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Abstract

Recent work has shown that fine-tuning
large language models (LLMs) on large-scale
instruction-following datasets substantially im-
proves their performance on a wide range of
NLP tasks, especially in the zero-shot set-
ting. However, even advanced instruction-
tuned LLMs still fail to outperform small LMs
on relation extraction (RE), a fundamental in-
formation extraction task. We hypothesize
that instruction-tuning has been unable to elicit
strong RE capabilities in LLMs due to RE’s
low incidence in instruction-tuning datasets,
making up less than 1% of all tasks (Wang
et al., 2022). To address this limitation, we pro-
pose QA4RE, a framework that aligns RE with
question answering (QA), a predominant task
in instruction-tuning datasets. Comprehensive
zero-shot RE experiments over four datasets
with two series of instruction-tuned LLMs (six
LLMs in total) demonstrate that our QA4RE
framework consistently improves LLM perfor-
mance, strongly verifying our hypothesis and
enabling LLMs to outperform strong zero-shot
baselines by a large margin. Additionally, we
provide thorough experiments and discussions
to show the robustness, few-shot effective-
ness, and strong transferability of our QA4RE
framework. This work illustrates a promising
way of adapting LLMs to challenging and un-
derrepresented tasks by aligning these tasks
with more common instruction-tuning tasks
like QA.1

1 Introduction

Large language models (LLMs) (Brown et al.,
2020; Chowdhery et al., 2022; Zhang et al., 2022)
have been shown to achieve impressive perfor-
mance on many NLP tasks. Using the in-context
learning paradigm, without any parameter updating,
LLMs are able to achieve comparable performance
with small language models (LMs) fine-tuned on

1Code and data are available at https://github.com/OSU-
NLP-Group/QA4RE.

Figure 1: Main finding: Strong instruction-tuned
LLMs underperform prior zero-shot RE methods us-
ing the standard (vanilla) RE formulation. Our QA4RE
framework enables models in two sets of instruction-
tuned LLMs (FLAN-T5 and GPT-3.5) to surpass the
prior SoTA on 4 RE datasets by a large margin. Results
are averaged over 4 RE datasets. We omit the word
‘davinci’ from the GPT-3.5 model displayed for brevity.

thousands of examples (Liu et al., 2022; Min et al.,
2022a; Liang et al., 2022).2 More recently, fine-
tuning LLMs on datasets containing thousands of
downstream tasks transformed into an instruction
following format (i.e., instruction-tuning) has been
shown to improve LLMs considerably across the
board, especially in zero-shot setting (Iyer et al.,
2022; Ouyang et al., 2022; Chung et al., 2022).

We examine the capability of LLMs in identi-
fying the relationship between entities in a sen-
tence, i.e., relation extraction (RE), a funda-
mental task in information extraction. Recent
work (Jimenez Gutierrez et al., 2022) has found
that LLMs underperform fine-tuned small LMs for
RE in the biomedical domain. Our results on gen-
eral domain RE in Fig. 1 reveal that even two of
the most advanced instruction-tuned LLMs, FLAN-
T5 XXL (Chung et al., 2022) and text-davinci-003
(Ouyang et al., 2022), fail to outperform the state-
of-the-art (SoTA) zero-shot RE method based on
small LMs (Sainz et al., 2021).

We hypothesize that the limited relation extrac-

2We regard LMs with less than 1B params as small.
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tion capability of instruction-tuned LLMs could be
a byproduct of the low incidence of RE tasks in
instruction-tuning datasets (Ouyang et al., 2022;
Sanh et al., 2022; Chung et al., 2022; Wang et al.,
2022).3 To address the low incidence issue, we
propose the QA4RE framework, which aligns RE
with multiple-choice question answering (QA), a
task that appears much more frequently in most
instruction-tuning datasets—around 12-15% of all
the tasks in both Wang et al. (2022) and Ouyang
et al. (2022). Specifically, by casting the input sen-
tence as a question and possible relation types as
multiple-choice options (Fig. 2), LLMs are able to
perform RE by selecting the option representing
the correct relation type.

Thorough evaluations on four real-world rela-
tion extraction datasets and six instruction-tuned
models from two different series (OpenAI GPT-
3.5 and FLAN-T5 (Chung et al., 2022)) show that
QA4RE brings significant gains over the standard
RE formulation on, validating its effectiveness and
our hypothesis concerning the low incidence of
RE. More specifically, our framework enables text-
davinci-003 and FLAN-T5-XXLarge to achieve
an average of 8.2% and 8.6% absolute improve-
ments in F1, respectively. For the first time, an
LLM is able to outperform prior small-LM-based
SoTA in the zero-shot setting by a large margin.
In-depth analyses further demonstrate the robust-
ness and few-shot effectiveness of QA4RE. More
importantly, our framework has been proven to be
effectively transferable on instruction-tuned mod-
els with various sizes, ranging from 80M to 175B.
Our contributions are summarized as follows:
(1) We systematically investigate instruction-tuned
LLMs on four real-world relation extraction
datasets and note that their limited performance
on RE might stem from the low incidence of RE
tasks in instruction-tuning datasets.
(2) We reformulate RE as multiple-choice QA
in an effort to appropriately leverage QA’s much
higher prevalence in instruction-tuning datasets
and achieve significant improvements on six recent
instruction-tuned LLMs, significantly outperform-
ing previous SoTA zero-shot RE methods based on
small LM for the first time.
(3) In addition, we demonstrate our QA4RE
method’s robustness to diverse prompt designs as
well as its promising results in the few-shot setting.

3RE-like tasks are <0.5% of the largest available instruc-
tion dataset (Wang et al., 2022); see Appendix A for details.

(4) Finally, we show the effectiveness of QA4RE
framework is transferable and consistent on various
instruction-tuned models with different sizes from
80M to 175B. Our study illustrates the potential of
aligning infrequent and challenging tasks with fre-
quent instruction-tuning tasks and can guide others
in exploring this direction.

2 Related Work

Instruction Tuning. Large language models
originally obtained impressive zero and few-shot
performance by leveraging self-supervised next to-
ken prediction at massive scales. More recently,
supervised fine-tuning on a large number of down-
stream tasks has been shown to improve LLM ac-
curacy, robustness, fairness, and generalization to
unseen tasks (Ouyang et al., 2022; Iyer et al., 2022;
Wei et al., 2022a; Chung et al., 2022; Sanh et al.,
2022). Several strategies have been developed
to align LLMs to human instructions including
Reinforcement Learning from Human Feedback
(RLHF) (Ouyang et al., 2022) as well as the more
standard language modeling objective, used to fine-
tune LLMs on a wide range of tasks reformulated
as instruction following tasks (Iyer et al., 2022; Wei
et al., 2022a; Chung et al., 2022; Sanh et al., 2022).

Eliciting LLM Abilities. The high cost and in-
creasingly private nature of LLM pre-training make
it quite challenging to conclusively determine how
different pre-training techniques bring about dif-
ferent LLM capabilities. Many factors involved in
pre-training such as simple self-supervised scaling,
code or multi-lingual text pre-training (Chowdhery
et al., 2022; Chen et al., 2021; Chung et al., 2022)
as well as the distinct versions of instruction-tuning
mentioned above (Ouyang et al., 2022; Iyer et al.,
2022; Wei et al., 2022a; Chung et al., 2022), can
interact in a wide variety of ways to unleash the
abilities LLMs display. Nonetheless, Fu and Khot
(2022) hypothesize that the use of code during pre-
training seems to improve an LM’s reasoning abil-
ity, evidenced by the improved ability to leverage
Chain-of-Thought prompting (Wei et al., 2022b)
by models trained partially on code such as PaLM
(Chowdhery et al., 2022), code-davinci-002 (Chen
et al., 2021), and text-davinci-002/003 (Ouyang
et al., 2022), compared to text-only models like
text-davinci-001 and OPT-175B (Zhang et al.,
2022). Additionally, instruction-tuning on a large
set of tasks has been shown to improve generaliza-
tion to unseen tasks, reduce the need for few-shot



Vanilla RE
Given a sentence, and two entities within 
the sentence, classify the relationship 
between the two entities based on the 
provided sentence. All possible 
relationships are listed below:
- per:city_of_birth
- per:city_of_death
- per:cities_of_residence
- no_relation

Sentence: Wearing jeans and a white 
blouse, Amanda Knox of Seattle is being 
cross-examined by prosecutors.
Entity 1 : Amanda Knox
Entity 2 : Seattle
Relationship: per:city_of_birth

QA4RE
Determine which option can be inferred from the 
given sentence.

Sentence: Wearing jeans and a white blouse, 
Amanda Knox of Seattle is being cross-examined 
by prosecutors.

Options:
A. Amanda Knox was born in the city Seattle
B. Amanda Knox died in the city Seattle
C. Amanda Knox lives in the city Seattle
D. Amanda Knox has no known relations to Seattle

Which option can be inferred from the given 
sentence?
Option: C.

NLI RE

Amanda Knox lives in the 
city Seattle

Wearing jeans and a white 
blouse, Amanda Knox of 

Seattle is being cross-
examined by prosecutors.

E N C

No Relation 
Threshold

Figure 2: This figure shows a schematic of the SoTA NLI zero-shot framework in which each sentence must
be compared with each relation template (left), the vanilla formulation for prompting GPT-3 for RE as done in
Jimenez Gutierrez et al. (2022) (center) and our multiple-choice QA setting, in which each relation is transformed
into a template and GPT-3 is expected to predict only a single letter (right).

examples and improve accuracy and robustness
across many language tasks (Ouyang et al., 2022;
Iyer et al., 2022; Chung et al., 2022).

Low-Resource Relation Extraction. Several re-
formulations of standard RE have enabled small
LMs to achieve fairly strong performance in the
zero and few-shot settings. Sainz et al. (2021) uti-
lize small LMs fine-tuned on natural language in-
ference (NLI) datasets to perform zero-shot RE by
selecting the entity-filled relation template which
is mostly entailed by the test sentence. Lu et al.
(2022) frame RE as a summarization task and lever-
age generative models to summarize the relation
between target entities in the sentence. Other low-
resource RE methods augment prompt-tuning by
using logical rules to create complex prompts from
sub-prompts (Han et al., 2022) and injecting knowl-
edge about entity types using learnable virtual to-
kens (Chen et al., 2022). Our current work uses
several relation templates designed in these studies.

LLMs for Relation Extraction. In terms of ex-
ploring the RE capabilities of LLMs, most previous
work has focused on investigating biomedical RE.
Jimenez Gutierrez et al. (2022) report that LLMs
underperform standard small LMs fine-tuning in
the few-shot setting on a comprehensive set of
biomedical RE datasets and show evidence that the
poor handling of the none-of-the-above (NoTA) re-
lation category is one of the major culprits. Further-
more, although a few RE-like tasks were included
in Super Natural Instruction (Wang et al., 2022),
these tasks constitute about 0.5% of the dataset and

none of them were selected for model evaluation.

3 Methodology

In this section, we formally define the relation ex-
traction problem and describe our multi-choice QA
approach for the problem in detail.

3.1 Problem Statement
Relation extraction (RE) aims to extract the rela-
tionship between two given entities based on a
specific sentence. More concretely, one relation
example contains a sentence S as well as a head
entity Eh and a tail entity Et within S. Given a re-
lation example (S,Eh, Et), models are required to
identify the relation between Eh and Et expressed
in the S from a set of pre-defined relation types.

3.2 Relation Templates
Recent low-resource RE approaches (Sainz et al.,
2021; Lu et al., 2022; Han et al., 2022) utilize
relation-entailed templates as label verbalization
(e.g., “per:city_of_birth” -> “{Eh} was born in
the city {Et}”). As illustrated in Fig. 2 (left), the
current SoTA method for low-resource RE (Sainz
et al., 2021) utilizes manually constructed relation
templates to reformulate the RE task as a natural
language inference (NLI) task.

To ensure a fair comparison, we utilize the same
templates developed in previous studies (Sainz
et al., 2021; Lu et al., 2022) to generate answer op-
tions within our QA4RE framework. Furthermore,
in Sec. 6.2 we discuss the possibility of directly
applying the NLI formulation for RE in LLMs.



3.3 QA4RE Framework
As shown in Fig. 2 (right), we reformulate the rela-
tion extraction task as a multi-choice QA problem.
By integrating the given head and tail RE entities
(Eh and Et) into the relation templates and using
them as multiple-choice options, LLMs are able
to leverage extensive QA instruction fine-tuning
which has dramatically improved recent models.
Additionally, our method allows LLM to generate
only an answer index instead of the verbalized rela-
tion as in previous work (Jimenez Gutierrez et al.,
2022), also shown in Fig. 2 (center).

Type-Constrained Answer Construction. To
transform RE into a multiple-choice question, for a
given relation example (S,Eh, Et), we utilize sen-
tence S as the context in standard QA and create op-
tions composed of pre-defined templates filled with
Eh and Et entities. To fairly compare with previous
work, we apply type constraints (when applicable)
to eliminate options for relation types that are not
compatible with the entity types of the head and
tail entities. For instance, if the type of Eh is PER-
SON, the relation “org:country_of_headquarters”
would be deemed invalid given that a person does
not have headquarters.

4 Experiment Setup

4.1 Datasets
We evaluate our methods on four RE datasets:
(1) TACRED (Zhang et al., 2017), (2) RETA-
CRED (Stoica et al., 2021), (3) TACREV (Alt et al.,
2020), and (4) SemEval 2010 Task 8 (SemEval for
brevity) (Hendrickx et al., 2010). Following previ-
ous work (Sainz et al., 2021; Lu et al., 2022; Han
et al., 2022; Chen et al., 2022), we report the micro
averaged F1 with the none-of-the-above relation ex-
cluded. To keep OpenAI API costs under control,
we randomly sample 1,000 examples from each
dataset’s test split as our test set.

4.2 Baselines
Zero-Shot. For small LM-based models, we eval-
uate two low-resource SoTA RE baselines: (1) As
shown in Fig. 2 (left), NLI (Sainz et al., 2021)
reformulates RE as a natural language inference
task and leverages several LMs fine-tuned on the
MNLI dataset (Williams et al., 2018): BART-
Large (Lewis et al., 2020), RoBERTa-Large (Liu
et al., 2019), and DeBERTa-XLarge (He et al.,
2021). This method holds the SoTA perfor-

mance on both zero and few-shot RE. (2) Besides,
SuRE (Lu et al., 2022) frames RE as a summa-
rization task and utilizes generative LMs such as
BART-Large (Lewis et al., 2020) and PEGASUS-
Large (Zhang et al., 2020), achieving competitive
results in few-shot and fully-supervised settings.

For the NLI approach (Sainz et al., 2021), we re-
port performance using their own templates on TA-
CRED and TACREV. As this method does not have
templates for RETACRED and SemEval, we use
the templates from the follow-up work, SuRE (Lu
et al., 2022), on these two datasets instead. All
the zero-shot methods, including those on LLMs,
apply entity type constraints to reduce the relation
label space. Since SemEval does not provide entity
types, the above methods use all possible relations
in every instance as the label space.

Few-Shot. Though our main experiments focus
on zero-shot RE, we further explore our method’s
capabilities by comparing their few-shot perfor-
mance against several competitive small LM-based
methods on the TACRED dataset.

The NLI baseline can be easily extended to the
few-shot setting.4 Furthermore, we add (1) stan-
dard Fine-Tuning (Jimenez Gutierrez et al., 2022),
(2) PTR (Han et al., 2022) using prompt-tuning
with logical rules, and (3) KnowPrompt (Chen
et al., 2022) using entity type knowledge via learn-
ing virtual tokens, all of which are initialized with
RoBERTa-Large (Liu et al., 2019). For hyperpa-
rameter details, please refer to Appendix B.1.

4.3 QA4RE Implementation Details

Our QA4RE framework utilizes the same tem-
plates and type constraints developed by prior
work (Sainz et al., 2021; Lu et al., 2022). In par-
ticular, we use SuRE (Lu et al., 2022) templates
for our QA4RE approach on all 4 datasets since
NLI (Sainz et al., 2021) templates were only de-
signed for TACRED. For prompt engineering, we
explore prompt formats and task instructions for
vanilla RE and QA4RE in pilot experiments, using
text-davinci-002 on a 250-example subset of the
TACRED dev set. We then use the same task in-
structions and prompt format for all four datasets
and LLMs. Please refer to Appendix B.2 and B.3
for prompt format and relation verbalization tem-
plate details, respectively.

4SuRE can also be extended to the few-shot setting but we
were unable to replicate their results with the code provided.



Methods TACRED RETACRED TACREV SemEval Avg.
P R F1 P R F1 P R F1 P R F1 F1

Baselines

NLIBART 42.6 65.0 51.4 59.5 34.9 44.0 44.0 74.6 55.3 21.6 23.7 22.6 43.3
NLIRoBERTa 37.1 76.9 50.1 52.3 67.0 58.7 37.1 83.6 51.4 17.6 20.9 19.1 44.8
NLIDeBERTa 42.9 76.9 55.1 71.7 58.3 64.3 43.3 84.6 57.2 22.0 25.7 23.7 50.1
SuREBART 13.1 45.7 20.4 17.9 34.6 23.6 14.1 52.3 22.2 0.0 0.0 0.0 16.5
SuREPEGASUS 13.8 51.7 21.8 16.6 34.6 22.4 13.5 54.1 21.6 0.0 0.0 0.0 16.4

GPT-3.5 Series

ChatGPT Vanilla 32.1 74.8 44.9 45.4 61.3 52.1 30.3 79.6 43.9 18.2 20.8 19.4 40.1
QA4RE 32.8 68.0 44.2 (�0.7) 48.3 76.8 59.3 (+7.2) 34.7 79.1 48.2 (+4.3) 29.9 35.2 32.3 (+12.9) 46.0 (+5.9)

code-002 Vanilla 27.2 70.1 39.2 42.7 70.4 53.1 27.5 77.7 40.6 27.2 25.6 26.4 39.8
QA4RE 37.7 65.4 47.8 (+8.6) 48.0 74.0 58.2 (+5.1) 31.7 65.5 42.7 (+2.1) 25.2 29.2 27.0 (+0.6) 43.9 (+4.1)

text-002 Vanilla 31.2 73.1 43.7 44.1 76.3 55.9 30.2 76.8 43.3 31.4 28.8 30.1 43.2
QA4RE 35.6 68.4 46.8 (+3.1) 46.4 72.4 56.5 (+0.6) 35.7 76.8 48.8 (+5.4) 29.4 34.3 31.6 (+1.5) 45.9 (+2.7)

text-003 Vanilla 36.9 68.8 48.1 49.7 62.2 55.3 38.2 76.8 51.0 33.2 39.3 36.0 47.6
QA4RE 47.7 78.6 59.4 (+11.3) 56.2 67.2 61.2 (+5.9) 46.0 83.6 59.4 (+8.4) 41.7 45.0 43.3 (+7.3) 55.8 (+8.2)

FLAN-T5 Series

XLarge Vanilla 51.6 49.1 50.3 54.3 40.3 46.3 56.0 59.1 57.5 35.6 29.8 32.4 46.6
QA4RE 40.0 78.2 53.0 (+2.7) 57.1 79.7 66.5 (+20.2) 40.7 85.9 55.3 (�2.2) 45.1 40.1 42.5 (+10.1) 54.3 (+7.7)

XXLarge Vanilla 52.1 47.9 49.9 56.6 54.0 55.2 52.6 50.9 51.7 29.6 28.8 29.2 46.5
QA4RE 40.6 82.9 54.5 (+4.6) 56.6 82.9 67.3 (+12.1) 39.6 86.4 54.3 (+2.6) 41.0 47.8 44.1 (+14.9) 55.1 (+8.6)

Table 1: Experimental results on four RE datasets (%). We omit the ‘davinci’ within the names of GPT-3.5 Series
LLMs and ChatGPT refers to gpt-3.5-turbo-0301. We mark the best results in bold, the second-best underlined,
and F1 improvement of our QA4RE over vanilla RE in green.

To systematically compare our QA4RE frame-
work with the vanilla RE formulation, we evaluate
them on two series of LLMs, resulting in seven
models in total. In GPT-3.5 series LLMs, for LLMs
accessible via Text Completion API (code-davinci-
002, text-davinci-002, and text-davinci-003), we
follow previous work (Jimenez Gutierrez et al.,
2022) and use the logit bias option to constrain
token generation to relation labels for vanilla RE
and option indices for QA4RE. Due to the fewer
available control options for LLMs in Chat Com-
pletion API (gpt-3.5-turbo-0301), we only set the
temperature as 0 and use the default system prompt.

We also examine open-sourced FLAN-T5 series
LLMs (Chung et al., 2022) that are trained on a mix-
ture of tasks (Sanh et al., 2022; Wei et al., 2022a;
Wang et al., 2022). The 1,836 tasks utilized in
training include less than 0.5% of RE-similar tasks,
making FLAN-T5 series LLMs the ideal models
for verifying our hypothesis. Specifically, we use
XLarge (3B) and XXLarge (11B) models and adopt
the same prompts and greedy decoding strategy as
GPT-3.5 series LLMs to ensure a fair comparison.

5 Results

5.1 Zero-Shot Results
Our main experimental results on four relation ex-
traction datasets can be found in Tab. 1. We have
the following observations from our results:
(1) By reformulating RE as QA, our framework

improves upon the vanilla RE formulation on all
the LLMs and most datasets, making them much
stronger zero-shot relation extractors. In particu-
lar, text-davinci-003 and FLAN-T5 XL and XXL
are able to outperform the prior SoTA, NLIDeBERTa,
by a large margin. One thing worth noting is that
QA4RE brings the largest gain on the best LLM in
each series (text-davinci-003 and FLAN-T5 XXL),
showing that stronger LLMs may benefit more
from our framework.

(2) The two FLAN-T5 LLMs in Tab. 1 benefit sig-
nificantly from our QA4RE framework. Moreover,
consistent and substantial improvements can also
be observed in other FLAN-T5 models and the full
test set, as discussed in Sec. 6.3 and Appendix C.
Considering that relation extraction tasks account
for less than 0.5% of the instruction tasks used
to train FLAN-T5 models, these findings strongly
support our hypothesis that aligning underrepre-
sented tasks with more common instruction-tuning
tasks, such as QA, unlocks LLMs’ ability to solve
low-frequency tasks.

(3) The SemEval dataset poses a significant chal-
lenge for all baselines given its lack of type-
constraints, particularly for SuRE (Lu et al., 2022).
With such a large search space, generative LMs
without fine-tuning tend to summarize all exam-
ples into NoTA relation, resulting in its system-
atic failure. It should be noted that without type
constraints, the RE problem becomes a 19-choice



question answering task in our QA4RE framework.
Despite this, our method still demonstrates sub-
stantial improvements for LLMs, particularly for
text-davinci-003 and FLAN-T5 XXL.

5.2 Robustness to Verbalization Templates

For our experiments, we utilize manually written
relation templates from previous work (Sainz et al.,
2021; Lu et al., 2022). However, Lu et al. (2022)
note that model performance may vary significantly
with template design. Thus, to investigate the ro-
bustness of models to different templates, thorough
experiments are conducted with four different tem-
plates, described in detail in Appendix B.3, across
all zero-shot methods on the TACRED dataset.
Tab. 2 shows results comparing these four tem-
plates on all methods used in our main experiments,
including vanilla RE as a template-free reference.

Methods TEMP1 TEMP2 TEMP3 TEMP4

NLIBART 51.4 49.7 4.4 42.0
NLIRoBERTa 50.1 47.1 19.6 35.8
NLIDeBERTa 55.0 49.4 17.1 36.6
SuREBART 19.9 20.4 2.1 10.1
SuREPEGASUS 20.5 21.8 6.2 19.3

text-003 Vanilla 48.1
QA4RE 56.6 59.4 48.7 50.1

Table 2: F1 score on TACRED with four templates (%).
The best result using each template is marked in bold.
text-003 refers to text-davinci-003.

From Tab. 2, we observe the following:
(1) Our method consistently outperforms small LM
baselines and the vanilla RE framework, regardless
of the template. It is worth noting that even with
templates that are constructed with label name in-
formation only and no expert knowledge (TEMP3
and TEMP4), our QA framework still performs bet-
ter than vanilla RE, indicating the effectiveness and
consistency of our QA framework.
(2) NLI and SuRE performance is largely template
dependent. When using carefully crafted high-
quality templates (TEMP1 and TEMP2), several
LM-based NLI methods outperform text-davinci-
003 with vanilla RE. However, when equipped
with templates created without expert knowledge
(TEMP3 and TEMP4), the performance of both NLI
and SuRE deteriorates dramatically. In contrast,
QA4RE is more robust to variation in verbalization
templates, reducing trial-and-error development ef-
forts as well as making it more readily transferred
to settings where obtaining quality templates may

be limited due to the high cost of expert annota-
tions, such as the biomedical or financial domains.

5.3 None-of-the-Above Relation Evaluation
The none-of-the-above (NoTA) relation (Gao et al.,
2019; Sabo et al., 2021; Jimenez Gutierrez et al.,
2022) is defined as the case where no rela-
tion of interest exists between the given entities.
Jimenez Gutierrez et al. (2022) demonstrate that
the earlier inferior performance of LLMs on RE
tasks can be largely attributed to their inability to
handle the NoTA relation. To evaluate the efficacy
of zero-shot methods on NoTA relation, follow-
ing previous work (Fei and Liu, 2016; Shu et al.,
2017; Sainz et al., 2021), we apply NoTA-included
macro F1 metric as well as micro and macro P vs.
N (all positive relations vs. NoTA relation as binary
classification) F1 metrics.

Methods Macro F1 Micro P vs. N Macro P vs. N

NLIBART 49.8 75.9 71.1
NLIRoBERTa 43.7 68.5 65.8
NLIDeBERTa 55.0 75.6 72.3
SuREBART 15.5 35.2 35.0
SuREPEGASUS 14.9 32.4 31.5

text-003 Vanilla 45.3 72.8 69.5
QA4RE 58.9 78.4 74.8

Table 3: NoTA-included 42-class macro F1 as well as
macro and micro P vs. N (all positive relations vs.
NoTA) F1 on TACRED (%). The best result of each
metric is bolded. text-003 refers to text-davinci-003.
Ma and Mi are short for macro and micro, respectively.

From Tab. 3, we observe that, when enhanced
by our QA framework, text-davinci-003 achieves
significant improvement in NoTA-included metrics,
outperforming the small LM-based NLI methods.
This further demonstrates the effectiveness of our
framework, even in handling the challenging NoTA
relation. It is worth noting that these superior re-
sults are achieved by simply adding an entity-filled
NoTA relation template as an answer option for
QA, without the additional thresholding require-
ments of previous methods (Sainz et al., 2021; Lu
et al., 2022). This eliminates the need for additional
hyperparameter searching, which can be tricky for
low-resource settings.

5.4 Few-Shot Results
While zero-shot RE is our main focus, we also
evaluate our method under the few-shot setting.
Results are shown in Tab. 4. Due to budget lim-
itations, we restrict our case study to the 4-shot
scenario (i.e., 4 labeled examples per relation) with



the best-performing LLM in the zero-shot setting
(text-davinci-003). After determining the optimal
number of in-context examples searched on the dev
set, we randomly select the examples with the same
entity type constraints from the given train set.

Interestingly, vanilla RE is unable to obtain any
improvement from labeled examples, suggesting
that it is also limited in the few-shot setting. The
limited performance shown by vanilla RE indicates
that few-shot demonstrations might bias the model
towards incorrect relations in the context rather
than helping it perform the task more accurately.

Methods K=0 K=4 K=8 K=16 K=32

Fine-Tuning - 9.0 21.2 29.3 33.9
PTR - 26.8 30.0 32.9 36.8
KnowPrompt - 30.2 33.7 34.9 35.0
NLIDeBERTa-TEMP1 55.0 64.2 64.7 58.7 65.7
NLIDeBERTa-TEMP2 49.4 51.2 47.3 50.5 48.1

Vanilla 48.1 46.2 -
QA4RE 59.4 62.0 -

Table 4: Few-shot F1 on TACRED (%). All results are
averaged over 3 different training subsets for each K.
We use text-davinci-003 for vanilla RE and QA4RE.
For the best-performing baseline (NLI) as well as
vanilla RE and QA4RE, we mark the results in bold
when they are improved over their zero-shot alterna-
tives.

Even employing our QA4RE framework, the
few-shot text-davinci-003 does not outperform the
DeBERTa-based NLI method (Sainz et al., 2021)
when using their own templates (TEMP1). How-
ever, fine-tuning the NLI model on RE data can
be brittle even with careful hyperparameter tuning,
as evidenced by the unstable gains seen as more
data is added for both TEMP1 and TEMP2. Fur-
thermore, we find that few-shot NLI results when
using TEMP2 drop substantially from TEMP1, sug-
gesting that this approach also lacks robustness to
templates in the few-shot setting. Thus, consider-
ing that our QA approach enables LLMs to obtain
few-shot improvements over zero-shot results using
random in-context learning example selection, ob-
tains only around 2% lower performance than the
best NLI model, and is robust to different template
designs, our approach is competitive on few-shot
RE and has the potential to achieve even stronger
performance with more exploration. We leave fur-
ther investigation on how to improve LLMs for
few-shot RE to future work.

Vanilla + Template RE
Given a sentence, and two entities within the sentence, 
classify the relationship between the two entities based on 
the provided sentence. All possible relationships are listed 
below:
- per:city_of_birth: Entity 1 was born in the city Entity 2
- per:city_of_death: Entity 1 died in the city Entity 2
- per:cities_of_residence: Entity 1 lives in the city Entity 2
- no_relation: Entity 1 has no known relations to Entity 2

Sentence: Wearing jeans and a white blouse, Amanda Knox 
of Seattle is being cross-examined by prosecutors.
Entity 1 : Amanda Knox
Entity 2 : Seattle
Relationship: per:city_of_birth

Figure 3: The same example and templates as Fig. 2
but using templates for relation explanations.

6 Discussions

6.1 Are Relation Templates All LLMs Need?
We conduct an ablation study to better understand
how relation templates contribute to the perfor-
mance improvement obtained by QA4RE. As il-
lustrated in Fig. 3, we fill the relation verbalization
templates with markers Entity 1 and Entity 2 as
relation explanations, thereby presenting the expert
knowledge from the templates to the LLM. Using
the same templates and type constraints, we com-
pare this framework (termed Vanilla+TEMP) with
vanilla RE and QA4RE on the TACRED dataset
and GPT-3.5 series LLMs.

As shown in Tab. 5, introducing relation expla-
nations using the same templates does not result
in consistent or significant performance improve-
ment. In fact, adding extra information to the task
instruction might make it more challenging for the
LLM to understand the task. In contrast, using
our QA4RE framework, we do not need to sep-
arately specify the entities of interest or relation
explanations; they are both naturally embedded in
the answer options. These ablation results show
that the gains from QA4RE mainly come from the
QA reformulation, not simply from the relation
explanations/templates.

6.2 QA4RE vs. NLI4RE
Given the strong performance obtained by small
LMs using the NLI reformulation of RE, we lever-
age this same formulation (Sainz et al., 2021) for
LLMs (termed NLI4RE).5 More concretely, for
each example, we use the LLM to predict whether

5We follow the NLI format from ANLI (Wang et al., 2022).



Methods P R F1 �F1

code-002
Vanilla 27.2 70.1 39.2 -
Vanilla + TEMP 27.5 71.8 39.7 +0.5
QA4RE 37.7 65.4 47.8 +8.6

text-002
Vanilla 31.2 73.1 43.7 -
Vanilla + TEMP 26.8 77.8 39.8 �3.9
QA4RE 35.6 68.4 46.8 +3.1

text-003
Vanilla 36.9 68.8 48.1 -
Vanilla + TEMP 36.9 76.5 49.8 +1.7
QA4RE 47.7 78.6 59.4 +11.3

Table 5: Evaluation on TACRED regarding whether
incorporating relation explanations based on the same
templates into vanilla RE bridges its gap to QA4RE
(%).

the given sentence (the premise) entails each an-
swer option from the QA4RE formulation (the hy-
pothesis). We allow the LLM to generate entail-
ment, neutral, or contradiction for each sentence-
relation pair. If the maximum probability of entail-
ment among all possible positive relations is below
the threshold of 0.5, the example will be classified
as NoTA, as done by Sainz et al. (2021).

Formulation RED RERED REV Eval Avg.

Vanilla 48.1 55.3 51.0 36.0 47.6
NLI4RE 41.7 36.8 39.2 22.4 35.0
QA4RE 59.4 61.2 59.4 43.3 55.8

Table 6: F1 of text-davinci-003 with different task for-
mulations (%). RED, RERED, REV, and Eval are short
for TACRED, RETACRED, TACREV, and SemEval
datasets, respectively.

As shown in Tab. 6, when using the NLI formula-
tion, text-davinci-003 surprisingly underperforms
the vanilla RE formulation. The reason for its poor
performance is two-fold: (1) The heuristically pre-
defined threshold 0.5 is not ideal for LLMs and thus
many positive predictions are classified as NoTA.
However, it is also difficult to find a good threshold
under the zero-shot setting. (2) Under NLI4RE,
unlike vanilla RE or QA4RE, an LLM is not seeing
the full relation space but assigning probabilities to
each candidate hypothesis individually. The final
prediction is thus more sensitive to the LLM’s bias
over different relations.

NLI4RE also requires multiple inference runs for
each relation example to evaluate all the candidate
relations, incurring a significantly higher cost.

6.3 QA4RE & Model Size
To verify the effectiveness and transferability of our
QA4RE framework on smaller instruction-tuned

LMs Model Size Avg. F1
Vanilla QA4RE �

GPT-3.5 Series

text-001 175B 22.3 14.9 �7.4
code-002 175B 39.8 43.9 +4.1
text-002 175B 43.2 45.9 +2.7
text-003 175B 47.6 55.8 +8.2

FLAN-T5 Series

Small 80M 19.5 25.0 +5.6
Base 250M 22.3 26.4 +4.2
Large 780M 34.8 41.8 +7.0
XLarge 3B 46.6 54.3 +7.7
XXLarge 11B 46.5 55.1 +8.6

Table 7: Effectiveness of QA4RE on both the GPT-3.5
series and FLAN-T5 with different sizes. The results
are averaged over four RE datasets.

models, we further evaluate the FLAN-T5 Small
(80M), Base (250M), and Large (780M) on the
full test set over four RE datasets. Tab. 7 shows
our QA4RE framework can still bring consider-
able gains to instruction-tuned models with various
sizes, even for the smallest one (80M). This demon-
strates the effectiveness of QA4RE is transferable
across various model sizes from 80M to 175B, con-
sidering the consistent improvements of QA4RE
on several GPT-3.5 models.

In the FLAN-T5 series, larger models benefit
more from our framework. However, we note that
this trend does not continue when scaling up to
much larger GPT-3.5 models. In fact, all GPT-
3.5 models except for text-davinci-003 benefit less
from QA4RE than FLAN-T5 models. The smaller
improvements of QA4RE on these models make
their overall RE performance only comparable with
models that are approximately 20 and 50 times
smaller. This indicates that the wide variety of
alignment strategies used by the GPT-3.5 series
models discussed in Sec. 2 might not be universally
more effective than standard instruction-tuning for
improving model generalization on low-incidence
tasks even when aligned to high incidence ones.
Nevertheless, the strong improvement observed
in the strongest models tested, text-davinci-003
and FLAN-T5-XXL, demonstrates the potential
for QA4RE’s effectiveness to continue as models
become even more capable in the future.

7 Conclusions and Future Work

In this work, we first show that even the most recent
instruction-tuned LLMs underperform fine-tuned
small LMs on the relation extraction (RE) task.
To address this limitation, we reformulate RE into
multiple-choice question answering (QA) with the



purpose of leveraging a task that is widely cov-
ered in instruction-tuning datasets like QA, instead
of RE, which is barely present in these datasets.
Comprehensive experiments demonstrate that our
QA4RE framework unlocks the power of LLMs as
zero-shot relation extractors, especially for two re-
cent LLMs (text-davinci-003 and FLAN-T5 XXL).
We also conduct thorough experiments to explore
the robustness and few-shot effectiveness of our
method as well as study in what LLM training sce-
narios it is most effective.

In future work, we hope to explore additional
underrepresented tasks in instruction-tuning that
might be challenging for LLMs and could be
successfully aligned with more widely adopted
instruction-tuning tasks like QA. Additionally, we
plan to continue exploring this line of work by
leveraging our QA4RE framework for other LLMs
such as the OPT-series (Zhang et al., 2022; Iyer
et al., 2022) and PaLM (Chowdhery et al., 2022),
which are not included in this work due to the lim-
ited computational resources and/or access.

8 Limitations

Even though our method helps unleash the power
of six recent strong LLMs as zero-shot relation ex-
tractors, earlier LLMs without strong instruction
tuning such as text-davinci-001 saw no improve-
ments from our framework. Additionally, although
we carry out comprehensive experiments on the
zero-shot RE setting, our few-shot exploration is
more limited. It is still unclear from our investi-
gation whether including even more training ex-
amples can improve LLM’s RE performance and
to what extent the same trends seen across GPT-
3 models in the zero-shot setting hold steady in
the few-shot setting. We leave answering these
questions for future work.

9 Ethics Statement

In this work, we propose a method to improve LLM
performance on the important and fundamental task
of relation extraction. We do not anticipate any
ethical issues regarding the topics of this research.
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A Instruction Dataset Portion

#Tasks %RE %QA

T0 (Sanh et al., 2022) 62 0 27.4
FLAN (Wei et al., 2022a) 62 0 21
MetaICL (Min et al., 2022b) 142 0 28.9
NaturalInstruct (Wang et al., 2022) 1731 <0.5 >12

Table 9: Popular instruction tuning datasets and propor-
tion of RE and QA tasks in each.

As shown in Tab. 9, there is no RE task in T0 (Sanh
et al., 2022), FLAN (Wei et al., 2022a), and
MetaICL (Min et al., 2022b) instruction tuning
datasets. Even in the largest available NaturalIn-
struct (Wang et al., 2022), RE tasks consist of only
less than 0.5% of the total tasks. By contrast, QA
is the most popular task format in all instruction
tuning datasets. These observations indicate the
low incidence of RE tasks and the dominance of
QA tasks in datasets used for instruction tuning.

B Experimental Details

B.1 Hyperparameters for Few-Shot Methods

In the few-shot setting, for each K, we randomly
sample 3 times to obtain different training subsets,
each of which will be used as in-context demonstra-
tions for LLMs or used to train the small language
models in baselines. Report results are averaged
over the three subsets. To avoid over-estimating
few-shot performance with too many dev exam-
ples (Perez et al., 2021), we use 100 randomly
selected examples of dev set for all the hyperpa-
rameter searching.

For LLMs, we use the dev set to search for the
optimal number of in-context examples as a hy-
perparameter from {1, 2, 5}. Then we randomly
select the same type-constrained in-context exam-
ples from the given train set.

For all small LM-based baselines, we use their
publicly available code and hyper-parameters for
training. According to the original papers of
NLI (Sainz et al., 2021) and SuRE (Lu et al., 2022),
we use the checkpoints available online and hyper-
parameters reported for model training. Unfortu-
nately, we were unable to reproduce SuRE results
with default hyperparameters. For standard Fine-
Tuning (Jimenez Gutierrez et al., 2022), PTR (Han
et al., 2022), and KnowPrompt (Chen et al., 2022),
we perform a grid search over hyperparameters on
dev with the range shown in Tab. 10.

We use 8 NVIDIA GeForce RTX 2080 Ti and
2 NVIDIA RTX A6000 to conduct all the experi-
ments. The total GPU hours used and the cost for
OpenAI API are listed in Tab. 11.

Hyperparameter Search Space

Learning Rate 1: {1e�5, 3e�5}
Weight Decay: {0.01, 0.001}
Learning Rate 2: {5e�5, 2e�4}

Table 10: Hyperparameters used for grid search of few-
shot methods. Learning Rate 2 is used for training new
tokens in PTR (Han et al., 2022) and virtual tokens in
KnowPrompt (Chen et al., 2022).

Num of Params Total GPU Total
(Millions) Hours Cost

RoBERTa-Large 354 284 -
DeBERTa-XLarge 900 14 -
BART-Large 406 2 -
Pegasus-Large 568 50 -

FLAN-T5 S 80 <1 -
FLAN-T5 M 250 <1 -
FLAN-T5 L 780 1 -
FLAN-T5 XL 3, 000 2 -
FLAN-T5 XXL 11, 000 4 -

OpenAI Text API 175, 000 - $835
OpenAI Chat API ? - $4

Table 11: Total GPU Hours for open sources LMs and
cost for using OpenAI API (all version included).

B.2 Prompts for LLMs
As shown in Tab. 12, we list all templates used
in this paper including vanilla + TEMP in Tab. 5,
NLI4RE in Tab. 6, and vanilla as well as QA4RE
in all experiments.

B.3 Relation Verbalization Templates
In the relation verbalization template robustness
experiment shown in Tab. 2, the differences be-
tween four templates are described below using
the org:top_members/employees relation from TA-
CRED benchmark as an example:

1. Concrete Examples: {Eh} is a chairman/
president/director of {Et}

2. Semantic Relationship: {Eh} is a high level
member of {Et}

3. Straightforward: The relation between {Eh}
and {Et} is top members or employees

4. Word Translation: {Eh} organization top
members or employees {Et}



Methods TACRED RETACRED TACREV SemEval Avg.
P R F1 P R F1 P R F1 P R F1 F1

Small Vanilla 9.5 40.9 15.4 22.8 50.2 31.3 9.1 41.9 15.0 10.0 11.8 10.8 18.1
QA4RE 13.8 52.2 21.8 (+6.4) 33.5 66.2 44.5 (+13.2) 13.7 55.2 22.0 (+7.0) 5.9 7.1 6.4 (�4.4) 23.7 (+5.6)

Base Vanilla 14.1 31.1 19.4 21.1 26.8 23.6 14.1 33.3 19.8 14.9 17.9 16.2 19.8
QA4RE 17.1 54.7 26.0 (+6.6) 33.0 65.2 43.8 (+20.2) 17.2 58.5 26.6 (+6.8) 6.7 8.0 7.3 (�8.9) 25.9 (+6.2)

Large Vanilla 22.8 58.6 32.8 37.5 60.8 46.4 22.6 61.9 33.1 23.7 19.7 21.5 33.5
QA4RE 30.3 78.5 43.7 (+10.9) 44.5 72.6 55.2 (+8.8) 29.9 82.4 43.9 (+10.8) 24.8 15.8 19.3 (�2.2) 40.5 (+7.1)

XLarge Vanilla 48.8 49.0 48.9 55.8 39.8 46.4 52.0 55.7 53.8 34.9 29.6 32.0 45.3
QA4RE 37.6 78.6 50.9 (+2.0) 56.2 79.9 66.0 (+19.6) 38.2 84.7 52.7 (�1.1) 44.4 39.9 42.1 (+10.1) 52.9 (+7.7)

XXLarge Vanilla 48.2 45.3 46.7 56.1 53.7 54.9 50.6 50.6 50.6 29.2 28.1 28.6 45.2
QA4RE 38.1 82.9 52.2 (+5.5) 55.9 82.0 66.5 (+11.6) 38.3 88.1 53.4 (+2.8) 40.2 47.5 43.5 (+14.9) 53.9 (+8.7)

Table 8: FLAN-T5 results on full test set of four RE datasets (%). We mark the best results in bold, the second-best
underlined, and F1 improvement of our QA4RE over vanilla RE in green.

The first set of templates was written by Sainz et al.
(2021), while the remaining three were explored
by Lu et al. (2022). We use the templates from
their official GitHub repositories.6 In addition, we
further list relation verbalization templates used
by all LLMs in our paper in Tab. 13, Tab. 14, and
Tab. 15.

C Full Test Results on FLAN-T5

We present the full test set results of all four RE
datasets in Tab. 8. Our observations align with the
findings from experiments on 1,000 test examples:
(1) Our QA4RE framework can bring consistent
and significant improvements over all FLAN-T5
series models on the averaged results. Additionally,
larger models benefit more from our framework.
These two signals strongly demonstrate the effec-
tiveness of QA4RE.
(2) We notice that our QA4RE does not improve
smaller versions of FLAN-T5 on SemEval, a 19-
choice QA task. This may be due that these models
have difficulties in understanding long input fed by
QA4RE.

6Templates for Robustness Experiments:
TEMP1: https://github.com/osainz59/Ask2Transformers/blob/
master/resources/predefined_configs/tacred.relation.config.json
TEMP3: https://github.com/luka-group/SuRE/blob/main/data
templates/tacred/rel2temp_forward.json
TEMP4: https://github.com/luka-group/SuRE/blob/main/data
/templates/tacred/rel2temp_raw_relation.json

%20https://github.com/osainz59/Ask2Transformers/blob/master/resources/predefined_configs/tacred.relation.config.json%20
%20https://github.com/osainz59/Ask2Transformers/blob/master/resources/predefined_configs/tacred.relation.config.json%20
https://github.com/luka-group/SuRE/blob/main/data/templates/tacred/rel2temp_forward.json
https://github.com/luka-group/SuRE/blob/main/data/templates/tacred/rel2temp_forward.json
https://github.com/luka-group/SuRE/blob/main/data%20/templates/tacred/rel2temp_raw_relation.json
https://github.com/luka-group/SuRE/blob/main/data%20/templates/tacred/rel2temp_raw_relation.json


Formulations Prompts

Vanilla RE

Given a sentence, and two entities within the sentence, classify the relationship between the two entities based
on the provided sentence. All possible Relationships are listed below:
- [Possible Relation 1]
- [Possible Relation 2]
- [NoTA Relation]

Sentence: [Sentence S]
Entity 1: [Head Entity Eh]
Entity 2: [Tail Entity Et]
Relationship:

Vanilla + TEMP

Given a sentence, and two entities within the sentence, classify the relationship between the two entities based
on the provided sentence. All possible Relationships are listed below with explanations:
- [Possible Relation 1]: [Relation 1 Template]
- [Possible Relation 2]: [Relation 2 Template]
- [NoTA Relation]: [NoTA Relation Template]

Sentence: [Sentence S]
Entity 1: [Head Entity Eh]
Entity 2: [Tail Entity Et]
Relationship:

NLI4RE

In this task, you will be presented with a premise and a hypothesis sentence.
Determine whether the hypothesis sentence entails (implies), contradicts (opposes), or is neutral with respect
to the given premise sentence. Please answer with "Contradiction", "Neutral", or "Entailment".

Premise: [Sentence S]
Hypothesis: [Entities in Relation 1 Template]

Category:

QA4RE

Determine which option can be inferred from the given Sentence.

Sentence: [Sentence S]
Options:
A. [Entities in Relation 1 Template]
B. [Entities in Relation 2 Template]
C. [Entities in NoTA Relation Template]

Which option can be inferred from the given Sentence?
Option:

Table 12: Prompt Formats of frameworks for LLMs in this paper. We only demonstrate NLI4RE with 1 template
for simplicity.



Relation Template

no_relation {Eh} has no known relations to {Et}
per:stateorprovince_of_death {Eh} died in the state or province {Et}
per:title {Eh} is a {Et}
org:member_of {Eh} is the member of {Et}
per:other_family {Eh} is the other family member of {Et}
org:country_of_headquarters {Eh} has a headquarter in the country {Et}
org:parents {Eh} has the parent company {Et}
per:stateorprovince_of_birth {Eh} was born in the state or province {Et}
per:spouse {Eh} is the spouse of {Et}
per:origin {Eh} has the nationality {Et}
per:date_of_birth {Eh} has birthday on {Et}
per:schools_attended {Eh} studied in {Et}
org:members {Eh} has the member {Et}
org:founded {Eh} was founded in {Et}
per:stateorprovinces_of_residence {Eh} lives in the state or province {Et}
per:date_of_death {Eh} died in the date {Et}
org:shareholders {Eh} has shares hold in {Et}
org:website {Eh} has the website {Et}
org:subsidiaries {Eh} owns {Et}
per:charges {Eh} is convicted of {Et}
org:dissolved {Eh} dissolved in {Et}
org:stateorprovince_of_headquarters {Eh} has a headquarter in the state or province {Et}
per:country_of_birth {Eh} was born in the country {Et}
per:siblings {Eh} is the siblings of {Et}
org:top_members/employees {Eh} has the high level member {Et}
per:cause_of_death {Eh} died because of {Et}
per:alternate_names {Eh} has the alternate name {Et}
org:number_of_employees/members {Eh} has the number of employees {Et}
per:cities_of_residence {Eh} lives in the city {Et}
org:city_of_headquarters {Eh} has a headquarter in the city {Et}
per:children {Eh} is the parent of {Et}
per:employee_of {Eh} is the employee of {Et}
org:political/religious_affiliation {Eh} has political affiliation with {Et}
per:parents {Eh} has the parent {Et}
per:city_of_birth {Eh} was born in the city {Et}
per:age {Eh} has the age {Et}
per:countries_of_residence {Eh} lives in the country {Et}
org:alternate_names {Eh} is also known as {Et}
per:religion {Eh} has the religion {Et}
per:city_of_death {Eh} died in the city {Et}
per:country_of_death {Eh} died in the country {Et}
org:founded_by {Eh} was founded by {Et}

Table 13: Templates for TACRED and TACREV datasets.



Relation Template

no_relation {Eh} has no known relations to {Et}
per:religion {Eh} has the religion {Et}
org:country_of_branch {Eh} has a branch in the country {Et}
org:stateorprovince_of_branch {Eh} has a branch in the state or province {Et}
org:city_of_branch {Eh} has a branch in the city {Et}
org:shareholders {Eh} has shares hold in {Et}
org:top_members/employees {Eh} has the high level member {Et}
org:members {Eh} has the member {Et}
org:website {Eh} has the website {Et}
per:parents {Eh} has the parent {Et}
org:number_of_employees/members {Eh} has the number of employees {Et}
org:political/religious_affiliation {Eh} has political affiliation with {Et}
per:age {Eh} has the age {Et}
per:origin {Eh} has the nationality {Et}
org:alternate_names {Eh} is also known as {Et}
per:other_family {Eh} is the other family member of {Et}
per:identity {Eh} is the identity/pronoun of {Et}
per:identity {Eh} and {Et} are the same person
per:siblings {Eh} is the siblings of {Et}
org:member_of {Eh} is the member of {Et}
per:children {Eh} is the parent of {Et}
per:employee_of {Eh} is the employee of {Et}
per:spouse {Eh} is the spouse of {Et}
org:dissolved {Eh} dissolved in {Et}
per:schools_attended {Eh} studied in {Et}
per:country_of_death {Eh} died in the country {Et}
per:stateorprovince_of_death {Eh} died in the state or province {Et}
per:city_of_death {Eh} died in the city {Et}
per:date_of_death {Eh} died in the date {Et}
per:cause_of_death {Eh} died because of {Et}
org:founded {Eh} was founded in {Et}
org:founded_by {Eh} was founded by {Et}
per:countries_of_residence {Eh} lives in the country {Et}
per:stateorprovinces_of_residence {Eh} lives in the state or province {Et}
per:cities_of_residence {Eh} lives in the city {Et}
per:country_of_birth {Eh} was born in the country {Et}
per:stateorprovince_of_birth {Eh} was born in the state or province {Et}
per:city_of_birth {Eh} was born in the city {Et}
per:date_of_birth {Eh} has birthday on {Et}
per:charges {Eh} is convicted of {Et}
per:title {Eh} is a {Et}

Table 14: Templates for RETACRED datasets.

Relation Template

Other {subj} has no known relations to {obj}
Component-Whole(e1,e2) {subj} is the component of {obj}
Component-Whole(e2,e1) {obj} is the component of {subj}
Instrument-Agency(e1,e2) {subj} is the instrument of {obj}
Instrument-Agency(e2,e1) {obj} is the instrument of {subj}
Member-Collection(e1,e2) {subj} is the member of {obj}
Member-Collection(e2,e1) {obj} is the member of {subj}
Cause-Effect(e1,e2) {subj} has the effect {obj}
Cause-Effect(e2,e1) {obj} has the effect {subj}
Entity-Destination(e1,e2) {obj} is the destination of {subj}
Entity-Destination(e2,e1) {subj} is the destination of {obj}
Content-Container(e1,e2) {obj} contains {subj}
Content-Container(e2,e1) {subj} contains {obj}
Message-Topic(e1,e2) {obj} is the topic of {subj}
Message-Topic(e2,e1) {subj} is the topic of {obj}
Product-Producer(e1,e2) {obj} produces {subj}
Product-Producer(e2,e1) {subj} produces {obj}
Entity-Origin(e1,e2) {subj} origins from {obj}
Entity-Origin(e2,e1) {obj} origins from {subj}

Table 15: Templates for SemEval datasets.


