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Abstract— In this paper, a data-driven iterative learning
control approach to multi-input-multi-output (MIMO) systems
with strong cross-axis coupling is proposed. Iterative learning
control (ILC) of MIMO systems with strong cross-axis coupling
effect is challenging as model-based ILC to MIMO systems
is complicated by the modeling process of MIMO systems
being involved and time-consuming, the trade-off between the
model accuracy and the performance, and the limitation to
systems with weak-cross-coupling. Contrarily, constant gain
ILC methods are mainly effective for tracking at low-speed,
and suffer from slow convergence, particularly in the presence
of the random disturbances. Thus, the aim of this paper is
to develop a data-driven robust optimal ILC (DDRO-ILC)
approach to MIMO systems of strong cross-axis coupling under
random output disturbance. The iteration gain is constructed
and updated by using past input and output data to capture the
dynamics of the system via the singular value decomposition
(SVD) technique. It is shown that monotonic convergence in
the presence of random disturbance is guaranteed, and an
optimal gain can be obtained to maximize the convergence
rate and minimize the residual error. The proposed DDRO-
ILC technique is illustrated through a numerical simulation on
a three-input three-output linear time invariant system model,
and compared to the multi-axis inversion-based iterative control
(MAIIC) technique. The simulation shows that the proposed
DDRO-ILC outperformed the MAIIC method when the cross-
axis coupling is strong, and achieved precision tacking with
rapid convergence in the presence of random disturbance.

I. INTRODUCTION

In this paper, a data-driven robust optimal iterative learning
control technique is proposed for output tracking of multi-
input multi-output (MIMO) systems under random output
disturbance. Precision tracking of MIMO systems plays a
significant role in various applications, ranging from manu-
facturing process [1], atomic force microscope (AFM) [2],
robotics systems [3], [4], industrial printer [5] to wafer stage
positioning [6]. In these applications, the output tracking
is characterized by periodic motion, and thereby, iterative
learning control (ILC) becomes a natural choice to achieve
multi-axis precision tracking [1], [7]. However, existing ILC
techniques are challenged by issues arising from cross-
coupling dynamics, random noise disturbances, and trade-off
between robustness and tracking performance. These issues
are tackled through the development of the proposed DDRO-
ILC technique in this work.
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Limitations exist in current ILC techniques for high-
speed precision tracking of general MIMO systems. For
example, PID type of ILC algorithms [8], [9] have been
proposed for MIMO systems under mechanical vibrations
or initial position offset. This relatively simple ILC method,
however, is slow in convergence (e.g., over 200 iterations
in [8]), and the working bandwidth is low, resulting in poor
performance in high-speed tracking. The working bandwidth
can be increased by using system dynamics model in the
ILC technique to optimize the ILC controller [10]. Although
both the tracking performance and the convergence rate are
improved, the design of the robustness filter is complicated,
and accurate parameterized model of the system dynamics
is needed, whereas the modeling process is time-consuming
and prone to uncertainties and variations in practice. The
tracking performance can be further enhanced through the
inversion-based ILC approach [11]. The performance, how-
ever, can be sensitive to the accuracy of the system inversion
and thereby, the modeling process [12]. Moreover, additional
approximation error is induced for non-square systems, and
the tracking performance is limited for non-minimum phase
systems. The complexity of modeling MIMO systems can be
alleviated by ignoring the cross-axis coupling dynamics and
using only the dynamics model of the diagonal sub-systems
in the inversion-based ILC control law [2]. The algorithm
converges rapidly, and the tracking performance at high-
speed is largely improved. However, dynamics modeling
process is still needed, and the cross-coupling dynamics
needs to be relatively small (i.e., the combined cross-couple
dynamics needs to be smaller than the diagonal dynamic
[2]). The pseudoinverse-based iterative learning control has
been explored for nonlinear, nonminimum-phase plants via
linearization [13]. However, a precise model of the system is
still needed and the performance depends on the quality of
the linearization itself. Therefore, further development in ILC
is needed to simplify or even avoid the modeling process, and
account for the strong cross-coupling dynamics efficiently.

Recent development in data-driven ILC approaches pro-
vides an effective avenue to address these issues related to
dynamics modeling and strong-cross dynamics. Unlike those
parameterized-model-based ILCs, data-driven ILCs directly
utilize the input and output data acquired in past iterations
to update the iterative control input. As such, the modeling
process is avoided, and both the performance and the ro-
bustness of the ILC technique are improved. For example, a
data-driven ILC approach [14] has been proposed to mitigate



the performance/robustness trade-off without modeling the
system dynamics, where the concept of Hessian information
has been explored to increase the convergence rate. The
design of the weighting matrices, however, depends on a
priori expertise knowledge of the system gained from a large
number of experiments. Such a requirement of expertise
knowledge can be alleviated through a data-driven gradient-
based ILC method [15], where an explicit model of the plant
is not required. Instead, additional experiment is need be-
tween each ILC trial, resulting in extra effort from user, and
the robustness performance is not systematically considered.
The number of experiments needed can be reduced through
a stochastic-based data-driven ILC technique [16]. However,
only is the convergence of the error expectation considered,
the variation of the tracking error is not characterized, and
the iteration coefficient needs to be carefully tuned, resulting
in a conservative performance and slow convergence rate
(e.g., over a hundred of iterations are needed in [16]).
Therefore, how to achieve both rapid convergence and robust
performance in the presence of general cross-axis coupling
effect remains as a challenge in data-driven MIMO ILCs.

The main contribution of this paper is the development
of a data-driven robust optimal iterative learning control
(DDRO-ILC) method for MIMO systems. Specifically, track-
ing of trajectories with a finite discrete spectrum (i.e.,
sparse spectrum) is considered. After the initialization, the
input and output data obtained in past iterations are used
to approximate the system inverse in the iteration gain
via the SVD technique. We show that in the presence of
random output disturbance/noise, monotonic convergence is
achieved, and the converged tracking error is bounded by a
class κ function of the disturbance size. Moreover, an optimal
gain is designed to maximize the convergence rate and
minimize the tracking error against the random disturbance.
The performance of the proposed method over the MAIIC
method [2] is demonstrated through a simulation study on
3-axis output tracking example.

II. PROBLEM FORMULATION
Consider a square MIMO LTI system given in the fre-

quency domain
yk(jω) = G(jω)uk(jω) + dk(jω), (1)

where ‘jω’ denotes the Fourier transform of a time-domain
signal, G(jω) ∈ Cp×p is the transfer function matrix [17]
and for each kth iteration, yk(jω) ∈ Cp×1, uk(jω) ∈
Cp×1, dk(jω) ∈ Cp×1 are the input and output of the
system, and the output disturbance (e.g., measurement noise),
respectively.

In general, a linear ILC algorithm can be represented as:
uk+1(jω) = qk(jω)uk(jω) + lk(ω)ek(jω), k ≥ 1, (2)

where qk(jω) ∈ Cp×p is usually a low-pass filter (to improve
the robustness against noise/disturbance), and lk(ω) ∈ Cp×p

is a frequency- and iteration- dependent iteration gain matrix
to be designed (to ensure the convergence of the ILC
algorithm). Moreover, we assume that

Assumption 1. The desired trajectory in the ith output
channel contains a finite Ni number of frequencies, i.e.,

for any given i = 1, 2 · · · p, the desired trajectory of any
ith output channel, yi,d(jω) = 0, except at ω = ωs,i for
s = 1, 2, · · · , Ni.

In practice, tracking becomes infeasible when the ampli-
tude of a given frequency component is too small—smaller
than the size of the random noise. Thus, we define
Definition 1 (Active Frequency). For any given constant
ϵY > 0, ωs,t for any t = 1, 2, · · · , p, and any s =
1, 2 · · · , Nt is called the sth active frequency of the tth

channel if the amplitude of the corresponding desired output
satisfies |yt,d(jωs,t)| ≥ ϵY , and Sa :=

⋃
t
Sa,t is the set of

active frequencies.
In the following, we order the active frequencies in Sa in

the ascending order, i.e., ω1 ≤ · · ·ωNq , with Nq = |Sa|.
Assumption 2. The transfer function matrix, G(jω), is
proper, stable, and hyperbolic, i.e., for any i, j ∈ N∗ (N:
the set of the natural numbers), the corresponding transfer
function, gi,j(jω) ∈ G(jω), is proper, stable and hyperbolic.
We also assume that transmission zeros [18] of the system,
zi ∈ C (i ∈ N), do not overlap with the active frequency.
i.e., zi /∈ Sa for all i.

First, we format the input and output trajectory matrices
needed in the proposed DDRO-ILC technique. For any given
rth input-output channel (r = 1, 2, · · · p): let the active
desired trajectory matrix, Yr,d(Sa) ∈ CNq×Nq (1 ≤ r ≤ p),
the active input and output matrix in the kth iteration,
Ur,k(Sa) ∈ CNq×Nq (1 ≤ r ≤ p) and Yr,k(Sa) ∈ CNq×Nq

(1 ≤ r ≤ p), respectively, be given by:

Yr,d(Sa) = diag([yr,d(jω1) · · · yr,d(jωNq
)])Nq×Nq

,

Yr,k(Sa) = diag([yr,k(jω1) · · · yr,k(jωNq
)])Nq×Nq

,

Ur,k(Sa) = diag([ur,k(jω1) · · · ur,k(jωNq
)])Nq×Nq

,

(3)

where diag{[V ]} denotes a diagonal matrix with the diagonal
entries given by the vector V = [v1 v2 · · · vNq

]. Then, the
active output tracking error matrix, Ek(Sa), is given by
Ek(Sa) = Yd(Sa)− Yk(Sa), where

Yk(Sa) =
[
Y1,k(Sa) · · · Yp,k(Sa)

]T
pNq×Nq

, k ≥ 0,

(4)
Then, the active input matrix Uk(Sa) can be represented in
Ui,k(Sa)(1 ≤ i ≤ p) similarly as how the active output
matrix Yk(Sa) is represented in Yi,k(Sa)(1 ≤ i ≤ p) as in
the above Eq. (4).

Thus, the general ILC algorithm Eq. (2) can also be written
in terms of the active set Sa as

Uk+1(Sa) = Qk(Sa)Uk(Sa)+Lk(Sa)Ek(Sa), k ≥ 1, (5)

where Qk(Sa),Lk(Sa) ∈ CpNq×pNq are the corresponding
active low-pass filter and active iteration gain matrix. In this
article, we consider Qk(Sa) = I (I: Identity matrix of the
same dimension) and focus on the design of Lk(Sa).
DATA-DRIVEN ROBUST OPTIMAL ITERATIVE
LEARNING CONTROL (DDRO-ILC) OF LTI SYSTEM
PROBLEM For a LTI system given in Eq. (1), let Assump-
tions 1 and 2 be hold, then the DDRO-ILC is to design the
active iterative learning gain matrix Lk(Sa) such that:



O1 The active iteration gain matrix, Lk(Sa), is constructed
and updated in each iteration using only the measured
input-output data.

O2 Unbiased and monotonic convergence is guaranteed in
the sense that for each kth iteration, the active output
tracking error is monotomically decreasing
∥Ek(Sa)∥2 < ∥Ek−1(Sa)∥2, lim

k→∞
||Ek(Sa)||2 ≤ L(εn),

(6)
where ||v||2 denotes 2-norm of the vetor v, and L(·) :
R∗ → R∗ is a class κ function of εn [19] and thereby
lim
εn→0

L(εn) = 0.

O3 Optimize the active iteration gain matrix, Lk(Sa), in
the sense that the upper bound of the tracking error
is minimized, and the convergence speed is maximized
in terms of the upper bound of the tracking error, i.e.,
find L∗

k(Sa), such that for any given active frequency
ωa ∈ Sa and any given iteration k,

min
Lk(Sa)

∥Ek(Sa)∥2, and

max
Lk(Sa)

∣∣∣||Ek(Sa)||2 − ||Ek−1(Sa)||2
∣∣∣ (7)

are achieved, where ∥Ek(Sa)∥2 is the upper bound of
∥Ek(Sa)∥2.

III. DATA-DRIVEN ROBUST ITERATIVE
LEARNING CONTROL METHOD OF MIMO

SYSTEM
In this section, we present the proposed DDRO-ILC tech-

nique by achieving the above three objectives. We start with
constructing the active iteration gain matrix Lk(Sa) by using
the past input-output data only (Objective O1).
A. DDRO-ILC ALGORITHM

The proposed DDRO-ILC algorithm is:
U1(Sa) = Uint(Sa)Y†

int(Sa)Yd(Sa), k = 1,

Uk(Sa) = Uk−1(Sa) + ∆Uk−1,s(Sa)∆Y†
k−1,s(Sa)Φk−1(Sa)

Ek−1(Sa), k ≥ 2,
(8)

where {Uint(Sa)}pNq×pNq
and {Yint(Sa)}pNq×pNq

are the
active initialization input and output matrix, respectively:

Uint(Sa) =
[
Uint,1(Sa) · · · Uint,p(Sa)

]
,

Yint(Sa) =
[
Yint,1(Sa) · · · Yint,p(Sa)

]
,

(9)

with {Uint,i(Sa)}pNq×Nq
and {Yint,i(Sa)}pNq×Nq

are the
so-called ith active initialization input and the corresponding
output matrix (specified immediately below in Sec. III-B),
respectively. In Eq. (8),
∆Uk,s(Sa) =

[
Uint(Sa) ∆Uk(Sa)

]
pNq×((p+1)Nq)

,

∆Yk,s(Sa) =
[
Yint(Sa) ∆Yk(Sa)

]
pNq×((p+1)Nq)

,
(10)

with

∆Uk(Sa) =

{
U1(Sa)−Uint,p+1(Sa), when k = 1

Uk(Sa)−Uk−1(Sa), when k ≥ 2
,

∆Yk(Sa) =

{
Y1(Sa)− Yint,p+1(Sa), when k = 1

Yk(Sa)− Yk−1(Sa), when k ≥ 2
.

(11)
Finally, ∆Y†

k,s(Sa) in Eq. (9), denotes the Moore-Penrose
pseudoinverse of ∆Yk,s(Sa), and Φk(Sa) ∈ CpNq×pNq is
the iteration gain matrix.

Comparing Eq. (8) to Eq. (2) shows that in the pro-
posed DDRO-ILC algorithm, the active iteration gain matrix
Lk(Sa) is given by

Lk(Sa) = ∆Uk,s(Sa)∆Y†
k,s(Sa)Φk(Sa). (12)

Thus, Lk(Sa) is data-driven if the gain matrix Φk(Sa)
is determined by past input-output data. This can be ob-
tained by computing the Moore-Penrose pseudoinverse of
∆Yk,s(Sa) via the Singular Value Decomposition (SVD)
[20] of ∆Yk,s(Sa):

∆Yk,s(Sa) = Uk(Sa)Σk(Sa)V H
k (Sa)

=
[
U1,k(Sa) U2,k(Sa)

][
Σ1,k(Sa) 0

0 Σ2,k(Sa)

] [
V H
1,k(Sa)

V H
2,k(Sa)

]
= U1,k(Sa)Σ1,k(Sa)V H

1,k(Sa)
≜ Ûk(Sa)Σ̂k(Sa)V̂ H

k (Sa),

(13)

where, respectively, Uk(Sa) and Vk(Sa) are unitary matrix,
H denotes the Hermitian transpose operation, Σk(Sa) is
the diagonal matrix containing all the singular values of
∆Yk,s(Sa) in the descending order, Σ1,k(Sa) and Σ2,k(Sa)
are the partition of zero and nonzero matrices, i.e.,

Σ̂k(Sa) = Σ1,k(Sa) = diag{[σ1,k(Sa), · · · , σNτ ,k(Sa)]},
with σ1,k(Sa) ≥ σ2,k(Sa) · · · ≥ σNτ ,k(Sa) > 0,

(14)
and Ûk(Sa) = U1,k(Sa) and V̂ k(Sa) = V1,k(Sa) are
partitions of Uk(Sa) and Vk(Sa) according to the dimension
of Σ1,k and Σ2,k, respectively. Then the pseudoinverse of
∆Yk,s(Sa) is given by

∆Y†
k,s(Sa) = V̂k(Sa)Σ̂−1

k (Sa)Û
H

k (Sa). (15)

Thus, by choosing the gain matrix Φk(Sa)

Φk(Sa) ≜ Ûk(Sa)ϕk(Sa)Û
H

k (Sa),
with ϕk(Sa) = diag([ρk,1(Sa), · · · ,ρk,p(Sa)])pNq×pNq

,

and ρk,i(Sa) = diag([ρk,i(ω1), · · · , ρk,i(ωNq
)])Nq×Nq

,

for i = 1, ..., p,
(16)

where ρk,i(ωj) ∈ R+ (R+: the set of positive real number)
is the iteration gain corresponding to ωj ∈ Sa.

In the above DDRO-ILC algorithm, both the initialization
input, Uint(Sa), and the output, Yint(Sa), must have full row
rank. By Eq. (9), full rank of Uint(Sa) can be guaranteed by
designing Uint,i(Sa) from the desired output matrix.

B. CONVERGENCE ANALYSIS

In this section, we show the convergence of the proposed
DDRO-ILC technique (Objective O2). We proceed by finding
a recursive form of the iterative tracking error.
Lemma 1. Let Assumptions 1 and 2 be hold, then the
propagation of the active iterative tracking error is given by:

Ek(Sa) = βk−1(Sa)Ek−1(Sa)−∆Dk(Sa), (17)

where



βk−1(Sa) = I − (∆Yk−1,s(Sa)−∆Dk−1,s(Sa))

∆Y†
k−1,s(Sa)Ûk−1(Sa)ϕk−1(Sa)Û

H

k−1(Sa),

∆Dk(Sa) =

{
D1(Sa)−Dint,p(Sa), when k = 1

Dk(Sa)−Dk−1(Sa), when k ≥ 2
,

with ∆Dk,s(Sa) =
[
Dint(Sa) ∆Dk(Sa)

]
pNq×((p+1)Nq)

,

Dint(Sa) =
[
Dint,1(Sa) · · · Dint,p(Sa)

]
pNq×pNq

,

(18)
In Eq. (18), {Dint,i(Sa)}pNq×Nq

is the output disturbance
matrix during the ith (1 ≤ i ≤ p) initialization process.

The proof is omitted due to space limit. It can be verified
via algebraic operations.
Assumption 3. For System in Eq. (1), the following condi-
tions are satisfied,
(1) the gain of the active system, ||G(Sa)||2, is bounded

below by constants kg ∈ R+, respectively
kg ≤ ||G(Sa)||2. (19)

(2) The output disturbance/measurement noise in all output
channels are independent wide-sense stationary pro-
cesses, with its 1-norm ω is bounded by a constant
εn ∈ R+, at any given frequency ω,

sup
ω

||D(jω)||1 ≜ sup
ω

p∑
i=1

|di(jω)| ≤ εn. (20)

(3) The size of the active initialization input, ||Uint(Sa)||2,
is greater than a constant given by the noise to system
gain ratio, i,e.,

ku ≜ ||Uint(Sa)||2 >
(
√
6 + 1)εn
kg

. (21)

Remark 1. The above Assumption 3 is reasonable as for
stable MIMO systems, the active system gain is bounded,
and the boundaries, k̄g and kg in Eq. (19), can be estimated
through experiments. The disturbance in each output channel
is bounded (Eq. (20)) and in many cases, independent from
each other. Finally, the initial input shall be large enough
otherwise the corresponding output, G(Sa)Uint(Sa), would
be too small—smaller than the disturbance itself—to provide
useful information of the system behavior.
Lemma 2. Let Assumptions 1-3 be satisfied, then in any
given kth iteration,
(1) The output disturbance is bounded as

||∆Dk,s(Sa)||2 ≤
√
6εn, (22)

and initially (i.e., k = 0)
||∆Dint(Sa)||2 ≤ εn. (23)

(2) The pesudo-inverse of the active output difference
∆Y†

k,s(Sa) is bounded above by

||∆Y†
k,s(Sa)||2 <

1

kukg − εn
. (24)

The proof is omitted to save space.
Theorem 1 (convergence condition). At any given frequency
ωa ∈ Sa, let Assumptions 1-3 be satisfied, and let the
iteration gain, ρk,i(ωj), for i = 1, ..., p and j = 1, ..., Nq

be chosen as,

0 < ρk,i(ωj) <
2Ω

1 + Ω
< 2, (25)

where Ω ∈ (1,+∞) is a constant given by

Ω =
kg × ku − εn√

6εn
, (26)

then, the DDRO-ILC algorithm converges,

lim
k→∞

||Ek(Sa)||2 ≤ 2εn
1− η

, (27)

where η ∈ (0, 1) is a constant given by

η =

{
|1− ρk,i(ωj)|+

ρk,i(ωj)

Ω

}
≜ sup

k
1≤j≤Nq

1≤i≤p

{
|1− ρk,i(ωj)|+

ρk,i(ωj)

Ω

}
.

(28)

The proof is omitted due to space limit.
C. OPTIMAL ITERATION GAIN
Corollary 1. Let the conditions in Theorem 1 be satisfied,
and the iteration gain matrix is chosen as ϕ∗

k(Sa) = I , then
(1) the upper bound of the residual error is minimized, i.e.,

lim
k→∞

||Ek(Sa)||2 ≤ 2εn
1− η∗

≤ 2εn
1− η

, with η∗ =
1

Ω
,

(29)
(2) the convergence speed is maximized in the upper bound

of the tracking error, i.e., η∗ < η when ϕk(Sa) ̸=
ϕ∗

k(Sa).
The proof is omitted to save space.
IV. SIMULATION RESULTS AND DISCUSSION
In this section, we illustrate the proposed method by com-

paring it to the multi-axis inversion-based iterative control
(MAIIC) method [2] in an output tracking example of a 3-
input, 3-output MIMO LTI system in simulation.
A. SYSTEM DESCRIPTION

The 3-by-3 LTI system considered is given by G(s) =
[Gi,j(s)] ∈ C3×3 with each Gi,j(s) being a two-pole, one-
zero subsystem

Gij(s) = kij ×
s+ aij

s2 + bijs+ cij
, (30)

where the poles and the zeros of the subsystems Gi,j(s) were
specified by the coefficients aij , bij and cij as given by,a11 a12 a13

a21 a22 a23
a31 a32 a33

 =

1 2 2
2 2 2
2 2 2

 ,

b11 b12 b13
b21 b22 b23
b31 b32 b33

 =

1 4 2
3 3 3
5 5 5

 ,

c11 c12 c13
c21 c22 c23
c31 c32 c33

 =

1 5 3
3 2 4
5 1 6

 ,

(31)

and the static gain coefficient [kij ] ∈ R3×3 were chosen
differently for the weak- and strong- coupling system: For
the weak-coupling case, [kij ] = 1,when i = j, [kij ] =
0.01,when i ̸= j, such that the convergence condition for
the MAIIC algorithm [2] was satisfied, and for the strong
coupling case the gain matrix [kij ] was chosen as the all
ones matrix. i.e., kij = 1 for all kijs.

The frequency responses of each Gi,j(s) for i, j = 1, 2, 3
are shown in Fig. 1 for the weak- and strong- coupling case,
respectively. It is clear that in the weak coupling system,
the diagonal dynamics dominated in all three channels,
whereas the cross-axis coupling dynamics were pronounced
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Fig. 1. [A1-C1]: Frequency response of the first, second and third input and
the corresponding coupling dynamics for the weak-coupling case; [A2-C2]:
Frequency response of the first, second and third input and the corresponding
coupling dynamics for the strong-coupling case.

in the strong coupling case (see Fig. 1 [A2-C2]), where the
off-diagonal dynamics even dominated in the second and
third output channels, respectively. Such a strong cross-axis
coupling dynamics made precision tracking of this MIMO
system challenging.
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Fig. 2. [A]: Reference 20 Hz Triangle trajectory; [B]: the output noise
generated at the first output channel in the 15th iteration.

During the simulation, the proposed DDRO-ILC and the
MAIIC algorithms were used to generate the control inputs,
respectively. As shown in Fig. 2 [A], the 20 Hz triangle wave
was chosen as the desired trajectory in all three channels, and
in each iteration, the output noise/disturbance was generated
by the normal random numbers with zero expectation and
standard deviation at 0.1. As an example, the output noise
generated for the first channel in one (the 15th) iteration is
shown Fig. 2 [B]. The sampling time was set at 10−3 s.

In the proposed method, the iteration gain matrix, ρk, was
chosen as the optimal one—the identity matrix. The iteration
process was terminated after 25 iterations, and the relative
2-norm error, E2(%), was calculated in each iteration, where
E2(%) is defined as,

E2(%) ≜
||yd − y||2
||yd||2

× 100. (32)

For comparison, the MAIIC method was also applied, where
the iteration coefficient matrix, ρ(s), was chosen as the
identity matrix.

B. RESULTS AND DISCUSSION
The tracking results and the tracking error obtained by

using the MAIIC method and the DDRO-ILC method after
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Fig. 3. [A1-B1]: Comparison of the tracking results of the triangle
trajectory obtained by MAIIC with that by using the proposed DDRO-ILC
method at the second output channel in weak and strong coupling system,
respectively; [A2-B2]: The zoomed-in view of two periods in [A1], [B1],
respectively.
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Fig. 4. [A1-C1]: Comparison of the output noise with the triangle trajectory
tracking error in the weak coupling system obtained by the proposed MAIIC
method and that obtained by DDRO-ILC method at first, second and third
output channel, respectively; [A2-C2]: Comparison of the output noise with
the triangle trajectory tracking error in the strong coupling system obtained
by the proposed MAIIC method and that obtained by DDRO-ILC method
at first, second and third output channel, respectively.

25 iterations are compared for both the weak and the strong
coupling systems. The tracking results at the second channel
are shown in Fig. 3, and the tracking error in all channels
are shown in Fig. 4.

The simulation results demonstrated that the DDRO-ILC
method converged rapidly and overperformed the MAIIC
method. As shown in Fig. 3 [A1-A2], Fig. 4 [A1-C1] and
Fig. 5 [A], for the weak coupling system tracking, both
the MACIIC method and the DDRO-ILC method can track
the reference triangle trajectory accurately. For example, in
each channel, the tracking error was approaching the output
noise level (see Fig. 3 and Fig. 4 [A1-C1]). This could
also be verified by Fig. 5 [A], where the relative maximum
error of the output noise, DDRO-ILC tracking error and



MAIIC tracking error were all between 8% to 12% at all
output channels. Therefore, the tracking results showed that
when applied to the weak coupling system, both MAIIC
and DDRO-ILC methods were able to overcome the cross-
coupling effect and achieve precisely tracking. However, as
shown in Fig. 3 [B1-B2], Fig. 4 [A2-C2] and Fig. 5 [B],
for the strong coupling system, the MAIIC method was not
able to track the reference trajectory since the convergence
was not guaranteed due to the strong cross-coupling effect.
The cross-axis coupling effect dramatically deteriorated the
output performance, and the tracking error increased rapidly
at all output channels (see Fig. 3 [B1-B2] and Fig. 4 [A2-
C2]). But when using the DDRO-ILC method, the tracking
error was still rather small. For example, when using the
MAIIC method, it could not track the reference trajectories
at all three output channels, and as shown in Fig. 5 [B], the
relative 2-norm error, E2(%), at these three channels were
66%, 51% and 45% . However, when using the DDRO-ILC
method, E2(%) was around 9% in all outputs, which is at
least 4 time less than those in the MAIIC method, and it ap-
proaches the noise signal ratio norm (about 8.5%). Besides,
as shown in Fig. 6, the proposed method converged rather
quickly and reached convergence after two iterations in both
weak and strong coupling systems, which was much faster
than the conventional ILC methods in [8], [16]. Therefore,
the experimental results demonstrated the robustness and
superior performance of the DDRO-ILC method by keeping
extremely low tracking error and rapid convergence at both
weak and strong coupling systems.
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Fig. 5. Comparison of the relative 2-norm error of DDRO-ILC, MAIIC
and output noise during the 25th iteration at the weak coupling system [A]
and the strong coupling system [B], respectively.
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Fig. 6. Relative 2-norm error of the 1st (Error1), the 2nd (Error2) and
the 3rd (Error3) channels over 25 iterations in weak [A] and strong [B]
coupling systems, respectively, obtained by DDRO-ILC.

V. CONCLUSION
A data-driven iterative learning control method was pro-

posed to achieve precisely tracking at LTI MIMO system.
The convergence of the proposed method was analyzed, and

an optimal iteration gain was designed to accelerate the
convergence and minimize the residual error. A numerical
simulation was implemented on two LTI MIMO models
with weak or strong cross-axis coupling, respectively. The
simulation results showed the robustness and performance of
the proposed method when compared to the MAIIC method.
Future work will include enhanced computation efficiency
and accuracy and extension to nonlinear MIMO systems.
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