Saguaro: An Edge Computing-Enabled
Hierarchical Permissioned Blockchain

1

Mohammad Javad Amiri' Ziliang Lai?

Liana Patel®

Boon Thau Loo! Eric Lo? Wenchao Zhou*

YUniversity of Pennsylvania, >Chinese University of Hong Kong, >Stanford University, *Georgetown University
! {mjamiri, boonloo} @seas.upenn.edu 2{zllai, ericlo} @cse.cuhk.edu.hk >lianapat@stanford.edu *wzhou@cs.georgetown.edu

Abstract—We present Saguaro, a permissioned blockchain sys-
tem designed specifically for edge computing networks. Saguaro
leverages the hierarchical structure of edge computing networks
to reduce the overhead of wide-area communication by presenting
several techniques. First, Saguaro proposes coordinator-based
and optimistic protocols to process cross-domain transactions
with low latency where the lowest common ancestor of the in-
volved domains coordinates the protocol or detects inconsistency.
Second, data are collected over hierarchy enabling higher-level
domains to aggregate their sub-domain data. Finally, transactions
initiated by mobile edge devices are processed without relying on
high-level fog and cloud servers. Our experimental results across
a wide range of workloads demonstrate the scalability of Saguaro
in supporting a range of cross-domain and mobile transactions.

Index Terms—Permissioned Blockchains, Edge Computing,
Scalability

I. INTRODUCTION

Recent trends in edge computing present both new chal-
lenges and opportunities for distributed applications [2] [33].
In the edge computing paradigm, computing shifts closer to the
edge of the network [30] [35] [51]. Edge devices communicate
in a peer-to-peer fashion in small geographic regions known as
spatial domains, and can communicate with edge servers, fog
servers, and finally to cloud servers in a hierarchical fashion
[50] [51] [57]. The characteristics of edge networks have led to
a wide range of distributed applications being proposed [34],
e.g., intelligent transportation [20], industry automation [48]
and cross-border payments [28]. Many of these applications
require immutability, provenance, or verifiability over wide-
area networks. While point solutions exist, no general-purpose
abstraction provides these capabilities in a unified manner.

Blockchain is a promising technology to realize the full
potential of edge computing by providing a common substrate
usable by all edge computing-enabled applications [21] [22]
[58]. Increasingly, emerging uses of blockchains, in particular,
permissioned blockchains, require transaction processing over
wide-area networks among a set of mutually distrustful known
entities. While distributed applications, e.g., contact tracing
[44], crowdworking [9], supply chain management [5] [10]
[56], and federated learning [45], benefit from the unique
features of permissioned blockchains, practical deployment of
edge computing-enabled blockchain applications over wide-
area networks remains an elusive goal [34].

Traditional approaches for scaling distributed systems do
not apply well over wide-area networks. While sharding [17]
is used to partition data into multiple shards maintained by

different clusters of machines, blockchain sharding, independ-
ent of the deployment scenario, backfires over a wide area due
to the significant overhead of cross-shard transactions. At one
end of the spectrum, flattened permissioned blockchains [7]
run a consensus protocol among all nodes of involved shards
to process cross-shard transactions, resulting in several mes-
sages crisscrossing high-latency low bandwidth links over the
Internet. On the other end of the spectrum, coordinator-based
approaches [18] do not fare much better, as the coordinator
node is either close to clients or the data shards, which will not
avoid slow network links when cross-shard transactions take
place. Trying to avoid wide-area transactions by replicating
the entire ledger on every cluster, e.g., GeoBFT [29], also
merely shifts the wide-area communication from running the
consensus protocol across data centers to ledger synchroniza-
tion messages over a wide-area network. Moreover, current
approaches do not address the mobility of nodes where a
mobile edge device temporarily migrates out of its local home
domain to a remote domain and initiates transactions in the
remote domain.

In this paper, we present Saguaro, a permissioned block-
chain system that leverages the hierarchical structure of edge
computing infrastructures to support applications over a wide
area. At a high level, in Saguaro, nodes are organized in a
hierarchical structure from edge devices (height—0) to edge,
fog, and cloud servers. Nodes at each level are further clustered
into fault-tolerant domains where domains might follow dif-
ferent failure models, i.e., crash and Byzantine. In Saguaro,
each height—1 domain (i.e., edge servers) maintains its own
blockchain ledger, executes transactions received from their
child edge devices (in parallel to other height—1 domains),
constructs its ledger and propagates the ledger to higher-level
domains. This hierarchical approach localizes network traffic
for consensus and replication within local networks, reducing
wide-area communication overhead significantly.

Saguaro leverages the hierarchical structure of edge com-
puting networks to achieve four main purposes. First, Saguaro
relies on the lowest common ancestor of all involved domains
in the hierarchical structure (i.e., a higher-level domain with
minimum total distance from the involved domains) to process
cross-domain transactions in a coordinator-based fashion with
low latency. Since edge servers execute transactions, the load
on the internal domains, e.g., cloud servers, is highly reduced,
making Saguaro suitable for edge networks.

Second, this hierarchical structure enables height—2 and

above domains to maintain only a summarized view (e.g.,
selected columns or aggregated values) of their child domain
ledgers. In Saguaro, edge servers order and execute transac-
tions and periodically, propagate the results to higher-level
domains. While height—1 domains maintain transactions in
linear ledgers, summarized ledgers at higher-level domains are
structured as directed acyclic graphs to capture dependencies
resulting from cross-domain transactions. These summarized
views enable higher-level domains to perform aggregation
functions over their sub-domains data, e.g., the total amount
of exchanged assets in a micropayment application.

Third, the propagation of transactions through hierarchy
enables Saguaro to optimistically process cross-domain trans-
actions. Each involved height—1 domain of a cross-shard
transaction orders the transaction independently without run-
ning costly cross-domain consensus protocols across height—1
domains, and then executes the transaction speculatively. In
case of any ordering inconsistencies, the higher-level domains
and eventually the lowest common ancestor of the involved
domains detect the inconsistency.

Finally, the hierarchical structure enables Saguaro to ef-
ficiently support the mobility of nodes without relying on
high-level fog and cloud servers. Mobile edge devices initiate
transactions in different domains far from their initial local
domain while Saguaro establishes mobile consensus by sharing
a node’s state only between the local and remote domains.

Saguaro makes three key technical contributions:

« Saguaro supports data aggregation over hierarchy where
transactions are executed and maintained in linear ledgers
of height—1 domains while above domains maintain only
a DAG-structured summarized view of child domains.

o A suite of consensus protocols is provided to process
transactions within and across fault-tolerant domains.
Saguaro benefits from the hierarchical structure of edge
networks for the geographically optimized processing of
cross-domain transactions using coordinator-based and
optimistic protocols.

« Saguaro supports mobility of nodes by providing a mobile
consensus protocol where edge devices initiate transac-
tions in different domains far from their initial local area.

II. BACKGROUND AND MOTIVATION

In an edge network, machines (i.e., devices, servers) are
organized in a hierarchical structure where at the leaf level,
edge devices within a local area are connected to each other
and to an edge server domain (as the parent vertex). Nearby
edge servers (e.g., campus area) are then connected to a fog
server (e.g., metropolitan area) and finally, at the root level,
cloud servers are placed [57]. The hierarchy might include
multiple layers of edge, fog, or cloud servers.

We briefly describe two emerging applications: accountable
ridesharing and micropayment that can realize the full poten-
tial of edge computing, and yet require technology innovations
by Saguaro to make this a reality.

Accountable ridesharing and gig economy. In ridesharing
applications, drivers give rides to travelers through platforms,
e.g., Uber and Lyft. A ridesharing task usually occurs within

a single domain (i.e., a local area). However, supporting the
mobility of cars across domains is challenging as a driver
registered in a local area might temporarily move to another
domain and give rides to travelers in that area. Furthermore,
a ridesharing application needs to aggregate specific data
attributes from different spatial domains, e.g., the total number
of tasks performed per day. The aggregated data is needed for
data analysis purposes and, more importantly, for satisfying
global regulations, e.g., the total work hours of a driver, who
might work for multiple platforms, may not exceed 40 hours
per week to follow the Fair Labor Standards Act [42]. While
the transparency and immutability of blockchains will aid in
enforcing global regulations [8] [9], permissioned blockchain
solutions today are unable to work at a global scale given that
the leading ridesharing firms are all globalized.

Saguaro as a permissioned blockchain system can address
the challenges above. First, in Saguaro, each height—1 domain
(i.e., edge servers) processes ridesharing tasks initiated by edge
devices within a local area. Second, within the hierarchical
structure of Saguaro, while edge server domains process tasks
and maintain the full record of transactions, an aggregate
version of records, e.g., the travel time or working hour
attribute, might be maintained by internal domains resulting in
improved performance and enhanced privacy. Third, Saguaro
efficiently addresses the mobility of edge devices across spatial
domains. Beyond ridesharing, the ability to add accountability
and verifiable global statistics collection at Internet-scale can
be generally applied to any other mobile gig economy job.
Micropayment. Most popular micropayment infrastructures
do not allow users to do cross-application payments, e.g., an
Apple Pay sender cannot send money to a PayPal recipient.
However, a hierarchical permissioned blockchain system can
facilitate such micropayments. For micropayments within the
same spatial domain and application domain (e.g., Alice pays
Bob at a coffee shop, both using Apple Pay), transactions can
be committed efficiently and securely within the spatial do-
main. For micropayments under the same spatial but different
application domains (e.g., Alice pays Bob in the same coffee
shop, but Alice is using Apple Pay while Bob is using PayPal),
transactions can be executed efficiently if each edge server
hosts ledgers from different payment companies and executes
the cross-domain transactions at the edge. For micropayments
that cross spatial and application domains (e.g., Alice in the
West pays Bob in the East), transactions can also be executed
efficiently when ledgers are deployed in the entire wide-
network hierarchy, but (cross-domain) consensus is established
only among the involved domains. Finally, Alice and Bob may
be on the move while micropayments are happening. Saguaro
aims to support such mobile micropayments as well.

III. SYSTEM MODEL

In a blockchain system, nodes agree on their shared states
across a large network of possibly untrusted participants.
While in a permissionless blockchain, e.g., Bitcoin [37],
the network is public, and anyone can participate without
a specific identity, a permissioned blockchain system, e.g.,
Hyperledger Fabric [11], consists of a set of known, identified

but possibly untrusted nodes. Saguaro is a permissioned block-
chain system consisting of a distributed set of edge devices,
edge servers, fog servers, and cloud servers, organized in a
hierarchical tree structure. Each logical vertex of the tree,
called a domain, consists of a number of nodes sufficient to
guarantee fault tolerance (except for height—0 domains where
the number of edge devices might not be known).

Nodes within each domain follow either the crash or the
Byzantine failure model. In the crash failure model, nodes may
fail by stopping, and may restart, whereas, in the Byzantine
failure model, faulty nodes may exhibit arbitrary and poten-
tially malicious behavior. Crash fault-tolerant (CFT) protocols,
e.g., Paxos [32], guarantee safety in an asynchronous network
using 2f+1 crash-only nodes to overcome f simultaneous
crash failures while in Byzantine fault-tolerant (BFT) pro-
tocols, e.g., PBFT [16], 3f+1 nodes are usually needed to
guarantee safety in the presence of f malicious nodes [13].

Figure 1 presents a sample 4-layer Saguaro deployment on
an edge network consisting of 11 domains. For example, Dsq
includes 4 nodes that follow Byzantine failure model (3f + 1
nodes where f = 1) while D4 consists of 5 nodes that follow
crash failure model (2f + 1 nodes where f = 2).

Saguaro assumes the partially synchronous communication
model as it is typically used in practical fault-tolerant pro-
tocols. In the partial synchrony model, an unknown global
stabilization time (GST) exists, after which all messages
between correct replicas are received within some unknown
bound. Saguaro further inherits the standard assumptions of
existing fault-tolerant systems, including the unreliability of
the network, the existence of point-to-point bi-directional
communication channels to connect nodes, and a strong ad-
versary that can coordinate malicious nodes but cannot subvert
standard cryptographic assumptions. Saguaro also uses digital
signatures and public-key infrastructure (PKI). We denote a
message m signed by node r as (m),, and the digest of a
message m by A(m).

The main underlying data structure in blockchain systems is
the blockchain ledger, an append-only replicated structure that
is shared among participants. Saguaro follows the edge com-
puting paradigm and brings computation and data closer to the
network edges where height—1 domains execute transactions.

Saguaro targets edge computing applications where data ac-
cesses have an affinity towards locality. As a result, in Saguaro,
each height—1 domain maintains its own ledger replicated
on all nodes of the domain to provide fault tolerance. This
design choice demonstrates a trade-off between performance
and availability. On one hand, replicating data on a single
domain leads to high performance because Saguaro does not
need to deal with costly cross-domain replication protocols
for every transaction. On the other hand, the availability of
Saguaro is reduced in case an entire domain fails, e.g., due
to natural disasters like tornadoes or earthquakes. This is in
contrast to geo-replicated systems [1] [12] [17] [38] [39] where
data is replicated on all domains (clusters), and the system is
able to tolerate the failure of an entire domain.

Edge devices send their transaction requests to their height-

Cloud Servers
(Height 3)

Fog Servers
(Height 2)

Edge Servers
(Height 1)

Edge Devices
(Height 0)

o1 02 Dos Dos

Figure 1. The Saguaro deployment on an edge commuting network

1 parent domains, e.g., leaf domain Dy is connected to a
height—1 domain Di5. In a height-1 domain, due to data
dependency among transactions of the same domain, trans-
actions are fotally ordered to ensure data consistency. The
total order of transaction blocks in the blockchain ledger is
captured by chaining blocks together, i.e., each block includes
the cryptographic hash of the previous block.

In addition to the blockchain ledger, edge servers maintain
the blockchain state. The blockchain state is a datastore that
maintains data and is being updated by executing transactions.
Similar to the blockchain ledger, each domain’s blockchain
state is replicated on the nodes of the domain.

Saguaro uses the hierarchical structure of edge networks
to provide four main functionalities. First, Saguaro processes
cross-domain transactions using a coordinator-based approach
by relying on the lowest common ancestor of all involved
domains, resulting in lower latency (Section IV). Second,
Saguaro enables data aggregation by propagating (a summar-
ized version of) the ledgers up the hierarchy (Section V).
Third, height—1 domains can optimistically process cross-
domain transactions independent of each other and rely on
higher-level nodes to detect inconsistencies (Section VI).
Finally, Saguaro supports the mobility of nodes by relying
on edge servers in the local and remote height—1 domains
(Section VII).

IV. COORDINATOR-BASED CONSENSUS PROTOCOL

Processing transactions requires establishing consensus on
a unique order of client requests. In Saguaro, transactions are
initiated by edge devices (height—0) and executed by edge
servers in height—1 domains. Transactions are either internal,
i.e., access records within a single domain, or cross-domain,
i.e., access records across different height—1 domains.

The internal consensus protocol is needed among the nodes
within a single domain. Edge servers within a height—1
domain establish consensus on every request received from
edge devices (i.e., clients). The request messages are sent by
edge devices to the primary (a pre-elected node that initiates
consensus) of the corresponding height—1 domain. Based on
the failure model of nodes, Saguaro uses a CFT protocol, e.g.,
Paxos [32], or a BFT protocol, e.g., PBFT [16].

Cross-domain transactions access records across different
height—1 domains, e.g., a micropayment transaction where
the sender and recipient belong to two different domains.
To ensure data consistency, such transactions are appended
to the ledgers of all involved domains in the same order.

The coordinator-based approach in Saguaro is inspired by the
traditional coordinator-based commitment protocols in distrib-
uted databases. However, Saguaro leverages the hierarchical
structure of edge networks by relying on the Lowest Common
Ancestor (LCA) domain of all involved height—1 domains
(participants) to play the coordinator role. Since the hierarchy
is structured based on the geographical distance of nodes, the
LCA domain has the optimal location to minimize the total
distance (i.e., latency). In comparison to existing coordinator-
based approaches, Saguaro deals with several new challenges.

First, in Saguaro, in contrast to distributed databases where
all nodes follow the crash failure model, the coordinator and
the involved domains (participants) might follow different
failure models. As a result, messages from a Byzantine domain
must be certified by at least 2f + 1 (out of 3f + 1) nodes of
the domain (since the primary node might be malicious).

Second, in contrast to the coordinator-based approaches
where a single coordinator (node or domain) sequentially
orders all cross-domain transactions, in Saguaro, there are
multiple independent coordinator domains in the network, i.e.,
any domains in height—2 and above could be a coordinator
(an LCA domain). As a result, a participant domain in addition
to its internal transactions, might be involved in several
concurrent independent cross-domain transactions ordered by
separate coordinator domains at the same time.

Finally, while Saguaro processes cross-domain transactions
in parallel, ensuring consistency between concurrent order-
dependent transactions is challenging especially when the
read-set and write-set of transactions are unknown beforehand,
hence, existing techniques [55] [24] [23] can not be used.

A. Coordinator-based Cross-Domain Protocol

The normal case operation of the coordinator-based protocol
is presented in Algorithm 1. Although not explicitly men-
tioned, every sent and received message is logged by nodes.
As indicated in lines 1 to 5, d. is the coordinator domain,
m(d) represents the primary node of domain d, D is the set of
involved domains in the transaction, w(D) = {7 (d)|d € D}
is the set of primary nodes of the involved domains.
Prepare phase. Once the primary node of an involved domain
receives a valid cross-domain transaction m, as shown in lines
6—7, the primary node forwards it directly to all nodes of the
LCA domain d, of the involved domains. Upon receiving a
cross-domain transaction (lines 8—11), the primary of the LCA
domain, 7(d..), validates the message. Since Saguaro assumes
that the read-set and write-set of transactions are unknown
beforehand, fine-grained locking mechanisms that lock the
accessed records do not work. As a result, if the primary node
m(d.) is currently processing another cross-domain transaction
m’ (i.e., has not sent commit message for m’) where the
involved domains of two requests m and m’ intersect in
at least two domains, the node does not process the new
request m before the earlier request m’ gets committed. This
is needed to ensure consistency, i.e., cross-domain requests
are committed in the same order on overlapping domains.
Otherwise, node 7(d..) assigns a sequence number 7. to m and
initiates consensus on request m in the coordinator domain d..

Algorithm 1 Coordinator-based Cross-Domain Consensus
1: inif():
2 r = node_id

3 d. := coordinator (lowest common ancestor) domain

4: m(d) := the primary node of domain d

5. w(D) = {n(d)|d € D}

6

7

8

. upon receiving request m and r € w (D)
forward request m to d.
: upon receiving request m and r is 7(d.)
9: if 7 is not processing m’ where m and m’ intersect

10: establish consensus on m among nodes in d.

11: send signed (PREPARE, n., 5, m), to all domains D

12: upon receiving (PREPARE, n., 5, m), message(s) and (r = w(d;) € m(D))
13: if 7 is not processing request m’ where m and m/ intersect

14: establish consensus on the message among nodes in d;

15: send signed (PREPARED, nc, n;, s, r)o 1O dc

16: upon receiving (PREPARED, nc, n;, 8, 7)o from D and r == 7(d.)

17: establish consensus on the order of m within d.

18: multicast signed (commIT, n;—nj—...—ng, 8, Vs tO all domains D
19: upon receiving (COMMIT, n;—n;—...—ny, 8, r), message and r € D
20: append the transaction and the commit message to the ledger

21: send (ACK,ne,n;—nj—...—ny. 8, 7)o, 0 w(de)

Once consensus is established, the primary node 7(d.) sends
a signed prepare message including the sequence number 7.,
request m and its digest § = A(m) to the nodes of all involved
domains. Note that if the nodes of the LCA domain follow
the Byzantine failure model, a certificate consisting of 2 f+1
signed (commit) messages is needed.
Prepared phase. Upon receiving a valid prepare message, as
shown in lines 12—15, if the primary 7(d;) of an involved
domain d; is not processing another cross-domain transaction
m’ where the involved domains of two requests m and m’
intersect in at least two domains, the primary 7(d;) assigns
a sequence number n; to m and initiates consensus in d; on
its order. Once consensus is achieved, the primary 7(d;) of
each involved domain d; sends a signed (certified) prepared
message to nodes of d. including both sequence numbers n.
and n;, request digest d, and node id r = 7(d;).
Commit phase. When primary node 7(d..) of the coordinator
domain receives valid prepared messages from every involved
domain (lines 16—18), it establishes consensus within the
coordinator domain and sends a certified commit message
including a sequence number n; —n;—...ny (i.e., concatenation
of the received sequence numbers from all involved domains)
and request digest J to every node of all involved domains.
Otherwise (if some involved domain has not agreed with the
transaction), the domain sends a signed abort message.
Execution phase. Upon receiving a valid commit message
(lines 19—21), each node considers the transaction as com-
mitted and sends an ack message to the coordinator domain.
If all transactions with lower sequence numbers have been
executed, the node executes the transaction. This ensures that
all nodes execute transactions in the same order as required to
ensure safety. Depending on the application, a reply message
including the execution results might also be sent to the edge
device (requester) by either the primary (if nodes are crash
only) or all nodes (if nodes follow Byzantine failure) of the
domain that has received the request.

Figure 2 presents four different cross-domain transactions
t1 to t4, their involved domains and the LCA domain for

@prepare
@ prepared
© commit

tnx| domains
t1 D12r D13 D21
t2 D11v D14v D15 D31
t3 |D14, D15, Dygl Dy
t4 D16r D19 D32

Figure 2. Coordinator-based Cross-Domain Consensus

each transaction, e.g., D3s is the LCA domain of transaction
ty between Dig and Di9. To process transaction t4, pre-
pare, prepared, and commit messages are directly exchanged
between participants (D16 and Di9) and their LCA domain
D3, without the participation of the domains on the paths
from participants to the LCA domain, e.g., D23 and Doy.

In a situation where cross-domain transactions (1) are con-
current, (2) overlap on at least two domains, (3) are processed
by different LCA domains, and (4) their prepare messages
are received by overlapping domains in a different order,
ensuring consistency might result in a deadlock situation.
This is because domains do not process the later transaction
before receiving the commit message of the earlier transaction
(Algorithm 1, line 13) to ensure consistency in a coarse-
grained manner. Note that if the LCA of transactions is the
same, the LCA does not initiate the second transaction and
deadlock will not occur (Algorithm 1, lines 9—10).

To resolve the deadlock, once the timer of an LCA domain
for its cross-domain transaction is expired, the LCA aborts the
transaction and sends a new prepare message to the involved
domains. Saguaro assigns different timers to different domains
to prevent consecutive deadlock situations.

B. Primary Failure Handling

If the primary of either the LCA domain or a participant
domain is faulty, the primary failure handling routine of the
internal consensus protocol, e.g., view change in PBFT [16],
is triggered by timeouts to elect a new primary.

For cross-domain transactions, if node r of an involved
domain does not receive a commit message from the LCA
domain for a prepared request and its timer expires, the node
sends a (COMMIT-QUERY, ., n;, 0, 7)., message to all nodes of
the LCA domain where n. and n; are the sequence numbers
assigned by the primary nodes of LCA and d; domains and
is the digest of the request. Similarly, if node r in the LCA
domain has not received prepared message from an involved
domain soon enough, it sends a (PREPARED-QUERY, 7., d, 7).
to all nodes of the involved domain.

In either case, if the message has already been processed,
the nodes simply re-send the corresponding response. Nodes
also log the query messages to detect denial-of-service attacks
initiated by malicious nodes. If the query message is received
from n — f nodes of a domain, the primary will be suspected
to be faulty resulting in running the failure handling routine.

Note that since in all communications between a participant
and an LCA domain, the primary of the sender domain
multicasts messages, e.g., request, prepare, or prepared, to all

nodes of the recipient domain, if the primary of the recipient
domain does not initiate consensus on the message in its
domain (even after other nodes relay the message to the
primary), it will eventually be suspected to be faulty.

Finally, if an edge device does not receive reply soon
enough, it multicasts the request to all nodes of the domain
that it has sent its request. If the request has already been
processed, the nodes simply send the result back to the edge
device. Otherwise, if the node is not the primary, it relays
the request to the primary. If nodes do not receive prepare
messages, the primary will be suspected to be faulty, i.e., it
has not multicast request to the LCA domain.

C. Correctness

We briefly analyze the safety (agreement, validity and con-
sistency) and the liveness of the coordinator-based protocol.

Lemma 4.1: (Agreement) If node r commits request m with

sequence number h, no other non-faulty node commits request
m' (m # m') with the same sequence number h.
Proof: We assume that the internal consensus protocol of all
domains ensures agreement. Let m and m’ (m # m') be
two committed cross-domain requests with sequence numbers
h = lh;, hj, hi,...] and B’ = [k}, hj, B, , ..] respectively. Com-
mitting a request requires matching prepared messages from
n—f different nodes of every involved domain. Therefore,
given an involved domain dj in the intersection of m and
m/, at least a quorum of n— f nodes of dj have sent matching
prepared messages for m and at least a quorum of n— f nodes
of dy have sent matching prepared messages for m’. Since
any two quorums intersect on at least one non-faulty node,
hi # R}, hence, h # I’

Lemma 4.2: (Validity) If a non-faulty node r commits m,

then m must have been proposed by some node T.
Proof: If nodes are crash-only, validity is ensured since crash-
only nodes do not send fictitious messages. With Byzantine
nodes, validity is guaranteed based on standard cryptographic
assumptions which the adversary cannot subvert (as explained
in Section III). Since all messages are signed (by 2 f+1 nodes)
and the request or its digest is included in each message (to
prevent changes and alterations to any part of the message), if
request m is committed by non-faulty node 7, the same request
must have been proposed earlier by some node .

Lemma 4.3: (Consistency) Let D,, denote the set of involved
domains (participants) for a request . For any two committed
requests m and m' and any two nodes r1 and ro such that
r1 € d;, ro € dj, and {d;,d;} € Dp,N Dy, if m is committed
before m' in ry, then m is committed before m’ in rs.
Proof: As shown in lines 12—15 of Algorithm 1, when node
r1 of a participant domain d; receives a prepare message for
some cross-domain transaction m, if the node is involved in
another uncommitted cross-domain transaction m’ where some
other domain d; is also involved in both transactions, node 7
does not send a prepared message for transaction m before
m’ gets committed. Since committing request m requires a
quorum of prepared messages from every involved domains,
m cannot be committed until m’ is committed. As a result,
the order of committing messages is the same in all involved

domains. The coordinator domain d. also checks the same
condition before sending prepare messages (lines 8—11).

Lemma 4.4: (Liveness) A request m issued by a correct

client eventually completes.
Proof: Due to the FLP result [25], Saguaro guarantees liveness
only during periods of synchrony. Saguaro addresses liveness
in primary failure and deadlock situations. First, if the primary
of a domain is faulty, e.g., does not multicast valid request,
prepare, prepared, or commit messages, as explained earlier,
its failure will be detected and using the primary failure
handling routine of the internal consensus protocol, a new
primary will be elected. Second, Saguaro addresses deadlock
situations resulting from concurrent cross-domain transactions
that are received by overlapping domains in different orders.
V. LAZY PROPAGATION OF BLOCKCHAIN LEDGERS

Saguaro enables height—2 and above domains to perform
data aggregation over transactions executed by edge servers
in height—1. To this end, such domains need to maintain (a
summarized version of) the ledgers of their child domains.

To send transaction blocks up the hierarchy, edge servers
proceed through a succession of rounds. Each round ends after
some predefined time interval that is identical for all height—1
domains. At the end of each round r,,, each height—1 domain
sends a block message to its parent domain. The block message
includes all transactions that are appended to the ledger in that
round, and an application-dependent abstract version of the
blockchain state updates in that round, i.e., A(D™ — D"n~1)
where D™ and D™~ are the blockchain states at the end of
rounds r,, and r,,_1 and the abstraction function A is determ-
inistic, predefined, and known by all nodes. For example, in
a ridesharing application, it might be sufficient to send only
the working hour attribute of the records that are updated
to the higher-level nodes. If a domain has not received any
transaction in that round, it sends an empty block message.

Depending on the failure model of the child domain, the
block message is signed (certified) by either the primary
(in the crash failure model) or at least 2f + 1 nodes (in
the Byzantine failure model), i.e., the primary constructs a
certificate consisting of 2f + 1 commit messages proving that
consensus has been achieved on the block message within the
child domain. Threshold signature can also be used to replace
2f + 1 signatures with a single threshold signature [52] [15].

Nodes in higher-level domains, on the other hand, achieve
(internal) consensus on block messages that they receive from
child domains. The block messages are sent by the primary
node of a domain to all nodes of its parent domain. These block
messages contain a collection of committed transactions in the
most recent time interval. Broadcasting of block messages to
all nodes in the parent domain enables nodes of the parent
domain to detect malicious behavior of primary nodes.

If the primary node of the parent domain has not received
the block message from a child domain after a predefined time
(e.g., the primary of the child domain might be faulty), it
sends a query message to all nodes of the child domain. To
ensure that the completion of each round is deterministic on
all nodes of a domain, the primary node puts a "cut" sign

TR PN a3
3z>@<34

2178}:(23—24—25 ;
1 13—14 i

i — B0z
1111-:01-11-02|11-03-11-04
1112-01-12-02] |12-03-12-04

1[B22-01 (82202]
113-01-13-02[13.03-13-04 !
14-01-14-02/|14-03-14-04| 5!

s

! "813—06
__ 8 =

Dy Dy, Dy3
Figure 4. A Snapshot of Saguaro

Round 06 Round 03

into the propose message of the last request informing other
nodes of the completion of a round. Since nodes establish
consensus on received messages, if a primary sends the "cut"
sign maliciously, it will be easily detected.

Since height—2 and above domains might have multiple
child nodes, each domain receives block messages from pos-
sibly multiple child domains and orders all transactions within
received messages at each round. If there is no dependency
between transactions of different child domains, any unique
order of transactions is acceptable. However, cross-domain
transactions, which are appended to the ledger of multiple
child domains, must be appended to the ledger of the parent
domain only once. Therefore, the resulting ledger is a directed
acyclic graph to capture the order dependencies.

Similar, to height—1 domains, each higher-level domain
sends block messages (with the same structure) to its parent
domain at regular predefined time intervals in a lazy fashion.
The time interval for the domains at the same level is the
same, however, domains at higher levels may have larger
time intervals to reduce communication overhead. Finally, the
ledger of the root domain consists of all transactions that
are processed in the system, and its blockchain state is a
summarized view of all blockchain states in the network.

Figure 3 presents a set of transactions and shows how
these transactions are appended to the blockchain ledger of
different domains at different heights for the same network
as Figure 1 (leaf domains are not shown because they do not
maintain blockchain ledgers). The presented ledger of each
domain is replicated on all nodes of that domain. In the figure,
one block denotes one transaction. The sequence number of
each transaction presents the order of the transaction within
the ledger. While each internal transaction of a domain has
a single-part sequence number, e.g., 11, 13, and 14, cross-
domain transactions have multi-part sequence numbers where
each part demonstrates the order of the transaction in an in-
volved domain, e.g., 12—22—31, is a cross-domain transaction
among D11, D19, and Ds3.

Figure 4 presents a snapshot of Saguaro for the network
of Figure 1. This snapshot shows the lazy propagation of
blockchain updates via the hierarchy. Each height—1 domain
D, in its n-th round appends transactions to its ledger to
construct block Bx—n, e.g., height—1 domain D1, is in its 6th
round constructing B11—06. The height—2 domain Djs is in
its third round constructing block B22—03. Domain D5 has
received B13—05 and B14—05 from its child domains D13
and D14 in this round. Finally, the root domain D3; has appen-
ded transaction blocks B21—01 and B21—02 (received from
D51) and B22—01, and B22—02 (received from Dy5) to its
ledger where, for example, block B21—01 itself contains four
transaction blocks B11—01, B11—-02, B12—01, and B12—02.
In this example, the time interval of height—2 domains is twice
the height—1 domains. Note that height—1 domains maintain
their own blockchain states while a summarized view of the
blockchain state is maintained by higher-level domains.

VI. OPTIMISTIC CONSENSUS PROTOCOL

Saguaro leverages the lazy propagation of ledgers presented
in Section V to enable the optimistic processing of cross-
domain transactions. In the optimistic protocol, each involved
height—1 domain optimistically processes and commits a
cross-domain transaction independent of other involved do-
mains, assuming that all other involved domains also commit
the transaction. Since transactions will propagate up, nodes in
higher levels and eventually the LCA domain can check the
commitment of the transaction.

In the optimistic approach, upon receiving a cross-domain
request from an authorized edge device, the primary of the
initiator height—1 domain multicasts the request to all nodes
of the involved height—1 domains. The primary might behave
maliciously by not sending the request to some involved
domains. Hence, upon receiving the request, all nodes of the
initiator domain multicast the request to the involved domains
ensuring that they all received the request. Upon receiving a
request, each involved domain (including the initiator domain),
uses its internal consensus protocol to optimistically establish
agreement on transaction order and executes it (assuming all
other involved domains also execute the transaction).

For each executed cross-domain transaction ¢, nodes of
a domain maintain a list of transactions (both internal and
cross-domain) that are executed after ¢ and have direct or
indirect data dependency to transaction t. If transaction t gets
aborted, e.g., some other involved domain does not commit the
transaction, all data-dependent committed transactions need to
be aborted as well. The list is deleted once transaction ¢ has
eventually been committed or aborted.

Figure 5 presents the ledger of different domains using
the optimistic cross-domain consensus protocol for the same
network as Figure 1. In this figure, m,; is a cross-domain
transaction between D11, D12, and D3 and m; and m; are
between D3, and D14. Each domain maintains a list of data-
dependent transactions for each cross-domain transaction, e.g.,
in Di2, mg has data dependency to my,.

Each height—1 domain processes all internal and cross-
domain requests and upon completion of a round, sends a

Figure 5. Example of Optimistic Cross-Domain Consensus

block message to its parent domain. In the optimistic protocol,
the block message, in addition to the committed transactions
(blockchain ledger) and blockchain state, consists of non-
committed (aborted) cross-domain transactions (to inform
other domains), and the dependency lists for cross-domain
transactions (within the current and previous blocks) that have
not yet been decided by all their involved domains.

Each parent domain and eventually the LCA of all involved
domains in a cross-domain transaction ensures that concurrent
cross-domain transactions (if any) have been appended to
the ledger of the intersection domains in the same order.
Otherwise, (at least) one of the transactions will be aborted.
For example, in Figure 5, m; and m; are appended to the
ledger of D13 and D14 in an inconsistent order, hence, domain
Dyo aborts (only) m;. Saguaro guarantees that aborting trans-
actions is deterministic, i.e., all higher-level domains reach
the same decision on choosing transactions to abort, e.g.,
they all abort the transaction with the lowest id. Note that
intermediate domains between involved domains and the LCA
domain might receive the transaction from a subset of involved
domains and be able to partially check the consistency and
early abort in case of inconsistency. For example, in Figure 5,
domain Dy receives my from D17 and D15 (but not Dq3).

Upon finding an inconsistency, the primary of the domain
marks the transaction and all its data-dependent transactions as
aborted, e.g., m; in Figure 5. The primary also sends a certified
abort message including the request digest to the nodes of
the involved domains. Involved domains need to rollback the
aborted transaction and its data-dependent ones.

Each intermediate and eventually the LCA domain then
checks whether the transaction is committed by the involved
domains. The intermediate domains can check the commitment
of the transaction by a subset of the involved domains. If
the transaction is committed by all involved domains, the
transaction will be appended to the ledger and upon the
completion of the round sent to the parent domain. Once the
primary of the LCA domain receives the transaction from all
involved domains, it sends a signed commit message to all
domains informing them that the transaction is committed.

If the transaction has not been appended to the ledger (block
message) of an involved domain (due to the asynchronous
nature of the network), the intermediate or the LCA do-
main does not append the transaction and waits for the next
block messages. The domain also does not append the next
transactions within the block message to its ledger. This is
needed because there might be an inconsistency issue where

the domain needs to mark the transactions as aborted.

In the optimistic approach, the predefined time interval for
completion of rounds (i.e., sending block messages to the
parent domains) is smaller to detect inconsistencies in cross-
domain transactions earlier. This avoids too many cascaded
aborts of transactions, as any inconsistencies will result in the
abort of transactions that depend on the aborted transaction.

Correctness. We now briefly show the safety and liveness of
the optimistic approach.

Lemma 6.1: (Agreement) If node v commits request m with

sequence number h, no other correct node commits request m’'
(m # m') with the same sequence number h.
Proof: We assume the internal consensus protocols, e.g., Paxos
and PBFT, guarantee agreement. In the optimistic protocol,
the same cross-domain transaction has different sequence
numbers in different domains, however, it does not violate
the agreement property, i.e., no two requests have the same
sequence number in the same domain. In addition, Saguaro
prevents different domains to assign the same sequence num-
ber to different requests by defining a prefix for the sequence
numbers of each domain. Moreover, if the transaction is not
committed in a domain, the LCA domain detects it resulting
in aborting the transaction.

Lemma 6.2: (Validity) If a correct node r commits m, then
m must have been proposed by some correct node T.

Proof: Validity is guaranteed in the same way as coordinator-
based cross-domain consensus (lemma 4.2).

Lemma 6.3: (Consistency) Let P, denote the set of involved

domains for a request u. For any two committed requests m
and m' and any two nodes r1 and ry such that r1 € p;,
ro € pj, and {p;,p;} € Pp N Py, if m is committed before
m’ in r1, then m is committed before m' in rs.
Proof: As mentioned earlier, upon receiving a cross-domain
transaction, the LCA domain first checks the consistency.
Since p; and p; are involved in both m and m’, the LCA of
both m and m’ can detect any inconsistencies in the order of
transactions in both domains and resolve it by aborting either
m or m’. The aborting strategy is deterministic and results in
aborting the same transaction on both LCAs, i.e., it does not
matter which LCA receives the transactions first, if there is an
ordering inconsistency they both either abort m or abort m’.
While transactions might be initially optimistically committed
in an inconsistent order, eventually inconsistency will be
resolved, i.e., the protocol guarantees eventual consistency.

Property 6.4: (Termination) A request m issued by a correct
client eventually completes.

The liveness of the algorithm is guaranteed in periods of
synchrony based on the assumption that LCA and involved
domains ensure liveness for all transactions. If the request is
not committed in some predefined number of rounds by all
involved domains it is considered to be aborted.

VII. MOBILE CONSENSUS

This section addresses the next challenge of Saguaro: pro-
cessing transactions initiated by mobile edge devices. When
an edge device moves from its local to a remote leaf domain,

d =
3. Generate state H(n) |77 : 5. State ST=T=T=1
4. Consensus on H(n) ! 2. State-Query®
Lock(n) = true <
Remote () =d, r------=-------, 0. Move 1.Request”|
------ [LA N
""" Local

Figure 6. Mobile Consensus

reaching consensus on transactions that are initiated by the
mobile device is challenging. Specifically, since edge servers
of the remote height—1 domain do not have access to the state
of the mobile node, e.g., the account balance of the node in
the micropayment application, they are not able to process its
requests. Moreover, any communication across domains goes
through wide-area networks where bandwidth is more limited
and subjected to higher latencies.

In the mobile consensus protocol of Saguaro, the local
height—1 domain shares the state of the mobile node with
the remote height—1 domain in one round of communication
to enable the remote domain executing transactions initiated
by the mobile device. The state of the node includes the
information that is needed to process its transactions, e.g., the
account balance of the node in a micropayment application.

The normal case operation of mobile consensus is presented
in algorithm 2 and shown in Figure 6 where d; and d,. are the
local and remote height—1 domains. When the primary 7(d,.)
of the remote domain d, receives a valid request m from an
unauthorized edge device, as shown in lines 5-6, the primary
7(d,) multicasts a signed state-query message including the
request m and its digest d,,, to nodes of the local domain d; to
obtain the state of the node. The local domain is the domain
where the node is initially registered in. The primary 7(d,)
also multicasts the state-query message to the nodes of its
(remote) domain d, to inform them about request m.

Each domain maintains a [ock bit for each of its registered
edge device to keep track of its mobility. When an edge
device initiates a transaction in a remote domain, the lock
is set to FALSE, representing that the state of the edge device
in the local domain is outdated. The domain also defines a
variable remote for each edge device to maintain the id of
the remote domain that has the most recent transaction records
of the node. Once the primary 7(d;) of the local domain d;
receives a valid state-query message for its edge device n, as
shown in lines 8-9, it checks the lock(n) to be TRUE (i.e., the
state of node n in the local domain is complete and up-to-
date) and then calls GENERATESTATE function (lines 14-19).
The GENERATESTATE function constructs the state of mobile
node n by executing a predefined application-dependent query
on the blockchain. The primary 7(d;) then runs consensus
protocol among nodes of the local domain d; on the state
by sending a message including both state-query message
received from the remote domain d, as well as state H(n).
Once consensus is achieved, the primary 7(d;) sends a signed
state message including the extracted state H(n), the digest
0 of the corresponding state-query message, and the digest
0, of request m to the nodes of the remote domain. Nodes

Algorithm 2 Mobile Consensus
1: init():
2 1 := node_id
3 d; := local domain
4: d, := remote domain
5: upon receiving valid request m from a remote node n and ¢ is w(dr)
6
7
8

multicast (STATE-QUERY, m, Sm)o o (dp) to d; and d,
™
: upon receiving valid (STATE-QUERY, m, 8,n) o and 7 is w(d;)
. if lock(n) = TRUE then

9: 7 (d;).GENERATESATE(n, d;, dr)

w(dr)

10: else > lock(n) is FaLsE and remote(n) = d,.
11: mw(d;).GETSATE(n, d;, d,.)

12: 7 (d;).GENERATESATE(n, d;, dr)

13: end if

14: function GENERATESATE(node n, domain d, domain d’)

15: generate state H(n)

16: establish consensus on Sate H(n) among nodes in d

17: lock(n) = FaLsg, remote(n) = d’

18: send (STATE, H(n), 8y, 5m)o t0 d’

19: end function
20: function GETSATE(node n, domain d, domain d’)

21: send (STATE-QUERY, m, Sm)o () © d

22: 7(d").GENERATSATE(n, d’, d)

23: upon receiving valid (STATE, H(n), 5}, 6m) Mmessage from 7r(d’)
24: lock(n) = TRUE

25: establish consensus on transactions of STATE message in d
26: append the transactions and commit message(s) to the ledger

27: end function

in d; also set lock(n) to be FALSE and remote(n) to d,.

If lock(n) is FALSE and remote(n) = d,s, some other
remote domain d,» has the most recent transaction records.
As a result, as shown in the GETSTATE function, the local
domain sends a state-query message to remote domain d,-
to obtain the recent transactions that n has been involved in
them. Upon receiving the state of node n from d,., the local
domain d;, as shown in lines 23-26, establishes consensus on
the received state and updates its blockchain ledger, Finally,
the local domain d; uses the GENERATESTATE function to sends
the state of n to the remote domain d,. (line 12). This situation
happens when an edge device moves to a remote domain d,/,
initiates transactions and then moves to another remote domain
d,. In this case, the local domain d; becomes the intermediary
between remote domains d, and d,» by obtaining the state
from d,-, updating its state and then sending the state to d,.. If
the mobile node returns to its local domain, the local domain
updates the ledger and processes the transaction.

Correctness. The correctness of mobile consensus protocol is
mainly ensured based on the correctness of internal consensus
protocols in both local and remote height—1 domains. Assum-
ing the internal consensus protocols are correct, we just need
to show that communications across domains do not violate
safety or liveness. Safety is guaranteed because to send a state
message consensus among nodes of a domain is needed and
state messages are certified by the primary of a crash-only
domain or 2f + 1 nodes of a Byzantine domain.

To provide liveness, if node r of a domain has not received
a state message after sending a state-query message and its
timer expires, the node re-sends the state-query message to
all nodes of the other domain. The nodes simply re-send
the corresponding response if the message has already been

processed. Nodes also log the query messages to detect denial-
of-service attacks initiated by malicious nodes. If the query
message is received from a majority of a domain (they already
received the request, line 6), the primary will be suspected to
be faulty resulting in running the failure handling routine.

If nodes of domain d’ receive state-query from domain d,
however, the primary of d’ does not initiate consensus on
state message (after nodes relay the message to the primary),
nodes of d’ suspect that the primary is faulty. Similarly, upon
receiving state messages, nodes of domain d wait for the
primary of d to initiate consensus. Otherwise, the primary will
be suspected to be faulty.

VIII. EXPERIMENTAL EVALUATION

The goal of our evaluations is to measure the impact of (1)
geo-distribution (i.e., nearby domains vs. far apart domains),
(2) cross-domain transactions, (3) transactions initiated in a
remote domain (mobile consensus), and (4) conflicting trans-
actions (contention in the workload) in various scenarios on
the performance of Saguaro.

We have implemented a prototype of Saguaro and run
it on a typical four-level edge network (edge devices, edge
servers, fog servers, and cloud servers) structured as a perfect
binary tree (following Figure 1). Nodes follow either crash or
Byzantine failure model. Each non-leaf domain (except for the
last set of experiments) tolerates one failure. We use Paxos
and PBFT as the internal consensus protocol for crash-only
and Byzantine domains respectively.

As our experimental workload, we use a micropayment
application given that it is a representative and demanding
application. This application uses Saguaro, the blockchain
state maintains the balance of each client (edge device), and
clients continuously carry out transactions that lead to the
transfer of financial assets from a sender to a recipient if
all conditions are satisfied, e.g., the sender has a sufficient
balance. The average measured message size (e.g., request,
propose, prepare, prepared, commit, and reply) is 0.2 KB
while The block messages are much larger (depending on the
time interval of block propagation and the height of the tree).

The experiments were conducted on the Amazon EC2
platform on multiple VM instances. We assigned a separate
VM for each node in height—1 and above, e.g., four VMs are
assigned to a domain with Byzantine nodes (3 f +1). However,
all nodes (clients) of a leaf domain are run on the same VM,
i.e., we assigned four VMs to the four leaf domains. Each VM
is a c4.2xlarge instance with 8 vCPUs and 15GB RAM, and
an Intel Xeon E5-2666 v3 processor clocked at 3.50 GHz.

Saguaro follows the edge computing paradigm, processes
transactions within height—1 domains and propagates block
messages to higher-level domains. Higher-level domains re-
ceive and process block messages in parallel with transaction
execution within height—1 domains. Given that our goal is
to optimize end-user experience at the edge, we only focus
on measuring the end-to-end performance of transaction ex-
ecution originating with and ending at height—1 domains.
It should be noted that since the focus of our evaluation is
on transaction execution in height—1 domains, our evaluation

AHL
—~ SharPer

150 | Coordinator
= -A- Opt-90% C
-® Opt-50% C
©- Opt-10% C

&

600

100 7\

200

300

Latency [ms]
Latency [ms]

0 5 0 15 20 0 3 6 9 12 0 2 1 6 8 10

Throughput [ktrans/sec] Throughput [kirans/sec] Throughput [kirans/sec]

(a) 20% Cross-domain (b) 80% Cross-domain (¢) 100% Cross-domain

Figure 7. Cross-Domain Transactions (Crash-only)

setup does not capture characteristics of edge computing
networks, e.g., different bandwidth and commuting resources
in different network layers. When reporting throughput meas-
urements, we use an increasing number of requests until the
end-to-end throughput is saturated.

A. Cross-Domain Transactions

In the first set of experiments, we evaluate Saguaro in work-
loads with different percentages of cross-domain transactions
(i.e., 0%, 20%, 80%, and 100%). Domains are distributed over
four nearby AWS regions, i.e., Frankfurt (FR), Milan (MI),
London (LDN), and Paris (PAR) where the average measured
Round-Trip Time (RTT) between every pair of Amazon data
centers is as follows; FR = MI: 11 ms, FR = LDN: 17 ms,
FR = PAR: 9 ms, MI = LDN: 25 ms, MI = PAR: 19 ms,
and LDN = PAR: 10 ms. In this scenario, each leaf and its
corresponding height—1 domain is placed in one of the 4 data
centers, while the higher-level domains are in the FR region.

We compare the coordinator-based and optimistic protocols
of Saguaro with scalable solutions SharPer [7], and AHL
[18]. SharPer and AHL are chosen because the experiments
focus on studying the impact of hierarchical structure on
processing cross-domain transactions. Due to the emphasis
of the experiments, we only implemented the cross-shard
consensus protocol of AHL where a reference committee uses
2PC to order transactions (without using trusted hardware).
The internal transactions of all approaches are processed in the
same way using Paxos (for crash-only domains) or PBFT (for
Byzantine domains) protocol. Both SharPer and AHL are run
over a network with four clusters (domains) with f = 1 (the
same setting as height—1 of Saguaro). For a fair comparison,
the latency in Saguaro is measured from the initiation of a
transaction to when it gets committed to the blockchain of
height—1 domain(s). Two randomly chosen domains (sender
and recipient) are involved in each transaction.

In the optimistic approach, as discussed in Sec VI, a cross-
domain transaction might be aborted due to inconsistency, i.e.,
two concurrent cross-domain transactions have been appended
to the ledger of two domains in a different order, resulting
in aborting all their data-dependent transactions. To measure
the effects of contention on the performance of the optimistic
protocol, we consider three workloads with different degrees
of contention between transactions of each domain, i.e., 10%
(the default value for all workloads), 50%, and 90% read-write
conflicts, Figures 7 and 8 demonstrate the results with crash-
only and Byzantine domains.

When all nodes are crash-only and all transactions are
internal, Saguaro is able to process more than 31000 tps with

1,200 /

800 ‘t/

100

5

®- Opi-50% C
200 [-©- Opt-10% C

Latency [ms]

0 1 8 12 16
Throughput [ktrans/sec]

0 2 1 6 8

Throughput [ktrans/sec] Throughput [ktrans/sec]

(a) 20% Cross-domain (b) 80% Cross-domain (¢) 100% Cross-domain

Figure 8. Cross-Domain Transactions (Byzantine)

100 ms latency. In this scenario, each domain processes its
transactions independently and the throughput of the entire
system will increase linearly with the number of domains.
With 20% cross-domain transactions, as shown in Figure 7(a),
the optimistic approach with 10% contention shows the best
performance by processing 22500 tps with 105 ms latency.
This is expected because the optimistic approach does not
require any communication across domains. In this scenario,
only 0.17% of transactions were appended to the ledgers
in an inconsistent order, hence, increasing the percentage
of contention in the workload to 50% and 90% (Opt-50%
C and Opt-90% C graphs) does not significantly affect the
performance of the optimistic protocol. The coordinator-based
approach also processes 19700 tps with 115 ms latency which
is 17% more than AHL (16900 tps with the same latency).

Increasing the percentage of cross-shard transactions to 80%
and 100%, as shown in Figure 7(b) and (c), results in a larger
performance gap between the coordinator-based approach and
the existing systems (SharPer and AHL), e.g., in the workload
with 100% cross-domain transaction, the coordinator-based
approach processes 63% transactions more than the AHL with
the same latency. This is expected because in AHL, the single
coordinator becomes overloaded by cross-domain transactions
and in SharPer, consensus across domains becomes a bot-
tleneck. However, Saguaro processes transactions efficiently
by relying on multiple coordinator domains. The optimistic
approach demonstrates lower performance in workloads with
50% and 90% contention due to higher inconsistencies.

In the presence of Byzantine nodes, as shown in Fig 8§,
Saguaro shows similar behavior, although with lower through-
put and higher latency (due to the higher cost of BFT protocols
compared to CFT protocols).

B. Transactions Initiated by Mobile Devices

In the second set of experiments, we measure the perform-
ance of the mobile consensus protocol to process remotely
initiated transactions. The network is the same as Section VIII
and we consider four workloads with different percentages
(i.e., 0%, 20%, 80%, and 100%) of mobile nodes where a local
and a remote height—1 domains are involved in each mobile
transaction. To simulate the mobility of edge devices, we run
an instance of each edge device within the VM of all leaf
domains (data centers). A mobile node initiates 10 transactions
within the remote domain before moving back to its local
domain. The state in a micropayment application includes the
balance of the mobile node. Figure 9(a) and Figure 9(b) show
the results with crash-ony and Byzantine domains.

100% Mobile
- 80% Mobile
&~ 20% Mobile
=+ 0% Mobile

450
300
A

150

300

200

Latency [ms]
Latency [ms]
Latency [ms]

-
El

150

100

/

Latency [ms]

100% Mobile
600
450

400
300

Latency [ms]
Latency [ms]

150 200 |

0

10 20 30
Throughput [ktrans/sec]

0 5 015 20 0 3 6 9 12
Throughput [Ktrans/sec] Throughput [ktrans/sec]

(a) Crash-only (b) Byzantine (a) Crash-only

Figure 9. Mobile Devices

With crash-only nodes and local transactions, Saguaro, as
shown in Figure 9(a), processes 31000 tps with less than 100
ms latency (same as 0% cross-domain transaction). Adding
20% mobile transactions, Saguaro still processes 29800 trans-
actions (only ~ 4% reduction). Similarly, with 80% and 100%
mobile transactions, Saguaro processes 25700 and 23200 tps.
This demonstrates the effectiveness of Saguaro in handling
mobile devices: increasing the percentage of mobile devices
from 0% to 100% results in only a 25% reduction in through-
put. Saguaro demonstrates similar behavior with Byzantine
domains (Figure 9(b)). However, since establishing consensus
on state messages is more expensive with Byzantine nodes,
Saguaro incurs 36% reduction in throughput by increasing the
percentage of mobile devices from 0% to 100%. These results
clearly demonstrate the capability of Saguaro in supporting
applications that requires mobility of nodes, e.g., ridesharing.

C. Scalability Over Wide-Area Domains

In the next experiments, the impact of long network distance
on the performance of Saguaro is measured. We distribute
domains over 7 far apart AWS regions all around the world,
i.e., California (CA), Oregon (OR), Virginia (VA), Ohio (OH),
Tokyo (TY), Seoul (SU), and Hong Kong (HK)'. In this
scenario, each leaf and its corresponding height—1 domain
is placed in one of the TY, HK, VA, and OH data-centers, the
height—?2 domains are in SU and OR and the root domain is in
the CA region. Nodes of the same domain are placed in a single
AWS region to simulate the behavior of edge networks, i.e.,
edge devices (servers) are within a small geographical domain.
We consider workloads with 90% internal and 10% cross-
domain transactions (typical settings in partitioned datastores
[54]) where two randomly chosen domains are involved in
each cross-domain transaction. Figures 10(a) and 10(b) depict
the results for crash-only and Byzantine domains.

As shown in Figure 10(a), the optimistic protocol in the
low contention workload still has the best performance (note
that the workload includes only 10% cross-domain transac-
tions). However, conflicting transactions significantly reduce
the performance of the optimistic protocol in high contention
workloads (Opt-50%C and Opt-90%C) compared to nearby
domains (Figure 7). This is expected because when domains
are far apart, resolving inconsistencies requires more time
resulting in aborting more data-dependent transactions. Fur-
thermore, the gap between the performance of the coordinator-
based approach and AHL (single coordinator) has been in-

IThe average measured Round-Trip Time (RTT) between every pair of
Amazon data centers can be found at https://www.cloudping.co/grid

Figure 10. Wide Area (10% cross-domain)

0 3 6 9 0

3 10 20
Throughput [ktrans/sec]

Throughput [ktrans/sec]

30 [

0 15 2
Throughput [ktrans/sec]

(b) Byzantine (a) Crash-only

Figure 11. Wide Area (Mobile Devices)

(b) Byzantine

creased, demonstrating the effectiveness of the coordinator-
based approach over wide-area networks. Interestingly, AHL
demonstrates better performance compared to SharPer because
SharPer requires rounds of communication among nodes of
domains over a wide area. In the presence of Byzantine
domains, as shown in Figure 10(b), all protocols demonstrate
similar behavior as the previous case.

We then use the same settings to measure the impact of
network distance on mobile transactions in workloads with
0%, 20%, 80%, and 100% mobile nodes. As before, each leaf,
i.e., edge devices, and its corresponding height—1 domain is
placed in one of the TY, HK, VA, and OH data-centers. As
shown in Figure 11(a), while processing mobile transactions
over a wide area results in higher latency, Saguaro still demon-
strate an efficient throughput: when the percentage of mobile
devices increases from 0% to 100%, Saguaro incurs only a
38% reduction in its throughput (with crash-only nodes).

D. Fault Tolerance Scalability

Finally, we evaluate the impact of increasing the number of
nodes within each domain on the performance of protocols.
Figures 12 and 13 depict the results. We consider two
scenarios with f = 2 and f = 4, i.e., each crash-only domain
includes 5 and 9 nodes, and each Byzantine domain includes 7
and 13 nodes respectively. All nodes are placed within an AWS
region and the workload includes 90%-internal 10%-cross-
domain transactions. When domains become larger, achieving
consensus requires more nodes, hence, the performance of all
protocols is (marginally) reduced, e.g., the throughput of the
coordinator-based protocol is reduced by 6% and 11% (with
the same latency) when the size increases from 3 to 5 and 9.

E. Evaluation Summary

Overall, the evaluation results can be summarized as follow.
First, the coordinator-based protocol outperforms SharPer and
AHL, demonstrating a scalable solution that can be prac-
tically deployed over wide-area networks and used for all
types of workloads. Second, in low contention workloads, the
optimistic protocol processes transactions efficiently because
it does not require communication across domains. How-
ever, in high contention workloads, the protocol performance
is significantly reduced due to inconsistency between the
ledgers of different domains, which leads to aborting all
their data-dependent transactions. Third, while SharPer out-
performs AHL in nearby domains, AHL demonstrates better
performance in far apart domains due to its coordinator-based
consensus protocol. Finally, Saguaro supports mobility over
wide-area networks efficiently.

AHL AHL
—~+ SharPer —~ SharPer T

150 | == coordinator 150 | %= coordinator
-©- oplimistic -6~ optimistic /
0 510 1520 0 5 01520

Throughput [ktrans/sec] Throughput [ktrans/sec]

100

Latency [ms]
Latency [ms]

®) [p| =9
Figure 12. Increasing the Number Nodes (Crash-Only Domains)

(@) |p| =5

IX. RELATED WORK

Despite several years of intensive research, existing block-
chain solutions do not adequately address the performance and
scalability requirement of edge computing networks, which
is characterized by cross-domain transactions and possibly
mobile nodes communicating over wide-area networks.

Processing globally distributed transactions across multiple
clusters (e.g., data centers) have been discussed in several
studies [12] [14] [17] [19] [26] [31] [36] [43] [47] [54] [55]
[60]. These systems typically shard data and replicate each
data shard on multiple clusters. A coordinator-based approach,
e.g., two-phase commit and two-phase locking, is then used
for cross-cluster communication while a crash fault-tolerant
protocol, e.g., Paxos, is used to guarantee fault tolerance
within each cluster. The coordinator-based protocol of Saguaro
is different from all these systems in three ways. First, in
Saguaro, nodes might follow Byzantine failure model. Second,
Saguaro sacrifices availability for performance by replicating
data only on one (nearby) domain, and third, Saguaro leverages
the hierarchical structure of edge computing networks to rely
on the lowest common ancestor of all involved domains to
play the coordinator role.

Processing distributed transactions across multiple clusters
in the presence of Byzantine nodes has also been addressed
in several studies, e.g., permissioned blockchains. Partially
replicated systems replicate each data shard on a single cluster
and use either coordinator-based protocols, e.g., AHL [18],
or flattened protocols, e.g., SharPer [6] [7], to process cross-
shard transactions. However, sharding approaches maintain
data shards mainly on cloud servers with possibly large net-
work distances from edge devices. Moreover, the far network
distance either between the involved shards (in the flattened
approach) or between the coordinator and involved shards (in
the coordinator-based approach) results in high latency.

In geo-distributed fully replicated systems, e.g., Steward
[4], Blockplane [40], and GeoBFT [29], the data is replicated
on every cluster. GeoBFT proceeds in rounds where at every
round, each cluster establishes consensus on a transaction and
multicasts the locally-replicated transaction to other clusters.
All clusters then, execute all transactions of that round in a
predetermined order. Blockplane and Steward, on the other
hand, present a hierarchical two-level approach where different
clusters locally establish BFT consensus on disjoint transac-
tions, and at the top level, a CFT consensus protocol is used to
process all transactions globally. In contrast to geo-distributed
systems, Saguaro assumes the geographical locality of data
access (a reasonable assumption in edge commuting networks)

AHL AHL
=+ SharPer I ~+ SharPer

- coordinator == coordinator
©- optimistic ©- optimistic

0 5 10 15 20 0 5 10 15
Throughput [ktrans/sec] Throughput [ktrans/sec]

@ |p| =7

Figure 13. Increasing the Number of Nodes (Byzantine Domains)

®) |p| =13

and replicates data only on a nearby domain. While this design
choice brings down the availability guarantee of Saguaro, it
leads to higher performance. Furthermore, Saguaro leverages
the hierarchical structure of edge computing networks to
process cross-domain transactions more efficiently.

The blockchain model presented in [49] focuses only on the
data abstraction across different levels of the hierarchy and
does not address cross-domain transactions, consensus, and
mobility of nodes. Plasma [46] also uses hierarchical chains
to improve transaction throughput of the Ethereum blockchain,
however, processing cross-domain transactions and mobility of
nodes have not been addressed in Plasma.

Blockchain brings the capability of managing edge com-
puting network data through its secure distributed ledger and
provide immutability, decentralization, and transparency, all
of which promise to tackle privacy and security challenges
of current edge computing networks [3] [21] [27] [41] [53]
[59]. Nonetheless, these studies do not address the challenges
of maintaining hierarchical ledgers, processing cross-domain
transactions, and consensus with mobile devices.

X. CONCLUSION

In this paper, we present Saguaro, a permissioned block-
chain system that leverages the hierarchical structure of
edge computing networks to achieve four main purposes.
First, Saguaro processes cross-domain transactions using a
coordinator-based approach by relying on the lowest com-
mon ancestor of the involved domains. Second, in Saguaro
domains propagate (a summarized version of) their ledgers
up the hierarchy to provide data aggregation functionalities.
Third, Saguaro presents an optimistic cross-domain consensus
protocol by relying on higher-level nodes to detect inconsist-
encies. Finally, Saguaro addresses the mobility of edge devices
by introducing a mobile consensus protocol. We validated
these technical innovations by developing a prototype of
Saguaro, where our evaluation results across a wide range of
workloads demonstrate the scalability of Saguaro in processing
cross-domain transactions across edge computing networks
and transactions initiated by mobile devices where the involved
nodes are far apart.

ACKNOWLEDGEMENTS

This work is funded by NSF grant CNS-2104882, ONR
grant N0O0014-18-1-2021, Hong Kong General Research Fund
(14200817), Hong Kong AoE/P-404/18, Innovation and Tech-
nology Fund (ITS/310/18, ITP/047/19LP) and Centre for Per-
ceptual and Interactive Intelligence (CPII) Limited under the
Innovation and Technology Fund.

[1]

[2]

[3]

[4]

[5]

[6]
[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

REFERENCES

D. Agrawal, A. E. Abbadi, H. A. Mahmoud, F. Nawab, and K. Salem.
Managing geo-replicated data in multi-datacenters. In International
Workshop on Databases in Networked Information Systems, pages 23—
43. Springer, 2013.

N. Al-Falahy and O. Y. Alani. Technologies for 5g networks: Challenges
and opportunities. IT Professional, 19(1):12-20, 2017.

M. Alaslani, F. Nawab, and B. Shihada. Blockchain in iot systems: End-
to-end delay evaluation. [EEE Internet of Things Journal, 6(5):8332—
8344, 2019.

Y. Amir, C. Danilov, D. Dolev, J. Kirsch, J. Lane, C. Nita-Rotaru,
J. Olsen, and D. Zage. Steward: Scaling byzantine fault-tolerant
replication to wide area networks. IEEE Transactions on Dependable
and Secure Computing, 7(1):80-93, 2008.

M. J. Amiri, D. Agrawal, and A. El Abbadi. Caper: a cross-application
permissioned blockchain. Proc. of the VLDB Endowment, 12(11):1385-
1398, 2019.

M. J. Amiri, D. Agrawal, and A. El Abbadi. On sharding permissioned
blockchains. In Int. Conf. on Blockchain, pages 282-285. IEEE, 2019.
M. J. Amiri, D. Agrawal, and A. El Abbadi. Sharper: Sharding
permissioned blockchains over network clusters. In SIGMOD Int. Conf.
on Management of Data, pages 76-88. ACM, 2021.

M. J. Amiri, T. Allard, D. Agrawal, and A. El Abbadi. Prever: Towards
private regulated verified data. In Int. Conf. on Extending Database
Technology (EDBT), pages 2:454-2:461, 2022.

M. J. Amiri, J. Duguépéroux, T. Allard, D. Agrawal, and A. El Abbadi.
Separ: Separ: Towards regulating future of work multi-platform crowd-
working environments with privacy guarantees. In Proceedings of The
Web Conf. (WWW), pages 1891-1903, 2021.

M. J. Amiri, B. Thau Loo, D. Agrawal, and A. El Abbadi. Qanaat: A
scalable multi-enterprise permissioned blockchain system with confid-
entiality guarantees. Proc. of the VLDB Endowment, 15(11):1, 2022.
E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, et al. Hyperledger
fabric: a distributed operating system for permissioned blockchains. In
European Conf. on Computer Systems (EuroSys), page 30. ACM, 2018.
J. Baker, C. Bond, J. C. Corbett, J. Furman, A. Khorlin, J. Larson, J.-M.
Leon, Y. Li, A. Lloyd, and V. Yushprakh. Megastore: Providing scalable,
highly available storage for interactive services. In Conf. on Innovative
Data Systems Research (CIDR), 2011.

G. Bracha and S. Toueg. Asynchronous consensus and broadcast
protocols. Journal of the ACM (JACM), 32(4):824-840, 1985.

N. Bronson, Z. Amsden, G. Cabrera, P. Chakka, P. Dimov, H. Ding,
J. Ferris, A. Giardullo, S. Kulkarni, H. Li, et al. Tao: Facebook’s
distributed data store for the social graph. In Annual Technical Conf.
(ATC), pages 49-60. USENIX Association, 2013.

C. Cachin, K. Kursawe, and V. Shoup. Random oracles in con-
stantinople: Practical asynchronous byzantine agreement using crypto-
graphy. Journal of Cryptology, 18(3):219-246, 2005.

M. Castro, B. Liskov, et al. Practical byzantine fault tolerance. In
Symposium on Operating systems design and implementation (OSDI),
volume 99, pages 173-186. USENIX Association, 1999.

J. C. Corbett, J. Dean, M. Epstein, A. Fikes, et al. Spanner: Google’s
globally distributed database. Transactions on Computer Systems
(TOCS), 31(3):8, 2013.

H. Dang, T. T. A. Dinh, D. Loghin, E.-C. Chang, Q. Lin, and B. C.
Ooi. Towards scaling blockchain systems via sharding. In SIGMOD
Int. Conf. on Management of Data. ACM, 2019.

G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo:
amazon’s highly available key-value store. In Operating Systems Review
(OSR), volume 41, pages 205-220. ACM SIGOPS, 2007.

S. Din, A. Paul, and A. Rehman. 5g-enabled hierarchical architecture for
software-defined intelligent transportation system. Computer Networks,
150:81-89, 2019.

A. Dorri, S. S. Kanhere, and R. Jurdak. Blockchain in internet of things:
challenges and solutions. arXiv preprint arXiv:1608.05187, 2016.

A. Dorri, S. S. Kanhere, R. Jurdak, and P. Gauravaram. Blockchain for
iot security and privacy: The case study of a smart home. In Int. Conf. on
pervasive computing and communications (PerCom) workshops, pages
618-623. IEEE, 2017.

J. M. Faleiro and D. J. Abadi. Rethinking serializable multiversion
concurrency control. Proceedings of the VLDB Endowment, 8(11):1190—
1201, 2015.

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

(32]
[33]

[34]

[35]

[36]

[37]
(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

J. M. Faleiro, D. J. Abadi, and J. M. Hellerstein. High performance
transactions via early write visibility. Proc. of the VLDB Endowment,
10(5):613-624, 2017.

M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of
distributed consensus with one faulty process. Journal of the ACM
(JACM), 32(2):374-382, 1985.

L. Glendenning, I. Beschastnikh, A. Krishnamurthy, and T. Anderson.
Scalable consistency in scatter. In Symposium on Operating Systems
Principles (SOSP), pages 15-28. ACM, 2011.

S. Guo, X. Hu, S. Guo, X. Qiu, and F. Qi. Blockchain meets edge
computing: A distributed and trusted authentication system. Transactions
on Industrial Informatics, 16(3):1972-1983, 2019.

Y. Guo and C. Liang. Blockchain application and outlook in the banking
industry. Financial Innovation, 2(1):24, 2016.

S. Gupta, S. Rahnama, J. Hellings, and M. Sadoghi. Resilientdb: Global
scale resilient blockchain fabric. Proceedings of the VLDB Endowment,
13(6):868-883, 2020.

M. Hu, Z. Xie, D. Wu, Y. Zhou, X. Chen, and L. Xiao. Heterogen-
eous edge offloading with incomplete information: A minority game
approach. [EEE Transactions on Parallel and Distributed Systems,
31(9):2139-2154, 2020.

R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin, S. Zdonik, E. P.
Jones, S. Madden, M. Stonebraker, Y. Zhang, et al. H-store: a high-
performance, distributed main memory transaction processing system.
Proc. of the VLDB Endowment, 1(2):1496-1499, 2008.

L. Lamport. Paxos made simple. ACM Sigact News, 32(4):18-25, 2001.
B. Li, Q. He, F. Chen, H. Jin, Y. Xiang, and Y. Yang. Auditing cache
data integrity in the edge computing environment. IEEE Transactions
on Parallel and Distributed Systems, 32(5):1210-1223, 2020.

D. Loghin, S. Cai, G. Chen, T. T. A. Dinh, F. Fan, Q. Lin, J. Ng,
B. C. Ooi, X. Sun, Q.-T. Ta, W. Wang, X. Xiao, Y. Yang, M. Zhang,
and Z. Zhang. The disruptions of 5g on data-driven technologies and
applications. IEEE Transactions on Knowledge and Data Engineering,
32(6):1179-1198, 2020.

P. Mach and Z. Becvar. Mobile edge computing: A survey on archi-
tecture and computation offloading. IEEE Communications Surveys &
Tutorials, 19(3):1628-1656, 2017.

H. Mahmoud, F. Nawab, A. Pucher, D. Agrawal, and A. El Abbadi.
Low-latency multi-datacenter databases using replicated commit. Proc.
of the VLDB Endowment, 6(9):661-672, 2013.

S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008.

F. Nawab, D. Agrawal, and A. El Abbadi. Message futures: Fast
commitment of transactions in multi-datacenter environments. In CIDR,
2013.

F. Nawab, V. Arora, D. Agrawal, and A. El Abbadi. Minimizing commit
latency of transactions in geo-replicated data stores. In Proceedings of
the 2015 ACM SIGMOD International Conference on Management of
Data, pages 1279-1294, 2015.

F. Nawab and M. Sadoghi. Blockplane: A global-scale byzantizing
middleware. In 2019 IEEE 35th Int. Conf. on Data Engineering (ICDE),
pages 124-135. IEEE, 2019.

D. C. Nguyen, P. N. Pathirana, M. Ding, and A. Seneviratne. Blockchain
for 5g and beyond networks: A state of the art survey. Journal of
Network and Computer Applications, page 102693, 2020.

U. D. of Labor. Wages and the fair labor standards act.
tps://www.dol.gov/agencies/whd/flsa.

S. Patterson, A. J. Elmore, F. Nawab, D. Agrawal, and A. El Abbadi.
Serializability, not serial: Concurrency control and availability in multi-
datacenter datastores. Proc. of the VLDB Endowment, 5(11):1459-1470,
2012.

Z. Peng, C. Xu, H. Wang, J. Huang, J. Xu, and X. Chu. P2b-
trace: Privacy-preserving blockchain-based contact tracing to combat
pandemics. In SIGMOD Int. Conf. on Management of Data, pages
2389-2393, 2021.

Z. Peng, J. Xu, X. Chu, S. Gao, Y. Yao, R. Gu, and Y. Tang. Vfchain:
Enabling verifiable and auditable federated learning via blockchain
systems. IEEE Transactions on Network Science and Engineering, 2021.
J. Poon and V. Buterin. Plasma: Scalable autonomous smart contracts.
White paper, 2017.

G. Prasaad, A. Cheung, and D. Suciu. Handling highly contended oltp
workloads using fast dynamic partitioning. In SIGMOD Int. Conf. on
Management of Data, pages 527-542. ACM, 2020.

W. Saad, M. Bennis, and M. Chen. A vision of 6g wireless systems:
Applications, trends, technologies, and open research problems. [EEE
network, 34(3):134-142, 2019.

ht-

[49]

[50]

[51]

[52]

[53]

[54]

[55]

S. Sahoo, A. M. Fajge, R. Halder, and A. Cortesi. A hierarchical
and abstraction-based blockchain model. Applied Sciences, 9(11):2343,
2019.

K. Shafique, B. A. Khawaja, F. Sabir, S. Qazi, and M. Mustagim. Internet
of things (iot) for next-generation smart systems: A review of current
challenges, future trends and prospects for emerging 5g-iot scenarios.
Teee Access, 8:23022-23040, 2020.

W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu. Edge computing: Vision
and challenges. IEEE internet of things journal, 3(5):637-646, 2016.
V. Shoup. Practical threshold signatures. In International Conference on
the Theory and Applications of Cryptographic Techniques, pages 207—
220. Springer, 2000.

A. A. Singh and F. Nawab. Wedgedb: Transaction processing for edge
databases. In Proceedings of the ACM Symposium on Cloud Computing,
pages 482-482, 2019.

R. Taft, E. Mansour, M. Serafini, J. Duggan, A. J. Elmore, A. Aboulnaga,
A. Pavlo, and M. Stonebraker. E-store: Fine-grained elastic partitioning
for distributed transaction processing systems. Proc. of the VLDB
Endowment, 8(3):245-256, 2014.

A. Thomson, T. Diamond, S.-C. Weng, K. Ren, P. Shao, and D. J. Abadi.

[56]

(571

(58]

(591

[60]

Calvin: fast distributed transactions for partitioned database systems. In
SIGMOD Int. Conf. on Management of Data, pages 1-12. ACM, 2012.
F. Tian. A supply chain traceability system for food safety based on
haccp, blockchain & internet of things. In Int. Conf. on service systems
and service management (ICSSSM), pages 1-6. IEEE, 2017.

L. Tong, Y. Li, and W. Gao. A hierarchical edge cloud architecture
for mobile computing. In Int. Conf. on Computer Communications
(INFOCOM), pages 1-9. IEEE, 2016.

Z. Xiong, Y. Zhang, D. Niyato, P. Wang, and Z. Han. When mobile
blockchain meets edge computing. [EEE Communications Magazine,
56(8):33-39, 2018.

L. Yuan, Q. He, S. Tan, B. Li, J. Yu, F. Chen, H. Jin, and Y. Yang.
Coopedge: A decentralized blockchain-based platform for cooperative
edge computing. In Proceedings of the Web Conference 2021, pages
2245-2257, 2021.

E. Zamanian, J. Shun, C. Binnig, and T. Kraska. Chiller: Contention-
centric transaction execution and data partitioning for modern networks.
In SIGMOD Int. Conf. on Management of Data, pages 511-526. ACM,
2020.

