2212.09736v2 [cs.CL] 3 May 2023

arxXiv

Don’t Generate, Discriminate:
A Proposal for Grounding Language Models to Real-World Environments

Yu Gu
The Ohio State University
gu.826@osu.edu

Abstract

A key missing capacity of current language
models (LMs) is grounding to real-world en-
vironments. Most existing work for grounded
language understanding uses LMs to directly
generate plans that can be executed in the en-
vironment to achieve the desired effects. It
thereby casts the burden of ensuring gram-
maticality, faithfulness, and controllability all
on the LMs. We propose Pangu, a generic
framework for grounded language understand-
ing that capitalizes on the discriminative abil-
ity of LMs instead of their generative ability.
Pangu consists of a symbolic agent and a neu-
ral LM working in a concerted fashion: The
agent explores the environment to incremen-
tally construct valid plans, and the LM eval-
uates the plausibility of the candidate plans to
guide the search process. A case study on the
challenging problem of knowledge base ques-
tion answering (KBQA), which features a mas-
sive environment, demonstrates the remark-
able effectiveness and flexibility of Pangu: A
BERT-base LM is sufficient for setting a new
record on standard KBQA datasets, and larger
LMs further bring substantial gains. Pangu
also enables, for the first time, effective few-
shot in-context learning for KBQA with large
LMs such as Codex. !

1 Introduction

Language models (LMs) such as BERT (Devlin
et al., 2019), GPT-3 (Brown et al., 2020), and
Codex (Chen et al., 2021a) have demonstrated an
extraordinary capacity in understanding and gener-
ating both natural language (Minaee et al., 2021;
Liang et al., 2022) and generic programs (e.g.,
Python) (Li et al., 2022; Jain et al., 2022; Austin
et al., 2021). The recent release of ChatGPT is
elevating this paradigm to a new level.? It seems to
point us towards a future where natural language

!Code and data will be released at https: //github.com/
dki-lab/Pangu.

2chat. openai.com

Xiang Deng
The Ohio State University
deng.595@osu. edu

Yu Su
The Ohio State University
su.809@osu.edu

O

.. Utterance

~ Neural
T Symbolic
a
Grammatical 7
Faithful &7
Environments Controllable (7
= @: & S WM ® &
%El == @ D
Databases Knowledge Physical Web Pages Apps Tables
Bases World

Figure 1: A schematic illustration of the proposed
framework, Pangu, where a symbolic agent interacts
with the target environment to propose candidate plans,
and a neural LM evaluates the plausibility of each plan.
The agent searches the environment to incrementally
construct the plans, and the LM guides the search pro-
cess.

serves as a universal device, powered by LMs, for
automated problem solving and interacting with
the (computing) world.

However, a key missing piece in realizing this
future is the connection between LMs and real-
world environments, including both digital envi-
ronments (e.g., databases, knowledge bases, Excel
spreadsheets, software, websites, among others)
and physical environments (e.g., instruction fol-
lowing robots (Shridhar et al., 2020; Ahn et al.,
2022)). Such environments are where many real
problems lie. For example, a biologist may need
to find all the species of a certain butterfly genus
and their geographic distribution from a biology
knowledge base, a local grocery store owner may
want to visualize the historical sales of different
item categories in Excel to decide what and how
much to restock before the holiday season, and a
physician may need to find patients with specific
conditions in a large database of electronic medi-
cal records to inform the current diagnosis. How
can LMs enable solving all these problems, which
involve seeking information or taking actions in a
specific environment, with natural language?

https://github.com/dki-lab/Pangu
https://github.com/dki-lab/Pangu
chat.openai.com

Each environment is a unique context for in-
terpreting natural language requests from users.
Grounding, i.e., linking of (natural language) con-
cepts to contexts (Chandu et al., 2021), therefore
becomes the fundamental problem. More precisely,
we need to produce a plan (also called a program
when described using a programming language)
that can be executed in an environment to achieve
the desired effects of the corresponding language
request. The unique challenge of such grounded
language understanding problems stems from 1)
the vast heterogeneity of environments and their
planning languages (e.g., SQL, GraphQL/REST
APIs, A-calculus, and robot planning languages),
and 2) the vast, oftentimes infinite, number of pos-
sible instantiations (or states) of each environment.
Some environments can also be dynamic (e.g., a
database that is constantly updated or a physical
environment with moving objects).

Most existing methods for grounded language
understanding follow the popular sequence-to-
sequence framework (Sutskever et al., 2014; Cho
et al., 2014) and generate the plans/programs in an
autoregressive fashion (Xie et al., 2022; Ye et al.,
2022; Wang et al., 2021; Song et al., 2022a). A
core thesis of this paper is that directly generating
plans may not be the optimal way of using LMs
for grounded language understanding. It requires
LMs to have intimate knowledge about each spe-
cific planning language and environment, neither
of which may be part of an LM’s pre-training, to
ensure the grammaticality (i.e., conforming to the
grammar of the planning language) and faithful-
ness (i.e., executable in the environment) of the
generated plans. The infinite and dynamic environ-
ment states also reduce the potential effectiveness
of pre-training for improving faithfulness, even if
one manages to do so. Furthermore, autoregressive
generation with a neural LM lacks fine-grained con-
trol over planning; it is cumbersome, though not
impossible, to factor preferences, business logic,
and other values and constraints into the plan gener-
ation process. A focus of recent work is to alleviate
(some of) these limitations by augmenting autore-
gressive generation with environment-specific pre-
training (Yu et al., 2021; Deng et al., 2021) or con-
strained decoding (Scholak et al., 2021; Shin et al.,
2021; Gu and Su, 2022). However, the fundamental
challenges still largely remain.

Mathematically, an LM is simply a joint distribu-
tion p(x1, xa, ..., x,) that factors as a product of

conditional distributions [[}_; p(zi|z1, ..., zi—1).
Existing work leverages the conditional distribu-
tion formulation to generate the plan. It thereby
casts the burden of ensuring grammaticality, faith-
fulness, and controllability all on the LM. The main
proposal of this paper is to disentangle LMs from
these responsibilities and let LMs be what they orig-
inally are—a model that assigns a probability to a
sequence of tokens. In other words, we advocate
for using the joint distribution formulation of LMs
to evaluate the plausibility of (utterance, candidate
plan) pairs instead of directly generating the plan.
To this end, we propose Pangu, a generic frame-
work for grounded language understanding that
capitalizes on the discriminative ability of LMs in-
stead of their generative ability (Figure 1).> Pangu
consists of a symbolic agent and a neural LM work-
ing in a concerted way. The symbolic agent ex-
plores the environment to propose candidate plans,
which are guaranteed by design to be both gram-
matical and faithful. For most real-world environ-
ments, due to the size of the search space or par-
tial observability, it is necessary for the agent to
search in the environment and incrementally ex-
tend or refine the plans. The LM plays a key role
in this search process—it evaluates the candidate
(partial) plans at each search step and guides the
agent towards promising search directions; it also
determines when the search ends. Finally, it is also
easier to control the search process of a symbolic
agent than the generation process of a neural LM.
As a case study, we instantiate the proposed
framework for complex question answering over
knowledge bases (KBQA). KBQA provides an
ideal testbed for grounded language understanding
because of its massive environment—direct gener-
ation with LMs often fails dramatically (Gu et al.,
2021). We show that simply using BERT-base
with Pangu is sufficient for setting a new record
on standard KBQA datasets, and larger LMs fur-
ther bring substantial gains. Pangu also enables,
for the first time, few-shot KBQA by prompting
large language models (e.g., Codex): Using only 10
labeled examples, it outperforms all prior methods
on GRAPHQ (Su et al., 2016). It provides unprece-
dented uniformity for using LMs—one can easily
plug encoder-only LMs, encoder-decoder LMs, or
decoder-only LMs into Pangu. These results high-
light the remarkable effectiveness and flexibility of
3 Pangu is a primordial being in Chinese mythology who

separated heaven and earth. We name our framework after that
for its separating the realm of the neural and the symbolic.

Pangu and validate the proposal of using LMs for
discrimination instead of generation.

2 Related Work

Generation for Grounded Language Under-
standing. The Seq2Seq framework (Sutskever
et al., 2014; Bahdanau et al., 2015) has been the de
facto choice for grounded language understanding,
where the LM directly generates a plan given an
input utterance. However, the lack of grounding
during pre-training makes generating valid plans
from the LM challenging. Recent studies endeavor
to alleviate this issue via input augmentation or
constrained decoding. For input augmentation,
the environment (or some relevant portion of it)
is fed to the LM'’s encoder together with the ut-
terance (Hwang et al., 2019; Wang et al., 2020;
Xie et al., 2022). Such methods rely on the LM
to understand the interplay between language re-
quests and the environment and correctly factor
that into plan generation. They therefore require
substantial training data to learn and also provide
no guarantee for grammaticality or faithfulness. In
contrast, constrained decoding methods regulate
the decoder’s behavior to guarantee grammatical-
ity (Scholak et al., 2021; Shu et al., 2022) or even
faithfulness (Liang et al., 2017; Gu and Su, 2022).
However, such uses still cast the burden of gen-
erating valid plans on the LM itself; controlling
the generation process of an LM can be difficult
and specific to each planning language and/or en-
vironment. In our proposal, the LM is only used
to discriminate valid plans proposed by an agent
through a controllable search process. More com-
parison is discussed in §5.3.

Few-Shot Grounded Language Understand-
ing with LLMs. Large language models
(LLMs) (Brown et al., 2020; Chen et al., 2021a)
have demonstrated strong few-shot learning capa-
bilities in various tasks, from writing programs
to query structured and unstructured data (Austin
et al., 2021; Rajkumar et al., 2022; Cheng et al.,
2022), interacting with online websites (Gur et al.,
2022; Nakano et al., 2021), to generating procedu-
ral plans and guiding embodied agents in virtual
environments (Singh et al., 2022; Ahn et al., 2022;
Shah et al., 2022; Song et al., 2022b). Most exist-
ing work still capitalizes on the generative ability
of LLMs. A common strategy to encourage an
LLM to produce valid plans is to directly describe
the environment in the LLM’s context (i.e., input

augmentation), which is difficult for complex envi-
ronments like KBs. In contrast, Pangu shields the
LLM from the complexity of the environment and
lets the LLLM focus on evaluating the plausibility
of candidate plans proposed by an agent. One inter-
esting related work is Ahn et al. (2022), where an
LLM is used to score atomic action (skill) propos-
als, which are guaranteed to conform to affordance
constraints, from an embodied agent. Pangu shares
a similar spirit of using LMs for discrimination, but
we support more complex plans through a search
process in the environment guided by an LM.

Bottom-Up Semantic Parsing. Our instantiation
of Pangu on KBQA is closely connected to bottom-
up semantic parsing, particularly SmBoP (Rubin
and Berant, 2021), a text-to-SQL model that iter-
atively constructs a complex plan from a set of
subplans. Pangu similarly constructs a complex
plan incrementally from smaller subplans, but it
makes the following main departures. First, Sm-
BoP requires all ingredients (i.e., column headers,
table names, and DB values) at the beginning of
parsing. This assumption does not generally hold
for more complex or partially observable environ-
ments, where ingredients need to be discovered
through search. In our method, only topic entities
are needed as the initial plan, which can be read-
ily obtained using an entity linker (Li et al., 2020).
Second, our scoring function is based on a straight-
forward application of LMs, while SmBoP uses a
more intricate architecture with extra parameters.
Also related is an array of earlier KBQA methods
that adopt an enumerate-and-rank approach (Yih
et al., 2015; Gu et al., 2021; Ye et al., 2022). Be-
cause they try to enumerate all candidate plans up
front, the maximum plan complexity is bound to
be small. Our adaptive search process allows for
flexible construction of more complex plans.

3 Approach

An overview of the Pangu framework is presented
in Algorithm 1. An overarching assumption of
Pangu is that a complex plan can be incrementally
constructed by an agent through its exploration in
an environment. Such an agent can be a robot doing
household tasks in a physical environment (Shrid-
har et al., 2020), or a virtual agent that orches-
trates API calls of different web services (Andreas
et al., 2020) or traverses a database/knowledge base
(KB) (Yu et al., 2018; Gu et al., 2022). Starting
from a set of initial plans Py (may be empty), at

Input utterance: t=1

@ 1 6]
What is the latest released computer emulator = 8 =
? g
developed in Java 1a. (JOIN ParentLanguage Java) 9 : 2a. (AND ComputerEmulator 1c) (]
- o 1b. (JOIN Influenced Java) 2b. (AND ComputerSoftware 1lc)
Environment: 9 © i ©
1c. (JOIN LanguagesUsed Java) o : 2c. (JOIN ReadBy lc) (<]
@ P,_;: {Java}
Knowledge Base t=3 = »
Target plan: @
3a. (COUNT 2a) 4a. (JOIN UsesSoftware 3c) o
(ARGMAX (AND ComputerEmulator
(JOIN LanguagesUsed Java)) g\\: 3b. (ARGMIN 2a LatestReleaseDate) Q : b. (JOIN WrittenBy 3c) (<]
LatestReleaseDate) w 3c. (ARGMAX 2a LatestReleaseDate)| @ 5 c. (COUNT 3c) (<]
Pe1: {20} (P e}
(a) Beam Size = 1

(b) Utterance: What is the latest released computer emulator developed in java?
Score:

£
5 Utterance [SEP] [SEP]

(AND ComputerEmulator (JOIN LanguagesUsed Java))

@ Score: P(

| Utterance)

Figure 2: (a) An illustration of how an agent collaborates with an LM to incrementally produce a complex target
plan over a KB using beam search (beam size = 1 in this example). At each step, the agent enumerates a set of
valid plans based on the current plans and the environment. An LM then scores the candidate plans and returns the
top-ranked ones. The search process terminates when there is no candidate plan that scores higher than the current
best plan (e.g., 4a-c are all worse than 3c). (b) Using different LMs (left: BERT, right: Codex) to evaluate the
plausibility of plan 2a. It resembles using LMs for semantic matching between the utterance and the plan.

each step, the agent interacts with the environment
FE to extend the current plans into a new set of
candidate plans (line 4). The candidate plans are
guaranteed to be valid (i.e., both grammatical and
faithful). An LM then scores the candidate plans,
and the top K (the beam size) plans are retained
for further exploration in the next step (line 5). The
same procedure loops until a termination check is
passed (line 6); the best plan is then returned.

Pangu mainly shines in that a symbolic agent
explores the environment to propose valid plans
and shields the LM from having to handle the large
search space for valid plan generation. Instead,
the LM only focuses on evaluating the plausibility
of the proposed plans. An LM can be easily fine-
tuned to excel at this assignment, or, in the case of
LLMs such as Codex, they come with such ability
out of the box, which enables few-shot in-context
learning. Pangu is a generic framework and can
potentially accommodate many grounded language
understanding tasks by instantiating the various
functions in Algorithm 1 accordingly.

3.1 KBQA: Preliminaries

Without loss of generality, we use KBs as our tar-
get environment and the knowledge base question
answering (KBQA) task as a concrete example for
ease of discussion (we discuss possible implemen-
tation for other tasks in Appendix A). It is an
ideal testbed because of the massive environment
provided by modern KBs (e.g., FREEBASE (Bol-
lacker et al., 2008) contains 45 million entities and
3 billion facts for over 100 domains), which makes

Algorithm 1: PANGU

1 Input: utterance g, initial plans Py, environment £
2 1+ 1;

3 while True do

// Agent proposes plans

4 C} < Candidate-Plans(P;_, E)

// LM scores and prunes plans

5 P, «+ Top-K(q,C')

6 if Check-Termination() = True then

7 | return top-scored plan

8 t+—t+1

grounding particularly challenging. Given a KB
K C&xRx(EULUC), where Cis a set of
classes, £ a set of entities, £ a set of literals and
‘R a set of binary relations, the task of KBQA is to
find a set of answer entities to an input utterance in
the KB. KBQA is typically modeled as semantic
parsing (Gu et al., 2022), where the utterance is
mapped to an executable program/plan in a certain
formal language (e.g., SPARQL, A-calculus, or S-
expression) whose denotation is the answer. We
use S-expressions (Gu et al., 2021) for its compact-
ness. An example is shown in Figure 2.

3.2 Candidate Plan Enumeration

To handle the large search space, the agent casts
the task as a step-wise decision-making problem.
A plan for KBQA can be decomposed into a nested
sequence of subplans (Gu and Su, 2022) (Figure 2).
The length of a plan is defined as the number of
atomic subplans it contains.

For KBQA, P, can be a set of entity proposals
(e.g., {Java}) obtained using off-the-shelf entity
linkers (Li et al., 2020). At step ¢, the agent con-

siders P;_1, the length ¢ — 1 plans, and decides
how to further extend them into C', the valid plans
of length ¢, based on the environment. This often
involves executing the current plans in the environ-
ment. Consider the example in Figure 2 att = 1,
the agent finds all the relations connected to Java
and enumerates all the length-1 valid plans. The
LM scores the candidate plans and prunes all but
the top-ranked plan because beam size is 1. At
t = 2, the agent executes plan 1c to get its deno-
tation (i.e., a set of entities) in the KB, based on
which the agent further discovers the relations and
classes (e.g., ComputerEmulator, ComputerSoftware,
and ReadBy) connected to those entities to form
valid length-2 plans. All the plans produced in this
process are guaranteed to be valid. See Appendix B
for a more detailed discussion of this process.

3.3 LM-Based Scoring

After the agent enumerates a set of candidate plans,
an LM assists with its decision making by evalu-
ating the plausibility of each candidate plan. The
interface for evaluating a plan using LMs resem-
bles using LMs for semantic matching: Given a
pair of (u: utterance, c € Cy: candidate plan), an
LM acts as a scoring function: s(u, c) — R, which
indicates to what extent the candidate plan matches
the intent of the utterance. The plausibility of a
candidate oftentimes can be indicated by simple
linguistic cues, e.g., ComputerEmulator in 2a might
be a strong indicator (Figure 2(a)).

We follow the common practice of using LMs
for semantic matching. For encoder-only LMs like
BERT, we directly get a score from the representa-
tion of the [CLS] token (Figure 2(b)). For encoder-
decoder LMs like T5, we follow Zhuang et al.
(2022) to feed both the utterance and the candidate
plan to the encoder and use the decoding probabil-
ity over an unused token during pre-training as a
proxy for matching score. For decoder-only LMs
like Codex, we model the score as the probability
of generating the candidate plan conditioned on the
utterance, i.e., P(c|u). Intuitively, a good scoring
function should respect the following partial order:

s(u,c1) > s(u,c2), Ver € GyandVep € Gy,
), Ve1 € GyandVep € Ci\Gy,
Ve; # ¢

s(u, c1) > s(u, ca
s(u,) > s(u, ¢;),
where G is the set of gold (sub-)plans at step ¢

(i.e., length-t subplans of the target plan) and ¢
is the target plan. In other words, a gold subplan

should be scored higher than 1) any negative (i.e.,
not gold) plans at the same step (e.g., 2a should be
scored higher than 2¢), because they contain infor-
mation irrelevant to u, and 2) any gold sub-plans
of length < ¢ (e.g., 2a should be scored higher than
1c) because they are less complete. In addition, ¢’
should be scored higher than any other plan.

3.4 Termination Check

Assuming the LM can assign reasonable scores to
candidate plans following the above partial order,
we can naturally define the condition for termina-
tion in Algorithm 1: It terminates if the highest
score of candidate plans at step ¢ is lower than the
highest score of candidate plans at step t — 1, which,
ideally, should indicate no reachable candidate plan
of length > ¢ is better than the plans at step ¢t — 1,
and thus the search process terminates.

3.5 Learning

We discuss the learning procedure for both fine-
tuning LMs (e.g., T5) and in-context learning with
LLMs (e.g., Codex). For both settings, we use pairs
of utterances and gold plans for supervision.

Fine-tuning. Given a gold plan of length T, we
first derive its gold sub-plans G of each stept < T’
(e.g., 1c for step 1 and 2a for step 2 in Figure 2).
Fine-tuning proceeds with beam search similar to
the test-time behavior, but with bottom-up teacher
forcing (Williams and Zipser, 1989; Rubin and
Berant, 2021), i.e., the gold plans of the current
step should always be inserted into the beam. At
each step of beam search, we get the probability of
each candidate plan ¢ € C; with softmax over the
scores: p(c) = softmax{s(u, ¢)}cec,ug, - Gi-1
is also included here to encourage LMs to explicitly
learn the partial order by minimizing the loss:

T+1

230 ile)log ple)

t=1 ceC}

where Z is the total number of summed items, and
p(c) equals 1 if ¢ € Gy and O elsewise. Note that,
for the T + 1 step, we let Gry1 = Grp. This
additional step aims to enforce the third condition
in the partial order. Our objective is essentially
a listwise learning-to-rank objective based on the
cross entropy (Cao et al., 2007).

In-Context Learning. We directly use pairs of ut-
terances and gold plans as in-context demonstra-
tions to the LLM, with a simple task instruction in

the prompt: “Please translate the following ques-
tions to Lisp-like programs.” The LLM is therefore
expected to capture the desired partial order by
observing the in-context examples. For concrete
examples of prompts, please refer to Appendix F.

4 Experimental Setup

4.1 Datasets

We experiment with three KBQA datasets of differ-
ent scale and nature (statistics in Table C.3).
GRAILQA (Guetal., 2021) is a large-scale dataset
that evaluates three levels of generalization, namely,
i.i.d., compositional (novel compositions of seen
constructs), and zero-shot (totally novel domains).
It also features diverse questions of different com-
plexity and aggregation functions.

GRAPHQ (Su et al., 2016) is a moderate-scale
dataset. Due to the small size of its training set
and the non-i.i.d. setting, GRAPHQ is particularly
challenging. In our experiments, we use the pro-
cessed version by Gu and Su (2022), which maps
the original dataset from FREEBASE 2013-07 to
FREEBASE 2015-08-09.

WEBQSP (Yih et al., 2016) is a moderate-scale
dataset with questions from Google query logs. It
mainly tests i.i.d. generalization on simple ques-
tions. It is a clean subset of WEBQ (Berant et al.,
2013) with program annotations.

4.2 Baselines

We mainly compare Pangu with state-of-the-
art baselines that use LMs as a generative
model, including ArcaneQA (Gu and Su, 2022),
TIARA (Shu et al., 2022), DecAF (Yu et al., 2022),
and RnG-KBQA (Ye et al., 2022). Constrained
decoding (i.e., ArcaneQA and TIARA) and input
augmentation (i.e., TITARA, DecAF) are used to
enhance plan generation. Also, the last three mod-
els use a combination of language models to do
different jobs (i.e., retrieval/ranking/decoding). In
addition, we also compare with UnifiedSKG (Xie
et al., 2022). UnifiedSKG assumes a set of schema
items are provided as input, where the gold schema
items are always included and the number of nega-
tive schema items is restricted to 20 for GRAILQA.
It is thus a less fair comparison for other methods,
but we include it anyway because it is a represen-
tative way of autoregressive plan generation using
a large LM. Compared with the baselines, Pangu
requires no extra parameter, no modification to the
LM, and no need to combine multiple LMs. Pangu

provides unprecedented uniformity of using LMs
of different nature. More details on baselines can
be found in Appendix C.2.

4.3 Implementation Details

For the fine-tuning experiments, we experiment
with BERT-base, T5-base, T5-large, and T5-3B,
and use the full training set of each dataset for fine-
tuning. For the in-context learning experiments,
we experiment with Codex.* We randomly sample
10/100/1000 training examples from each dataset
and use that as the pool for dynamic retrieval. Dur-
ing inference, for each test example, we retrieve
10 in-context examples from the pool using BM25-
based utterance similarity. We use entity linking re-
sults from off-the-shelf entity linkers. More details
on implementations can be found in Appendix C.3.

5 Results
5.1 Main Results

Fine-tuning results. The main results are shown
in Table 1. Using a BERT-base LM, Pangu al-
ready achieves a new state of the art on GRAILQA
and GRAPHQ, and only trails behind DecAF on
WEBQSP, which uses a 3B-parameter LM. On
GRAPHQ, Pangu with BERT-base dramatically
improves the state-of-the-art F1 from 31.8% to
48.2%. These are strong evidence for Pangu being
a better protocol for using LMs for grounded lan-
guage understanding. Pangu’s strong generalizabil-
ity with limited training data is also confirmed by
its performance on the zero-shot generalization of
GRAILQA. Our method also shows great flexibil-
ity in accommodating different LMs and a reliable
return from model size—using increasingly larger
LM:s yields monotonically improved results across
the board, with T5-3B setting the new state of the
art on all datasets. One interesting observation
is that Pangu slightly underperforms on the i.i.d.
subset of GRAILQA. It turns out that, because the
discriminative task is much easier for LMs to learn
than the generative task, Pangu converges very fast
(at most two epochs) and gets fewer training steps
for overfitting the i.i.d. setting, in exchange for
better non-i.i.d. generalization. The strong per-
formance on WEBQSP, an i.i.d. dataset, further
supports this observation.

In-context learning results. For the first time, we
show the feasibility of effective few-shot KBQA

*We opt for Codex because it is free, but small-scale ex-
periments also show competitive performance from GPT-3.

Overall LLD. Compositional Zero-shot Dev Overall
Model EM F1 EM F1 EM F1 EM F1 EM F1
QGG (Lan and Jiang, 2020) — 36.7 — 40.5 - 33.0 - 36.6 — —
BERT+Ranking (Gu et al., 2021) 50.6 58.0 599 67.0 455 53.9 48.6 55.7 — —
ReTraCk (Chen et al., 2021b) 58.1 653 844 875 615 70.9 446 525 - -
RnG-KBQA (Ye et al., 2022) 68.8 744 862 89.0 63.8 71.2 630 692 714 768
ArcaneQA (Gu and Su, 2022) 63.8 737 856 889 65.8 75.3 529 66.0 695 769
Uni-Parser (Liu et al., 2022) 69.5 746 855 885 65.1 71.1 640 69.8 708 76.5
TIARA (Shu et al., 2022) 73.0 785 878 90.6 69.2 76.5 68.0 739 753 81.9
DecAF (Yu et al., 2022) 684 787 848 899 734 81.8 58.6 723 — 81.4
UnifiedSKG w/ T5-3B (Xie et al., 2022) — — — — - — - — 70.1% —
Pangu (this work)
w/ BERT-base 737 799 826 87.1 749 81.2 69.1 76.1 75.0 82.1
w/ T5-base 73.6 799 847 888 73.1 80.1 686 758 760 828
w/ T5-large 748 814 825 873 752 82.2 71.0 784 758 833
w/ T5-3B 754 81.7 844 88.8 74.6 81.5 71.6 785 758 834
" “w/Codex (10-shoty ~ 489 563 518 581 433 512 500 578 0 — 0 —
w/ Codex (100-shot) 533 627 547 629 545 63.7 523 622 — -
w/ Codex (1000-shot) 564 650 675 737 582 64.9 50.7 61.1 — -
(a) GRAILQA
Model F1
Model F1 QGG (Lan and Jiang, 2020) 74.0
ReTraCk (Chen et al., 2021b) 71.0
UDEPLAMBDA (Reddy et al., 2017) 17.7% CBR (Das et al., 2021) 72.8
PARA4QA (Dong et al., 2017) 20.4¢ Program Transfer (Cao et al., 2022) 76.5"
SPARQA (Sun et al., 2020) 21.5¢ RnG-KBQA (Ye et al., 2022) 75.6
BERT+Ranking (Gu et al., 2021) 27.0 ArcaneQA (Gu and Su, 2022) 75.6
ArcaneQA (Gu and Su, 2022) 343 Uni-Parser (Liu et al., 2022) 75.8
- TIARA (Shu et al., 2022) 76.7
Pangu (this work) DecAF (Yu et al., 2022) 78.8
w/ BERT-base 52.0
w/ T5-base 53.3 Pangu (this work)
w/ T5-large 35.6 w/ BERT-base 719
w/ T5-3B 62.2 w/ T5-base 77.3
© 7 "w/Codex (10-shoty ~ ~ ~ " T T % 428 ° w/ T>-large 78.9
w/ Codex (100-shot) 433 o wiTss 796
w/ Codex (1000-shot) 443 w/ Codex (10-shot) 459
w/ Codex (100-shot) 54.5
w/ Codex (1000-shot) 68.3

(b) GRAPHQ

(c) WEBQSP

Table 1: Overall results. Pangu achieves a new state of the art on all three datasets and shows great flexibility
in accommodating LMs of different nature. Also, for the first time, Pangu enables effective few-shot in-context
learning for KBQA with Codex. * using oracle entity linking. * results on the original GRAPHQ 2013-07, otherwise
it uses the version from Gu and Su (2022), which is a slightly smaller subset.

with LLMs. On GRAILQA, Pangu with Codex
achieves an overall F1 of 56.3% only with 10 train-
ing examples. Though there is still a gap to the
fine-tuning results, it is still impressive, especially
considering the massive meaning space of the KB.
On GRAPHQ, Pangu with Codex even outperforms
ArcaneQA with 10 training examples. This further
confirms that Pangu is particularly strong in gener-
alizing to new environments with limited training
data. On WEBQSP, Pangu trails behind fine-tuning
methods when only using 10 training examples,
however, increasing the size of the pool for retrieval
can significantly boost the performance, which is
expected given WEBQSP’s i.i.d. nature. While for
non-i.i.d. datasets like GRAILQA and GRAPHQ,
the gain from more training examples is marginal.

Fine-grained performance decomposition by

question complexity can be found in Appendix D,
which show that Pangu works well across questions
of different complexity.

5.2 Sample Efficiency Analysis

Intuitively, by using LMs for discrimination instead
of generation, the task becomes easier for LMs and
thus improves their sample efficiency. Our sam-
ple efficiency experiments in Figure 3 confirm this
hypothesis. We downsample GRAILQA’s training
data and randomly sample 1, 10, 100, and 1,000
training examples and report the results on 500
random dev examples. We compare Pangu with Ar-
caneQA and UnifiedSKG using the same LMs. We
use oracle entity linking to have a more direct com-
parison with UnifiedSKG (though UnifiedSKG still
has an unfair advantage as previously mentioned).

Question I
Pangu

“neil leslie diamond composed what tv song?"

ArcaneQA®
#1)

(AND tv.tv_song (JOIN music.composition.composer m.015_30)) W)
ArcaneQA (AND music.recording (JOIN music.recording.song (JOIN music.composition.composer m.015_30))) (X)
(JOIN music.composition.composer m.015_30) (JOIN music.recording.song #0) (AND music.recording

Question II
Pangu

ArcaneQA
ArcaneQA®

“which software falls into both continuous integration and build automation genres?"
(AND computer.software (AND (JOIN computer.software.software_genre m.05vvqy) (JOIN com-

puter.software.software_genre m.oh2vrf))) (v')
(AND computer.software (JOIN computer.software.software_genre m.05vvay)) (X)
(JOIN computer.software.software_genre m.05vvqgy) (AND computer.software #0)

Table 2: Two representative examples that Pangu succeeds while ArcaneQA fails, both w/ BERT-base. ©* denotes
the original order of the decoder’s output. The first incorrect token predicted by ArcaneQA is marked in red.

—-- ArcaneQA (BERT-base)
—A-- Pangu (BERT-base)

90

—e— UnifiedSKG (T5-base)
Pangu (T5-base)

--®- UnifiedSKG (Codex)

--a- Pangu (Codex)

75

60

45

30

15

1-shot 10-shot 100-shot 1000-shot Full

Figure 3: Sample efficiency results. We conduct three
runs with different training examples and show the
mean EM; shaded areas denote max/min.

In addition, we also include Pangu with Codex and
use the downsampled training set as the pool for
retrieval. First, we observe that, when both using
T5-base, UnifiedSKG significantly underperforms
Pangu. The main reason is that most predicted
plans by UnifiedSKG are invalid in the low-data
regime. ArcaneQA uses constrained decoding to
alleviate this issue, but still consistently underper-
forms Pangu when both using BERT-base. For
in-context learning using Codex, Pangu achieves
an EM of over 50% with only one training instance.
It consistently outperforms all fine-tuning models
under low-data settings (i.e., less than 1,000 train-
ing examples). Compared with UnifiedSKG, Pangu
shows both stronger performance and better robust-
ness against different training data selections.

5.3 Pangu vs. Constrained Decoding

To better understand Pangu’s advantage over
generation-based methods, we compare Pangu with
ArcaneQA. ArcaneQA is the only open-source
baseline that uses constrained decoding to enforce
the validity of predicted plans. There are two main
reasons for Pangu’s superiority. First, though con-
strained decoding can also help ensure plan va-
lidity, the autoregressive decoder operates with
token-level local normalization and thus lacks a
global view. As a result, local failures may break
its predictions. For example, a wrong local predic-
tion (e.g., function name) by ArcaneQA leads to

seen [] unseen

~, Pangu (BERT-base) ArcaneQA

.‘(,7-;

=t

)

" /\

0.0 0.5 1.0 0.0 0.5 1.0
Probability

Figure 4: Distribution of the probabilities assigned to
predicted programs that are seen and unseen during
training. We use kernal density smoothing for better
visualization, so the z-axis goes over 1.0.

catastrophic errors (Table 2). By evaluating candi-
date plans instead of candidate rokens, Pangu has
a more global view and is less likely to make such
local errors. Second, Pangu is less susceptible to
overfitting and thus achieves better performance in
non-i.i.d. settings. Pangu does not learn to generate
a plan; instead, it learns to evaluate the plausibility
of utterance-plan pairs. Such knowledge is more
transferable. An interesting observation is shown
in Figure 4, where Pangu’s output probability dis-
tributions are consistent across programs seen and
unseen in training. While for ArcaneQA, there
is a drastic shift from seen to unseen. This is also
consistent with the finding that autoregressive mod-
els tend to overfit seen structures during training
by Bogin et al. (2022). It makes non-i.i.d. general-
ization more difficult.

We also conduct an error analysis in Appendix E,
which sheds some light on future improvements.

6 Conclusions

In this paper, we proposed to capitalize on the dis-
criminative ability of language models (LMs) in-
stead of their generative ability for grounded lan-
guage understanding. Building on this proposal,
we proposed a generic framework, Pangu, which
consists of a symbolic agent and a neural LM work-
ing in a concerted fashion and creates a better sep-
aration between the realm of the neural and the
symbolic. This work opens the door for developing
versatile and sample-efficient grounded language

understanding systems that fully capitalize on the
language understanding ability of LMs while avoid-
ing their limitations. It also sheds light on develop-
ing better neuro-symbolic systems in general.

Limitations

Despite the strong performance of Pangu, we iden-
tify several limitations that call for further improve-
ment. The first major limitation lies in efficiency.
Because Pangu requires an LM to iteratively score
candidate plans, it is resource-consuming in terms
of both time and computing. Compared with Ar-
caneQA, which efficiently handles complex ques-
tions in KBQA, Pangu is about twice slower for
both training and inference and consumes about
twice as much GPU memory when using the same
LM. Concretely, to predict a plan of L tokens,
generation-based methods involve using an LM
to do L forward passes. For Pangu, the number
of forward passes is proportional to the number of
candidate plans, which can range widely. In the fu-
ture, algorithms with complexity better than O(V),
N being the number of candidate plans, are desired
to find the top-K candidates.

Second, though Pangu has shown some promis-
ing results with Codex, the true potential of en-
abling few-shot grounded language understanding
with Pangu has yet to be realized. We only ex-
periment with a straightforward scoring function
and have not experimented with different prompt
designs systematically. In the future, we plan to
try different prompt designs, retrievers, and scor-
ing functions, including using latest techniques like
chain of thought (Wei et al., 2022).

Third, though orthogonal to the general frame-
work of our proposal, in our current instantiation,
we assume gold plans for training. However, gold
plans can be expensive to collect for some envi-
ronments. Exploring fine-tuning LMs with weak
supervision can be an interesting direction. In ad-
dition to proposing candidate plans to the LM, the
agent may also respond to the LM with rewards
based on its decisions (Liang et al., 2017).

Finally, in this paper, one important merit of
Pangu, controllability, is under-explored, because
it is not very necessary for KBQA. While for tasks
like text-to-SQL parsing, controllability is a highly
desirable property. Intruders may manipulate text-
to-SQL models to launch database attacks via SQL
injection (Peng et al., 2022). With Pangu, we can
easily get rid of malicious SQL operations in candi-

date enumeration. However, for generation-based
methods, such controls are hard to achieve during
generation because the decoding process can be
shortsighted; it is difficult to tell whether the cur-
rent prediction will lead to a malicious operation
several steps later. In the future, we will explore
Pangu’s controllability on more different tasks.

Acknowledgements

The authors would like to thank Percy Liang, Ji-
awei Han, Jonathan Berant, Huan Sun, and other
colleagues from the OSU NLP group for their valu-
able feedback. The authors would also like to
thank Yiheng Shu for sharing their entity linking
results and Tianbao Xie for clarifications on Uni-
fiedSKG. This research was supported in part by
ARL W911NF2220144, NSF OAC 2112606, and
Ohio Supercomputer Center (Center, 1987).

References

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen
Chebotar, Omar Cortes, Byron David, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alex
Herzog, et al. 2022. Do as i can, not as i say:
Grounding language in robotic affordances. arXiv
preprint arXiv:2204.01691.

Jacob Andreas, John Bufe, David Burkett, Charles
Chen, Josh Clausman, Jean Crawford, Kate Crim,
Jordan DeLoach, Leah Dorner, Jason Eisner, Hao
Fang, Alan Guo, David Hall, Kristin Hayes, Kellie
Hill, Diana Ho, Wendy Iwaszuk, Smriti Jha, Dan
Klein, Jayant Krishnamurthy, Theo Lanman, Percy
Liang, Christopher H. Lin, Ilya Lintsbakh, Andy Mc-
Govern, Aleksandr Nisnevich, Adam Pauls, Dmitrij
Petters, Brent Read, Dan Roth, Subhro Roy, Jesse
Rusak, Beth Short, Div Slomin, Ben Snyder,
Stephon Striplin, Yu Su, Zachary Tellman, Sam
Thomson, Andrei Vorobev, Izabela Witoszko, Jason
Wolfe, Abby Wray, Yuchen Zhang, and Alexander
Zotov. 2020. Task-oriented dialogue as dataflow
synthesis. Transactions of the Association for Com-
putational Linguistics, 8:556-571.

Jacob Austin, Augustus Odena, Maxwell 1. Nye,
Maarten Bosma, Henryk Michalewski, David Do-
han, Ellen Jiang, Carrie J. Cai, Michael Terry,
Quoc V. Le, and Charles Sutton. 2021. Pro-
gram synthesis with large language models. CoRR,
abs/2108.07732.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

https://doi.org/10.1162/tacl_a_00333
https://doi.org/10.1162/tacl_a_00333
http://arxiv.org/abs/2108.07732
http://arxiv.org/abs/2108.07732
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy
Liang. 2013. Semantic parsing on Freebase from
question-answer pairs. In Proceedings of the 2013
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1533—1544, Seattle, Wash-
ington, USA. Association for Computational Lin-
guistics.

Ben Bogin, Shivanshu Gupta, and Jonathan Berant.
2022. Unobserved local structures make com-
positional generalization hard. arXiv preprint
arXiv:2201.05899.

Kurt D. Bollacker, Colin Evans, Praveen K. Paritosh,
Tim Sturge, and Jamie Taylor. 2008. Freebase: a col-
laboratively created graph database for structuring
human knowledge. In Proceedings of the ACM SIG-
MOD International Conference on Management of
Data, SIGMOD 2008, Vancouver, BC, Canada, June
10-12, 2008, pages 1247-1250. ACM.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. 2020. Language models are few-shot learn-
ers. In Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Informa-
tion Processing Systems 2020, NeurIPS 2020, De-
cember 6-12, 2020, virtual.

Shulin Cao, Jiaxin Shi, Zijun Yao, Xin Lv, Jifan Yu,
Lei Hou, Juanzi Li, Zhiyuan Liu, and Jinghui Xiao.
2022. Program transfer for answering complex ques-
tions over knowledge bases. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
8128-8140, Dublin, Ireland. Association for Com-
putational Linguistics.

Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and
Hang Li. 2007. Learning to rank: from pairwise ap-
proach to listwise approach. In Machine Learning,
Proceedings of the Twenty-Fourth International Con-
ference (ICML 2007), Corvallis, Oregon, USA, June
20-24, 2007, volume 227 of ACM International Con-
ference Proceeding Series, pages 129-136. ACM.

Ohio Supercomputer Center. 1987. Ohio Supercom-
puter Center.

Khyathi Raghavi Chandu, Yonatan Bisk, and Alan W
Black. 2021. Grounding ‘grounding’ in NLP. In
Findings of the Association for Computational Lin-
guistics: ACL-IJCNLP 2021, pages 4283—4305, On-
line. Association for Computational Linguistics.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared

Kaplan, Harrison Edwards, Yuri Burda, Nicholas
Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf,
Girish Sastry, Pamela Mishkin, Brooke Chan, Scott
Gray, Nick Ryder, Mikhail Pavlov, Alethea Power,
Lukasz Kaiser, Mohammad Bavarian, Clemens Win-
ter, Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welin-
der, Bob McGrew, Dario Amodei, Sam McCan-
dlish, Ilya Sutskever, and Wojciech Zaremba. 2021a.
Evaluating large language models trained on code.
CoRR, abs/2107.03374.

Shuang Chen, Qian Liu, Zhiwei Yu, Chin-Yew Lin,
Jian-Guang Lou, and Feng Jiang. 2021b. ReTraCk:
A flexible and efficient framework for knowledge
base question answering. In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing: Sys-
tem Demonstrations, pages 325-336, Online. Asso-
ciation for Computational Linguistics.

Zhoujun Cheng, Tianbao Xie, Peng Shi, Chengzu
Li, Rahul Nadkarni, Yushi Hu, Caiming Xiong,
Dragomir Radev, Mari Ostendorf, Luke Zettlemoyer,
Noah A. Smith, and Tao Yu. 2022. Binding
language models in symbolic languages. CoRR,
abs/2210.02875.

Kyunghyun Cho, Bart van Merriénboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder—decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1724—
1734, Doha, Qatar. Association for Computational
Linguistics.

E. F. Codd. 1970. A relational model of data for large
shared data banks. Commun. ACM, 13(6):377-387.

Rajarshi Das, Manzil Zaheer, Dung Thai, Ameya
Godbole, Ethan Perez, Jay Yoon Lee, Lizhen
Tan, Lazaros Polymenakos, and Andrew McCallum.
2021. Case-based reasoning for natural language
queries over knowledge bases. In Proceedings of
the 2021 Conference on Empirical Methods in Natu-
ral Language Processing, pages 9594-9611, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Xiang Deng, Ahmed Hassan Awadallah, Christopher
Meek, Oleksandr Polozov, Huan Sun, and Matthew
Richardson. 2021. Structure-grounded pretraining

https://aclanthology.org/D13-1160
https://aclanthology.org/D13-1160
https://doi.org/10.1145/1376616.1376746
https://doi.org/10.1145/1376616.1376746
https://doi.org/10.1145/1376616.1376746
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.18653/v1/2022.acl-long.559
https://doi.org/10.18653/v1/2022.acl-long.559
https://doi.org/10.1145/1273496.1273513
https://doi.org/10.1145/1273496.1273513
http://osc.edu/ark:/19495/f5s1ph73
http://osc.edu/ark:/19495/f5s1ph73
https://doi.org/10.18653/v1/2021.findings-acl.375
http://arxiv.org/abs/2107.03374
https://doi.org/10.18653/v1/2021.acl-demo.39
https://doi.org/10.18653/v1/2021.acl-demo.39
https://doi.org/10.18653/v1/2021.acl-demo.39
https://doi.org/10.48550/arXiv.2210.02875
https://doi.org/10.48550/arXiv.2210.02875
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.1145/362384.362685
https://doi.org/10.1145/362384.362685
https://doi.org/10.18653/v1/2021.emnlp-main.755
https://doi.org/10.18653/v1/2021.emnlp-main.755
https://doi.org/10.18653/v1/2021.naacl-main.105

for text-to-SQL. In Proceedings of the 2021 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 1337-1350, Online. As-
sociation for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171-4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Li Dong, Jonathan Mallinson, Siva Reddy, and Mirella
Lapata. 2017. Learning to paraphrase for question
answering. In Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Process-
ing, pages 875-886, Copenhagen, Denmark. Associ-
ation for Computational Linguistics.

Yu Gu, Sue Kase, Michelle Vanni, Brian M. Sadler,
Percy Liang, Xifeng Yan, and Yu Su. 2021. Be-
yond L.ID.: three levels of generalization for ques-
tion answering on knowledge bases. In WWW °21:
The Web Conference 2021, Virtual Event / Ljubl-
jana, Slovenia, April 19-23, 2021, pages 3477-3488.
ACM /IW3C2.

Yu Gu, Vardaan Pahuja, Gong Cheng, and Yu Su. 2022.
Knowledge base question answering: A semantic
parsing perspective. In 4th Conference on Auto-
mated Knowledge Base Construction.

Yu Gu and Yu Su. 2022. ArcaneQA: Dynamic program
induction and contextualized encoding for knowl-
edge base question answering. In Proceedings of
the 29th International Conference on Computational
Linguistics, pages 1718-1731, Gyeongju, Repub-
lic of Korea. International Committee on Computa-
tional Linguistics.

Izzeddin Gur, Ofir Nachum, Yingjie Miao, Mustafa Saf-
dari, Austin Huang, Aakanksha Chowdhery, Sharan
Narang, Noah Fiedel, and Aleksandra Faust. 2022.
Understanding HTML with large language models.
CoRR, abs/2210.03945.

Wonseok Hwang, Jinyeung Yim, Seunghyun Park, and
Minjoon Seo. 2019. A comprehensive exploration
on wikisql with table-aware word contextualization.
CoRR, abs/1902.01069.

Gautier Izacard and Edouard Grave. 2021. Leveraging
passage retrieval with generative models for open
domain question answering. In Proceedings of the
16th Conference of the European Chapter of the As-
sociation for Computational Linguistics: Main Vol-
ume, pages 874-880, Online. Association for Com-
putational Linguistics.

Naman Jain, Skanda Vaidyanath, Arun Shankar Iyer,
Nagarajan Natarajan, Suresh Parthasarathy, Sri-
ram K. Rajamani, and Rahul Sharma. 2022. Jigsaw:

Large language models meet program synthesis. In
44th IEEE/ACM 44th International Conference on
Software Engineering, ICSE 2022, Pittsburgh, PA,
USA, May 25-27, 2022, pages 1219-1231. ACM.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Dangi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for
open-domain question answering. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 6769—
6781, Online. Association for Computational Lin-
guistics.

Yunshi Lan and Jing Jiang. 2020. Query graph gen-
eration for answering multi-hop complex questions
from knowledge bases. In Proceedings of the 58th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 969-974, Online. Associ-
ation for Computational Linguistics.

Belinda Z. Li, Sewon Min, Srinivasan Iyer, Yashar
Mehdad, and Wen-tau Yih. 2020. Efficient one-pass
end-to-end entity linking for questions. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
6433-6441, Online. Association for Computational
Linguistics.

Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui
Hsieh, and Kai-Wei Chang. 2019. Visualbert: A
simple and performant baseline for vision and lan-
guage.

Yujia Li, David Choi, Junyoung Chung, Nate Kush-
man, Julian Schrittwieser, Rémi Leblond, Tom Ec-
cles, James Keeling, Felix Gimeno, Agustin Dal
Lago, Thomas Hubert, Peter Choy, Cyprien de Mas-
son d’ Autume, Igor Babuschkin, Xinyun Chen, Po-
Sen Huang, Johannes Welbl, Sven Gowal, Alexey
Cherepanov, James Molloy, Daniel J. Mankowitz,
Esme Sutherland Robson, Pushmeet Kohli, Nando
de Freitas, Koray Kavukcuoglu, and Oriol Vinyals.
2022. Competition-level code generation with al-
phacode. Science, 378(6624):1092-1097.

Chen Liang, Jonathan Berant, Quoc Le, Kenneth D.
Forbus, and Ni Lao. 2017. Neural symbolic ma-
chines: Learning semantic parsers on Freebase with
weak supervision. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 23-33,
Vancouver, Canada. Association for Computational
Linguistics.

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris
Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian
Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Ku-
mar, Benjamin Newman, Binhang Yuan, Bobby Yan,
Ce Zhang, Christian Cosgrove, Christopher D. Man-
ning, Christopher Ré, Diana Acosta-Navas, Drew A.
Hudson, Eric Zelikman, Esin Durmus, Faisal Lad-
hak, Frieda Rong, Hongyu Ren, Huaxiu Yao, Jue
Wang, Keshav Santhanam, Laurel J. Orr, Lucia
Zheng, Mert Yiiksekgoniil, Mirac Suzgun, Nathan

https://doi.org/10.18653/v1/2021.naacl-main.105
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/D17-1091
https://doi.org/10.18653/v1/D17-1091
https://doi.org/10.1145/3442381.3449992
https://doi.org/10.1145/3442381.3449992
https://doi.org/10.1145/3442381.3449992
https://aclanthology.org/2022.coling-1.148
https://aclanthology.org/2022.coling-1.148
https://aclanthology.org/2022.coling-1.148
https://doi.org/10.48550/arXiv.2210.03945
http://arxiv.org/abs/1902.01069
http://arxiv.org/abs/1902.01069
https://doi.org/10.18653/v1/2021.eacl-main.74
https://doi.org/10.18653/v1/2021.eacl-main.74
https://doi.org/10.18653/v1/2021.eacl-main.74
https://doi.org/10.1145/3510003.3510203
https://doi.org/10.1145/3510003.3510203
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.acl-main.91
https://doi.org/10.18653/v1/2020.acl-main.91
https://doi.org/10.18653/v1/2020.acl-main.91
https://doi.org/10.18653/v1/2020.emnlp-main.522
https://doi.org/10.18653/v1/2020.emnlp-main.522
https://doi.org/10.48550/ARXIV.1908.03557
https://doi.org/10.48550/ARXIV.1908.03557
https://doi.org/10.48550/ARXIV.1908.03557
https://doi.org/10.1126/science.abq1158
https://doi.org/10.1126/science.abq1158
https://doi.org/10.18653/v1/P17-1003
https://doi.org/10.18653/v1/P17-1003
https://doi.org/10.18653/v1/P17-1003

Kim, Neel Guha, Niladri S. Chatterji, Omar Khat-
tab, Peter Henderson, Qian Huang, Ryan Chi,
Sang Michael Xie, Shibani Santurkar, Surya Gan-
guli, Tatsunori Hashimoto, Thomas Icard, Tianyi
Zhang, Vishrav Chaudhary, William Wang, Xuechen
Li, Yifan Mai, Yuhui Zhang, and Yuta Koreeda.
2022. Holistic evaluation of language models.
CoRR, abs/2211.09110.

Ye Liu, Semih Yavuz, Rui Meng, Dragomir Radev,
Caiming Xiong, and Yingbo Zhou. 2022. Uni-
parser: Unified semantic parser for question an-
swering on knowledge base and database. CoRR,
abs/2211.05165.

Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan
Lee. 2019. Vilbert: Pretraining task-agnostic visi-
olinguistic representations for vision-and-language
tasks. In Advances in Neural Information Process-
ing Systems 32: Annual Conference on Neural Infor-
mation Processing Systems 2019, NeurIPS 2019, De-
cember 8-14, 2019, Vancouver, BC, Canada, pages
13-23.

Shervin Minaee, Nal Kalchbrenner, Erik Cambria, Nar-
jes Nikzad, Meysam Chenaghlu, and Jianfeng Gao.
2021. Deep learning—based text classification: A
comprehensive review. ACM Comput. Surv., 54(3).

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu,
Long Ouyang, Christina Kim, Christopher Hesse,
Shantanu Jain, Vineet Kosaraju, William Saunders,
Xu Jiang, Karl Cobbe, Tyna Eloundou, Gretchen
Krueger, Kevin Button, Matthew Knight, Benjamin
Chess, and John Schulman. 2021. Webgpt: Browser-
assisted question-answering with human feedback.
CoRR, abs/2112.09332.

Xutan Peng, Yipeng Zhang, Jingfeng Yang, and
Mark Stevenson. 2022. On the security vulner-
abilities of text-to-sql models. arXiv preprint
arXiv:2211.15363.

Nitarshan Rajkumar, Raymond Li, and Dzmitry Bah-
danau. 2022. Evaluating the text-to-sql capabilities
of large language models. CoRR, abs/2204.00498.

Siva Reddy, Oscar Téckstrom, Slav Petrov, Mark Steed-
man, and Mirella Lapata. 2017. Universal semantic
parsing. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 89—101, Copenhagen, Denmark. Association
for Computational Linguistics.

Ohad Rubin and Jonathan Berant. 2021. SmBoP:
Semi-autoregressive bottom-up semantic parsing. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 311-324, Online. Association for Computa-
tional Linguistics.

Torsten Scholak, Nathan Schucher, and Dzmitry Bah-
danau. 2021. PICARD: Parsing incrementally for
constrained auto-regressive decoding from language

models. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 9895-9901, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Dhruv Shah, Btazej Osinski, brian ichter, and Sergey
Levine. 2022. LM-nav: Robotic navigation with
large pre-trained models of language, vision, and ac-
tion. In 6th Annual Conference on Robot Learning.

Richard Shin, Christopher Lin, Sam Thomson, Charles
Chen, Subhro Roy, Emmanouil Antonios Platanios,
Adam Pauls, Dan Klein, Jason Eisner, and Benjamin
Van Durme. 2021. Constrained language models
yield few-shot semantic parsers. In Proceedings of
the 2021 Conference on Empirical Methods in Natu-
ral Language Processing, pages 7699-7715, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Mohit Shridhar, Jesse Thomason, Daniel Gordon,
Yonatan Bisk, Winson Han, Roozbeh Mottaghi,
Luke Zettlemoyer, and Dieter Fox. 2020. ALFRED:
A benchmark for interpreting grounded instructions
for everyday tasks. In 2020 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, CVPR
2020, Seattle, WA, USA, June 13-19, 2020, pages
10737-10746. Computer Vision Foundation / IEEE.

Yiheng Shu, Zhiwei Yu, Yuhan Li, Borje F Karlsson,
Tingting Ma, Yuzhong Qu, and Chin-Yew Lin. 2022.
TIARA: Multi-grained retrieval for robust question
answering over large knowledge bases. In Proceed-
ings of the 2022 Conference on Empirical Methods
in Natural Language Processing.

Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit
Goyal, Danfei Xu, Jonathan Tremblay, Dieter Fox,
Jesse Thomason, and Animesh Garg. 2022. Prog-
prompt: Generating situated robot task plans using
large language models. CoRR, abs/2209.11302.

Chan Hee Song, Jihyung Kil, Tai-Yu Pan, Brian M
Sadler, Wei-Lun Chao, and Yu Su. 2022a. One
step at a time: Long-horizon vision-and-language
navigation with milestones. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 15482—-15491.

Chan Hee Song, Jiaman Wu, Clayton Washington,
Brian M Sadler, Wei-Lun Chao, and Yu Su. 2022b.
Llm-planner: Few-shot grounded planning for em-
bodied agents with large language models. CoRR,
abs/2212.04088.

Yu Su, Huan Sun, Brian Sadler, Mudhakar Srivatsa,
Izzeddin Giir, Zenghui Yan, and Xifeng Yan. 2016.
On generating characteristic-rich question sets for
QA evaluation. In Proceedings of the 2016 Con-
ference on Empirical Methods in Natural Language
Processing, pages 562-572, Austin, Texas. Associa-
tion for Computational Linguistics.

https://doi.org/10.48550/arXiv.2211.09110
https://doi.org/10.48550/arXiv.2211.05165
https://doi.org/10.48550/arXiv.2211.05165
https://doi.org/10.48550/arXiv.2211.05165
https://proceedings.neurips.cc/paper/2019/hash/c74d97b01eae257e44aa9d5bade97baf-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/c74d97b01eae257e44aa9d5bade97baf-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/c74d97b01eae257e44aa9d5bade97baf-Abstract.html
https://doi.org/10.1145/3439726
https://doi.org/10.1145/3439726
http://arxiv.org/abs/2112.09332
http://arxiv.org/abs/2112.09332
https://doi.org/10.48550/arXiv.2204.00498
https://doi.org/10.48550/arXiv.2204.00498
https://doi.org/10.18653/v1/D17-1009
https://doi.org/10.18653/v1/D17-1009
https://doi.org/10.18653/v1/2021.naacl-main.29
https://doi.org/10.18653/v1/2021.naacl-main.29
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://openreview.net/forum?id=UW5A3SweAH
https://openreview.net/forum?id=UW5A3SweAH
https://openreview.net/forum?id=UW5A3SweAH
https://doi.org/10.18653/v1/2021.emnlp-main.608
https://doi.org/10.18653/v1/2021.emnlp-main.608
https://doi.org/10.1109/CVPR42600.2020.01075
https://doi.org/10.1109/CVPR42600.2020.01075
https://doi.org/10.1109/CVPR42600.2020.01075
https://doi.org/10.48550/arXiv.2209.11302
https://doi.org/10.48550/arXiv.2209.11302
https://doi.org/10.48550/arXiv.2209.11302
https://doi.org/10.48550/arXiv.2212.04088
https://doi.org/10.48550/arXiv.2212.04088
https://doi.org/10.18653/v1/D16-1054
https://doi.org/10.18653/v1/D16-1054

Yawei Sun, Lingling Zhang, Gong Cheng, and
Yuzhong Qu. 2020. SPARQA: skeleton-based se-
mantic parsing for complex questions over knowl-
edge bases. In The Thirty-Fourth AAAI Conference
on Artificial Intelligence, AAAI 2020, The Thirty-
Second Innovative Applications of Artificial Intelli-
gence Conference, IAAI 2020, The Tenth AAAI Sym-
posium on Educational Advances in Artificial Intel-
ligence, EAAI 2020, New York, NY, USA, February
7-12, 2020, pages 8952-8959. AAAI Press.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural networks.
In Advances in Neural Information Processing Sys-
tems 27: Annual Conference on Neural Informa-
tion Processing Systems 2014, December 8-13 2014,
Montreal, Quebec, Canada, pages 3104-3112.

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr
Polozov, and Matthew Richardson. 2020. RAT-SQL.:
Relation-aware schema encoding and linking for
text-to-SQL parsers. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7567-7578, Online. Association
for Computational Linguistics.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven C.H.
Hoi. 2021. CodeT5: Identifier-aware unified pre-
trained encoder-decoder models for code under-
standing and generation. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 86968708, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed H. Chi, Quoc V Le,
and Denny Zhou. 2022. Chain of thought prompting
elicits reasoning in large language models. In Ad-
vances in Neural Information Processing Systems.

Ronald J. Williams and David Zipser. 1989. A learn-
ing algorithm for continually running fully recurrent
neural networks. Neural Comput., 1(2):270-280.

Tianbao Xie, Chen Henry Wu, Peng Shi, Ruiqi Zhong,
Torsten Scholak, Michihiro Yasunaga, Chien-Sheng
Wu, Ming Zhong, Pengcheng Yin, Sida I. Wang, Vic-
tor Zhong, Bailin Wang, Chengzu Li, Connor Boyle,
Ansong Ni, Ziyu Yao, Dragomir R. Radev, Caiming
Xiong, Lingpeng Kong, Rui Zhang, Noah A. Smith,
Luke Zettlemoyer, and Tao Yu. 2022. Unifiedskg:
Unifying and multi-tasking structured knowledge
grounding with text-to-text language models. CoRR,
abs/2201.05966.

Xi Ye, Semih Yavuz, Kazuma Hashimoto, Yingbo
Zhou, and Caiming Xiong. 2022. RNG-KBQA:
Generation augmented iterative ranking for knowl-
edge base question answering. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
6032—-6043, Dublin, Ireland. Association for Com-
putational Linguistics.

Wen-tau Yih, Ming-Wei Chang, Xiaodong He, and

Jianfeng Gao. 2015. Semantic parsing via staged
query graph generation: Question answering with
knowledge base. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 1321-1331, Beijing, China. Associa-
tion for Computational Linguistics.

Wen-tau Yih, Matthew Richardson, Chris Meek, Ming-

Wei Chang, and Jina Suh. 2016. The value of se-
mantic parse labeling for knowledge base question
answering. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 201-206, Berlin,
Germany. Association for Computational Linguis-
tics.

Donghan Yu, Sheng Zhang, Patrick Ng, Henghui Zhu,

Alexander Hanbo Li, Jun Wang, Yiqun Hu, William
Wang, Zhiguo Wang, and Bing Xiang. 2022. De-
caf: Joint decoding of answers and logical forms for
question answering over knowledge bases. CoRR,
abs/2210.00063.

Tao Yu, Chien-Sheng Wu, Xi Victoria Lin, Bailin

Wang, Yi Chern Tan, Xinyi Yang, Dragomir R.
Radev, Richard Socher, and Caiming Xiong. 2021.
Grappa: Grammar-augmented pre-training for table
semantic parsing. In 9th International Conference
on Learning Representations, ICLR 2021, Virtual
Event, Austria, May 3-7, 2021. OpenReview.net.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,

Dongxu Wang, Zifan Li, James Ma, Irene Li,
Qingning Yao, Shanelle Roman, Zilin Zhang,
and Dragomir Radev. 2018. Spider: A large-
scale human-labeled dataset for complex and cross-
domain semantic parsing and text-to-SQL task. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages
3911-3921, Brussels, Belgium. Association for
Computational Linguistics.

Honglei Zhuang, Zhen Qin, Rolf Jagerman, Kai Hui,

Ji Ma, Jing Lu, Jianmo Ni, Xuanhui Wang, and
Michael Bendersky. 2022. Rankt5: Fine-tuning
TS for text ranking with ranking losses. CoRR,
abs/2210.10634.

https://ojs.aaai.org/index.php/AAAI/article/view/6426
https://ojs.aaai.org/index.php/AAAI/article/view/6426
https://ojs.aaai.org/index.php/AAAI/article/view/6426
https://proceedings.neurips.cc/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://doi.org/10.1162/neco.1989.1.2.270
https://doi.org/10.1162/neco.1989.1.2.270
https://doi.org/10.1162/neco.1989.1.2.270
http://arxiv.org/abs/2201.05966
http://arxiv.org/abs/2201.05966
http://arxiv.org/abs/2201.05966
https://doi.org/10.18653/v1/2022.acl-long.417
https://doi.org/10.18653/v1/2022.acl-long.417
https://doi.org/10.18653/v1/2022.acl-long.417
https://doi.org/10.3115/v1/P15-1128
https://doi.org/10.3115/v1/P15-1128
https://doi.org/10.3115/v1/P15-1128
https://doi.org/10.18653/v1/P16-2033
https://doi.org/10.18653/v1/P16-2033
https://doi.org/10.18653/v1/P16-2033
https://doi.org/10.48550/arXiv.2210.00063
https://doi.org/10.48550/arXiv.2210.00063
https://doi.org/10.48550/arXiv.2210.00063
https://openreview.net/forum?id=kyaIeYj4zZ
https://openreview.net/forum?id=kyaIeYj4zZ
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.48550/arXiv.2210.10634
https://doi.org/10.48550/arXiv.2210.10634

Appendices

In this supplementary material, we provide omitted
details in the main text.

* Appendix A: Possible Implementation for
Other Tasks

* Appendix B: Candidate Enumeration
* Appendix C: Experimental Setup

* Appendix D: Decomposition by Question
Complexity

* Appendix E: Error Analysis
* Appendix F: Examples of Prompts

A Possible Implementation for Other
Tasks

In this paper, we choose KBQA as a representative
testbed to instantiate Pangu without loss of gener-
ality. It is worth noting that though Algorithm 1
describes a generic framework for grounded lan-
guage understanding, the concrete implementation
of Algorithm 1 may vary for different tasks. In this
section, we shed light on the possible implementa-
tion of several other tasks of different nature.

A.1 Text-to-SQL Parsing

Similar to KBQA, Text-to-SQL parsing also aims
to map a natural language utterance onto a program
that can be executed over a relational database (in-
stead of a KB). We can define P, as the set of cell
values mentioned in the utterance (similar to enti-
ties in KBQA), which should be straightforward
to identify (e.g., with string matching). Also, one
necessary step is to convert a SQL query into an
algebra tree (Codd, 1970), similar to what is done
by Rubin and Berant (2021). In this way, the agent
can more easily enumerate the candidate programs
in a bottom-up manner, which resembles candidate
enumeration in KBQA. The termination check for
text-to-SQL parsing can also be implemented sim-
ilarly. One difference in text-to-SQL is that the
search space for schema items is much smaller,
so it is possible to enhance Pangu with input aug-
mentation, particularly for LLMs. Describing the
target database in the prompt (e.g., we can include
the schema description of a relational database to
Codex) has been proven to be useful for text-to-
SQL parsing (Cheng et al., 2022).

A.2 Interacting with Real-world
Environments

Pangu can also be used for guiding bots that in-
teract with real-world environments, being online
websites (Gur et al., 2022; Nakano et al., 2021),
or physical environments (Shridhar et al., 2020).
Given a complex task to be accomplished in the
environment, an agent may decompose it into a
sequence of subplans (e.g., making a cup of coffee
entails first finding a cup then picking up the cup,
etc.; Song et al. (2022b)), and combine it with all
executable actions in the environment to enumer-
ate the candidate plans and select the best action
with an LM. The termination check could also be
implemented easily, where the bot may check the
environment state and verify if the task has been
accomplished (e.g., whether a cup of coffee has
been successfully made). One difference in these
cases is that real-world environments often contain
information from multiple modalities, thus requir-
ing multi-modal language models (Li et al., 2019;
Lu et al., 2019) that are capable of jointly handling
textual, visual, and other modalities.

B Candidate Enumeration

Our candidate enumeration for KBQA strictly
follows the definition of functions in Table B.1.
Specifically, given a set of current plans P;, to con-
struct the candidate set C'y, 1, for each plan p; in F;,
the agent executes it and gets types and relations
that are reachable from the denotation of the plan.
For each type ¢, the agent enumerates (AND t p;) as
a candidate. For each relation r, the agent enumer-
ates (JOIN r p;) as a candidate. If the denotation of
p; is a numerical value, then four similar candidates
with comparatives are also included (LT/LE/GT/GE r
p:). In addition, candidate plans with superlatives
can be enumerated as (ARGMAX/ARGMIN p; r). Also,
(COUNT p;) can always be included to Cyy1. Af-
ter checking each p; independently, the agent then
checks each pair of plans p; and p; from F;, if the
execution of p; and p; has an overlap, then (AND p;
p;) is also included as a candidate plan. The can-
didate enumeration process is totally transparent
to the LM and can be easily controlled based on
different needs.

Composition Rule Signature Comments
JOIN Rx (EUE') - E' asingle hop along an edge
AND (TUE') x E' - E' intersection of two sets
ARGMAX/ARGMIN (TUE') x R— E' superlative aggregations
LTLE/GT/GE ~ RxE — E' </</>/>
COUNT E' - N set cardinality

Table B.1: Functions in KBQA. We follow the defini-
tions in (Gu and Su, 2022). R: relation, T": type, E:
entity, E’: a set of entities, IV: integer.

C Experimental Setup

C.1 Datasets Statistics

All three datasets provide gold program annota-
tions. For consistency, we use the converted S-
expressions representation provided by Gu and Su
(2022) in our experiments. Concrete statistics of
different datasets are shown in Table C.3.

C.2 More Details on Baselines

Different LMs and decoding strategies are used in
the baseline models.

ArcaneQA (Gu and Su, 2022) is an encoder-
decoder model built on top of a BERT encoder.
It leverages constrained decoding and incremen-
tally synthesizes a sequence of subprograms, where
the constraints come from both the grammar and
the execution of existing subprograms, to enforce
grammaticality and faithfulness.

TIARA (Shu et al., 2022) first uses BERT to re-
trieve a set of schema items, which are further used
as the input, together with the question, to TS for
plan generation. They also apply constrained de-
coding but only for grammaticality.

DecAF (Yu et al., 2022) similarly retrieves a rele-
vant subgraph from the KB using DPR (Karpukhin
et al., 2020), and then input the retrieved items to
FiD (Izacard and Grave, 2021), a T5 model fine-
tuned for question answering.

RnG-KBQA (Ye et al., 2022) first uses BERT to
rank a set of enumerated candidate programs (up
to a limited complexity), and then uses T5 to edit
the top programs into more complex programs.
UnifiedSKG (Xie et al., 2022) also retrieves a sub-
graph from the KB as input to T5. The setting of
UnifiedSKG is different from other baselines. It
assumes the gold schema items are always included
in the retrieved subgraph and restricts the number
of negative schema items in the subgraph (i.e., at
most 20 schema items for GRAILQA). It is thus
a less fair comparison for other methods, but we
include it anyway because it is a representative way
of autoregressive plan generation using a large LM.

A summary of the baselines can be found in Ta-
ble C.2.

C.3 Implementation Details

For GRAILQA we use the entity linking results
from TIARA. For WEBQSP, we get that from
ELQ (Li et al., 2020), which is also used by our
baseline models. For GRAPHQ, get that from Ar-
caneQA. The entity proposals for the input utter-
ance form the initial plans (Fp) for our search pro-
cess. We use beam size 5 for all of our fine-tuning
experiments. We run our experiments with T5-3B
using a single NVIDIA A100 80GB card, while
for all other fine-tuning experiments, we run them
using 4x NVIDIA A6000 48GB cards.

For our experiments with Codex, we use a beam
size of 2 and a max number of candidates of 1,000
for speed concerns, which to some extent sacrifices
the performance. As the first endeavor towards
enabling few-shot KBQA with LLMs, we did not
tune the hyper-parameters very hard. The only
thing we tuned is the scoring function. We tune
the scoring function using 10-shot training data
from GRAILQA with cross-validation. If we di-
rectly use P(c|u) as our scoring function s(u, c)
in Section 3.3, Codex tends to favor programs with
repeated relations. As a result, we add a penalizing
factor to P(c|u), and define s(u, c) as P(c|u) x n",
where 1 € [0, 1] is a hyper-parameter, and n is the
maximal occurrences of a relation in a program.
We set 7 = 0.7 based on cross-validation using the
10 training examples.

Finally, a small percentage of questions (around
5%) in GRAPHQ and GRAILQA do not have a
topic entity (e.g., “who is the heaviest film direc-
tor?" from GRAILQA, whose target program is
(ARGMAX film.director people.person.weight_kg)). For
these questions, we use the answer types (e.g.,
film.director) predicted in Gu and Su (2022) as our
initial state Fj.

D Decomposition by Question
Complexity

We present a fine-grained analysis of Pangu with
T5-3B and Codex (100-shot) on questions of dif-
ferent complexity, measured by the number of re-
lations in the gold program, in Table D.4. For
GRAILQA, we report the performance on its dev
set because the test set is hidden. Pangu performs
competitively across all complexity. Note that there
are only two questions in GRAILQA’s dev set with

Model LMs Grounding Strategy Guarantees
ArcaneQA (Gu and Su, 2022) BERT-base Constrained Decoding Grammatical+Faithful
RnG-KBQA (Ye etal, 2022) BERT-base + T5-base Input Augmentation N/A

TIARA (Shu et al., 2022) BERT-base + T5-base Input Augmentation + Constrained Decoding Grammatical
DecAF (Yu et al., 2022) DPR + FiD-3B Input Augmentation N/A
UnifiedSKG (Xie et al., 2022) T5-base(/large/3B) Input Augmentation N/A

Table C.2: A brief summary of main baseline models.

Dataset Training Dev Test
GRAILQA 44,337 6,763 13,231
GRAPHQ 2,381 — 2,395
WEBQSP 3,098 - 1,639

Table C.3: Statistics of KBQA datasets.

of relations 1 2 3 4

RnG-KBQA 792 748 444 100.0
ArcaneQA 80.9 71.1 37.7 100.0
TIARA 856 758 485 833
Pangu w/ T5-3B 87.0 784 48.1 833

Pangu w/ Codex (100-shot) 739 434 33.0 16.7

(a) GRAILQA

of relations 1 2 3
ArcaneQA 482 193 9.6
Pangu w/ T5-3B 723 555 278

Pangu w/ Codex (100-shot) 52.2 36.1 17.5

(b) GRAPHQ

Table D.4: F1 decomposition by program complexity
on GRAILQA’s dev set and GRAPHQ’s test set.

4 relations, so the results on that may not be in-
dicative. On GRAPHQ, Pangu significantly outper-
forms ArcaneQA. The F1 of Pangu with T5-3B is
almost three times higher than ArcaneQA on ques-
tions with 2 and 3 relations. Interestingly, Pangu
with Codex also outperforms ArcaneQA consider-
ably on questions with 2 and 3 relations. These
findings suggest the superiority of Pangu in gener-
alizing to more complex programs.

E Error Analysis

We analyze 200 incorrect predictions (i.e., EM=0)
randomly sampled from GRAILQA’s dev set for
our best model (i.e., T5-3B). The major errors are
due to unidentified topic entities during entity link-
ing (62%).°> Also, Pangu tends to include unre-
lated entities provided by the entity linker into
the final programs (6.5% of the errors), this is be-
cause Pangu is fine-tuned with gold entities only,
and thus does not learn to handle unrelated enti-
ties. In addition, wrong termination check corre-
sponds to 12.5% of the errors, indicating a venue

SThe recall of entity linking on GRAILQA is 88.6% (Shu
et al., 2022)

for better enforcing the partial order to Pangu.
Apart from these errors, 10.5% of the mistakes are
due to ambiguous annotations or annotation errors
in GRAILQA. The remaining error types include
wrong comparators, answer types, and relations
(particularly relations involve a subtle direction
like cvg.computer_game_engine.predecessor_engine).

In addition, for in-context learning with Codex
(100-shot), we also randomly sample 200 wrong
predictions from GRAILQA’s dev set. In addi-
tion to 22% errors caused by missing entities, the
most common errors (25.5%) are due to wrong
schema items. Distinguishing gold schema items
from confusing ones is challenging for in-context
learning. Also, missing constraints (16.5%) and
missing relations (10%) are another two major er-
ror types, because we use a small batch size (i.e.,
2) for Codex and the model tends to prefer short
programs. These two error types are also related
to wrong termination check. Finally, there are 12%
wrong functions. The error types of Pangu w/
Codex are very different from Pangu w/ T5-3B.
This is because for a complex task like KBQA,
the performance of in-context learning with Pangu
still largely lags behind fine-tuning. Particularly,
fine-tuning methods directly learn the partial or-
der among programs during training, while Codex
needs to implicitly infer a partial order by itself,
which is not directly shown in the demonstrations.
As a result, Pangu w/ Codex makes more trivial
mistakes that fine-tuning methods can easily avoid.
More advanced in-context learning techniques to
close this gap remains to be explored.

F Examples of Prompts

We show two examples of prompts with 10 in-
context samples retrieved from the 100 training
data pool in Figure F.1 and Figure F.2 for two dif-
ferent questions from GRAILQA’s dev set. Our
prompt design is very straightforward. More ad-
vanced prompting techniques for Pangu remains to
be explored.

Please translate the follow questions to Lisp-like query language.

which automotive designer designed aston martin db7 zagato?
(AND automotive.designer (JOIN automotive.designer.automobiles designed aston
martin db7 zagato))

d-series machines was designed by which computer designer?
(AND computer.computer designer (JOIN
computer.computer designer.computers_designed d-series machines))

who designed both visual basic .net and j#?

(AND computer.programming language designer (AND (JOIN
computer.programming language designer.languages_designed visual basic .net)
(JOIN computer.programming language designer.languages_designed j#)))

which architect designed katherine atkins house by polk?
(AND architecture.architect (JOIN architecture.architect.structures_designed
katherine atkins house by polk))

what is the name of the author who wrote it is an open question whether any
behavior based on fear of eternal punishment can be regarded as ethical or
should be regarded as merely cowardly.?

(AND film.director (JOIN media_ common.quotation.author_ inv it is an open
question whether any behavior based on fear of eternal punishment can be
regarded as ethical or should be regarded as merely cowardly.))

who was the manufacturer of kosmos 3m?
(AND spaceflight.rocket manufacturer (JOIN
spaceflight.rocket manufacturer.rockets manufactured kosmos 3m))

who is the endorser of coke products?

(AND business.product endorser (JOIN
business.product_ endorsement.endorser_inv (JOIN
business.product endorsement.product coke)))

what short story has a character who also is in doing clarence a bit of
good?

(AND book.short story (JOIN book.short story.characters (JOIN

book.book character.appears_in stories doing clarence a bit of good)))

who was the director of the episode kate jackson/delbert mcclinton?
(AND tv.tv_director (JOIN tv.tv_director.episodes_directed kate
jackson/delbert mcclinton))

what is the identity of the football player who appeared 23 times
internationally?

(AND soccer.football player (JOIN
soccer.football player.total international appearances 23))

what is the role of opera designer gig who designed the telephone / the
medium?

Figure F.1: Example Prompt (i) for question “what is the role of opera designer gig who designed the telephone /
the medium?".

Please translate the follow questions to Lisp-like query language.

homegrown is a recurring segment on what tv program?
(AND tv.tv_program (JOIN tv.tv_program.recurring segments homegrown))

on 07/01/1970, which warship vl.1l was hit?
(AND user.patrick.default domain.warship vl 1 (JOIN
user.patrick.default domain.warship vl 1l.struck 07/01/1970))

what is the isbn of the edition with scott fisher on its book cover?
(AND book.isbn (JOIN book.book edition.isbn_inv (JOIN
book.illustrator.book edition covers_ inv scott fisher)))

which musical artist stopped being active as musical artist on 1985-067?
(AND music.artist (JOIN music.artist.active end 1985-06))

the honorary degree recipient that was born most recently is named what?
(ARGMAX education.honorary degree recipient people.person.date of birth)

the medical trials conducted on safety and effectiveness of giving
indinavir plus stavudine plus lamivudine to hiv-infected children are under
the authority of who?

(AND medicine.medical trial health authority (JOIN
medicine.medical_trial health authority.medical trials safety and
effectiveness of giving indinavir plus stavudine plus lamivudine to hiv-
infected children))

bataan 1 and bataan 2 is what aircraft model?
(AND aviation.aircraft model (JOIN aviation.aircraft model.aircraft bataan 1
and bataan 2))

what ingredient is in french cuisine?
(AND food.ingredient (JOIN food.ingredient.cuisine french cuisine))

south kent school and redfield college fall under what category of school?
(AND education.school category (AND (JOIN

education.educational institution.school type inv south kent school) (JOIN
education.school category.schools of this kind redfield college)))

chiang kai shek college and sacred heart high school (roseville, michigan)
are in what category of school?

(AND education.school category (AND (JOIN

education.educational institution.school type inv chiang kai shek college) (
JOIN education.school category.schools of this kind sacred heart high school
(roseville, michigan))))

semaphore railway line is on the rail network named what?

Figure F.2: Example Prompt (ii) for question “semaphore railway line is on the rail network named what?".

