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ABSTRACT

Providing efficient Functions as a Service (FaaS) is challenging due
to the serverless programming model and highly heterogeneous and
dynamic workloads. Great strides have been made in optimizing
FaaS performance through scheduling, caching, virtualization, and
other resource management techniques. The combination of these
advances and growing FaaS workloads have pushed the perfor-
mance bottleneck into the control plane itself. Current FaaS control
planes like OpenWhisk introduce 100s of milliseconds of latency
overhead, and are becoming unsuitable for high performance FaaS
research and deployments.

We present the design and implementation of Ilivatar, a fast,
modular, extensible FaaS control plane which reduces the latency
overhead by more than two orders of magnitude. Ilivatar has a
worker-centric architecture and introduces a new function queue
technique for managing function scheduling and overcommitment.
Iluvatar is implemented in Rust in about 13,000 lines of code, and in-
troduces only 3ms of latency overhead under a wide range of loads,
which is more than 2 orders of magnitude lower than OpenWhisk.
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1 INTRODUCTION

Serverless computing, or Functions as a Service, has emerged as
a key cloud abstraction which is enabling the rapid development
and cloud deployment of many applications [11, 21, 53]. Functions
are small, self-contained programs, whose entire execution and
scaling is managed by the FaaS provider. FaaS has emerged as a
major and growing cloud workload [55], and serves as the resource
abstraction for a wide range of event-driven applications (such as
web and API services, [0T, and ML inference), workflows [22, 41],
and even throughput-intensive parallel workloads [20, 26, 27, 67].

The FaaS programming and deployment model, along with the
highly heterogeneous nature of FaaS workloads, presents many
fundamental performance challenges for FaaS providers. This has
motivated huge and rapid strides in many areas of systems research:
advances in Faa$ scheduling [62], load-balancing [30], workflow-
management [50], and lightweight sandboxing [24] can all improve
various facets of FaaS performance by orders of magnitude.

In most cases, these FaaS performance optimizations and re-
source management policies are implemented and evaluated using
existing popular FaaS frameworks such as OpenWhisk [4]. These
frameworks are also used in real-world deployments, and thus FaaS
performance research can have a large direct impact by improv-
ing and enhancing these frameworks. These frameworks provide a
“FaaS$ control plane”, which runs on top of a large cluster of servers,
and manages all facets of function execution such as scheduling,
monitoring, accounting, etc.

In this paper, we focus on the performance of the FaaS control
plane itself, a critical but mostly overlooked component in the FaaS
ecosystem. They are an important new class of middleware, and
are interesting and novel from a system design, implementation,
and optimization perspective. At one end, they have to handle the
extreme scale and heterogeneity of functions, where the execution
and inter arrival times can vary by several orders of magnitude. At
the other end, they have to work with many intricately connected
software components for operating system virtualization, container
runtimes (such as Docker), networking, etc.

We posit that current FaaS control planes such as OpenWhisk
have become unsuitable due to the rapid growth of FaaS workloads
and advances in Faa$ research. Historically, functions suffered very
high cold-start overheads associated with initializing their execu-
tion runtimes and dependencies in a sandboxed environment (such
as a container or a VM). However, techniques such as keep-alive,
prefetching, VM snapshots, and specialized lightweight sandbox-
ing have reduced the effective cold-start overheads, and the spatial
and temporal locality of FaaS workloads means that over 99% in-
vocations are warm [29]. We find that fundamental design and
implementation issues hinder good performance, adding 100s of
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milliseconds of tail latency even to warm-start invocations served
from fully-initialized containers in memory. Due to this control
plane overhead, function performance is now increasingly bottle-
necked by the control plane itself.

To rectify that, we present Ilivatar, our clean-slate design of a
low-latency control plane for high performance Faa$S research and
deployments. Ilivatar is intended as a simple, extensible, general-

purpose Faa$S control plane which runs functions inside OCI-compliant

containers (such as containerd, Docker, etc.), and makes minimal as-
sumptions about the workload or function sandboxing. The combi-
nation of our design principles, performance optimizations, worker-
centric architecture, and carefully optimized Rust implementation,
reduces our overhead to less than 3ms, more than 2 orders of magni-
tude lower than OpenWhisk. Ilivatar’s design tackles these funda-
mental performance challenges by using simple design principles:
for instance, we use resource caching heavily across the control
plane for mitigating the “slow path”.

For regulating worker load and improving latency, we develop
new function-size-aware queueing policies. Queueing in Ilavatar pro-
vides a new principled overcommitment knob, allowing FaaS providers
to improve both utilization and latency. The worker-level queue
design also helps in mitigating bursts, reducing concurrent cold
starts, and prioritizing functions. Iluvatar’s queue design makes it
easy to implement advanced data-driven queueing and scheduling
policies, which are highly appealing because of the high temporal
locality of FaaS workloads.

Ilavatar is intended to serve as a platform for empirical FaaS
research, and provides a low latency, low jitter experimentation
environment. It implements and introduces state-of-the-art policies
for load-balancing, function scheduling, keep-alive, and provides
easy to use data and control APIs for developing advanced data and
machine learning driven policies. It provides a variety of resource
management and overcommitment options, and supports multi-
ple container backends (such as containerd and Docker). We have
designed Ilavatar to be modular and compatible with the recent
and anticipated advances in FaaS resource management such as
snapshots, overcommit, statistical learning based scheduling, etc.
We also introduce a new technique for in-situ simulations, where
Ilavatar can double as a full-fledged Faa$S simulator for protoyping
and evaluating policies. Through the design and implementation
of Iluvatar, we make the following major contributions:

(1) Ilavatar provides fast, predictable, jitter-resistant function exe-
cution using a worker-centric architecture, resource caching, and
an asynchronous implementation in a non garbage collected lan-
guage. Iluvatar is 13,000 lines of Rust code. It is open source, and
available at https://github.com/cos-in/iluvatar-faas .

(2) Ourresearch novelty lies in optimizing warm starts and queueing-
based scheduling and overcommitment policies for heterogeneous
and bursty function workloads (such as Azure’s [55]).

(3) We reduce latency overhead by up to 100X vs. OpenWhisk.

(4) We show how our worker-level queue architecture and policies
can provide new knobs for controlling overcommitment, average
latency, and fairness.

(5) Ilavatar provides a reliable and extendible FaaS platform, and
our performance matches the idealized Little’s law model.
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2 BACKGROUND & MOTIVATION

Functions as a Service (FaaS) allows users to register small snippets
of function code that get executed in response to some event or trig-
ger (such as an HTTP request, message queue event, etc.) [5, 6, 8, 53].
These functions must be stateless: a new execution environment
may be created for every invocation (and can be destroyed after
the function returns). The function code also contains all the neces-
sary code and data dependencies (such as imported libraries and
packages), and thus functions may spend significant time being ini-
tialized before the event-handling code can execute. Functions are
executed inside virtual execution environments such as hardware
virtual machines, OS containers like Docker, or even language-based
runtimes such as javascript WASM [58]. Function initialization, i.e.,
creating the execution environment and resolving code/data de-
pendencies, can take 100s of milliseconds, and this “cold-start” can
significantly increase the latency of small functions [24, 29]. Ini-
tialized function sandboxes can be retained in memory, and this
keep-alive provides faster “warm-starts” [29]. Since functions are
arbitrary user-code, they are extremely heterogeneous in their ex-
ecution characteristics and resource requirements. For instance,
the Azure FaaS trace [55] shows that the 50th and 95th percentile
of execution time can range from 1 second to 1 minute; and the
inter-arrival-time from 1 second to 15 minutes respectively.

2.1 FaaS Control Planes

All aspects of function execution are orchestrated by a FaaS control
plane, which are implemented by frameworks like OpenWhisk [4].
For using a Faa$ service, the user interacts with the control plane
for registering and invoking functions, tracking their status, etc.
The control plane manages the resources of a cluster of servers, and
schedules functions on to them based on its load-balancing policies.

In OpenWhisk, user requests for invoking a function go through
areverse proxy (NGINX) to the central controller, which implements,
among other things, load-balancing (a variant of consistent hashing
with bounded loads by default). The controller puts the function
invocation request into a shared Apache Kafka [3] queue. Inside
the worker, the invoker service pulls function invocations from
the Kafka queue based on that worker’s own resource availability.
Docker containers running a Go-based control plane agent are used
to isolate functions, and each worker maintains a container pool of
initialized/warm containers. OpenWhisk logs function results in a
CouchDB instance. Importantly, both Kafka and CouchDB are on
the critical path, and add 100s of ms to invocation latency. Open-
Whisk is highly modular and distributed, with many networked
services. All of these, combined with the JVM GC (it is implemented
in Scala), results in large and unpredictable latency spikes [30, 56],
with slowdowns of more than 10, 000X reported [72].

2.2 Why a new FaaS$ control plane?

We believe that the FaaS control plane is an important component
of the modern cloud ecosystem, and presents many optimization
opportunities and interesting research questions in system design.
Performance. Because of its central role in coordinating all aspects
of function execution, the control plane plays a major role in de-
termining function performance. Managing the function execution
lifecycle for hundreds of concurrent invocations imposes a control
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Figure 1: The latency overhead of the control plane, as the
number of concurrent invocations increases. OpenWhisk
overhead is significant and has high variance, resulting in
high tail latency. Ilavatar reduces this overhead by 100x.

plane overhead, and increases the end-to-end latency. This control
plane overhead can be significant, and affects all function invoca-
tions, including and especially the “warm starts”. This overhead
(end-to-end latency minus the function code execution time) for
the PyAES function from FunctionBench [39] is shown in Figure 1.

The figure shows the 50 and 99 percentile overheads as the num-
ber of concurrent invocations are increased. In each case, we are
invoking the function repeatedly in a closed-loop, and concurrent
invocations are achieved by using multiple client threads. All in-
vocations are warm starts. The experiment is run on a 48 core
server (more details in Section 6), and the figure thus shows the
performance at low and medium load conditions.

From Figure 1, we can see that the OpenWhisk latency overhead
is more than 10ms, which is already a significant increase in latency
for small functions which dominate real-world FaaS workloads.
Worryingly, the 99 percentile overhead is much higher, and rises
to as much as 600ms. We also see strange inversions in the scaling
behavior: the overhead reduces for certain load-levels, and then
increases again. This high overhead, high variance, and uncertain
scaling behavior, results in many challenges for FaaS providers. Due
to these issues, low-latency functions see severe performance degra-
dation, and resource provisioning and capacity planning becomes
harder due to the high variance and performance unpredictability.

Some of these latency overheads are an artifact of the architec-
ture. The shared Kafka function queue can be a major bottleneck;
and there are no explicit backpressure or load regulation mecha-
nisms, which is compounded by the CPU overcommitment. For the
sake of comparison, the figure also shows the latency overhead of
Ilavatar in the same environment. We are able to achieve a per-
invocation mean overhead of less than 2ms for almost all the load
conditions. Importantly, the tail overhead is also small: less than
3ms for less than 32 concurrent invocations, rising to 10ms when
the system is saturated.

To emphasize, for a median function in the Azure workload
which runs for 500 ms, OpenWhisk can increase its latency by 100%.
Thus, the control plane plays a crucial role in function performance.
We note that these are the best-case warm-start latencies, when
the function’s containers is fully initialized and in memory. Since
function cold-starts impose such a major performance penalty (in-
creasing latency by more than 10x), mitigating them has been a
major research focus. However, because of temporal and spatial
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locality of access, caching and prefetching techniques can be ex-
tremely effective, and the cold-start rate is often less than 1% of
all invocations [29]. The majority of invocations are thus “warm”,
where the performance is dominated by control plane overheads.
System Design. As evidenced by the OpenWhisk architecture
presented earlier, FaaS control planes are large, complex distributed
systems. Due to the continually evolving needs of FaaS applications
and emergence of new sandboxing techniques (such as lightweight
VMs like Firecracker [12]), they are sandwiched between the scale
and heterogeneity of FaaS workloads on one hand, and the deep
stack of OS and virtualization components on the other.

For instance, systems for running web services or microservices
do not have to deal with large and highly variable sandbox man-
agement overheads, nor with highly heterogeneous request sizes.
For reducing tail latency, these systems can often rely on the OS
CPU scheduler for processor sharing, can do CPU allocation at very
fine granularity [35], use queueing theory techniques [47], etc. At
the other extreme, for longer running containers and VMs, their
control planes, like OpenStack or Kubernetes face a much lower
rate of VM arrivals and departures. and can do careful and “hard”
resource allocation using bin-packing [23].

Functions are highly heterogeneous, and can be seen as both
latency-sensitive web requests and large containers requiring sig-
nificant system resources for several seconds. FaaS control planes
thus have to do bothlow-latency allocation and pack CPU and mem-
ory resources on their servers carefully to maintain high system
utilization. Thus FaaS control planes are one of the more perfect
microcosms of challenges in resource management and control in
large scale distributed computing.

A clean-slate control plane design helps us investigate the funda-
mental performance tradeoffs and challenges in this fast-evolving
ecosystem. Our new implementation also helps to identify the cur-
rent performance bottlenecks and new avenues of OS optimizations.
Platform for Experimental Systems Research. Performance-
focused FaaS$ research is already challenging due to the extreme
scale and heterogeneity of the workloads. These challenges are
compounded by existing control planes like OpenWhisk that are
unfortunately highly unpredictable. The control plane jitter and
the extreme bimodal cold vs. warm latencies makes it difficult to do
reliable and reproducible research [42], and subtle environmental
and configuration effects can mask the true effects of new research
optimizations. However, it continues to be a key component in
developing and evaluating FaaS research [14, 15, 29, 30, 55, 62, 70].
With OpenWhisk, function performance can be severely affected
by a myriad of configuration options, such as insufficient memory
for CouchDB, networking configuration, Docker configuration, etc.

Given the importance of the control plane, we want predictable
performance to a large degree. In our experience, research in FaaS
is often hindered by the large overheads and complexity of existing
control planes. Thus, IlGvatar is designed from the ground-up to be
lightweight and provide predictable performance under different
conditions. Our system implementation can potentially accelerate
the development of new optimizations, clarify our understanding
of performance characteristics of this relatively new stack, and
provide a platform for robust experiments. With a robust platform,
the community can share knowledge and advances, while being
able to compare against a well-known and trusted baseline.
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Figure 2: Ilavatar has a worker-centric architecture. A per-
worker queue helps schedule functions, and regulate load
and overcommitment.

3 ILUVATAR DESIGN

Iluvatar’s design is guided by our experience of OpenWhisk per-
formance, and by our goals of providing predictable performance,
modularity, and a platform for reliable FaaS research.

3.1 Architecture and Overview

The Ilavatar control plane is spread out across a load balancer
and the individual workers, and sits above the containerization
layers. We intend for Iliivatar to be the narrow waist [46] in the
Faa$S ecosystem: with optimizations for DAG scheduling [71], state
handling [61], and horizontal scaling [30] implemented above it,
and sandboxing and containerization below it. This architecture
was motivated by the key question: Can fast Faa$ control planes be
implemented with strict layering and separation of concerns?

We have found that most of the control plane overhead is in
the workers, and hence optimizing the worker performance is our
major focus. Our architecture is worker-centric, and places more
performance and load-management responsibility on the individ-
ual workers, instead of a more “top-down” centralized approach
favored by prior work such as Atoll [60] and others [36, 37]. Top-
down resource management requires a consistent global view of the
cluster, and is complementary to our work. Predictive techniques
for load-balancing, prefetching, scheduling, function-sizing can all
be effective, but we want to explore the performance characteristics
and limits of reactive control planes that work with unmodified
container runtimes.

Ilavatar’s main components are shown in Figure 2. Clients/users
invoke functions using an HTTP or RPC API, with the main oper-
ations being register, invoke, async_invoke, and prewarm.
Workers also provide load and status information to the load-
balancer. We use stateless load-balancing, by using variants of
consistent hashing with bounded loads (CH-BL), which have been
proposed for FaaS recently [30]. This is a locality-aware scheme,
which runs functions on the same servers to maximize warm starts,
and forwards them to other servers only when the server’s load
exceeds some pre-specified load-bound.

Continuing on the worker-centric theme, the worker API is
a subset and almost completely identical to the overall API, and
functions can be launched directly on a worker for single-worker
setups and benchmarking, without going through a load-balancer
and adding unnecessary latency. The workers implement various
latency-hiding and burst-mitigation techniques. All functions are

Alexander Fuerst, Abdul Rehman, and Prateek Sharma

launched inside containers, and dealing with the container layer
is a major part of the worker. Each worker maintains a container
pool of initialized containers for facilitating warm starts, and has
an invocation queue for handling dynamic loads. Function charac-
teristics such as their cold and warm execution times are captured
in various data-structures and are made available using APIs for
developing data-driven resource management policies.

An important contribution and component of Ilavatar is its prin-
cipled support for function overcommitment based on its queueing
architecture. In many environments, like public FaaS providers,
function resources cannot be overcommitted. However, the actual
function resource usage is often significantly less compared to their
requested “size”. This difference is the motivation behind recent
“right sizing” work [13, 25, 31, 40, 63], and can significantly improve
system utilization. Through its queue-based architecture (described
in Section 4), Iluvatar supports a wide range of overcommitment
scenarios, including no overcommitment, which is absent from
OpenWhisk. By default, OpenWhisk does not overcommit memory,
but can overcommit CPUs, which introduces performance interfer-
ence and potential SLA violations for functions.

3.2 Function Lifecycle

New functions need to be first registered, which entails download-
ing and preparing its container disk image. The container images
are fetched from DockerHub or some other image repository. Con-
tainer images are composed of multiple copy-on-write layers, and
we prepare the images by selecting the relevant layers for the oper-
ating system and CPU architecture. The images consist of the user-
provided function code and our agent, which is a simple Python
HTTP server that runs in each container. Registered functions can
then be directly invoked, which triggers launching of the function’s
container. The first invocation is usually a cold-start, which entails
launching the container image from disk, or from a previous snap-
shot [16, 65] if available. Each function container starts the agent
which listens for and controls the actual function code execution.
The agent has two simple commands, a GET / endpoint for simple
status checking, and a POST /invoke to run an invocation with
some arguments. When the container is ready, the worker sends an
HTTP request to the agent to start the function code execution. We
detect the container’s readiness using an inotify callback, which is
a faster and more generic mechanism for notification compared to
Docker’s built-in API. Finally, when the function finishes execution,
the HTTP call to the container’s agent returns, and the container is
marked as ‘available’ in the container pool, to be potentially used
for future invocations of the same function.

In the spirit of a fast “baseline” control plane and for isolation,
Iluvatar does not share containers across functions. This is in con-
trast to SAND’s application sandboxing [14], SOCK’s Zygote con-
tainers [43], Nightcore [34], and even OpenFaa$ [9]. Our isolation
model is similar to the public cloud providers.

Additionally, IlGvatar introduces a standard prewarm API call,
which starts the function’s container and the agent inside of it, and
adds it to the container pool. This reduces most of the cold-start
overhead associated with the container. Prewarming can both avoid
a “thundering herd” of cold starts on worker startup, and be an
optimization in which the control plane anticipates invocations and
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Figure 3: The main components of the Ilavatar overheads.

Group Function Name Time (ms)

invoke 0.026

. . sync_invoke 0.013
Ingestion & Queueing enqueue_invocation 0.017
add_item_to_q 0.02

spawn_worker 0.029

Container Operations fiequeue . 0.02
acquire_container 0.096

try_lock_container 0.014

prepare_invoke 0.154

Agent Communication call_container 1.364
download_result 0.032

Returning return_container 0.017
return_results 0.266

Table 1: Latency of different Iluvatar worker components
for a single warm invocation.

prepares containers for them. This allows for a systematic mecha-
nism to implement various recently proposed predictive prewarm
policies [51, 55, 59].

Function Latency Breakdown. Throughout Ilivatar and this pa-
per, we are interested in three main performance metrics. The first
is the end-to-end latency of function execution, also called the flow
time, shown in Figure 3. This in turn has two main components:
the control plane overhead is the latency of Ildvatar operations,
which are mainly before the start of function execution. The second
component is the function execution time, which is determined
by the function code, and the load on the system. The function
execution time is our baseline, and we compute the normalized
end-to-end latency by dividing the full latency by the execution
time (also called the stretch).

A more detailed latency breakdown is shown in Table 1. The
majority of overhead comes from the communication with the agent
which is over HTTP. This is a deliberate choice, since we wanted to
be compatible with existing OpenWhisk function images. This can
be reduced by using faster IPC mechanisms like in Nightcore [34].
However, these faster communication approaches would reduce
compatibility, especially with functions deployed inside VMs.

For OpenWhisk, a similar latency breakdown shows that a large
amount of time is spent reading/writing to couchDB (up to half a
second), and the rest of the slowdown occurs in the invoker and
is primarily due to its design and implementation. Interestingly,
the load-balancer/controller for OpenWhisk adds less than 3ms of
latency even under heavy load, indicating that the worker-level
performance is relatively more important. This further motivates
our worker-centric design and evaluation focus.
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3.3 Worker Performance Optimizations

To achieve this low latency function execution for heterogeneous
and bursty workloads, Ilivatar uses two key underlying design prin-
ciples: resource caching, and asynchronous handling of function
life-cycle events.

3.3.1 Resource Caching. The cornerstone design goal of Iluvatar is
to reduce jitter, which we accomplish by removing expensive oper-
ations from the function’s critical path. Instead, we cache and reuse
as many function resources as possible, which minimizes the “hot
path” function invocation latency significantly. This principle is
applied in various worker components, which we describe below.

Container Keep-alive. The primary and exemplary application
of resource caching is in the container keep-alive cache that Ilu-
vatar workers maintain. The containers become “warm” when their
function has finished execution, and become “available” for the
next invocation of the same function. We maintain a pool of all
in-use and available containers for each registered function. This
container cache implements classic eviction policies such as Least
Recently Used (LRU), and size-aware policies like Greedy-Dual-
Size-Frequency, as proposed in FaasCache [29].

Network Namespace Caching. For isolation, each container is
provided with a virtual network interface and a network names-
pace. Through performance profiling, we’ve found that creating
this network namespace can add significant latency to container
cold starts—as much as 100ms. This is due to contention on a single
global lock shared across all network namespaces [43]. To minimze
this overhead, we maintain a pool of pre-created network names-
paces that are assigned during container creation. The isolation
is still maintained, since concurrently running containers do not
share the namespace.

HTTP Clients. The worker threads communicate with the in-
container agent for launching the function code. Instead of creating
a new HTTP client for every invocation, we cache a client per
container and use connection pooling. This affects all invocations
(even warm starts), and reduces the control-plane overhead latency
by up to 3ms.

3.3.2  Async function life-cycle handling. The second key design
principle is to handle various aspects of the function’s lifecycle
asynchronously off the critical path. Iluvatar achieves this through
background worker threads for certain tasks, and through its Rust
implementation which heavily uses asynchronous functions, fu-
tures, and callbacks wherever possible.

Keep-alive eviction. One such aspect is maintaining the function
keep-alive cache, and ensuring that new functions have enough
free memory to launch without waiting on existing containers to
be evicted first. Traditionally, eviction decisions would be made in
an online fashion, but picking victims and waiting for their removal
creates high variance in function execution times. Ilivatar performs
container eviction from the keep-alive pool periodically in the
background, off the critical path. This is similar to the Linux kernel
page-cache implementation. We maintain a minimum free-memory
buffer for dealing with invocation bursts, and periodically sort the
containers list for eviction based on caching policies from [29].
Function Queueing. An important component of Iluvatar’s archi-
tecture is a per-worker function queue. New invocations are first
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put into the queue, and are dispatched to the container backend
by a queue monitoring thread. This allows us to tolerate bursts of
invocations, and regulate the server load. Details of our queueing
policies are presented in Section 4.

3.4 Container Handling

Ildvatar uses standard Linux containers for isolating and sand-
boxing function execution—a “vanilla” and conventional approach.
Several exciting new isolation mechanisms for cloud functions
have been proposed: such as lightweight VMs [12], unikernels,
WASM [58] and other language runtimes [18], etc. Importantly, the
sandboxing affects the cold start overheads, which account for a
tiny fraction of all invocations (usually less than 1%). Our control
plane design and performance optimizations are independent of the
sandboxing mechanism, and we address the orthogonal problem of
optimizing the warm starts.

The basic container operations we use are: i) Create a contain-
er/sandbox with specified resource limits and disk image/snapshot,
ii) launch a task inside it for the agent, and iii) destroy the container.
Each container is launched with the CPU and memory resource
limits. CPU limits are enforced with cgroup quotas. This limited
API allows Iluvatar to support multiple container backends.

By default, we use containerd [2], which is popular container
library, also used by Docker. The very rich containerization ecosys-
tem presents a large number of options, and examining their trade-
offs was a major part of Iluvatar’s design process. Importantly, the
choice of containerization library impacts the cold-start times, and
some library operations can take considerable time (100s of ms).
High-level container frameworks like Docker are feature-rich and
easy to use, but are typically used for long-running containers and
are not optimized for latency. Docker uses containerd under the
hood, and it provides more fine-grained control and slightly better
latency. Functions require a minimal containerization, and a lot
of feature-complexity in these large containerization libraries can
add to latency. For instance, the crun [7] library which is written
in C takes about 150ms to launch a container, whereas containerd
(written in Go) needs 300ms, and Docker needs 400ms.

Using containerd allows us to use the OCI container specifica-
tion [1], and makes it easier to support other container runtimes.
For instance, we also support the Docker container backend, which
required only a minimal programming effort. Containerd operates
as a separate service, and we use it’s RPC-based API, which con-
tributes to some latency as well. We contemplated writing our own
optimized container runtime in Rust to avoid the overheads due
to inter process communication, extra process forks and system
calls, and implement other cgroups and namespace optimizations.
However, we ended up going with containerd to keep our control
plane small and reusable across container runtimes. We also wanted
to investigate and tackle the challenge of getting predictable per-
formance out of higher level containerization services that are not
part of the same address space.

Simulation Backend. In addition to containerd and Docker con-
tainers, we also support a “null” container backend which is useful
for simulations and evaluating control plane scalability. Because of
the scale and variety of FaaS workloads, using discrete event simu-
lators for developing and evaluating resource management policies
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is often necessary. For instance, the recent work on FaaS load bal-
ancing [30] uses such a simulator for evaluating their policies at
scale for different subsets of the Azure workload trace. Usually, the
simulation is used to augment and complement the “real” empirical
evaluation of the same policies which are implemented in FaaS
frameworks like OpenWhisk.

However, a major methodological and practical issue is that the
policy implementations, workload generation, and analysis, all need
to be duplicated across the simulator and the real system. This can
lead to subtle and large divergences between the simulation and
real environment. Moreover, the simulator cannot capture all the
real-world dynamics and jitter, and can suffer from poor fidelity.

In order to aid researchers, Iluvatar takes a different approach to
simulations, and provides in-situ simulations. Our “null” container
backend does not run any actual function code, but instead sleeps
for the function’s anticipated execution time. The rest of the control
plane operates exactly as with real containers, and we still handle all
other aspects of the function’s lifecycle. This allows us to simulate
large systems and workloads. For evaluating any particular policy,
researchers can use the simulator null-backend to evaluate control-
plane overheads, warm-starts, etc., without requiring a large cluster.
Each Ildvatar worker can “simulate” 100s of cores, since the CPU
resources are only being consumed by the control plane, and not
for running actual functions. Alternatively, a large cluster can be
simulated with multiple simulated workers.

With this approach, there is minimal difference between the simu-
lation and the real system. Thus an experiment can be run in-situ or
in-silico, following identical code paths. The main distinction is that
API calls to containerd are replaced with internal dummy function
calls, and function invocations are converted to sleep statements.
All control plane operations, control-flow, logging, resource limits
enforcement, etc., are exactly the same as with the “real” Iliivatar.
This also helps with mocking and testing new policies.

4 FUNCTION INVOCATION QUEUEING

As a way to regulate and control function execution and worker
load, [luvatar incorporates a per-worker invocation queue architec-
ture. Function invocations go through this queuing system before
reaching the container manager, which either locates the warm
container and runs the function or creates a new container. Each
worker manages its own queue, differentiating our design from
OpenWhisk’s shared Kafka queue.
Motivation. This queuing architecture is motivated by three main
factors: i) the bursty nature of the workload , and ii) Reducing
cold starts due to concurrent invocations, and iii) to give workers
additional mechanisms for controlling their load, implementing
prioritization, etc. Note that once the function passes through the
queue, it is effectively “scheduled” for execution by the OS CPU
scheduler. The CPU scheduler of course has its own throttling and
controling mechanisms, such as cgroups and the various scheduler
tuning knobs. The invocation queue thus acts as a kind of a regulator
or a filter before the CPU scheduler, and ideally, “feeds” it the
right functions at the right rates for maximizing throughput and
minimizing latency.

Because function workloads are so bursty and heterogeneous,
running each function immediately can significantly increase the
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worker load and result in severe resource contention and increase
function tail latencies. The queue also helps as an explicit back-
pressure mechanism for load-balancing, admission control, and
elastic scaling. The queue length is used for accurately determining
the true load on the worker, which is a vital input to consistent
hashing with bounded loads [30]. This reduces the staleness and
noise of using system load average as the load indicator, and makes
load balancing more robust.

Queueing invocations also allows us to reduce cold-starts. While
repeated function invocations are good and increase warm starts,
concurrent invocations of the same function results in cold-starts
for all the concurrent invocations, since each invocation needs to be
run in its own container. This is also the “spawn start” [49], which
causes severe latency increase of 10s of seconds in public FaaS. If
there are n concurrent invocations that arrive at the same time, then
the n concurrent cold-starts can significantly increase the system
load and affect latency of other functions. Instead, by queueing and
throttling the functions, we can wait for the invocation to finish,
and then use the warm container for the next function in this “herd”,
and so on and so forth.

4.1 Queue Architecture

Iluvatar’s queue architecture is shown in Figure 2. We have three
main components. From right to left, first, we have a concurrency
regulator (or just regulator), which enforces the concurrency limit:
the upper-bound on the number of concurrently running functions.
This lets functions execute “on cpu” without timesharing, and effec-
tively determines the overcommitment ratio. Higher concurrency
limits (more than the number of CPUs) means more CPU overcom-
mitment. Note that even with overcommitment, the cgroup quotas
still provide proportional allocation (thus a 2 CPU container will
still get twice the CPU cycles compared to a 1 CPU container). In
addition to concurrency, other factors can also be used to regulate
the queue discharge rate. The regulator can be used to run functions
of only when sufficient resources (such as CPU bandwidth, warm
containers, or even accelerators like GPUs) are available.

Ildvatar can be deployed with a fixed concurrency limit based on
the usage requirements, or use its dynamic concurrency limit mode.
In the dynamic mode, we use a simple TCP-like AIMD [68] policy
which increases the concurrency limit until we hit congestion,
which in our case is hit if the system load average increases above
some specified threshold. Other metrics are possible: looking at the
increase in execution time (i.e., stretch) of the functions could also
be used as a congestion metric. The concurrency limit affects the
tail-latency, and more advanced policies can be implemented.

The second component is a queueing discipline. In the sim-
plest case, we can use simple FCFS, and process functions in arrival
order. However, because functions are heterogeneous, this is not
always the most appropriate. Instead, we can use the past function
execution characteristics such as their cold/warm running times for
size-aware queueing such as shortest job first (SJF). We elaborate
more on the queueing policies in the next subsection.

Finally, we note that queueing may increase the waiting time for
small functions. We thus have a queue bypass mechanism, which
allows certain functions to bypass the queue and immediately and
directly run on the CPU. Bypass policies take the function running
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time and the current system state as input. Currently, we implement
a short-function bypass, where functions smaller than a certain
duration are immediately scheduled, as long as the system is under a
load-average limit. More effective bypass policies can also consider
reinforcement learning approaches, since the action space is simple
(bypass or enqueue), and the system state is well defined (functions
running and in-queue, etc.).

4.2 Queueing Policies

We implement multiple queue policies which leverage the repeated
invocations of functions and use their learned execution character-
istics to determining each function’s priority. To accomplish this,
we maintain per-function characteristics such as cold time, warm
time, and inter-arrival-time (IAT). We maintain a priority queue
sorted by the function priorities, which are computed using their
characteristics like arrival and execution time.

FIFO is simplest and invocations are just sorted by their ar-
rival time. For prioritizing small functions, we leverage our bypass
mechanism, where the short functions can skip the queue and be
scheduled directly on the CPU. Optimizing queueing policies for
heterogeneous functions is challenging, and is an NP complete
problem even in the offline case [17].

For improving throughput, we use shortest job first (SJF), which
helps reduce the waiting time for short functions, but can lead to
starvation for longer functions if the queue never drains. As a trade-
off between function duration and arrival, lluvatar by default tries
to minimize the “effective deadline” of a function, which is equal
to the sum of its arrival time and (expected) execution time. This
earliest effective deadline first (EEDF) approach balances both short
functions and starvation. In both SJF and EEDF, an invocations’
execution time is determined by its (moving window) warm time.
New/unseen functions have their times set to 0, to prioritize their
execution. If we expect to find available containers for a function,
we use its (moving window) warm time as the execution time in
both SJF and EEDF. Otherwise, we use its cold time—this also helps
in reducing the concurrent cold starts, since the expected cold in-
vocations of some functions in a burst separates them in the queue,
and reduces the number of concurrently executing identical func-
tions. This spreading of function invocations over time increases
the warm starts and overall performance. Finally, the RARE policy
prioritizes the most unexpected functions (i.e., functions with the
highest IAT).

5 IMPLEMENTATION

Ildvatar is implemented in Rust in about 13,000 lines of code. It will
be open-sourced upon paper acceptance. Its low latency and lack
of jitter are attributable to the various low-level profile-guided per-
formance optimizations we have implemented during the course of
its development and testing. Function handling and container man-
agement in the worker make up a majority of the implementation
footprint and focus. Ours is a heavily asynchronous implementa-
tion using the tokio library in Rust, and various function lifecycle
events spawn new userspace threads and trigger callbacks. The
major data structure shared by the various worker threads is the
container pool, which is implemented using the dashmap crate,
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which is a concurrent associative hashmap— this provides notice-
able latency improvements compared to a mutex or read-write lock.
Conversely, we still use a mutex for the queue, since we found mini-
mal performance degradation compared to a no-queue architecture
during profiling. These, and many other small optimizations, keep
the Ilavatar resource consumption small: even under a heavy and
sustained load that saturates a 48 CPU server, the worker process
uses less than 20% of a single CPU core.

5.1 Support for FaaS research

One of our major design goals is for a reliable and extensible plat-
form for performance-focused FaaS research. We now describe
some of the Iluvatar features and our experiences in extending it.
Performance Metrics. We keep track of all internal and external
function metrics (such as their cold/warm execution time histo-
ries, inter arrival times, memory footprints, etc.) and provide them
to all components of the control plane, and also to external ser-
vices. One of Ilavatar’s implementation goals was to reduce the
reliance on external services for system monitoring etc. We thus
track key system metrics like CPU usage, load averages, and even
CPU performance counters and system energy usage using RAPL
and external power meters. These metrics are collected using async
worker threads, and provide a single consistent view of the system
performance. Additionally, we also use and provide Rust-function
tracing for fine-grained performance logging and analysis. We use
the tracing crate to instrument the passage of invocations through
the control plane components, and obtain detailed function level
timing information, which is used for identifying control plane and
container-layer bottlenecks.

Adding New Policies and Backends. Using function and system
metrics allows for easy development of data and statistical learn-
ing based resource management policies to be implemented. Our
baseline policy implementations for keep-alive eviction, queueing,
load-balancing, are all easily extensible using Rust traits, polymor-
phism, and code generation. In our experience, adding new policies
is relatively straight-forward, even for new-comers. For example,
all the priority-based queueing policies (SJF, EEDF, RARE, etc.) were
implemented by extending the base FCFS policy. Implementing and
testing these policies took less than a few dozen lines and about
four hours for a graduate student unfamiliar with the code-base.

The default container runtime backend is containerd, but the
interface is small, and supporting new backends is relatively easy.
We added Docker support in about 400 lines and one person-day of
development effort.

Load-generation and Testing. In the spirit of providing a sin-
gle platform for FaaS experimentation, we have developed a load-
generation framework. It can do closed and open loop load genera-
tion, and be parameterized by the number and mixture of functions,
their IAT distributions, etc. The testing framework can use func-
tions from FaaS$ suites like FunctionBench [39], or custom sized
functions that run lookbusy [19] for generating specific CPU and
memory load. The open-loop generation produces a timeseries of
function invocations, which is helpful for repeatable experiments.
The functions’ IAT distributions can be exponential, or be derived
from empirical Faa$ traces like the Azure trace [55].
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For the Azure trace, we start by randomly sampling functions
and computing the CDF of their IATs. We compute the expected
load level in the system using Little’s law, by finding the expected
number of concurrent invocations for each function and adding
them for all functions. This expected load can be significantly differ-
ent from the capabilities of the system under testing (for example,
100 concurrent functions will overload a 12 core system). Therefore,
we can scale the individual function IAT CDFs to find a suitable load.
This also allows us to change the relative popularities of individual
functions, and conduct fine-grained sensitivity experimentation
(like examining system performance when the popularity of one
single function changes, etc.). We can generate larger traces by
layering, and merging the traces from multiple smaller workloads.

For synthetic functions (using lookbusy), we use their distribu-
tion of running times and memory consumption when generating
the workload. When using real functions from a benchmark-suite
like FunctionBench, for each randomly sampled function, we use
its average execution time (from the full trace), and assign it the
closest function in the suite. For example, if the average running
time of a candidate function in the Azure trace is 8 seconds, we
represent it using the ML-training function, which has the closest
running time of 6 seconds.

6 EXPERIMENTAL EVALUATION

We have extensively tested Iluvatar’s performance characteristics
throughout its development. Here, we present a limited set of its key
performance attributes and focus on new insights into FaaS perfor-
mance. All our experiments are conducted on a 48 core Intel Xeon
platinum 8160 CPU, and we restrict the worker to 32 GB memory,
running Ubuntu 20.04 using Rust version 1.67.0 and Tokio library
version 1.19.2. We are interested in evaluating latency overheads
and Ilavatar’s suitability as a low-jitter research platform. This eval-
uation focuses exclusively on the performance of the worker, where
we think most per-invocation latency improvement opportunities
exist. Many effective load-balancing policies have been published,
but their impact on latency is limited to balancing decision time and
warm start ratio. Our stateless controller’s overhead is consistent at
less than 0.5ms, and we can thus ignore its latency contribution, for
ease of exposition. Our CH-BL based load-balancer maximizes lo-
cality and provides 99% warm starts, and we focus on single-worker
performance to remove unnecessary confounding factors.

6.1 Control Plane and Function Performance

In this subsection, we focus on the latency overheads of Iluvatar un-
der different workloads and configurations. For these experiments,
we do not use any queueing, use a single worker, and focus on the
most basic Ilavatar configuration.

We start by examining the control plane overheads under a
closed-loop load for 30 minutes generated by different number of
client threads. The control plane overhead CDF for the AES function
is shown in Figure 4. With 48 concurrent client threads, all the
CPUs are fully utilized by function execution. Even in this saturated
case, the 90 percentile overhead is less than 20ms. Just below this
saturation limit, with 46 threads, the 90 percentile overhead drops
to less than 10ms, and the average is less than 3ms.
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Figure 4: Ilavatar provides low latency overhead across a
range of concurrent invocations.

We now provide a more detailed breakdown of the function la-
tency. In Figure 5, we look at the end to end (E2E) function latency
(ie., flow time) and execution time of different representative func-
tions under different loads. The flow time is impacted by the control
plane overhead and the function code execution time. Both these
factors are affected by the system load, which in turn is affected
by the concurrency level. The difference between the E2E and the
function execution time is the control plane overhead, which is
small for all functions and at all load levels.

Interestingly, a significant source of latency variance is the func-
tion execution time itself. For the small, CPU-intensive PyAES
function (Figure 5a), the inter-quartile-range is 60ms, which is 20%
the average execution time. Both the execution time (and hence the
EZ2E latency) and the variance also increases with the system load.
This variance is also determined by the non-determinism in the
function code. For instance, the JSON function (Figure 5b) parses a
random json file on every invocation, and thus has a higher natural
variance in its execution time. Finally, the video processing function
is long and CPU intensive: it downloads and converts a video to
grayscale. This magnifies the CPU contention, and the function
latency increases from 6 to 9 seconds under heavy load.

The notable increase in execution time for all three functions is
a result of high CPU cache miss percentage and a reduction in the
instructions per cycle (IPC). We also observed poor cache locality
with an increasing number of CPU cores. When the same workload
was run on half the number of CPUs (by disabling the rest of the
CPU cores), the cache miss percentage significantly dropped (by
more than 50%), along with a proportionate reduction in the latency
variance. This highlights and emphasizes the deeper architectural
challenges of FaaS, which were also shown by [54].

Result: Ilivatar overheads are small even under heavy load. Function
code non-determinism and system load have a higher impact on the
function execution times.

Cold-starts. So far we have focused on warm-start performance
which dominates function workloads. Iliivatar also incorporates a
few optimizations for cold-starts. Specifically, we are interested in
quantifying the impact of the different container backends (con-
tainerd and Docker), and the network namespace caching optimiza-
tions. The end to end cold times for various functions are shown
in Figure 6: this includes both container startup time and function
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initialization overheads. In general, smaller functions face a larger
impact due to the cold starts, since it represents a higher percentage
of their total flow time.

For small functions (left axis of the figure), using containerd
(without network namespace caching) reduces the cold-start by
more than 40%, indicating a clear advantage of using a lighter con-
tainer runtime. Introducing the namespace caching further reduces
the cold-start times by 15% compared to unoptimized containerd
which creates a new network namespace for each new container.
After using the namespace cache, each function invocation sees
upwards of 100ms improvement in their cold start time. The effects
also hold for larger functions (right axis of Figure 6), where Docker
increases both the average and variance of the latency.

6.2 Queueing Performance

Having seen Iltvatar performance in closed-loop micro-benchmarks,
we now investigate the impact of its various queueing components
and policies. We use our open-loop load-generation capabilities
described in Section 5.1. Specifically, we use a random selection of
21 functions from the Azure traces, and pair them with different
functions based on their closest running times. This “stationary”
workload has an average 40 requests per second for 30 minutes.
This represents an extremely heterogeneous workload in terms of
function durations and IATs. Additionally, we also show results
from a “bursty” workload generated in the same way, but with
one function generating a burst of 18 requests per second for one
minute. In this open-loop testing, we prewarm the function contain-
ers to prevent excessive cold-starts immediately at the start of the
workload. The number of containers to prewarm for each function
is determined using Little’s law by using their average rates and
execution times.

Metrics. We use multiple performance metrics to understand and
compare different policies. Since functions can differ in execution
time, we always normalize their total latency (flow time) by their
execution time in an unloaded system. As shown in the previous
figures 5, even with 1 closed-loop thread, the execution time has
variance. For normalization, we use the average execution time
with 1 thread for all the functions. Second, function popularities
can also vary widely. We thus compute the weighted latency, where
each function’s normalized latency is weighted by the number of
its invocations in the trace. Thus, the weighted latency represents
the latency per-invocation.

Saturation Testing. We are primarily interested in how the differ-
ent queueing policies impact the waiting time (which is part of the
control plane overhead), and the function performance. The anal-
ysis of queueing is interesting only in saturated scenarios, where
there is enough extra load on the system and not all invocations
can immediately run on the CPU. We find this saturation point by
weak scaling, and decreasing the number of CPU cores available to
Ilavatar (by disabling CPU cores using hot-unplug). The weighted
and normalized latencies for different number of CPUs is shown in
Figure 8, which shows the performance without queuing. We see
that for our baseline trace, increasing the number of available CPU
cores has diminishing returns: the per-invocation latency doesnt
benefit when CPUs are increased from 18 to 48. However, we also
see a sharp inflection point at 16 cores: decreasing the size to 14
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Figure 5: End-to-end latency and execution times for different functions as we increase the concurrency levels.
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Figure 6: Most functions benefit from using a lower-level
containerization and OS object caching on cold starts.

cores results in a very high, almost 6x slowdown. At 16 cores, our
workload saturates the system, and we use this system configura-
tion for all our queueing analysis. We note that the alternative is
to scale the workload up and run on on all 48 cores. However, as
we have shown previously through Figure 5, the poor hardware
locality results in higher variance in the function execution times,
and introduces more performance variance. This variance often
masks the control plane jitter, which is of more interest to us.
Impact of Overcommitment. Many frameworks like OpenWhisk
inadvertently overcommit CPUs by running more functions than
available CPU cores. Iluvatar can control the degree of overcom-
mitment through its concurrency limit queue regulator. Figure 7a
shows the effect of this overcommitment, when the EEDF (earliest
effective deadline) queue policy is used. The worker is limited to
CPU cores, so higher concurrency limits represent different degrees
of overcommitment. As the concurrency limit is increased, we see a
reduction in the queueing time (which is a major part of the control
plane overhead). For instance, the queueing overhead is negligi-
ble when overcommitment level is 2 (i.e., 32 concurrency limit).
However we can see a tradeoff: the increased concurrency risks
performance interference, and the code execution time also slightly
increases (by 4%). For comparison and as a baseline, we also show
the “no queue” configuration which is pure processor sharing and
there is no limit on CPU overcommitment. Queueing also reduces
cold starts due to concurrent invocations. Without queueing, the
number of cold-starts increased by more than 3X.

For the bursty workload, the impact of overcommitment is even
more drastic, as shown in Figure 9a. A slight increase in concurrency
limit can reduce the weighted latency by more than 3x, indicating
that overcommitment is more effective for burstier workloads. Inter-
estingly, the latency improves by 20% with queueing as compared
to the “infinite overcommitment” no queueing case. This is due to
the increase in function execution time due to uncontrolled CPU
contention and interference, which the queue helps ameliorate.
Result: CPU overcommitment can reduce queueing times, but come
with risk of increased performance interference. Ilivatar’s queue de-
sign provides a new effective “knob” for managing this tradeoff.
Queueing Policies and Fairness. Next, we look at the perfor-
mance impact of the different queueing policies themselves. We are
interested in the impact on the latencies of the different functions.
Figure 7b shows the normalized latencies of different functions
with the different queueing policies. This scenario has a significant
amount of queueing: the concurrency limit is set to 16 (the num-
ber of CPUs). The function-size aware policies like SJF and EEDF
provide much lower latency compared to the standard FCFS: the
average latency is reduced by more than 2 — 3x.

A breakdown of the latency of individual functions in Figure 7¢
helps understand this stark performance difference. The queueing in
FCFS increases the total time of the extremely small “web” function
(13ms running time), which increases its latency by 30x. The small-
function prioritization by SJF and EEDF reduces this significantly.

The impact of queueing for the bursty workload is even more
interesting, as shown in Figure 9b. EEDF’s average latency is 2x
higher than simple FCFS, while SJF is 60% lower than FCFS. In-
vestigating the per-function breakdown again in Figure 9c again
points to the contribution of the small web function, which is also
the bursty function. The bursty invocations trigger the cold-start
mitigation, which deprioritizes them, and increases the queueing
time, which disproportionately impacts the small functions.
Result: Incorporating both function size and arrival times can im-
prove function latency and fairness significantly. Very small functions
see a higher % increase due to queueing.

Ilavatar vs. Little’s law vs. Simulation. Finally, we want to show
Ilavatar’s suitability for performance modeling, capacity planning,
and as a research platform for developing and evaluating Faa$ re-
source management policies. We compare the number of concurrent
function invocations and queue length (EEDF) with the expected
load according to Little’s law, computed using average arrival rates
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Figure 8: The per-invocation function latencies for different
system sizes (# CPUs). We see a sharp inflection point at 16
CPUs, and use that in our queueing evaluation.

and execution times of all functions of our stationary trace. We see
that the real system metrics, even with all the inherent burstiness
in the Azure trace, and the function execution and control plane
jitter, are on average very close to the Little’s law estimate. This
strongly indicates that our performance is indeed predictable even
with highly heterogeneous workloads.

Additionally, Figure 10 also shows the output of our “simulation”
container backend described in Section 3.4. This backend doesn’t
run actual function code, but exercises all other control plane as-
pects. We use constant average function execution times (without
accounting for variance and stochasticity) for all invocations. Even
though this simulation setup doesn’t capture real-world variability
and the impact of server load on function performance, we see
that the simulation is also fairly closely aligned with the real ex-
periment output. This shows that Ilavatar’s integrated simulation
framework captures sufficient system dynamics and provides high-
fidelity simulations. This can significantly accelerate FaaS research,
especially advances in reinforcement learning based scheduling,
which requires high-quality simulations for learning policies.
Discussion. Our worker-centric design allows us to focus on single-
worker performance. The load balancer is stateless and uses consis-
tent hashing with bounded loads, and has a small overhead of less
than 0.5 ms. Without workers sharing state (like with OpenWhisk’s
shared queue), there is no/minimal performance interference, and
hotspots are confined in space and time.

Finally, our performance comparison with OpenWhisk is based
on end-to-end latency testing. Performance tracing of OpenWhisk is
challenging due to the highly distributed nature, and the drastically
different architectures prevent a clean side-by-side comparison

vs. the various Iluvatar components. The use of Rust vs. Scala
provides some performance gains as well, but all our OpenWhisk
evaluation was conducted with ample heap sizes to reduce extra
garbage collection overheads.

7 RELATED WORK

Iluvatar occupies a somewhat unique spot in the crowded Faa$ land-
scape because of its focus on warm starts and some key constraints
in our system design. Techniques for reducing cold-start overheads,
like snapshots, language isolation, unikernels, all sit “below” the
control plane, and can be complemented with fast control planes.
At the other extreme end, the predictable nature of serverless work-
loads has been used to great effect for predictive load-balancing,
prefetching, sizing, etc. Ilivatar is mostly reactive and is worker-
centric, and tries to make minimal assumptions about workload
predictability and focuses on more general optimizations that can
work for arbitrary workload patterns.

FaaS Control Planes. SOCK [43] is closely related to IlGvatar, and
makes similar observations about network namespace overheads,
and introduced storage and cgroup optimizations for serverless
optimized containers. SOCK is based on OpenLambda [33] and
achieves great cold-start performance with Zygotes that are cloned
into new containers. These optimizations to the container runtime
are also applicable to Iluvatar and are complementary. Using the
standard containerd interface allows us to use multiple current and
future container backends, and is a deliberate tradeoff.

Nightcore [34] is an integrated control plane and runtime sys-
tem for low-latency microsecond-scale microservices. It essentially
implements containerized RPC, and uses fast message passing be-
tween the control plane and the agent. Its special container runtime
precludes generic “black box” functions, and it provides a weaker
isolation model by running functions concurrently within the same
container. In the microservice context, container management and
scheduling, dealing with heterogenenous functions, and other chal-
lenges are not relevant.

Atoll [60] is a fast and highly scalable control plane, and hugely
benefits from pre-allocation and prediction. It has a two level load-
balancing setup with functions scheduled to a cluster group which
then places them on a worker. Iluvatar’s design and contributions
are orthogonal to Atoll’s more top-down and predictive approach,
and we focus on the “low-level” worker problems.

Popular open-source control planes like OpenWhisk, OpenFaa$,
and kNative, are an important basis for optimizing performance.
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Figure 9: Small and bursty functions can get disproportionately impacted due to queueing. A little overcommitment can go a
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Figure 10: Ilavatar running in-silico closely models the in-
situ performance. Making it a viable exploration opportu-
nity supplementing real experiments.

They tackle the competing demands of modularity and features,
along with supporting function executions in generic environ-
ments. OpenWhisk’s cold and warm performance has been an-
alyzed in many prior works such as [48] and also as part of other
systems [15, 29, 30, 52]. OpenWhisk scheduling design and im-
provements can be found in [30, 38]. Tighter latency requirements
exist when deploying functions at the edge, and OpenWhisk’s
use on lower powered devices presents even more latency trou-
bles [32, 44, 45, 66]. Interestingly, public cloud latencies are also
significant, of the order of 50 ms [64], hinting that the problems
also extend their control planes.

Function Scheduling. Concurrent to our efforts, queuing of func-
tion invocations has been proposed in [72], which implements
various size-aware policies like SJF. Surprisingly, and perhaps due
to OpenWhisk overheads, their function slowdowns are extremely
high: of more than 10, 000x. An earlier theoretical queueing analy-
sis of flow and stretch metrics is also presented in [73]. In contrast
to Iluvatar’s worker-centric design, a centralized core-level alloca-
tion design is presented in [36]. In FaaS clusters, the tradeoffs in
load balancing and early/late binding are evaluated in [37]. Local-
ity [30] and ML-based [69] techniques for FaaS load-balancing take
advantage of the high temporal locality and predictability of the
FaaS workloads. Our effort is more focused on reactive systems,
and adding predictive allocation will only improve it.

OS scheduler improvements can also improve FaaS workloads [28].
Regulating Linux CPU cgroups shares is also effective in over-
commitment [62]. Evaluating the effectiveness of these schedul-
ing improvements when juxtaposed with queueing will be inter-
esting. Scheduling function workflows and DAGs are a growing
area [41, 57, 71], and we focus on single-invocation optimizations.

8 CONCLUSION

Ilavatar a fast, modular, and extensible FaaS control plane. It is
implemented in Rust in about 13,000 lines of code, and introduces
only 3ms of latency overhead under a wide range of loads. Its
worker-centric architecture, resource caching based design, queue-
based overcommitment and scheduling, and careful asynchronous
implementation, all contribute to low latency and jitter.

Iluvatar is open source, and intended to serve as a platform for fu-
ture high-performance FaaS research and deployments. In the near
future, we intend to incorporate support for Firecracker [12] VMs
and GPUs; investigate load balancing optimizations; and deploy
Ilavatar on HPC and cloud clusters.
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