory as three sequences, including state sequence
s1:T , action sequence a1:T , and return sequence R1:T . To
facilitate multimodal decision-making, each unimodal se-
quence will be processed separately and fused selectively
logPθ(at|R≤t, s≤t, a<t).

4.2 MULTIMODAL QUANTIFICATION

To guide our multimodal design, a multimodal quantification
on DT was conducted on medium-expert data of hopper
environment [Fu et al., 2020], where the DT has its last-
layer attention maps logged and analyzed.

Within the attention map, there are 9 types of interactions
between modalities since DT takes a tri-modal input includ-
ing returns, states, and actions. After aggregating symmetric
cross-modal attention scores (e.g. return-state, state-return)
together, the scope of analysis is narrowed down from 9
to 6 types of interactions. It is noticed that DT pays more
attention to cross-modal interactions (orange colorbar in
Figure 1) than intra-modal interactions (blue colorbar in
Figure 1). Following are our findings:

1. State-state interaction is more important (26%) than
other intra-modal interactions during decision-making.

2. Cross-modal interactions are more important (60%)
than intra-modal interactions (40%).

3. Different cross-modal interactions are weighted differ-
ently in DT’s decision-making.

3.1 State-action interaction is the most salient among
cross-modal interactions (23%).



3.2 Return-state (20%) and return-action (17%) in-
teractions also play important roles in decision-
making.

Our high-level design heuristics is that less important in-
teractions between modalities should be processed before
important ones during representation learning, ensuring the
representation learning with the most important interactions
involves minimum distraction.

With our findings and heuristics above, we start by plac-
ing all intra-modal interactions before cross-modal inter-
actions (cf. (b) before (c,d) in Figure 2) hierarchically. As
the state-state interaction is identified as the most impor-
tant intra-modal interaction within the multimodal input, we
disentangle it from other modalities and let an ad-hoc state
encoder handle it (cf. the state encoder shown in Figure 2,
row (b) ). The expectation is to refine state representation by
intra-modal attention without distraction from other modali-
ties. After intra-modal interactions are applied, we arrange
less important cross-modal interaction with respect to our
findings below more important cross-modal interaction, as
illustrated in (c,d) in Figure 2. As a result, all interactions be-
tween modalities within the model are ranked with respect
to their importance in multimodal decision-making.

4.3 ARCHITECTURE DESIGN OF DTD

Putting all the design heuristics together, DTd predicts ac-
tions following the procedure below:

1. Modality encoders refine unimodal representations
via intra-modal interactions after applying modality
disentanglement to the input trajectory (finding 1).

2. Biasing layer learns bias-to-goal for each non-goal
modality by applying cross-modal attention to the goal
and non-goal modalities (findings 2 and 3.2).

3. Combiner reminds the transformer about its goal by
combining the bias-to-goal into the decision-making
via additive fusion (findings 2 and 3.2).

4. Joint encoder fuses the most fundamental modalities
for the final decision-making (finding 3.1).

An overview of DTd is shown in Figure 2. Data pre-
processing and each component of the model will be ex-
plained in the following subsections.

Data Pre-Processing. We follow pre-processing and for-
mulation proposed by Chen et al. [2021]. However, we
denote a tri-modal trajectory in a more general way τ =
(G1, s1, a1, ..., GT , sT , aT ) which we replace Rt by Gt, de-
noting the desired outcome or goal of the task. In the reward-
dense setting, Gt = Rt but Gt could also become a goal
position or learned state-value function in a sparse-reward

setting. Specifically, we first disentangle the tri-modal tra-
jectory of length T into three unimodal sequences as

G1:T , s1:T , a1:T = τ. (1)

Then, we let modality-specific embedding layers transform
tokens from different modalities into the same dimension
and add 2 types of embeddings:

hG = fG
emb(G1:T ) + Eτ + EG,

hs = fs
emb(s1:T ) + Eτ + Es,

ha = fa
emb(a1:T ) + Eτ + Ea. (2)

Specifically, Eτ is the time embedding with respect to the
time horizon of the trajectory, and modality embeddings —
including EG, Es, and Ea — are used to encourage DTd
to be aware of the multimodal input.

Modality Encoder. After tokens from different modalities
are embedded into the same dimension, we apply modality-
specific encoders fenc and obtain

HG, Hs, Ha = fG
enc(h

G), fs
enc(h

s), fa
enc(h

a) (3)

to refine representation. Each fenc is a 3-layer transformer
encoder proposed by Vaswani et al. [2017] but with layer-
norm applied before the self-attention. Due to the sequence
modeling formulation, DTd is autoregressive such that fenc
takes a causal attention mask (i.e., temporal transformer)
to avoid leaking future information to the model similar to
Chen et al. [2021].

Biasing. After refining representation and encouraging intra-
modal interactions with fenc, DTd learns bias-to-goal to bias
high-level decision-making towards the task’s goal. Specifi-
cally, a cross-attention layer [Vaswani et al., 2017] is applied
to 2 different modalities where keys and values come from
the goal modality (denotes as HG in Figure 2) by applying
trainable matrices fk, fv , and similarly, queries come from
non-goal modalities need to be biased such as states and
actions (Hs, Ha in Figure 2) by applying trainable matrix
fq , represented by:

Q1,K1, V 1 = fq1(H
s), fk1(H

G), fv1(H
G),

Q2,K2, V 2 = fq2(H
a), fk2

(HG), fv2
(HG). (4)

Finally, the bias-to-goal considering goal and non-goal
modalities (state or action) will be learned by applying the
attention layer on the learned queries, keys, and values as
below:

HG
s = Attention(Q1,K1, V 1),

HG
a = Attention(Q2,K2, V 2). (5)

Combiner. The next step is to fuse the bias-to-goal into
the non-goal modality so that the action prediction is biased
toward the goal of the task. DTd leverages additive fusion
within Combiner to fulfill this requirement.



The additive fusion for each non-goal modality (Hs, Ha) is
implemented by projecting the representation and its bias-
to-goal (HG

s , HG
a ) into a new hidden space, as shown below

Hs′ = GELU(Ws
1H

s + Ws
2H

G
s )Ws

3,

Ha′
= GELU(Wa

1H
a + Wa

2H
G
a )Wa

3 . (6)

We expand the dimensions of Hs, HG
s , HG

a , and Ha 2
times with linear layers W1,W2, followed by an activation
function GELU [Hendrycks and Gimpel, 2016]. Lastly, we
project the representation back to the original dimension of
the model hidden state with another linear layer W3.

The reason to apply additive fusion instead of a more com-
plicated multiplicative fusion [Jayakumar et al., 2020] is
that adding information has become the widely-adopted
practice to remind transformers about something important.
For example, a standard practice to help the transformer
to be aware of positional information within a sequential
input is by adding positional embedding [Vaswani et al.,
2017]. Similarly, to help a transformer to distinguish dif-
ferent modalities within a sequential input, modality-type
embedding is usually added to the input [Bao et al., 2021,
Kim et al., 2021]. In our case, to remind high-level DTd
layers about the goal of the task, we choose to fuse the bias-
to-goal into the representation with an additive operation.

Joint Encoder. We decide to let biased states Hs′ and bi-
ased actions Ha′

interact before DTd makes a decision
(finding 3.1 in findings 4.2). We first interleave 2 sequences
of length T from 2 combiners into 1 sequence as

Hjoint = {(Hs′

t , Ha′

t )}
T

t=1. (7)

Secondly, a 1-layer temporal transformer named Joint net
fjoint_enc similar to fenc will be applied on the joint repre-
sentation Hjoint, leading to

Hjoint_enc = fjoint_enc(H
joint). (8)

The Joint net will encourage the most important cross-modal
interaction state and action to interact with each other.

Finally, the action prediction is made on the representation
belonging to states Hs′′

t . In particular, Hs′′

t is disentangled
from Hjoint_enc and a prediction head fpred is applied on
top to predict action, summarized as follows

{(Hs′′

t , Ha′′

t )}
T

t=1 = Hjoint_enc,

a1:T = fpred(H
s′′

1:T ). (9)

We provide an architecture comparison table in supplement
materials to highlight the difference between DTd and DT
in terms of architecture design. In short, DT’s decision back-
bone is the joint encoder of DTd but with a tri-modal se-
quential input instead of a bi-modal sequence learned from

3 unimodal sequences. Besides, DTd attaches several com-
ponents before the joint encoder to reflect the multimodal
nature of a trajectory. In Section 5.3, we found these com-
ponents are crucial for good performance.

5 EVALUATIONS AND DISCUSSIONS

In this section, we evaluate the experimental performance of
DTd over the offline RL D4RL benchmark [Fu et al., 2020]
and analyze from the following perspectives:

1. Effectiveness of the proposed DTd compared to DT
when leveraging different types of task goals as the
input, such as long-term return, value function over
states, and targeted physical positions.

2. The ablation study of the architecture components and
input modalities.

3. Pros and cons brought by the explicitly modeled goal
after modality disentanglement.

To facilitate the future work and reproducibility, our code is
made publicly via github 2.

5.1 EXPERIMENTAL PERFORMANCE

Datasets. We conduct experiments over MuJoCo locomo-
tion tasks including hopper, halfcheetah, and walker2d for
evaluation. For each task, we use three different levels of
history datasets (i.e., medium-expert, medium, and medium-
replay) in the D4RL benchmark [Fu et al., 2020] that are
different in data collections and sizes.

Baselines. We compare with several kinds of baselines that
are widely used in offline RL. Specifically, the baselines
including 1) behavior cloning (BC, scores taken from Chen
et al. [2021] ); 2) multiple state-of-the-art Temporal Differ-
ence (TD) methods such as CQL[Kumar et al., 2020] and
IQL [Kostrikov et al., 2021] (scores taken from [Kostrikov
et al., 2021]); DT Chen et al. [2021], as the model-free trans-
former baseline, which has a similar formulation as ours
but not from a multimodal perspective, we select DT; and
finally two planning-based methods including Trajectory
Transformer (TT) [Janner et al., 2021] and Diffuser [Janner
et al., 2022], used to evaluate the competitiveness of DTd
as a multimodal model-free counterpart.

DTd is more sophisticated than DT due to the multimodal
design and has about 2.5M parameters whereas the original
DT has about 0.7M parameters. Therefore, in order to pro-
vide a fair comparison between DT and DTd, we present
DT-large, a variant of DT with a larger amount of parameters.
DT-large is designed to match DTd not only in terms of total
parameters but also in terms of capabilities. DT-large has

2https://github.com/berniewang8177/
Official-codebase-for-Decision-Transducer/
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Table 1: D4RL Locomotion Performance. We evaluate DTd and other offline RL transformers (DT, TT) by reporting the
mean and standard deviation of normalized scores across 12 seeds (4 independent models and 3 evaluations for each). The
methods reproduced by ourselves using the protocol above are highlighted with *. DTd achieves competitive results across
environments and datasets on average. Note that TT and Diffuser require to forward the model multiple times to plan ahead
for competitive performance while DTd requires 1 forward pass only without planning thanks to its multimodal designs.

Dataset Environment No Planning Planning
BC CQL IQL DT* DT-large* DTd (Ours) TT* Diffuser

Medium-Replay
Hopper 27.6 95.0 94.7 55.2±18.4 75.9±4.6 91.2±6.8 82.6±6.9 96.8

Walker2d 36.9 77.2 73.9 59.2±12.8 62.4±11.6 81.8±3.0 71.5±10.9 61.2
HalfCheetah 4.3 45.5 44.2 33.3±3.1 33.6±4.6 41.4±0.8 44.3±1.3 42.2

Medium
Hopper 63.9 58.5 66.3 67.8±5.8 62.9±11.0 57.4±4.2 60.0±5.1 58.5

Walker2d 77.3 72.5 78.3 77.8±4.4 61.7±13.0 78.8±3.8 70.4±20.2 79.7
HalfCheetah 43.1 44.0 47.4 42.9±0.4 42.5±0.4 42.7±0.3 46.2±1.4 44.2

Medium-Expert
Hopper 79.6 105.3 91.5 110.6±1.7 95.2±16.0 112.5±1.2 82.2±16.8 107.2

Walker2d 36.6 108.8 109.6 100.6±10.8 100.3±12.0 109.0±0.4 105.2±3.52 108.4
HalfCheetah 59.9 91.6 86.7 83.2±3.0 77.7±9.0 92.1±0.7 90.2±7.2 79.8

Average 47.7 77.6 77.0 70.1 68.0 78.5 72.5 75.3

Table 2: Leveraging Diverse Types of Goals. DTd can
more effectively leverage state value (-V) or goal position
(-goal) in the D4RL AntMaze domain compared to DT
when returns based on dense rewards are not available. The
scores reported are the average across 40 evaluations (4
independent models with different training seeds and 10
evaluations for each with different evaluation seeds).

Dataset DT-goal DTd-goal (Ours) DT-V DTd-V (Ours)

Umaze-v0 67.5 ± 18.0 55.0± 21.0 75.0 ± 15.0 67.5 ± 15.0
Umaze-diverse 67.5 ± 16.4 57.5 ± 14.8 60.0 ± 18.7 62.5 ± 21.7
Medium-play 0.0 ± 0.0 22.5 ± 11.0 10.0 ± 7.1 40.0 ± 8.2

Medium-diverse 0.0 ± 0.0 32.5 ± 13.0 15.0 ± 15.0 57.5 ± 8.3

Average 33.8 41.9 40 56.9

4 layers (analogous to DTd 3-layer encoder + 1 Joinet net)
and has 3 attention heads (analogous to 3 1-head modality
encoders of DTd). We also raise the dimension of represen-
tation to increase its total parameters. While DT in Table 1
refers to the DT with the original hyper-parameters evalu-
ated with our protocol, DT-large is a DT with about 2.4M
parameters. Detailed comparisons of hyper-parameters and
training details between DT-large and DTd can be found in
the supplement materials.

All transformer-based approaches, including DT, DT-large,
DTd, and TT, are evaluated by reporting average and stan-
dard deviation (std) across 4 runs, where each run has a
different training seed and is evaluated with 3 different
seeds. Scores are normalized by the performance of expert
and random policy according to the instruction from D4RL
[Fu et al., 2020]. During the evaluation, DTd uses the same
initial Rt as the DT implemented by Chen et al. [2021]. We
highlight the methods reproduced by ourselves using the

protocol above with * in Table 1.

Performance results. As shown in Table 1, DTd outper-
forms its modality-agnostic predecessor DT and other meth-
ods, including TD and planning-based methods. While TD
methods required to design different networks including
actor, critic, target network and complicated objectives [Fu-
jimoto et al., 2019, Kostrikov et al., 2021, Kumar et al.,
2020], DTd only requires a uniform network architecture
(stacking transformer blocks) and a simple behavior cloning
objective. While a planning-based method such as TT or
Diffuser requires unrolling a full model multiple times dur-
ing deployment, DTd is capable to achieve model-based
method performance without unrolling a dynamic model,
which shows its potential application in real-time decision-
making problems.

5.2 EFFECTIVENESS WITH DIVERSE GOALS

To evaluate whether DTd could effectively leverage goals
other than Rt, we choose the AntMaze navigation task
from D4RL [Fu et al., 2020] and challenge DTd with other
types of goals including state value, and goal position. In
AntMaze, an agent receives a reward of 1 only if it reaches
the goal position within the maze and 0 in most cases. Such
a sparse-reward setting makes an episodic return binary and
less useful to prompt the model for action sequence genera-
tion. Therefore, leveraging other types of goals effectively
in AntMaze becomes critical for good performance.

State Value as Gt. As a first step, we evaluate the ability of
DT and DTd to leverage state value by training an IQL agent
on every dataset and using its state value to represent the
task’s goal. This concept is similar to the Q-function guided



Table 3: Ablation on the architecture. To justify our architecture design, we compare DTd to its variants by removing the
cross-modal interactions introduced by the Biasing-Combiner layer within DTd everywhere (DTd-zero), left (DTd-left),
or right (DTd-right). The most important finding is that all cross-modal interactions we selected are necessary for good
performance (DTd VS. DTd-left/right). Interestingly, while DT-large has access to all cross-modal interactions, DTd-left
still outperform it on average by leveraging a number of limited and but essential cross-modal interactions.

Dataset Environment BC DT-large DTd-zero DTd-left DTd-right DTd

Medium-Expert
Hopper 79.6 95.2±16.0 89.8±16.8 108.3±6.0 109.4±4.4 112.5±1.2

Walker2d 36.6 100.3±12.0 107.7±0.4 108.8±0.2 108.1±0.3 109.0±0.4
HalfCheetah 59.9 77.7±9.0 58.8±0.6 91.2±0.8 91.9±0.5 92.1±0.7

Medium-Replay
Hopper 27.6 75.9±4.6 16.8±2.8 81.6±5.1 33.3±25.6 91.2±6.8

Walker2d 36.9 62.4±11.6 34.0±16.4 44.8±30.5 20.6±12.0 81.8±3.0
HalfCheetah 4.3 33.6±4.6 31.3±9.8 36.1±9.7 38.4±4.9 41.4±0.8

Average 41.3 74.2 56.4 78.4 67.0 88.0

Table 4: Ablation on the modality order. In the current
DTd, state, goal (e.g. return), and action (S-G-A) are input
modality from left to right. In order to meet our design
heuristics, it provides states and actions as inputs to the
Joint net where goals are placed in the center. Our result in
Table 4 shows that any order who fails to provide the state-
action interaction required by our heuristics will lead to bad
model performance. Our discussion discards one order from
a pair of symmetric order (e.g. S-G-A, A-G-S) since DTd is
symmetric. More insights on the input order and heuristics
are provided in the Section 5.4.

Dataset Environment S-G-A (current) S-A-G A-S-G

Medium-Expert
Hopper 112.5±1.2 5.1±1.4 5.0±1.3

Walker2d 109.0±0.4 0.9±0.9 0.8±0.2
HalfCheetah 92.1±0.7 2.1±0.03 2.1±0.1

Medium-Replay
Hopper 91.2±6.8 5.3±1.4 4.1±0.9

Walker2d 81.8±3.0 1.0±0.1 1.0±0.1
HalfCheetah 41.4±0.8 2.1±0.09 2.25±0.1

Average 88.0 2.7 2.5

planning of TT [Janner et al., 2021] such that the state value
specifies the desired outcome (goal) of the model.

Goal Position as Gt. In addition to using a state value that
provides a return-like scalar as Gt, we further challenge
DTd and DT to condition the goal position of the maze.
Specifically, Gt becomes the 2D position of the agent at
timestep t concatenated with the goal position. To encourage
useful hidden space, we ask DT and DTd to predict the
2D position (waypoint) 3 steps away from the current 2D
position as an auxiliary task. For DT, this is implemented by
using an extra prediction head to predict waypoints based on
Gt’s representation from the last layer. For DTd, we apply
the prediction head right above the modality encoder for the
goal representation (not the joint encoder).

Results. We show the results in Table 2. The mean and std
of the success rate across 4 runs are reported where each run
is trained with different training seeds and evaluated with

10 different seeds. All methods are evaluated on 2 types of
maze (Umaze, medium) with 3 types of datasets (Umaze-
v0, play, diverse) from the D4RL. The DT-large and DTd
variants with a value function have a suffix of V. The variant
of DT-large and DTd with auxiliary waypoint prediction
and goal position as input has a suffix of goal.

When replacing Gt with the concatenation of goal position
and 2D position, only DTd-goal can reach the goal position
and gain reward in the medium domain across 2 types of
datasets, whereas DT-goal fails to solve the medium do-
main entirely. The advantage of DTd might be due to its
architecture, which allows it to learn future-related (3 steps
away waypoint) latent representation to affect the high-level
decision-making while DT-goal is only able to apply such
an auxiliary task at the last layer of the model, affecting the
latent representation less effectively.

In Umaze tasks, DTd does not seem to offer any obvious
advantages over DT. Umaze domains require a trivial U-
shape solution in order to reach a goal position from a
starting point, whereas DTd models require a waypoint
prediction within the model (on top of the goal encoder) to
affect latent representations, which may be overkill.

In the setting where the goal is represented by the state
value, both DT and DTd are capable of solving the problem,
but DTd-V shows better performance on average across
environments and datasets. Credit should be given to the
explicit representation of goals, which prompts the model
to recall action sequences in an effective manner.

5.3 ABLATION ON THE ARCHITECTURE

In DTd’s architecture, the biasing and combiner layers selec-
tively introduce different types of cross-modal interactions,
including state-return interaction and action-return inter-
actions suggested by our design heuristics. We conducted
ablation studies on these cross-modal interactions to better
understand the role of them in multimodal decision-making



Figure 3: Sample efficiency. We plot the evaluation curve of our DTd against DT-large throughout the training across 4 runs.
To reach DT-large’s performance, DTd only requires 50% or less amount of gradient steps. In the end, DTd achieves not
only better performance but also smaller variance across multiple runs and many evaluations. We provide evaluation curves
for all environments in the supplement materials.

Figure 4: Robustness. To study whether DTd is robust to the out-of-distribution (OOD) goal at test time, we varied the
target return (goal) at test time from in-distribution return to OOD return (target return higher than the max return logged in
the dataset). Notice that if the target return is no more than 1.2x of the max return logged in the dataset, DT and DTd could
both achieve extrapolation. However, DTd is more vulnerable to unrealistically target returns that are 1.2x larger than the
max trajectory return logged within the dataset since the negative effect created by OOD return will be cascaded into the
final decision-making after the biasing layer (additive fusion).

and show the results in Table 3.

We provide 3 variants of DTd in this ablation study:

1. DTd-zero has biasing layers, combiner layers, and goal
encoder removed. It is a simple behavior cloning model
taking bi-modal inputs including states and actions.

2. DTd-left only applies biasing and combiner layers for
state representation. All modality encoders exist.

3. DTd-right only applies biasing and combiner layers
for action representation. All modality encoders exist.

4. DTd is the complete model drawn in the Figure 2.

The score reported in Table 3 follows the same protocol as in
Table 1. We selected the medium-expert dataset where DTd
yields the best result. If important designs are removed from
the model, we expect to observe a performance reductions.
Additionally, we include the medium-replay dataset for ab-
lation. A removal of Biasing-Combiner at either side (DTd-
left/right) of DTd should result in a more significant degra-
dation in performance compared with medium-expert. Since
DTd heavily relies on bias-to-goal from Biasing-Combiner
to recall suitable trajectory to fulfill the task goal, a diverse
dataset with varies goals will further verify the role of a
Biasing-Combiner layer within the DTd.

Table 3 shows that DTd-zero performs worse than DTd.
This observation verifies the importance of cross-modal

interaction again, as aforementioned in Section 4.2. Losing
cross-modal interaction from both sides of the model results
in DTd-zero strictly performs worse than DTd. Since DTd-
zero still includes the most important cross-modal attention
(state-action) at Joinet net, it makes DTd-zero outperforms
BC on average.

When we compare DTd-left and DTd-right to DT-large as
shown in Table 3, we found DT-large has no significant
advantages in terms of performance (DTd-left even out-
performs DTd-large on average). This observation is inter-
esting because both DTd-left and DTd-right are restricted
to a limited number of cross-modal interactions yet occa-
sionally outperform DT-large which leverages all possible
intra-modal and cross-modal interactions by self-attention
at every layer. Therefore, we argue that modality-agnostic
design (e.g. DT) creats ineffective cross-modal interactions
via self-attention at every layer while receiving marginal
benefits in terms of performance.

As expected, leveraging all necessary cross-modal interac-
tions (DTd) leads to the best performance compared to lever-
aging representations derived from restricted cross-modal
interactions (DTd-left, DTd-right). Additionally, since DTd
is strictly better than DTd-left and DTd-right, we believe
that return-state and return-action interactions are comple-
mentary in multimodal decision-making.



5.4 ABLATION ON THE MODALITY ORDER

In addition to justifying the heuristics behind DTd’s archi-
tecture design in Table 3, we show that the design heuristics
of DTd suggest the best order for DTd’s modalities. In Sec-
tion 4.2, state-action cross-modal interactions are prioritized
over less important cross-modal interactions. Therefore, the
current DTd has an input order of state, goal, and action
(S-G-A) so that the Joint net takes the biased state and action
with respect to the goal encoder in the center. Different from
the current S-G-A setting, our ablation experiment tests DTd
variants without placing goal modality in the center includ-
ing S-A-G and A-S-G. As a result, the Joinet net no longer
takes the state and action representation required by our
heuristics. Note that our discussion below will ignore one
order of a pair of symmetric order since DTd’s architecture
is symmetric. For example, we ignore A-G-S (i.e., S-G-A),
G-A-S (i.e., S-A-G), and G-S-A (i.e., A-S-G). Specifically,
we argue that an order which fails to offer a biased state and
action to the Joint net will suffer from performance degra-
dation, which is revealed in Table 4. While S-A-G offered
a biased state and goal to the Joint net, A-S-G presented
biased action and goal to the Joint net. Neither of them are
presenting the most important cross-modal interaction to
the Joint net as S-G-A does. As a result, they both have bad
performance as we expected.

5.5 PROS & CONS OF DISENTANGLEMENT

On medium-expert datasets, we plot 100 evaluations of DTd
and DT-large for MuJoCo locomotion tasks. DTd is more
sample efficient than DT, as shown in Figure 3. In gen-
eral, DTd achieves a higher average score with a smaller
variance and consuming at least 50% fewer gradient steps.
Since DTd includes cross-modal interactions only when
necessary, confusion in decision-making is reduced due to
de-entanglement at input. We found that DTd’s sample ef-
ficiency is less evident when trajectories are of variable
quality (medium replay) or suboptimal (medium). We pro-
vides comparison between DT-large and DTd cross all en-
vironments and datasets in the supplementary material for
reader’s reference.

As a consequence of modality disentanglement, DTd is more
sensitive to out-of-distribution goals than DT. In MuJoCo lo-
comotion tasks, we train and evaluate DTd and DT-large on
datasets with diverse returns (medium-replay), ranging from
in-distribution returns to out-of-distribution returns. The raw
scores are averaged across four runs. As shown in Figure 4,
when the user specifies an unrealistic target return, DTd ex-
periences a steep performance drop. The disentanglement of
modalities is likely to have led to this negative result. A mul-
timodal decision was made by DTd by explicitly learning a
representation of return and fusing it into other modalities.
During test time, if the distribution of return is significantly

different from that during training, the representation of
the other two modalities will also be influenced, and the
negative effect created by OOD return will cascade into the
prediction. DT is robust to OOD return because it mainly
makes the multimodal decision based on state-state and
state-action interactions, contributing 49% of the attention
weights (namely, 26% + 23% in Figure 1). Since return is
not the major modality involved in DT’s decision-making,
an OOD return has less effect on its performance.

6 CONCLUSION AND FUTURE WORK

We advocate that solving offline RL via sequence modeling
may benefit from a multimodal approach. While prior works
such as DT model a tri-modal trajectory as one sequence as-
suming every token belongs to the same modality analogous
to LM, our multimodal DTd models a trajectory by disentan-
gling it into three unimodal sequences. After investigating
the importance of cross-modal interactions within DT, we
use the ranking of the importance discovered by DT as our
heuristic for selective cross-modal fusion within DTd. DTd
not only outperforms prior transformers, TD learning, and
diffusion-based approaches on the D4RL benchmark, but
also enjoys sample efficiency during training and algorithm
flexibility to leverage diverse types of goals including the
return, state-value, and 2D goal position.

DTd is our first step towards more effective and efficient se-
quential decision-making leveraging a multimodal approach.
We point out some future directions that are worth pursuing.

1. Automating the modality-driven architecture. Our
work “hard-code” the importance of modality into the
design of a multimodal architecture after the attention
analysis of another model. Instead of training a model
to discover the importance and leverage it with a new
model, could such a process be automated and done
within one model?

2. Initializing decision-making models. It has been
shown that transformer-based RL can benefit from a
pre-text task that involves text modality [Reid et al.,
2022]. How should we initialize a model like DTd
which has many small transformer components?
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