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Abstract

Existing theories on deep nonparametric regres-

sion have shown that when the input data lie on a

low-dimensional manifold, deep neural networks

can adapt to the intrinsic data structures. In real

world applications, such an assumption of data

lying exactly on a low dimensional manifold is

stringent. This paper introduces a relaxed assump-

tion that the input data are concentrated around

a subset of R
d denoted by S, and the intrinsic

dimension of S can be characterized by a new

complexity notation ± effective Minkowski di-

mension. We prove that, the sample complexity

of deep nonparametric regression only depends

on the effective Minkowski dimension of S de-

noted by p. We further illustrate our theoreti-

cal findings by considering nonparametric regres-

sion with an anisotropic Gaussian random design

N(0,Σ), where Σ is full rank. When the eigen-

values of Σ have an exponential or polynomial

decay, the effective Minkowski dimension of such

an Gaussian random design is p = O(√log n) or

p = O(nγ), respectively, where n is the sample

size and γ ∈ (0, 1) is a small constant depend-

ing on the polynomial decay rate. Our theory

shows that, when the manifold assumption does

not hold, deep neural networks can still adapt to

the effective Minkowski dimension of the data,

and circumvent the curse of the ambient dimen-

sionality for moderate sample sizes.
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1. Introduction

Deep learning has achieved impressive successes in var-

ious real-world applications, such as computer vision

(Krizhevsky et al., 2012; Goodfellow et al., 2014; Long et al.,

2015), natural language processing (Graves et al., 2013; Bah-

danau et al., 2014; Young et al., 2018), and robotics (Gu

et al., 2017). One notable example of this is in the field of

image classification, where the winner of the 2017 ImageNet

challenge achieved a top-5 error rate of just 2.25% (Hu et al.,

2018) using a training dataset of 1 million labeled high res-

olution images in 1000 categories. Deep neural networks

have been shown to outperform humans in speech recogni-

tion, with a 5.15% word error rate using the LibriSpeech

training corpus (Panayotov et al., 2015), which consists of

approximately 1000 hours of 16kHz read English speech

from 8000 audio books.

The remarkable successes of deep learning have challenged

conventional machine learning theory, particularly when

it comes to high-dimensional data. Existing literature has

established a minimax lower bound of sample complexity

n ≳ ϵ−(2s+d)/s for learning s-HÈolder functions in R
d with

accuracy ϵ (GyÈorfi et al., 2006). This minimax lower bound,

however, is far beyond the practical limits. For instance,

the images in the ImageNet challenge are of the resolution

224× 224 = 50176, while the sample size of 1.2 million is

significantly smaller than the theoretical bound.

Several recent results have attempted to explain the

successes of deep neural networks by taking the low-

dimensional structures of data into consideration(Chen et al.,

2019; 2022; Nakada & Imaizumi, 2020; Liu et al., 2021;

Schmidt-Hieber, 2019). Specifically, Chen et al. (2022)

shows that when the input data are supported on a p-

dimensional Riemannian manifold embedded in R
d, deep

neural networks can capture the low-dimensional intrinsic

structures of the manifold. The sample complexity in Chen

et al. (2022) depends on the intrinsic dimension p, which

circumvents the curse of ambient dimension d; Nakada &

Imaizumi (2020) assumes that the input data are supported

on a subset of Rd with Minkowski dimension p, and estab-

lishes a sample complexity similar to Chen et al. (2022).

Liu et al. (2021) considers a classification problem, and

show that convolutional residual networks enjoy similar
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theoretical properties to Chen et al. (2022).

Considering the complexity of real world applications,

however, the assumptions of data lying exactly on a low-

dimensional manifold or a set with low Minkowski dimen-

sion are stringent. To bridge such a gap between theory

and practice, we consider a relaxed assumption that the

input data X are approximately supported on a subset of

R
d with certain low-dimensional structures denoted by S.

Roughly speaking, there exists a sufficiently small τ such

that we have P(X /∈ S) = τ , where S can be character-

ized by a new complexity notation ± effective Minkowski

dimension. We then prove that under proper conditions, the

sample complexity of nonparametric regression using deep

neural networks only depends on the effective Minkowski

dimension of S denoted by p. Our assumption arises from

practical motivations: The distributions of real-world data

sets often exhibit a varying density. In practice, the low-

density region can be neglected, if our goal is to minimize

the L2 prediction error in expectation.

Furthermore, we illustrate our theoretical findings by con-

sidering nonparametric regression with an anisotropic mul-

tivariate Gaussian randomly sampled from N(0,Σ) de-

sign in R
d. Specifically, we prove that when the eigen-

values of Σ have an exponential decay, we can properly

construct S with the effective Minkowski dimension p =
min(O(√log n), d). Moreover, when the eigenvalues of Σ
have a polynomial decay, we can properly construct S with

the effective Minkowski dimension p = min(O(nγ , d)),
where γ ∈ (0, 1) is a small constant. Our proposed effec-

tive Minkovski dimension is a non-trivial generalization

of the manifold intrinsic dimension (Chen et al., 2022) or

the Minkowski dimension (Nakada & Imaizumi, 2020), as

both the intrinsic dimension or Minkowski dimension of the

aforementioned S’s are d, which can be significantly larger

than p for moderate sample size n.

An ingredient in our analysis is an approximation theory

of deep ReLU networks for β-HÈolder functions (Yarotsky,

2017; Nakada & Imaizumi, 2020; Chen et al., 2019). Specif-

ically, we show that, in order to uniformly approximate

β-HÈolder functions on a properly selected S up to an ϵ er-

ror, the network consists of at most O(ϵ−p/β) neurons and

weight parameters, where p is the effective Minkowski di-

mension of the input data distribution. The network size in

our theory only weakly depends on the ambient dimension d,

which circumvents the curse of dimensionality for function

approximation using deep ReLU networks. Our approxi-

mation theory is established for the L2 norm instead of the

L∞ norm in Nakada & Imaizumi (2020); Chen et al. (2019).

The benefit is that we only need to approximate the function

accurately on the high-density region, and allow for rough

approximations on the low-density region. Such flexibility

is characterized by our effective Minkowski dimension.

The rest of this paper is organized as follows: Section 2

reviews the background; Section 3 presents our functional

approximation and statistical theories; Section 4 provides an

application to Gaussian random design; Section 5 presents

the proof sketch of our main results; Section 6 discusses

related works and draws a brief conclusion.

Notations Given a vector v = (v1, ..., vd)
⊤ ∈ R

d, we

define ∥v∥pp =
∑

j |vj |p for p ∈ [1,∞) and ∥v∥∞ =

maxj |vj |. Given a matrix W = [Wij ] ∈ R
n×m, we define

∥W∥∞ = maxi,j |Wij |. We define the number of nonzero

entries of v and W as ∥v∥0 and ∥W∥0, respectively. For

a function f(x), where x ∈ X ⊆ R
d, we define ∥f∥∞ =

maxx∈X |f(x)|. We define ∥f∥2L2(P ) =
∫
X f2(x)p(x)dx,

where P is a continuous distribution defined on X with the

pdf p(x).

2. Background

In nonparametric regression, the aim is to estimate a ground-

truth regression function f∗ from i.i.d. noisy observations

{(xi, yi)}ni=1. The data are generated via

yi = f∗(xi) + ξi,

where the noise ξi’s are i.i.d. sub-Gaussian noises with

E[ξi] = 0 and variance proxy σ2, which are independent

of the xi’s. To estimate f∗, we minimize the empirical

quadratic loss over a concept class F , i.e.,

f̂ ∈ argmin
f∈F

1

2n

n∑

i=1

(f(xi)− yi)
2
. (1)

We assess the quality of estimator f̂ through bounding L2

distance between f̂ and f∗, that is,

∥∥∥f̂ − f∗
∥∥∥
2

L2(Pdata)
≤ γ(n).

Here γ(n) is a function of n describing the convergence

speed and Pdata is an unknown sampling distribution ofthe

xi’s supported on Ddata.

Existing literature on nonparametric statistics has estab-

lished an optimal rate of γ(n) ≲ n− 2α
2α+d , when f∗ is α-

smooth with bounded functional norm, and F is properly

chosen (Wahba, 1990; Altman, 1992; Fan & Gijbels, 1996;

Tsybakov, 2008; GyÈorfi et al., 2006).

The aforementioned rate of convergence holds for any data

distribution Pdata. For high-dimensional data, the conver-

gence rate suffers from the curse of dimensionality. How-

ever, in many practical applications, Pdata exhibits impor-

tant patterns. For example, data are highly clustered in

certain regions, while scarce in the rest of the domain. In

literature, a line of work studies when Pdata is supported on
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a low-dimensional manifold (Bickel & Li, 2007; Cheng &

Wu, 2013; Liao et al., 2021; Kpotufe, 2011; Kpotufe & Garg,

2013; Yang et al., 2015). The statistical rate of convergence

γ(n) in these works depends on the intrinsic dimension of

the manifold, instead of the ambient dimension. Recently,

neural networks are also shown to be able to capture the

low-dimensional structures of data (Schmidt-Hieber, 2019;

Nakada & Imaizumi, 2020; Chen et al., 2022).

As mentioned, aforementioned works assume that data ex-

actly lie on a low-dimensional set, which is stringent. Re-

cently, Cloninger & Klock (2020) relaxes the assumption

such that data are concentrated on a tube of the manifold, but

the radius of this tube is limited to the reach (Federer, 1959)

of the manifold. In this paper, we establish a fine-grained

data dependent nonparametric regression theory, where data

are approximately concentrated on a low-dimensional subset

of the support.

To facilitate a formal description, we denote Ddata as the

data support. Given r, τ > 0, we define

N(r; τ) :=inf
S
{Nr(S) :S⊂DdatawithPdata(S)≥ 1− τ},

where Nr(S) is the r-covering number of S with respect to

L∞ distance.

Assumption 2.1. For any sufficiently small r, τ > 0, there

exists a positive constant p = p(r, τ) such that

logN(r; τ)

− log r
≤ p(r, τ).

Furthermore, there exists S ⊂ Ddata such that

Nr(S) ≤ c0N(r; τ) ≤ c0r
−p

for some constant c0 > 1, Pdata(S
c) ≤ τ and |xi| ≤ RS

for any x = (x1, . . . , xd) ∈ S and some constant RS > 0.

We next introduce HÈolder functions and the HÈolder space.

Definition 2.2 (HÈolder Space). Let β > 0 be a degree of

smoothness. For f : X → R, the HÈolder norm is defined as

∥f∥H(β,X ) := max
α:∥α∥1<⌊β⌋

sup
x∈X
|∂αf(x)|

+ max
α:∥α∥1=⌊β⌋

sup
x,x′∈X ,x ̸=x′

|∂αf(x)− ∂αf(x′)|
∥x− x′∥β−⌊β⌋

∞
.

Then the HÈolder space on X is defined as

H(β,X ) =
{
f ∈ C⌊β⌋(X )

∣∣ ∥f∥H(β,X ) ≤ 1
}
.

Without loss of generality, we impose the following assump-

tion on the target function f∗:

Assumption 2.3. The ground truth function f∗ : Ddata →
R belongs to the HÈolder spaceH(β,Ddata) with β ∈ (0, d).

Although the HÈolder norm of f∗ is assumed to be bounded

by 1, our results can be easily extended to the case when

∥f∗∥H(β,Ddata)
is upper bounded by any positive constant.

In addition, β < d is a natural assumption. Given that ambi-

ent dimension d is always large, it is unusual for regression

functions to possess a degree of smoothness larger than d.

Our goal is to use multi-layer ReLU neural networks to

estimate the function f∗. Given an input x, an L-layer

ReLU neural network computes the output as

f(x) =WL · ReLU(WL−1 · · ·ReLU(W1x+ b1)

· · ·+ bL−1) + bL,
(2)

where W1, . . . ,WL and b1, . . . , bL are weight matrices and

intercepts respectively. The ReLU(·) activation function

denotes the entrywise rectified linear unit, i.e. ReLU(a) =
max{a, 0}. The empirical risk minimization in (1) is taken

over the function class F given by a network architecture.

Definition 2.4 (Function Class Given by a Network Ar-

chitecture). Given a tuple (L,B,K), a functional class of

ReLU neural networks is defined as follows:

F(L,B,K) :=
{
f |f(x) in the form of (2) with L layers,

∥f∥∞ ≤ 1, ∥Wi∥∞ ≤ B, ∥bi∥∞ ≤ B

for i = 1, . . . , L,

L∑

i=1

∥Wi∥0 + ∥bi∥0 ≤ K
}
.

3. Approximation and Generalization Theory

In this section, we present generic approximation and gen-

eralization theory and defer detailed proofs to Section 5.1

and 5.2 respectively. Firstly, we introduce the approxima-

tion theory of utilizing deep neural networks to approximate

HÈolder functions. The approximation error is determined

by effective Minkowski dimension of data distribution and

probability of low-density area. Furthermore, we present the

generalization error when approximating regression func-

tion f∗. The convergence rate also depends on effective

Minkowski dimension.

Theorem 3.1 (Approximation of deep neural networks).

Suppose Assumption 2.1 hold. For β > 0 and any suffi-

ciently small ϵ, τ > 0, consider a tuple (L,B,K)

L = C1, B = O(Rβs
S ϵ−s), and K = C2(RSd)

pϵ−p/β ,

where RS > 0 and p = p(d−1ϵ1/β/2, τ) are given by

Assumption 2.1, and

C1 = O(d), C2 = O
(
d2+⌊β⌋), and s = s(β).

Then for any f∗ ∈ H(β,Ddata), we have

inf
f∈F(L,B,K)

∥f − f∗∥2L2(Pdata)
≤ ϵ2 + 4τ.
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The novelty of Theorem 3.1 is summarized below:

Dependence on Effective Minkowski Dimension. The

approximation rate in Theorem 3.1 is O(K−β/p), which

only depends on effective Minkowski dimension p < d
and function smoothness β, but not on ambient dimension

d. Compared to Yarotsky (2017), our results improves the

exponential dependence of neural network size on d to that

on p. Moreover, unlike Nakada & Imaizumi (2020) and

Chen et al. (2022), our results do not require that data dis-

tribution is exactly supported on a low-dimensional struc-

ture. Instead, our results can work for data distribution with

high-dimensional support as long as its effective Minkowski

dimension is relatively small.

Relaxation to the L2-error. The approximation error in

Theorem 3.1 is established with respect to the L2(Pdata)
norm, while most of existing works focus on the L∞ error

(Yarotsky, 2017; Nakada & Imaizumi, 2020; Chen et al.,

2019). Intuitively, it is not necessary for the network class to

approximate the function value at each point in the domain

Ddata precisely when data distribution is highly concen-

trated at certain subset. Instead, it suffices to approximate

f∗ where the probability density is significant, while the

error for the low-density region can be easily controlled

since the regression function f∗ and the neural network

class f ∈ F(L,B,K) are bounded.

The benefit of using the L2 error is that, we only need to

control the approximation error of f∗ within some chosen

region S ⊆ Ddata. Here S has an effective Minkowski di-

mension p, which ensures that it can be covered by O(r−p)
hypercubes with side length r. Then we design deep neural

networks to approximate f∗ within each hypercube and thus

the network size depends on the number of hypercubes used

to cover S. This explains why network size in Theorem 3.1

depends on p. Meanwhile, the probability out of S is negli-

gible since the data density is low. We further demonstrate

that this probability τ is far less than the approximation

error in Section 4. By this means, we succeed to reduce

the network size and at the same time achieve a small L2

approximation error.

We next establish the generalization result for the estimation

of f∗ using deep neural networks.

Theorem 3.2 (Generalization error of deep neural networks).

Suppose Assumption 2.1 holds. Fix any sufficiently small

r, τ > 0 satisfying r < RS and τ < r4β/4. Set a tuple

(L,B,K) with C1, C2 and s appearing in Theorem 3.1 as

L = C1, B = O(Rβs
S r−βs), and K = C2R

p
Sr

−p

with p = p(r, τ). Let f̂ be the global minimizer of empirical

loss given in (1) with the function class F = F(L,B,K).

Then we have

E∥f̂ − f∗∥2L2(Pdata)
=

O

(
τ + σr2β +

σ2

n

(
RS

r

)p

log

(
(RS/r)

p

r4β − 4τ

))
,

where O(·) hides polynomial dependence on d.

Theorem 3.2 is a statistical estimation result. It implies

that the generalization error also depends on effective

Minkowski dimension p. To establish this result, we de-

compose the squared error into a squared bias term and a

variance term. The bias is tackled with the approximation

error in Theorem 3.1 and the variance depends on the net-

work size. With the network size growing, the variance term

increases while the bias term decreases, since the approxi-

mation capability of neural networks is enhanced as the size

of the network enlarges. Therefore, we need to trade off

between the squared bias and the variance to minimize the

squared generalization error.

Notably, our analysis in Section 3 holds for any sufficiently

small τ and r, and every pair of τ and r determines a p. As

shown in Assumption 2.1, if τ and r decreases, the covering

number will become larger while the approximation can

be more accurate. In order to establish an explicit bound,

we need to trade off τ and r for the given sample size n.

Therefore the ªoptimalº p eventually becomes functions

of n. We call such an ªoptimalº p effective Minkowski

dimension.

In the next section, we give two specific classes of Gaussian

random designs to illustrate how effective Minkowski di-

mension p(r, τ) scales with r and τ . We further show that,

under a proper selection of the region S and the covering

accuracy r, the convergence rate for the estimation of f∗

using deep neural networks is Õ(n−2β/(2β+p)), where the

effective Minkowski dimension p is properly chosen.

4. Application to Gaussian Random Design

In literature, it is common to consider random Gaussian de-

sign in nonparametric regression (Anderson, 1962; Muller

& Stewart, 2006; Chatfield, 2018). In this section, we

take anisotropic multivariate Gaussian design as example

to justify Assumption 2.1 and demonstrate the effective

Minkowski dimension. Here we only provide our main the-

orems and lemmas. The detailed proofs are given in Section

5.3.

Consider a Gaussian distribution Pdata ∼ N(0,Σ) in

R
d. The covariance matrix Σ has the eigendecomposi-

tion form: Σ = QΓQ⊤, where Q is an orthogonal matrix

and Γ = diag(γ1, . . . , γd). For notational convenience in

our analysis, we further denote eigenvalue γi = λ2
i for

i = 1, . . . , d. Without loss of generality, assume that
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λ2
1 ≥ λ2

2 ≥ . . . ≥ λ2
d. Furthermore, we assume that

{λ2
i }di=1 has an exponential or polynomial decay rate:

Assumption 4.1 (Exponential decay rate). The eigenvalue

series {γi}di=1 = {λ2
i }di=1 satisfies λi ≤ µ exp{−θi} for

some constants µ, θ > 0.

Assumption 4.2 (Polynomial decay rate). The eigenvalue

series {γi}di=1 = {λ2
i }di=1 satisfies λi ≤ ρi−ω for some

constants ρ > 0 and ω > 1.

When the eigenvalues decay fast, the support of the data

distribution Pdata has degeneracy in some directions. In

this case, the majority of probability lies in some region

S ⊂ R
d, which has an effective Minkowski dimension

p < d. Specifically, consider a ªthickº low-dimensional

hyper-ellipsoid in R
d,

S(R, r; p) :=

{
Qz

∣∣∣∣z=(z1, . . . , zd) ∈ R
d,

p∑

i=1

z2i
λ2
i

≤ R2,

|zj | ≤
r

2
for j = p+ 1, . . . , d

}
, (3)

where R, r > 0 and p ∈ N+ are independent parameters.

For the simplicity of notation, we first define a standard

hyper-ellipsoid and then linearly transform it to align with

the distribution N(0,Σ). The set S(R, r; p) can be regarded

as a hyper-ellipsoid scaled by R > 0 in the first p dimen-

sions, and with thickness r > 0 in the rest d− p dimensions.

Then we construct a minimal cover as a union of nonover-

lapping hypercubes with side length r for S(R, r; p). The

following lemma characterizes the relationship between

the probability measure outside S(R, r; p) and its covering

number.

Lemma 4.3. Given the eigenvalue series {λ2
i }di=1, for any

R, r > 0, choose p > 0 such that λ−1
p = 2R/r. If p < R2,

we will have

P(X /∈ S(R, r; p)) = O
(
exp(−R2/3)

)
,

Nr(S(R, r; p)) ≤
(
2R

r

)p

·
p∏

i=1

λi =

p∏

i=1

(
λi

λp

)
.

Remark 4.4. Since data distribution Pdata is supported on

R
d, both the intrinsic dimension and the Minkowski dimen-

sion of Pdata are d. However, Lemma 4.3 indicates that the

effective Minkowski dimension of Pdata is at most p.

According to Lemma 4.3, if we choose scale R >
√
p

properly, the probability outside S can be sufficiently small

while the covering number of S is dominated by r−p, which

gives that the effective Minkowski dimension of Pdata is at

most p. Moreover, under fast eigenvalue decays, the product

of the first p eigenvalues appearing in Nr(S(R, r; p)) is a

small number dependent of p. In these cases, we specify the

selection of R, r and p accordingly and show the effective

Minkowski dimension is reduced to p/2 in Appendix D.

Furthermore, we remark that the effective Minkowski dimen-

sion p is not a fixed number given data distribution Pdata,

but an increasing function of sample size n. As sample

size n increases, the estimation accuracy of f∗ is required

to be higher, so that we are supposed to design more and

smaller hypercubes to enable preciser estimation by neural

networks. Besides, some of the d − p dimensions are not

negligible anymore and thereby become effective compared

to the accuracy. Therefore, we need to incorporate more

dimensions to be effective to achieve higher accuracy.

With this observation, we construct S(R, r; p) such that

its effective Minkowski dimension p(n) increases while

thickness r(n) decreases as sample size n grows to enable

preciser estimation. Then we develop the following sample

complexity:

Theorem 4.5 (Generalization error under fast eigenvalue

decay). Under Assumption 2.3, let f̂ be the global min-

imizer of empirical loss given in (1) with function class

F = F(L,B,K). Suppose Assumption 4.1 hold. Set a

tuple (L,B,K) with the constants C1, C2 and s appearing

in Theorem 3.1 as

L = C1, B = O

(
n

βs

2β+
√

log n/θ (log n)βs
)
,

and K = C2n

√
log n/θ

2β+
√

log n/θ .

Then we have

E

∥∥∥f̂ − f∗
∥∥∥
2

L2(Pdata)
= O

(
σ2n

− 2β(1−η)

2β+
√

log n/θ (log n)3/2
)

for sufficiently large n satisfying log(log n)/
√
θ log n ≤ η,

where η > 0 is an arbitrarily small constant. Moreover,

suppose Assumption 4.2 hold instead. Set a tuple (L,B,K)
as

L = C1, B = O
(
n

(1+1/ω)βs
2β+nκ

)
,

and K = C2

(
n

(1+1/ω)nκ/(2β+nκ)

4β+2nκ

)
,

where κ = (1 + 1/ω)/ω. Then we have

E

∥∥∥f̂ − f∗
∥∥∥
2

L2(Pdata)
= O

(
σ2n

− 2β

2β+n(1+1/ω)/ω log n
)
.

Theorem 4.5 suggests the effective Minkowski dimension

of Gaussian distribution is
√
log n/θ under exponential

eigenvalue decay with speed θ and effective Minkowski

dimension is n(1+1/ω)/ω under polynomial eigenvalue de-

cay with speed ω. For moderate sample size n, i.e. effective

Minkowski dimension is less that ambient dimension d, The-

orem 4.5 achieves a faster convergence rate. When we have

a vast amount of data, the effective Minkowski dimension is

the same as the ambient dimension d, and then we can apply

standard analysis of deep neural networks for d-dimensional
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inputs to obtain the convergence rate Õ(n−2β/(2β+d)). To

the best of our knowledge, Theorem 4.5 appears to be the

first result for nonparametric regression and deep learning

theory, where the effective dimension varies with the sample

size.

5. Proof Sketch

This section contains proof sketches of Theorem 3.1, 3.2

and Lemma 4.3.

5.1. Proof Sketch of Theorem 3.1

We provide a proof sketch of Theorem 3.1 in this part and

defer technical details of the proof to Appendix A. The

ReLU neural network in Theorem 3.1 is constructed in the

following 5 steps:

1. Choose region S ⊂ Ddata only on which we use ReLU

neural networks to approximate f∗.

2. Construct a covering of S with hypercubes and then

divide these hypercubes into several groups, so that

neural networks constructed with respect to each group

have nonoverlapping supports.

3. Implement ReLU neural networks to assign given input

and estimated function value to corresponding hyper-

cube.

4. Approximate f∗ by a Taylor polynomial and then im-

plement a ReLU neural network to approximate Taylor

polynomial on each hypercube.

5. Sum up all the sub-neural-networks and take maximum

to approximate f∗.

Step 1. Space separation. Firstly, we divide Ddata into

some region S ⊂ Ddata with high probability measure and

Sc = Ddata with large volume. By Assumption 2.1, for any

sufficiently small r, τ > 0 and some constant c0 > 1, there

exists S ⊂ Ddata such that Nr(S) ≤ c0N(r; τ) ≤ c0r
−p

for some positive constant p = p(r, τ) and Pdata(S
c) ≤ τ .

Intuitively, we only need to approximate f∗ on S while Sc

is negligible due to its small probability measure. Therefore,

in the following steps, we only design a covering for S and

approximate f∗ in each hypercube of the covering.

Step 2. Grouping hypercubes. Let C be a minimum set of

hypercubes with side length r covering S. Then we partition

C into C1, . . . , CJ such that each subset Cj is composed

of hypercubes separated by r from each other. Lemma

A.1 shows that the number of Cj’s is at most a constant

dependent of d.

As a consequence, we group hypercubes into several subsets

of C so that constructed neural networks with respect to each

hypercube in Cj have nonoverlapping support.

Step 3. Hypercube Determination. This step is to assign

the given input x and estimated function value y to the

hypercube where they belong. To do so, we design a neural

network to approximate function (x, y) 7→ y 1I(x) where

I ∈ C is some hypercube. To make functions positive, we

firstly consider approximating f0 = f∗ + 2. Notice that

f0 ∈ H(β,Ddata, 3) and 1 ≤ f0(x) ≤ 3 for any x ∈ Ddata.

For any fixed I ∈ C, we define the center of I as (ι1, . . . , ιd).

Then we construct a neural network gind,r
I : Ddata × R≥ →

R≥ with the form:

gind,r
I (x, y) = 4ReLU

( d∑

i=1

1̂
r

I,i(xi) +
y

4
− d

)
, (4)

where 1̂
r

I,i : R→ [0, 1] is the approximated indicator func-

tion given by

1̂
r

I,i(z) =





z−(ιi−r)
r/2 if ιi − r < z ≤ ιi − r

2 ,

1 if ιi − r
2 < z ≤ ιi +

r
2 ,

(ιi+r)−z
r/2 if ιi +

r
2 < z ≤ ιi + r,

0 otherwise.

We claim that neural network gind,r
I approximates function

(x, y) 7→ y 1I(x). Moreover, Appendix A.2 provides the

explicit realization of gind,r
I by selecting specific weight

matrices and intercepts.

Step 4. Taylor Approximation. In each cube I ∈ C, we

locally approximate f∗ by a Taylor polynomial of degree

⌊β⌋ and then we define a neural network to approximate

this Taylor polynomial. Firstly, we cite the following lemma

to evaluate the difference between any β-HÈolder function

and its Taylor polynomial:

Lemma 5.1 (Lemma A.8 in Petersen & Voigtlaender

(2018)). Fix any f ∈ H(β,Ddata) with ∥f∥H(β,Ddata)
≤ 1

and x̄ ∈ S. Let f̄(x) be the Taylor polynomial of degree

⌊β⌋ of f around x̄, namely,

f̄(x) =
∑

|α|≤⌊β⌋

∂αf(x̄)

α!
(x− x̄)α.

Then, |f(x) − f̄(x)| ≤ dβ ∥x− x̄∥β holds for any x ∈
Ddata.

Next, we design an m-dimensional multiple output neural

network gpolyϵ = (gpolyϵ,1 , . . . , gpolyϵ,m ) to estimate multiple

Taylor polynomials in each output. The existence of such

neural network is ensured in the following lemma, which

is a straightforward extension of Lemma 18 in Nakada &

Imaizumi (2020).

Lemma 5.2 (Taylor approximation on S). Fix any m ∈
N+. Let {ck,α} ⊂ [−1, 1] for 1 ≤ k ≤ m. Let

{xk}mk=1 ⊂ S. Then there exist cpoly1 = cpoly1 (β, d, p),

6
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cpoly2 = cpoly2 (β, d, p) and spoly1 = spoly1 (β, d, p) such that

for any sufficiently small ϵ > 0, there is a neural network

gpolyϵ which satisfies the followings:

1. supx∈S

∣∣gpolyϵ,k (x) −∑|α|<β ck,α(x − xk)
α
∣∣ ≤ ϵ for

any k = 1, . . . ,m,

2. L(gpolyϵ ) ≤ 1 + (2 + log2 β)(11 + (1 + β)/p),

3. B(gpolyϵ ) ≤ cpoly1 R
βspoly

1

S ϵ−spoly
1 ,

4. K(gpolyϵ ) ≤ cpoly2 (Rp
Sϵ

−p/β +m).

For any cube Ik ∈ C, we take fIk(x) as a Taylor polynomial

function as with setting x̄← xIk and f ← f0 in Lemma 5.1.

Then we define a neural network to approximate fIk , which

is an ϵ/2-accuracy Taylor polynomial of f0. Let gpolyϵ/2 be

a neural network constructed in Lemma 5.2 with ϵ← ϵ/2,

m ← Nr(S), (xk)
m
k=1 ← (xIk)

Nr(S)
k=1 , and (ck,α)

m
k=1 ←

(∂αf(xIk)/α!)
Nr(S)
k=1 appearing in Lemma 5.2. Then, we

obtain

sup
k=1,...,Nr(S)

sup
x∈S

∣∣fIk(x)− gpolyϵ/2,k(x)
∣∣ ≤ ϵ

2
. (5)

In addition, we construct a neural network to aggregate

the outputs of gpolyϵ/2 . Define a neural network gfilter
k :

R
d+Nr(S) → R

d+1 which picks up the first d inputs and

(d+ k)-th input as

gfilter
k (z) =

(
Id e⊤k
0d e⊤k

)
z, for k = 1, . . . , Nr(S).

Then we design a neural network gsimul
ϵ/2 : Rd → R

Nr(S) that

simultaneously estimates Taylor polynomial at each cube.

Specifically, gsimul
ϵ/2 is formulated as below

gsimul
ϵ/2 =

(
gind,r
I1
◦ gfilter

1 , . . . , gind,r
INr(S)

◦ gfilter
Nr(S)

)

◦ (gIdd,L, gpolyϵ/2 ),
(6)

where gIdd,L : Rd → R
d is the neural network version of

the identity function whose number of layers is equal to

L(gpolyϵ/2 ).

Step 5. Construction of Neural Networks. In this step, we

construct a neural network gf0ϵ to approximate f0 = f∗ + 2.

Let gmax,5d be the neural network version of the maximize

function over 5d numbers. Besides, define

gsum(z1, . . . , zNr(S)) =

( ∑

Ik∈C1

zk, . . . ,
∑

Ik∈CNr(S)

zk

)
,

which aims to sum up the output of gsimul
ϵ/2 in each subset of

covering Cj .

Now we are ready to define gf0ϵ . Let gf0ϵ := gmax,5d ◦
gsum ◦ gsimul

ϵ/2 . Equivalently, gf0ϵ can be written as gf0ϵ =

maxj∈[5d]

∑
Ik∈Cj

gsimul
ϵ/2,k. Then we come to bound the ap-

proximation error of gf0ϵ . When x ∈ S, there exists some

I ∈ C such that x ∈ I . Based on the method to construct

neural networks, we have

gf0ϵ (x) = max
Ik∈Neig(I)

gsimul
ϵ/2,k(x)

≤ max
Ik∈Neig(I)

gpolyϵ/2,k(x),

where Neig(I) = {I ′ ∈ C|(I⊕3r/2)∩I ′ ̸= ∅} denotes the

3r/2-neighborhood of hypercube I . In other words, when

computing gf0ϵ (x), we only need to take maximum over the

estimated function value within hypercubes near x.

Given sufficiently small ϵ > 0, the error is bounded as

|gf0ϵ (x)− f0(x)| ≤ max
Ik∈Neig(I)

∣∣gpolyϵ/2,k(x)− f0(x)
∣∣

≤ max
Ik∈Neig(I)

∣∣gpolyϵ/2,k(x)− fIk(x)
∣∣

+ max
Ik∈Neig(I)

∣∣fIk(x)− f0(x)
∣∣

≤ε

2
+ dβ

(
3r

2

)β

≤ ϵ,

where the last inequality follows from (5) and Lemma 5.1.

Detailed derivation of approximation error is deferred to

Appendix A.3. In terms of parameter tuning, we choose

r = d−1ϵ1/β/2.

To extend results of f0 to f∗, we implement a neural net-

work gmod(z) = (−z+1) ◦ReLU(−z+2) ◦ReLU(z− 1)
and consider gf

∗

ϵ = gmod ◦ gf0ϵ to obtain the desired ap-

proximation error ϵ for any x ∈ S. Then we evaluate the

approximation error with respect to L2-norm:

∥∥∥gf
∗

ϵ − f∗
∥∥∥
L2(Pdata)

=

(∫

S

+

∫

Sc

)(
gf

∗

ϵ (x)− f∗(x)
)2

dPdata(x)

≤ ϵ2 + 4τ.

This follows from the aforementioned approximation error

within S, boundedness of f∗ and neural networks, as well

as the property that out-of-S probability is upper bounded,

i.e. Pdata(S
c) ≤ τ .

Finally, we sum up sizes of all the sub-neural-networks and

thus obtain the network size of gf
∗

ϵ . See Appendix A.4 for

detailed calculation.

5.2. Proof Sketch of Theorem 3.2

Proof of Theorem 3.2 follows a standard statistical decompo-

sition, i.e. decomposing the mean squared error of estimator

f̂ into a squared bias term and a variance term. We bound

the bias and variance separately, where the bias is tackled

7
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by the approximation results given in Theorem 3.1 and the

variance is bounded using the metric entropy arguments. De-

tails of the proof for Theorem3.2 are provided in Appendix

B. At first, we decompose the L2 risk as follows:

E

∥∥∥f̂ − f∗
∥∥∥
2

L2(Pdata)
= 2E

[
1

n

n∑

i=1

(f̂(xi)− f∗(xi))
2

]

︸ ︷︷ ︸
T1

+E

∥∥∥f̂ − f∗
∥∥∥
2

L2(Pdata)
−2E

[
1

n

n∑

i=1

(f̂(xi)− f∗(xi))
2

]

︸ ︷︷ ︸
T2

,

where T1 reflects the squared bias of using neural networks

to estimate f∗ and T2 is the variance term.

Step 1. Bounding bias term T1. Since T1 is the empirical

L2 risk of f̂ evaluated on the samples {xi}ni=1, we relate T1

to the empirical risk by rewriting f∗(xi) = yi − ξi, so that

we can apply the approximation error to bound the minimal

empirical risk achieved by f̂ . After some basic calculation,

we have

T1≤2 inf
f∈F(L,B,K)

∥f(x)− f∗(x)∥2L2(Pdata)

+ 4E

[
1

n

n∑

i=1

ξif̂(xi)

]
.

Note that the first term is the squared approximation error of

neural networks, which can be controlled by Theorem 3.1.

We bound the second term by quantifying the complexity

of the network class F(L,B,K). A precise upper bound of

T1 is given in the following lemma.

Lemma 5.3. Fix the neural network class F(L,B,K). For

any δ ∈ (0, 1), there exists some constant c > 0, such that

T1 ≤c inf
f∈F(L,B,K)

∥f(x)− f∗(x)∥2L2(Pdata)

+ cσ2 logN2(δ,F(L,B,K)) + 2

n

+ c

(√
logN2(δ,F(L,B,K)) + 2

n
+ 1

)
σδ,

where N2(δ,F(L,B,K)) denotes the δ-covering number

of F(L,B,K) with respect to the L2 norm, i.e., there ex-

ists a discretization of F(L,B,K) into N2(δ,F(L,B,K))
distinct elements, such that for any f ∈ F , there is f̄ in the

discretization satisfying
∥∥f̄ − f

∥∥
2
≤ ϵ.

Step 2. Bounding variance term T2. We observe that T2

is the difference between the population risk of f̂ and its

empirical risk. However, bounding this difference is distinct

from traditional concentration results because of the scaling

factor 2 before the empirical risk. To do this, we divide the

empirical risk into two parts and use a higher-order moment

(fourth moment) to bound one part. Using a Bernstein-type

inequality, we are able to show that T2 converges at a rate of

1/n, and the upper bound for this is shown in the following

lemma.

Lemma 5.4. For any δ ∈ (0, 1), there exists some constant

c′ > 0, such that

T2 ≤
c′

3n
logN2(δ/4H,F(L,B,K)) + c′δ.

Step 3. Covering number of neural networks. The upper

bounds of T1 and T2 in Lemma 5.3 and 5.4 both rely on

the covering number of the network class F(R, κ, L, p,K).
In this step, we present an upper bound for the covering

number N2(δ,F(L,B,K)) for a given a resolution δ > 0.

Lemma 5.5 (Covering number bound for F (Lemma 21 in

Nakada & Imaizumi (2020))). Given δ > 0, the δ-covering

number of the neural network class F(L,B,K) satisfies

logN2(δ,F(L,B,K)) ≤ K log

(
2L
√
dLKL/2BLRS√
δ2 − 4τ

)
.

Step 4. Bias-Variance Trade-off. Now we are ready to

finish the proof of Theorem 3.2. Combining the upper

bounds of T1 in Lemma 5.3 and T2 in Lemma 5.4 together

and substituting the covering number in Lemma 5.5, we

obtain

E

∥∥∥f̂ − f∗
∥∥∥
2

L2(Pdata)
=

O

(
τ + d2βr2β+ σδ +

σ2K

n
log

(√
dLKL/2BLRS√

δ2 − 4τ

))
,

where we set approximation error to be d2βr2β . Plug in our

choice of (L,B,K), and choose δ = r2β . Then we can

conclude

E

∥∥∥f̂ − f∗
∥∥∥
2

L2(Pdata)
=

O

(
τ + σr2β +

σ2

n

(
RS

r

)p

log

(
(RS/r)

p

r4β − 4τ

))
.

5.3. Proof Sketch of Lemma 4.3

In this section, we present our basic idea to construct

S(R, r; p) and the proof sketch of Lemma 4.3. For sim-

plicity of proof, we assume Q = I so that Σ = Λ =
diag(λ2

1, . . . , λ
2
d). The detailed proof is given in Appendix

C, which can be easily extended to the case when Q is not

an identity matrix. The proof of Theorem 4.5 is given in

Appendix D.

Given the Gaussian sample distribution, we hope to choose

some region in S ⊂ R
d with high probability measure and

effective Minkowski dimension p < d. Then we can only

8
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A. Proof of Theorem 3.1

In this section, we provide the omitted proof in Section 5.1.

A.1. Lemma A.1

Lemma A.1 (Lemma 20 in Nakada & Imaizumi (2020)). Let C = {Ik}Nr(S)
k=1 be a minimum r-covering of S where Ik’s are

hypercubes with side length r. Then, there exists a disjoint partition {Cj}5
d

j=1 ⊂ C such that C = ⋃5d

j=1 Cj and d(Ii, Il) ≥ r
hold for any Ii ̸= Il ∈ Cj if card(Cj) ≥ 2, where d(A,B) := inf{∥x− y∥ |x ∈ A, y ∈ B} is defined as the distance of any

two sets A and B.

A.2. Realization of hypercube determination function gind,r
I

Hypercube determination function gind,r
I can be realized by weight matrices and intercepts (4, 0) ⊙ (W 2,−d) ⊙

[(W 1
1 , b

1
1), . . . , (W

1
d , b

1
d)] where W 1

i , b
1
i and W 2 are defined by

W 1
i :=

(
e⊤i e⊤i e⊤i e⊤i
0 0 0 0

)⊤
, b1i :=

(
−ιi + r − ιi +

r

2
− ιi −

r

2
− ιi − r

)
,

and

W 2 =

(
2

r
,−2

r
,−2

r
,
2

r
,
2

r
,−2

r
,−2

r
,
2

r
, . . . ,

2

r
,−2

r
,−2

r
,
2

r︸ ︷︷ ︸
4d

,
1

4

)
.

The above realization gives exactly the form in (4). Moreover, we summarize the properties of gind,r
I as following:

Proposition A.2. For any x ∈ Ddata and y ∈ R, we have

gind,r
I (x, y)





= y, x ∈ I and y ∈ [0, 4],

≤ y, x ∈ I ⊕ r
2 and y ∈ [0, 4],

= 0, otherwise.

Furthermore, we obtain the following properties

1. L(gind,r
I ) = 3,

2. B(gind,r
I ) ≤ max{4, d, 1 + r, 2/r},

3. K(gind,r
I ) = 24d+ 6.

A.3. Bounding the approximation error

Firstly, we compute the approximation error of using gf0ϵ to estimate f0 = f∗ + 2. Recall that we defined gf0ϵ :=

gmax,5d ◦ gsum ◦ gsimul
ϵ/2 . When x ∈ S, there exists some I ∈ C such that x ∈ I . Then for this x, we have

gf0ϵ (x) = max
j∈[5d]

∑

Ik∈Cj

gsimul
ϵ/2,k(x)

= max
Ik∈Neig(I)

gsimul
ϵ/2,k(x)

≤ max
Ik∈Neig(I)

gpolyϵ/2,k(x),

where Neig(I) = {I ′ ∈ C|(I ⊕ 3r/2) ∩ I ′ ̸= ∅} denotes the 3r/2-neighborhood of hypercube I . In other words, when

computing gf0ϵ (x), we only need to take maximum over the estimated function value within hypercubes near x. The second

equality follows from the Proposition A.2 that gsimul
ϵ/2,l(x) = 0 for Il ̸∈ Neig(I) and d(Il, Ik) > r holds for Il ̸= Ik ∈ Ci for

all i. The last inequality is due to the construction of gsimul
ϵ/2 in (6).
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Given ϵ ∈ (0, 1), we ensure 0 ≤ gsimul
ϵ/2,k(x) ≤ 4 for all Ik ∈ C by Proposition A.2, since gsimul

ϵ/2,k approximates fIk which is an

ϵ/2-accuracy Taylor polynomial of f0 ∈ [1, 3]. When x ∈ It, the error is bounded as

|gf0ϵ (x)− f0(x)| =max
{

max
Ik∈Neig(It)

gsimul
ϵ/2,k(x)− f0(x), f0(x)− max

Ik∈Neig(It)
gsimul
ϵ/2,k(x)

}

≤max
{

max
Ik∈Neig(It)

gpolyϵ/2,k(x)− f0(x), f0(x)− gpoly

ϵ/2,t(x)
}

≤ max
Ik∈Neig(It)

∣∣∣gpolyϵ/2,k(x)− f0(x)
∣∣∣

≤ max
Ik∈Neig(It)

∣∣∣gpolyϵ/2,k(x)− fIk(x)
∣∣∣+ max

Ik∈Neig(It)

∣∣fIk(x)− f0(x)
∣∣

≤ε

2
+ dβ

(
3r

2

)β

≤ ϵ,

where the last inequality follows from (5) and Lemma 5.1. In terms of parameter tuning, we choose r = d−1ϵ1/β/2.

Next, we extend approximation results of f0 to f∗. To do so, we firstly implement a neural network gmod(z) = (−z +
1) ◦ ReLU(−z + 2) ◦ ReLU(z − 1), which has the equivalent form gmod(z) = min(max(1, x), 3)− 2 for any z ∈ R. In

addition, gmod has the following properties:

L(gmod) = 3, B(gmod) ≤ 2, and K(gmod) = 12.

Then consider gf
∗

ϵ = gmod ◦ gf0ϵ to obtain the desired approximation error ϵ for any x ∈ S

sup
x∈Ddata

|gf∗

ϵ (x)− f∗(x)| = sup
x∈Ddata

∣∣min
(
max

(
1, gf0ϵ (x)

)
, 3
)
− (f∗(x) + 2)

∣∣

= sup
x∈Ddata

∣∣min
(
max

(
1, gf0ϵ (x)

)
, 3
)
− f0(x)

∣∣

≤ sup
x∈Ddata

∣∣gf0ϵ (x)− f0(x)
∣∣

≤ϵ.

A.4. Computing network sizes

Recall that the ReLU neural network gf
∗

ϵ is defined as

gf
∗

ϵ =gmod ◦ gmax,5d ◦ gsum ◦ gsimul
ϵ/2

=gmod ◦ gmax,5d ◦ gsum ◦
(
gind,r
I1
◦ gfilter

1 , . . . , gind,r
INr(S)

◦ gfilter
Nr(S)

)
◦ (gIdd,L, gpolyϵ/2 ).

Note that Nr(S) ≤ c0r
−p. Combined with sub-neural network structures given in Appendix B.1.1 of Nakada & Imaizumi

(2020), gf
∗

ϵ has the following properties:

L(gf
∗

ϵ (x)) = L(gmod) + L(gmax,5d) + L(gind,r
I1

) + L(gfilter
1 ) + L(gpolyϵ/2 )

≤ 11 + 2d log2 5 + (11 + (1 + β)/d)(2 + log2 β),

B(gf
∗

ϵ (x)) ≤ max
{
B(gmod), B(gmax,5d), B(gind,r

I1
), B(gfilter

1 ), B(gIdd,L), B(gpolyϵ/2 )
}
,

≤ max{d, 1 + r, 2/r, cpoly1 R
βspoly

1

S ϵ−spoly
1 },

≤ max{4dϵ−1/β , cpoly1 R
βspoly

1

S ϵ−spoly
1 },

K(gf
∗

ϵ (x)) ≤ 2K(gmod) + 2K(gmax,5d) + 2Nr(S) ·K(gind,r
I1
◦ gfilter

1 ) + 2K(gIdd,L) + 2K(gpolyϵ/2 )

≤ 2cpoly2 Rp
Sϵ

−p/β + 2(50d+ 17 + cpoly2 )Nr(S)

+ 2(12 + 42× 5d + 2d+ 2d(11 + (1 + β)/p)(2 + log2 β))),

≤ 2cpoly2 Rp
Sϵ

−p/β + 2(50d+ 17 + cpoly2 )c0(2d)
pϵ−p/β

+ 2(12 + 42× 5d + 2d+ 2d(11 + (1 + β)/p)(2 + log2 β))),

13
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where cpoly2 = O(d2+⌊β⌋). By adjusting several constants, we obtain the statement.

B. Proof of Theorem 3.2

The proof of Theorem 3.2 mainly follows Chen et al. (2022). Our Lemma 5.3 and 5.4 is a slight revision of Lemma 5 and 6

in Chen et al. (2022), where we substitute ℓ∞ covering number with ℓ2 covering number to deal with unbounded domain. In

this section, we compute the ℓ2 covering number of neural network class and then present the proof of Theorem 3.2.

B.1. Proof of Lemma 5.5

Proof of Lemma 5.5. To construct a covering for F(H,L,B,K), we discretize each parameter by a unit grid with grid

size h. Recall that we write f ∈ F(H,L,B,K) as f(x) = WL · ReLU(WL−1 · · ·ReLU(W1x + b1) · · · + bL−1) + bL
in (2). Choose any f, f ′ ∈ F(H,L,B,K) with parameters at most h apart from each other. Denote the weight matrices

and intercepts in f, f ′ as WL, . . . ,W1, bL, . . . , L1 and W ′
L, . . . ,W

′
1, b

′
L, . . . , L

′
1 respectively, where Wl ∈ R

dl×dl−1 and

bl ∈ R
dl for l = 1, . . . , L. Without loss of generality, we assume dl ≤ K since all the parameters have at most K nonzero

entries. If the input dimension is larger than K, we let the redundant dimensions of input equal to zeros.

Notice that for any random variable y ∈ R
dl−1 which is subject to a distribution PY , we have

∫

R
dl−1

∣∣∣∣
∣∣∣∣(Wly + bl)− (W ′

l y + b′l)

∣∣∣∣
∣∣∣∣
2

2

dPY (y) =

∫

R
dl−1

∣∣∣∣
∣∣∣∣
dl−1∑

i=1

(Wl,i −W ′
l,i)yi + (bl − b′l)

∣∣∣∣
∣∣∣∣
2

2

dPY (y).

By the inequality ∥t+ s∥2 ≤ 2 ∥t∥2 + 2 ∥s∥2 which holds for any s, t ∈ R
dl , we obtain

∫

R
dl−1

∣∣∣∣
∣∣∣∣(Wly + bl)− (W ′

l y + b′l)

∣∣∣∣
∣∣∣∣
2

2

dPY (y) ≤2
∫

R
dl−1

∣∣∣∣
∣∣∣∣
dl−1∑

i=1

(Wl,i −W ′
l,i)yi

∣∣∣∣
∣∣∣∣
2

dPY (y) + 2 ∥bl − b′l∥
2
2

≤2 sup
i=1...,dl−1

∥∥Wl,i −W ′
l,i

∥∥2
2
·
∫

R
dl−1

dl−1∑

i=1

y2i dPY (y) + 2 ∥bl − b′l∥
2
2 .

Since parameters Wl, bl differ at most h from W ′
l , b

′
l with respect to each entry, we get

∫

R
dl−1

∣∣∣∣
∣∣∣∣(Wly + bl)− (W ′

l y + b′l)

∣∣∣∣
∣∣∣∣
2

2

dPY (y) ≤ 2dl−1h
2 ∥y∥2L2(PY ) + 2dlh

2

≤ 2Kh2 ∥y∥2L2(PY ) + 2Kh2. (7)

Similarly, we have

∫

R
dl−1

∣∣∣∣
∣∣∣∣Wly + bl

∣∣∣∣
∣∣∣∣
2

2

dPY (y) =

∫

R
dl−1

∣∣∣∣
∣∣∣∣
dl−1∑

i=1

Wl,iyi + bl

∣∣∣∣
∣∣∣∣
2

2

dPY (y)

≤2
∫

R
dl−1

∣∣∣∣
∣∣∣∣
dl−1∑

i=1

Wl,iyi

∣∣∣∣
∣∣∣∣
2

dPY (y) + 2 ∥bl∥22

≤2 sup
i=1...,dl−1

∥Wl,i∥22 ·
∫

R
dl−1

dl−1∑

i=1

y2i dPY (y) + 2 ∥bl∥22

≤2dl−1B
2 ∥y∥2L2(PY ) + 2dlB

2

≤2KB2 ∥y∥2L2(PY ) + 2KB2. (8)

Since the ReLU actiavtion function is 1-Lipschitz continuous for each coordinate, we can apply (7) and (8) repeatedly to
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bound ∥f − f ′∥2L2(Pdata,S):

∥f − f ′∥2L2(Pdata,S) =

∫

S

∣∣WL · ReLU(WL−1 · · ·ReLU(W1x+ b1) · · ·+ bL−1) + bL

−W ′
L · ReLU(W ′

L−1 · · ·ReLU(W ′
1x+ b′1) · · ·+ b′L−1)− b′L

∣∣2 dPdata(x)

≤2
∫

S

∣∣WL · ReLU(WL−1 · · ·ReLU(W1x+ b1) · · ·+ bL−1) + bL

−W ′
L · ReLU(WL−1 · · ·ReLU(W1x+ b1) · · ·+ bL−1)− b′L

∣∣2 dPdata(x)

+ 2 ∥W ′
L∥

2
2

∫

S

∥∥(WL−1 · · ·ReLU(W1x+ b1) · · ·+ bL−1)

− (W ′
L−1 · · ·ReLU(W ′

1x+ b′1) · · ·+ b′L−1)
∥∥2
2
dPdata(x)

≤4Kh2 + 4Kh2

∫

S

∥WL−1 · · ·ReLU(W1x+ b1) · · ·+ bL−1∥2 dPdata(x)

+ 2KB2

∫

S

∥∥(WL−1 · · ·ReLU(W1x+ b1) · · ·+ bL−1)

− (W ′
L−1 · · ·ReLU(W ′

1x+ b′1) · · ·+ b′L−1)
∥∥2
2
dPdata(x).

Besides, we derive the following bound on ∥WL−1 · · ·ReLU(W1x+ b1) · · ·+ bL−1∥L2(Pdata,S):

∫

S

∥WL−1 · · ·ReLU(W1x+ b1) · · ·+ bL−1∥2 dPdata(x)

≤ 2KB2

∫

S

∥WL−2 · · ·ReLU(W1x+ b1) · · ·+ bL−2∥2 dPdata(x) + 2KB2

≤ (2KB2)L−1dR2
S + (2KB2)L−1

≤ 2L(KB2)L−1dR2
S ,

where the last inequality is derived by induction and ∥x∥2 =
∑d

i=1 x
2
i ≤ dR2

S for any x ∈ S. Substituting back into the

bound for ∥f − f ′∥2L2(Pdata,S) , we obtain

∥f − f ′∥2L2(Pdata,S) ≤4Kh2 + 2L+2KLB2(L−1)h2dR2
S

+ 4KB2

∫

S

∥∥(WL−1 · · ·ReLU(W1x+ b1) · · ·+ bL−1)

− (W ′
L−1 · · ·ReLU(W ′

1x+ b′1) · · ·+ b′L−1)
∥∥2
2
dPdata(x)

≤4(L− 1)(KB2)L−1h2 + 2L+2(L− 1)KLB2(L−1)h2dR2
S

+ (2KB2)L−1

∫

S

∥W1x+ b1 −W ′
1x− b′1∥

2
2 dPdata(x)

≤4L−1LKLB2Lh2dR2
S ,

where the second inequality is obtained by induction. Therefore, combining the above inequality with ∥f∥∞ ≤ 1 for any

f ∈ F(L,B,K) and Pdata(S
c) ≤ τ , we get

∥f − f ′∥2L2(Pdata)
=

∫

S

|f(x)− f ′(x)|2 dPdata(x) +

∫

Sc

|f(x)− f ′(x)|2 dPdata(x)

≤4L−1LKLB2L−2h2dR2
S + 4τ.

Now we choose h satisfying h =
√
(δ2 − 4τ)/(4L−1LKLB2L−2dR2

S). Then discretizing each parameter uniformly into

2B/h grid points yields a δ-covering on F(L,B,K). Moreover, the covering number N2(δ,F(L,B,K)) satisfies

logN2(δ,F(L,B,K)) ≤ K log

(
2B

h

)
= K log

(
2L
√
dLKL/2BLRS√
δ2 − 4τ

)
.
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B.2. Proof of Theorem 3.2

Proof of Theorem 3.2. The square error of the estimator f̂ can be decomposed into a squared bias term and a variance term,

which can be bounded using the covering number of the function class. According to Lemmas 5.3 and 5.4, for any constant

δ ∈ (0, 1), we have

E∥f̂ − f∗∥2L2(Pdata)
≤c inf

f∈F(L,B,K)
∥f(x)− f∗(x)∥2L2(Pdata)

+ cσ2 logN2(δ,F(L,B,K)) + 2

n

+ c

(√
logN2(δ,F(L,B,K)) + 2

n
+ 1

)
σδ

+
c′

3n
logN2(δ/4H,F(L,B,K)) + c′δ.

(9)

Choose ϵ = (2dr)β in Theorem 3.1. Accordingly, we set tuple (L,B,K) as

L = C1, B = O(Rβs
S r−sβ), and K = C2R

p
Sr

−p.

Then we have

inf
f∈F(L,B,K)

∥f(x)− f∗(x)∥2L2(Pdata)
≤ (2dr)2β + 4τ.

Invoking the upper bound of the covering number in Lemma 5.5, we derive

E

∥∥∥f̂ − f∗
∥∥∥
2

L2(Pdata)
≤(2dr)2β + 4τ +

cσ2

n

(
K log

(
2L
√
dLKL/2BLRS√
δ2 − 4τ

)
+ 2c

)

+ c

√
K log(2L

√
dLKL/2BLRS/

√
δ2 − 4τ) + 1

n
σδ

+
c′

3n
K log

(
2L
√
dLKL/2BLRS√
δ2 − 4τ

)
+ (cσ + c′)δ

=O

(
τ + d2βr2β +

σ2K

n
log

(√
dLKL/2BLRS√

δ2 − 4τ

)

+

(
K log(

√
dLKL/2BLRS/

√
δ2 − 4τ)

n

)1/2

σδ + σδ +
1

n

)
.

By Cauchy-Schwartz inequality, for 0 < δ < 1, we have

E

∥∥∥f̂ − f∗
∥∥∥
2

L2(Pdata)
=O

(
τ + d2βr2β +

σ2K

n
log

(√
dLKL/2BLRS√

δ2 − 4τ

)
+ σδ +

1

n

)
.

Plugging in our choice of (L,B,K), we get

E

∥∥∥f̂ − f∗
∥∥∥
2

L2(Pdata)
=O

(
τ + d2βr2β +

σ2d

n

(
RS

r

)p

log

(
(RS/r)

p

δ2 − 4τ

)
+ σδ +

1

n

)

Now we choose δ = r2β . Then we deduce the desired estimation error bound

E∥f̂ − f∗∥2L2(Pdata)
= O

(
τ + σr2β +

σ2

n

(
RS

r

)p

log

(
(RS/r)

p

r4β − 4τ

)
+

1

n

)

= O

(
τ + σr2β +

σ2

n

(
RS

r

)p

log

(
(RS/r)

p

r4β − 4τ

))
.

The last equality is due to RS/r > 1.

16



Effective Minkowski Dimension of Deep Nonparametric Regression

C. Proof of Lemma 4.3

Proof of Lemma 4.3. For simplicity of proof, set Q = I . By the construction of S(R, r; p) in (3), we notice that

P(X /∈ S(R, r; p)) ≤P
( p∑

i=1

x2
i

λ2
i

> R2

)
+ P

(
|xj | >

r

2
for some j ∈ [p+ 1, d]

)
.

Since X1:p = (x1, . . . , xp) ∼ N(0,Λp) where Λp = diag(λ2
1, . . . , λ

2
p), the variable Z = Λ

−1/2
p X1:p ∼ N(0, Ip) is a

standard Gaussian. Then for any fixed R > 0, the probability P(
∑p

i=1 x
2
i /λ

2
i > R2) is equal to P(∥Z∥2 > R2). Moreover,

by Lemma E.2, if we choose R2 > p, we will have

P
(
∥Z∥2 > R2

)
≤
(
2R2 + p

p

) p
2

exp

(
− R4

2R2 + p

)

=exp

(
− p

2
· R4/p2

R2/p+ 1/2
+

p

2
· log

(
2R2

p
+ 1

))

=O

([
exp

(
− 2R2

3p
+ log

(
3R2

p

))] p
2

)
.

Besides, by Lemma E.1, for j = p+ 1, . . . , d, we derive

P

(
|xj | >

r

2

)
= P

(∣∣∣∣
xj

λj

∣∣∣∣ >
r

2λi

)
= O

(
exp

{
− r2

8λ2
j

})
.

Then we can apply the union bound of probability to get

P

(
|xj | >

r

2
for some j ∈ [p+ 1, d]

)
≤

d∑

j=p+1

P

(
|xj | >

r

2

)
= O

( d∑

j=p+1

exp

(
− r2

8λ2
j

))
.

Recall that we choose λ−1
p = 2R/r. Then we have

P

(
|xj | >

r

2
for some j ∈ [p+ 1, d]

)
=O

( d∑

j=p+1

exp

(
− λ2

p

2λ2
j

R2

))

≤O
( d∑

j=p+1

exp

(
− R2

2

))

=O

(
exp

(
− R2

2
+ log(d− p)

))
,

where the inequality comes from λ2
j ≤ λ2

p for j = p+ 1, . . . , d. Therefore, we have

P(X /∈ S(R, r; p)) = O

([
exp

(
− 2R2

3p
+ log

(
3R2

p

))] p
2

)
+O

(
exp

(
− R2

2
+ log(d− p)

))
.

Next, we compute the covering number of S(R, r; p) using hypercubes with side length r > 0, which is denoted as

Nr(S(R, r; p)). Notice that the first-p-dimensional hyper-ellipsoid of S(R, r; p) is contained in a p-dimensional hyper-

rectangle with side length 2λiR for i = 1, . . . , p, while only one hypercube is required to cover the j-th dimension for

j = p+ 1, . . . , d. With this observation, we derive the upper bound for Nr(S(R, r; p)):

Nr(S(R, r; p)) ≤
p∏

i=1

(
2λiR

r

)
=

p∏

i=1

(
λi

λp

)
,

where the last equality results from our choice of p.
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D. Proof of Theorem 4.5

D.1. Generalization error under exponential eigenvalue decay

Combining the criteria λ−1
p = 2R/r and the exponential eigenvalue decay in Assumption 4.1, we have

1

µ
exp(θp) =

2R

r
.

Moreover, by Lemma 4.3, we can compute the covering number of S(R, r, p):

Nr(S(R, r; p)) ≤
p∏

i=1

(
λi

λp

)
=

p∏

i=1

exp(θ(p− i)) ≤ exp

(
θp2

2

)
=

(
2µR

r

)p/2

,

which indicates that effective Minkowski dimension of Pdata is at most p/2. Let r = n−(1−η)/(2β+
√

logn/θ) and R = log n
where η ∈ (0, 1) is an arbitrarily small constant. Then we obtain

θp = log

(
2µR

r

)
=

1

θ
log(2µ) + log(log n) +

(1− η) log n

2β +
√

log n/θ
≤ 2(1− η) log n

2β +
√
log n/θ

.

Thereby, we can compute the probability ourside S(R, r; p):

P(X /∈ S(R, r; p)) =O

([
exp

(
− 2R2

3p
+ log

(
3R2

p

))] p
2

+ exp

(
−R2

2
+ log(d− p)

))
= O(n− logn/3).

Apply Theorem 3.2 with our choice of R, r and p. Accordingly, the tuple (L,B,K) is set as

L = C1, B = O

(
n

βs

2β+
√

log n/θ (log n)βs
)
, and K = O

(
n

√
log n/θ

2β+
√

log n/θ

)
.

Then we can get

E

∥∥∥f̂ − f∗
∥∥∥
2

L2(Pdata)
= O

(
P(X /∈ S(R, r; p)) + σr2β +

σ2

n
·
(
RS

r

)p/2

log

(
(RS/r)

p/2

r4β − 4τ

))

= O

(
σn

− 2β(1−η)

2β+
√

log n/θ +
σ2

n
· n

(1−η)2 log n/θ

(2β+
√

log n/θ)2 · (log n)
(1−η) log n/θ

2β+
√

log n/θ · log n/θ

2β +
√
log n/θ

· log n
)

= O

(
σn

− 2β(1−η)

2β+
√

log n/θ + σ2n
−1+

(1−η)2 log n/θ

(2β+
√

log n/θ)2
+

(1−η) log(log n)/θ

2β+
√

log n/θ · (log n)3/2
)
.

The last equality utilizes the fact that (log n)logn = nlog(logn). Furthermore, notice that for sufficiently large n satisfying

log(log n)/
√
θ log n ≤ η, we have

(1− η)2 log n/θ

(2β +
√
log n/θ)2

+
(1− η) log(log n)/θ

2β +
√
log n/θ

≤ (1− η)2 log n/θ

(2β +
√
log n/θ)2

+
(1− η)η

√
log n/θ

2β +
√

log n/θ

≤ (1− η)2
√

log n/θ

2β +
√

log n/θ
+

(1− η)η
√
log n/θ

2β +
√
log n/θ

≤ (1− η)
√
log n/θ

2β +
√
log n/θ

.

Therefore, we use the above observation to derive the following upper bound for generalization error:

E

∥∥∥f̂ − f∗
∥∥∥
2

L2(Pdata)
= O

(
σ2n

− 2β(1−η)

2β+
√

log n/θ (log n)3/2
)
.
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D.2. Generalization error under polynomial eigenvalue decay

Similarly to last section, we firstly combine the criteria λ−1
p = 2R/r and the polynomial eigenvalue decay in Assumption

4.2,

p =

(
2ρR

r

)1/ω

.

Moreover, by Lemma 4.3, we can compute the covering number of S(R, r, p):

Nr(S(R, r; p)) ≤
p∏

i=1

(
λi

λp

)
=

p∏

i=1

(
p

i

)ω

=

(
pp

p!

)ω

≤
(

pp

pp/2

)ω

= pωp/2 =

(
2ρR

r

)p/2

,

which indicates that effective Minkowski dimension of Pdata is at most p/2. Let r = n−1/(2β+nκ) and R = n1/(2ωβ+ωnκ)

with κ = (1 + 1/ω)/ω. Then we obtain

p =

(
2ρR

r

)1/ω

= n
(1+1/ω)/ω

2β+nκ = n
κ

2β+nκ .

Thereby, we can compute the probability outside S(R, r; p):

P(X /∈ S(R, r; p)) =O

([
exp

(
− 2R2

3p
+ log

(
3R2

p

))] p
2

+ exp

(
−R2

2
+ log(d− p)

))
= O

(
exp
(
−n 2

(2ωβ+ωnκ) /3
))

.

Apply Theorem 3.2 with our choice of R, r and p. Accordingly, the tuple (L,B,K) is set as

L = C1, B = O
(
n

(1+1/ω)βs
2β+nκ

)
, and K = O

(
n

(1+1/ω)nκ/(2β+nκ)

4β+2nκ

)
.

Then we have

E

∥∥∥f̂ − f∗
∥∥∥
2

L2(Pdata)
= O

(
P(X /∈ S(R, r; p)) + σr2β +

σ2

n
·
(
RS

r

)p/2

log

(
(RS/r)

p/2

r4β − 4τ

))

= O

(
σn− 2β

2β+nκ +
σ2

n
· n

1+1/ω
2β+nκ · 12n

κ
2β+nκ · n κ

2β+nκ log n

)

= O
(
σn− 2β

2β+nκ + σ2n−1+
1+1/ω
2β+nκ · 12n

κ
2β+nκ + κ

2β+nκ log n
)
.

(10)

Notice that

1 + 1/ω

2β + nκ
· 1
2
n

κ
2β+nκ +

κ

2β + nκ
=

1 + 1/ω

2β + nκ

(
1

2
n

κ
2β+nκ +

1

ω

)

≤ 2

2β + nκ

(
1

2
n

κ
2β+nκ + 1

)

≤ nκ

2β + nκ
,

where the first inequality is due to ω > 1. Therefore, plug the above inequality in (10), we derive the following upper bound

for generalization error:

E

∥∥∥f̂ − f∗
∥∥∥
2

L2(Pdata)
= O

(
σ2n− 2β

2β+nκ log n
)
.

E. Auxiliary Lemmas

In this section, we investigate the probability tail bound of standard Gaussian variable, which is useful for the proof of

Lemma 4.3. At first, we compute the tail bound for multivariate Gaussian variable.
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Lemma E.1. Suppose Z = (z1, . . . , zp) ∼ N(0, Ip) is a standard Gaussian variable in R
p. Then for any t > 0, we have

P
(
∥Z∥ > t

)
≤
(
2t2 + p

p

) p
2

exp

(
− t4

2t2 + p

)
.

Proof. By the Markov’s inequality, for any µ ∈ (0, 1/2), we have

P
(
∥Z∥ > t

)
=P
(
exp(µ∥Z∥2) > exp(µt2)

)

≤E exp(µ∥Z∥2)
exp(µt2)

=

∏p
i=1 E exp(µz2i )

exp(µt2)
,

where the last equality comes from the independence of zi’s. To bound E exp(µz2i ), we first examine the moment generating

function of zi: for any t ∈ R,

E exp(tzi) =

∫

R

exp(tw)ϕ(w) dw = exp(t2/2),

where ϕ(w) = (2π)−p/2 exp(−w2/2) denotes the probability density function of stardard Gaussian. Then multiply

exp(−t2/(2µ)) on both sides,

∫

R

exp

(
tw − t2

2µ

)
ϕ(w) dw = exp

(
t2(µ− 1)

2µ

)
.

By integrating both sides with respect to t, we have

√
2πµ

∫

R

exp

(
µw2

2

)
ϕ(w) dw =

√
2πµ

1− µ
,

which indicates

E exp(µz2i ) = E exp

(
2µz2i
2

)
=

√
1

1− 2µ
.

Therefore, for any µ ∈ (0, 1/2), we have

P
(
∥Z∥ > t

)
≤ (1− 2µ)−

p
2 exp(−µt2).

Let µ = t2/(2t2 + p) and thereby we can conclude the proof of the lemma.

For standard Gaussian in R, we derive a tighter upper bound in the following lemma.

Lemma E.2. Suppose z ∼ N(0, 1) is a standard Gaussian variable in R. Then for any t > 0, we have

P
(
∥z∥ > t

)
≤ exp

(
− 1

2
t2
)
.
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Proof. Firstly, for any t > 0, compute the probability that z > t:

P(z > t) =

∫ ∞

t

1√
2π

exp

(
− 1

2
z2
)
dz

=

∫ ∞

0

1√
2π

exp

(
− 1

2
(u+ t)2

)
du

=exp

(
− 1

2
t2
)∫ ∞

0

exp(−tu) · 1√
2π

exp

(
− 1

2
u2

)
du

≤ exp

(
− 1

2
t2
)∫ ∞

0

1√
2π

exp

(
− 1

2
u2

)
du

=
1

2
exp

(
− 1

2
t2
)
.

Then notice that

P
(
∥z∥ > t

)
= P(z > t) + P(z < −t) = 2P(z > t).

Thereby, we can conclude the proof.
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