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1 | INTRODUCTION

Maria Stewart?

| Jonathan Bostic® | Toni A. May*

Abstract

Problem solving is a central focus of mathematics teaching and learning. If
teachers are expected to support students’ problem-solving development, then
it reasons that teachers should also be able to solve problems aligned to grade
level content standards. The purpose of this validation study is twofold: (1) to
present evidence supporting the use of the Problem Solving Measures Grades
3-5 with preservice teachers (PSTs), and (2) to examine PSTs' abilities to solve
problems aligned to grades 3-5 academic content standards. This study
used Rasch measurement techniques to support psychometric analysis of the
Problem Solving Measures when used with PSTs. Results indicate the Problem
Solving Measures are appropriate for use with PSTs, and PSTs' performance on
the Problem Solving Measures differed between first-year PSTs and end-of-
program PSTs. Implications include program evaluation and the potential ben-
efits of using K-12 student-level assessments as measures of PSTs' content
knowledge.
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turn, teaching, is mathematical problem solving
(NCTM, 2000). Problem solving is characterized as the

Effective mathematics teaching and learning engages
students in tasks that promote reasoning and problem
solving (Association of Mathematics Teacher Educators
[AMTE], 2017; National Council of Teachers of Mathe-
matics [NCTM], 2014). Students' classroom experiences
with mathematical problem solving; however, depends
on teachers' knowledge, beliefs, and attitudes of mathe-
matics (Wilkins, 2008). Teachers' knowledge of mathe-
matics impacts decisions about the mathematical tasks,
instructional scaffolds, and mathematical discourse
occurring during a classroom lesson (Curcio &
Artzt, 2003; Schoenfeld, 2011). Such decision-making
is imperative in supporting each and every student
as a major facet of students’ understanding and in

act of navigating a challenging situation and finding a
solution to a problem (NCTM, 2000). We define mathe-
matical problem solving as, “the process of interpreting
a situation mathematically, which usually involves sev-
eral cycles of expression, testing, and revising mathe-
matical interpretations” (Lesh & Zawojewski, 2007,
p. 782). One issue teachers face is how to engage their
students in mathematical problem solving during class-
room instruction. Consequently, teacher preparation
programs should consider whether preservice teachers
possess the knowledge and skills needed to lead mathe-
matics instruction through a problem-solving approach.

The purpose of this study is twofold: (a) To investigate
whether prior mathematical problem-solving measures,
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which were validated for use with students in grades 3-5,
are appropriate for use with preservice teachers, and
(b) To examine preservice teachers' (PSTs) ability to solve
mathematical word problems developed for students they
might teach. We draw upon a prior claim, “If PSTs
are expected to design and lead instruction focused on
[problem solving], then it follows they should be able
to solve problems related to the content standards”
(Nielsen & Bostic, 2020, p. 35). As such, this study uses
the Problem Solving Measure (PSM) series, initially
designed for grades 3, 4, and 5 students, to measure PSTs'
problem-solving performance. As the AMTE (2017) stan-
dards suggest, novice teachers should be able to solve the
problems their students solve. There were two research
questions for this study.

« (RQ1) What are the psychometric properties for the
PSM3, PSM4, and PSM5 when used with preservice
teachers?

+ (RQ2) Are there significant differences between first-
year and end-of-program PSTSs' problem-solving perfor-
mance using the PSMs?

2 | RELATED LITERATURE

2.1 | Problem solving framework
Problem solving is an important feature of mathematics
teaching and learning (NCTM, 2000; 2014). Mathematics
word problems are frequently a central aspect of mathemat-
ics instruction that intends to promote problem solving
(Bostic et al., 2016; Palm, 2006, 2008; Reed, 1998;
Verschaffel et al., 2000). Problem solving inherently requires
a task that is a problem. A problem (a) lacks an apparent
solution strategy and (b) contains multiple viable solution
strategies (NCTM, 2014; Schoenfeld, 2011). Problems differ
from exercises. An exercise is a task meant to promote profi-
ciency with a known procedure (Kilpatrick et al., 2001;
Mayer & Wittrock, 2006). The problem-solving framework
set forth in this study is the intersection of the presented
definition of a problem and Verschaffel et al. (1999) catego-
rization of word problems as (a) open, (b) developmentally
complex, and (c) realistic. Open problems can be solved
using more than one developmentally appropriate strategy.
Problems are developmentally complex when a solution
strategy is not apparent (Schoenfeld, 2011). Realistic tasks
contain a believable situational context drawn from real-life
experiences (Verschaffel et al., 1999). Therefore, we define
word-problems as a mathematical problem situated within
a believable real-life context.

Problem solving permeates the Common Core State
Standards for Mathematical Content (SMCs); it is also

TABLE 1 Examples of standards that emphasize problem
solving
Grade
level Standards
3 3.MD.D.8: Solve real world and mathematical
problems involving perimeters of polygons,
including finding the perimeter given the side
lengths, finding an unknown side length, and
exhibiting rectangles with the same perimeter
and different areas or with the same area and
different perimeters
4 4.NF.B.3.D: Solve word problems involving
addition and subtraction of fractions referring to
the same whole and having like denominators,
e.g., by using visual fraction models and
equations to represent the problem
5 5.NF.B.7.C: Solve real world problems involving

division of unit fractions by nonzero whole
numbers and division of whole numbers by unit
fractions, e.g., by using visual fraction models
and equations to represent the problem

highlighted in its own Standard for Mathematical Prac-
tice (e.g., Standard for Mathematical Practice 1; National
Governors Association & Council of Chief State School
Officers, 2010). In the Common Core State Standards for
Mathematics, there is at least one content standard in
every grade level from K-5 that has some mention of,
“solve problems involving” (National Governors Associa-
tion & Council of Chief State School Officers, 2010).
Table 1 provides some examples. Note that the standards
specifically say to solve problems, and not exercises. Fur-
thermore, many standards refer to real-world problems,
which aligns with our definition for word problems. This
reference to solving problems in the content standards
paired with the Standards for Mathematical Practice
clearly emphasizes the importance of problem solving as
a critical mathematical experience for students.

2.2 | Effective teaching and learning of
mathematics—AMTE/NCTM standards

Teachers are expected to teach students mathematics con-
tent and promote mathematical behaviors and habits;
therefore, they should have competency with these bodies
of knowledge. The AMTE (2017) Standards for Preparing
Teachers of Mathematics were created to provide teacher-
preparation programs with a set of standards for preparing
high-quality teachers of mathematics who can support
students using best teaching practices. One section of the
standards focuses on “candidate knowledge, skills, and
dispositions,” which preservice teachers need to be
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successful teachers upon graduation (AMTE, 2017, p. 5).
Standard C.1 states, “well-prepared beginning teachers of
mathematics possess robust knowledge of mathematical
and statistical concepts that underlie what they encoun-
ter in teaching” (AMTE, 2017, p. 8). This standard
emphasizes the importance that PSTs and teachers alike
must possess the skills and knowledge necessary to do
the mathematics they will eventually engage in with
their students. Since the Common Core State Standards
for Mathematics (CCSSI, 2010) focus on problem solv-
ing, PSTs and novice teachers should be able to demon-
strate proficiency as problem solvers engaging with
mathematics content they are expected to teach. AMTE
(2017) standards also support the idea that PSTs should
be good problem solvers stating in standard C.1.2,
“[PSTs] can apply their mathematical knowledge to
real-world situations by using mathematical modeling
to solve problems appropriate for the grade levels and
the students they will teach” (p. 9). This standard sup-
ports the idea that PSTs and novice teachers should be
able to solve the problems they will be asking their stu-
dents to solve. Teachers' ability to solve such problems
could be measured by mathematical problem-solving
assessments designed for elementary students, such as
the Problem Solving Measures for grades 3-5.

2.3 | Teachers' knowledge of
mathematics

Mathematical content knowledge (MCK) refers to knowl-
edge of mathematics and mathematical structures (Ball
et al., 2008; Shulman, 1986). MCK is one element of
teachers' knowledge. Shulman (1986) explains, “content
knowledge requires going beyond knowledge of the facts
or concepts of a domain. It requires understanding the
structure of the subject matter” (p. 9). Therefore, MCK
extends beyond mathematical performance or calcula-
tion, and includes a conceptual understanding of the sub-
ject matter. For this study, MCK includes common
content knowledge, which is mathematical knowledge
used outside of the teaching setting, and specialized con-
tent knowledge for mathematics, which is the mathemat-
ical knowledge needed for teaching (Ball et al., 2008).
Teachers' knowledge of mathematics has direct implica-
tions for instructional practices. Gains in teachers' con-
tent knowledge for teaching correlate with improvements
in instructional quality and classroom climate (Copur-
Gencturk, 2015). Furthermore, Dunekacke et al. (2015)
state, “Prospective... teachers with more mathematics
content knowledge perceive situations... that are related
to mathematics on average more precisely than teachers
with less knowledge” (pp. 280-281). That is, there is a

need for teachers to understand the mathematical struc-
tures at work to reify mathematical concepts for students.

Extensive research has been conducted regarding
teachers’ knowledge of mathematics (e.g., Campbell
et al., 2014; Hill et al, 2004; White et al., 2013;
Wilkins, 2008). White et al. (2013) reported gains in inser-
vice teachers’ mathematical knowledge for teaching follow-
ing participation in a Math Teachers' Circle, which
regularly engaged participants in mathematical problem-
solving activities. Their study demonstrated how problem-
solving experiences can be positively related to improvement
in mathematical content knowledge. Such gains affirm a
relationship between mathematical problem solving and
mathematical understanding. Therefore, understanding
PSTs' problem-solving performance, which is certainly
informed by their content knowledge, provides a window
through which mathematics teacher educators may con-
sider PSTs readiness to facilitate mathematics problem-
solving activities with their future students.

Content knowledge and problem solving are inextrica-
bly connected (Lambdin, 2003); “The connection between
solving problems and deepening reasoning is symbiotic”
(p. 6). Knowledge is a necessary component for problem-
solving success (Schoenfeld, 2011). Meanwhile, teaching
through problem solving promotes robust mathematical
understanding (Bostic et al, 2016; Lambdin, 2003;
Schroeder & Lester, 1989). In other words, while a profi-
cient level of content knowledge is needed to successfully
solve problems, effectively scaffolded problem-solving
instruction also deepens students’ content knowledge
(Bostic et al., 2016; Curcio & Artzt, 2003; Lambdin, 2003;
Schoenfeld, 2011). Mathematical problem solving and
mathematical understanding possess a reciprocal relation-
ship; understanding supports problem solving, and problem
solving then deepens understanding.

Consequently, PSTs should (a) possess the mathemati-
cal content knowledge needed to support students” mathe-
matical problem solving and (b) be able to apply their
mathematical content knowledge to solve problems related
to the content they may be required to teach. The research
within teacher education literature on PSTs” mathematical
problem solving is somewhat fractured in this area. A prior
study conducted by Nielsen and Bostic (2020) examined
first- and fourth-year secondary mathematics PSTs”
problem-solving performance with grades 6--8 content.
Results from that study indicated PSTs struggled to solve
mathematics word problems aligned to the content they
may be required to teach. A key implication from that study
was the importance of interdepartmental conversations
about secondary PSTs” mathematics content experiences.
Specifically, the need to include more problem-solving
opportunities for PSTs during their undergraduate experi-
ence (Nielsen & Bostic, 2020). That study started to fill a
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gap in the literature, which may be partially credited to a
lack of instruments in mathematics education designed and
validated to make interpretations about test-takers”
problem-solving ability (Bostic & Sondergeld, 2015).

2.4 | Validity, validation, and the
problem solving measures

Validity is defined as the degree to which the interpretation
of test scores for an intended use is supported by research
and theory (American Education Research Association
[AERA] et al., 2014). Validity is a unitary concept and is an
attribute of the interpretation(s) and use(s) of test scores
(AERA et al.,, 2014; Kane, 2013). The Standards for Educa-
tional and Psychological Testing [The Standards] outline five
sources of validity evidence: test content, response pro-
cesses, internal structure, relations to other variables, and
consequences of testing (AERA et al., 2014). Table 2 dis-
plays a brief description of each source of validity evidence.
Not all five validity sources are required to establish a
degree of validity (AERA et al,, 2014; Kane, 2016). Each
type of evidence supports differing claims inherent to the
interpretation and use of test scores. For instance, evidence
based on relationships to other variables may support
claims that the test taker's performance is related to some
external criterion, such as future academic achievement.
Decisions about the type and quantity of evidence to pre-
sent depends on the complexity of how test scores are inter-
preted and used. Complex interpretations and uses of test
scores require a more robust validity argument (AERA
et al, 2014; Kane, 2013). For example, a mathematics
achievement test may have sufficient validity evidence pre-
sented to draw inferences regarding students’ knowledge of
grade-level content standards, but insufficient evidence to
draw inferences regarding the quality of instruction pro-
vided by the test-taker's teacher. Research has indicated the
mathematics education community has not necessarily
adhered to an argument-based approach to validation
(Bostic et al., 2021; Carney et al., 2022).

The PSMs, developed for use in grades 3-8, are an
assessment of problem-solving performance in relation to
respective grade-level Common Core State Standards. There
is burgeoning evidence of validity supporting the interpreta-
tion of PSM results as students’ problem-solving per-
formance aligned to grade-level content standards
(e.g, Bostic, 2018; Bostic et al, 2017; Bostic &
Sondergeld, 2015). For instance, validity evidence based on
test content were collected for each PSM through expert
panel reviews of items (e.g., Bostic, 2018; Bostic et al., 2017;
Bostic & Sondergeld, 2015). Evidence based on test content
supports the claim that PSMs assess students’ ability to solve
problems aligned to the Common Core State Standards for

TABLE 2 Descriptions of the five sources of validity evidence
Source of
evidence Description

Test content “Test content refers to the themes, wording,
and format of the items, tasks, or
questions on a test” (AERA et al., 2014, p.

14)

Response
processes

“Theoretical and empirical analyses of the
response processes of test takers can
provide evidence concerning the fit
between the construct and the detailed
nature of the performance or response
actually engaged in by test takers.” (AERA
et al., 2014, p. 15)

Internal
structure

“Analyses of the internal structure of a test
can indicate the degree to which the
relationships among the items and test
components conform to the construct on
which the proposed test score
interpretations are based” (AERA
et al., 2014, p.16)

Relations to Relations to other variables may provide

other evidence, for example, that indicates how
variables “...test scores [may or may not be]
influenced by ancillary variables such as
[individual or group characteristic]”
(AERA et al., 2014, p.12)
Consequences “...decisions about test use are appropriately
of testing informed by validity evidence about

intended test score interpretations for a
given use, by evidence evaluating
additional claims about consequences of
test use that do not follow directly from
test score interpretations, and by value
judgments about unintended positive and
negative consequences of test use.” (AERA
et al,, 2014, p. 21)

Mathematics (CCSSM). Furthermore, validity evidence
based on response processes has been reported in previous
research (e.g., Bostic, 2018; Bostic & Sondergeld, 2015;
Bostic et al., 2017). This prior research reports on think-
alouds conducted with grade-level students, concluding that
(a) students are able to read and interpret the situational
context of the items, and (b) evidence of students' produc-
tive struggle in solving items aligns with the problem-
solving framework. A comprehensive review of PSM
development and validation for use with grades 3-8
students is beyond the scope of this manuscript; readers
interested in that information may refer to Bostic et al.
(2022), Bostic (2018), Bostic et al. (2017), and Bostic and
Sondergeld (2015). The following section presents an inter-
pretation and use statement (IUS) using guidelines recom-
mended by Carney et al. (2022), which details the intended
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interpretation of PSM scores when used with PSTs. An TUS
is organized into three overarching categories: (a) construct
articulation, (b) operationalization and administration, and
(c) scores and usage.

241 | Construct articulation

In articulating the construct, the PSMs are an assessment of
problem-solving performance in relation to respective
grade-level Common Core State Standards. We acknowl-
edge that problem-solving performance is influenced by
content knowledge and developmental readiness. That is, a
task classified as a problem for most individuals may be a
routine exercise for an individual with an advanced knowl-
edge of the mathematics content. The biggest concern when
using the PSMs with PSTs was if the items were developmen-
tally complex for the PSTs. A prior study (Nielsen &
Bostic, 2020) found that sixth, seventh, and eighth grade PSM
items used with secondary (grades 7-12) PSTs were develop-
mentally complex. The PSTs in that study had an average
score of 77%, 67%, and 54% respectively, suggesting that the
PSTs found the PSM items challenging. Thus, although PSM
items should be less cognitively demanding for PSTs than
grades 3-5 students, the PSM items are still challenging prob-
lems such that solution strategies are not readily apparent to
a typical student or preservice teacher. In this study, we argue
the construct is important to measure with PSTs because they
may eventually be responsible for providing instruction cen-
tered around mathematical problem-solving.

242 | Operationalization and
administration

Each grade-level test consists of 15-19 constructed-response
items. Items are developed using the described problem-
solving framework. That is, word problems appearing on
the PSMs are classified as problems, not exercises, for the
typical grade-level student. The typical student is the unit of
analysis because it is feasible for an item to be a problem
for one particular student, but that same item may be an
exercise for a different student depending on the develop-
mental ability of each student. PSM items are classified as
open based on the existence of multiple solution strategies.
With exception to the PSM3, which is the earliest grade-
level test in the series, each PSM contains at least three
common linking items shared with the previous grade-level
test. For instance, the PSM4 contains three items that were
developed for the PSM3. All remaining items are aligned to
the respective grade-level content standards. This study
identifies PSTs as the target population with whom the
PSMs are administered. PSTs should be provided ample

time to complete the PSM, but are not permitted to use a
calculator during test administration.

2.43 | Scores and usage

This study follows past practice (see Bostic et al., 2017;
Bostic & Sondergeld, 2015) for scoring the PSMs. Partici-
pants’ responses on the PSM items are scored dichoto-
mously as correct or incorrect, and this study evaluates
PSTs' performance through Rasch (1960) modeling. Rasch
person measures (i.e., logit scores) can be interpreted as the
relative probability of PSTs producing a correct response to
CCSSM-aligned word problems based on item difficulty
(Bond & Fox, 2015). PSTs with greater Rasch person mea-
sures have a greater likelihood of success when solving
PSM items. Raw scores can also be used to describe PST
performance (Nielsen & Bostic, 2020). It should be cau-
tioned that the use of raw scores does not reflect the hierar-
chy of item difficulty inherent to each PSM, but raw scores
can still be interpreted to draw inferences of PST problem-
solving performance. PSM scores should only be used for
low-stakes purposes. In this study, we propose using PSTs'
PSM scores formatively to inform the types of mathematics
tasks and activities PSTs are exposed to in their teacher-
preparation courses. Subsequently, we propose using PSM
scores as an element to evaluate teacher-preparation pro-
grams. Mathematics teacher educators may use scores to
evaluate the degree to which their teacher-preparation pro-
gram is fostering PSTs' ability to solve mathematical prob-
lems aligned to content they may be required to teach. In
interpreting PSTs" PSM scores, it should be cautioned that
content knowledge and problem-solving are necessary, but
not sufficient conditions for being an effective teacher. To
be clear, PSM scores are not predictive of PSTs overall
teaching ability or future teaching quality.

This validation study presents evidence based on
internal structure and evidence based on relations to
other variables supporting the use of the PSMs with PSTs.
Evidence based on internal structure were gathered
through the psychometric examination of the PSMs
(i.e., RQ1). Evidence based on relations to other variables
were gathered by examining the hypothesized differences
between first-year and end-of-program PSTs' problem-
solving performance (i.e., RQ2).

3 | METHODS

3.1 | Research design and context

This validation study took place at a large public univer-
sity in the Midwest. The public university enrolls
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TABLE 3 PST participation based on PSM and program status
Participation prior Participation following
to data screening data screening

End-of- End-of-
First-year = program First-year  program

IEC majors IEC majors IEC majors IEC majors

PSM3 104 88 93 81
PSM4 101 93 101 93
PSM5 100 95 98 94
Total 305 276 292 268

relatively large cohorts of undergraduate students in vari-
ous teacher preparation programs. A cohort is defined as
a group of students who enrolled in their teacher prepa-
ration program at the same point in time. Participants
include preservice teachers (PSTs) enrolled in the inclu-
sive early childhood (IEC) teacher preparation program.
The IEC program leads to state licensure to teach stu-
dents in prekindergarten through grade five.

3.1.1 | Participants and procedures

Four different cohorts of students are represented in this
study. Participants included two cohorts of first-year PSTs
and two cohorts of end-of-program IEC PSTs. Partici-
pants were enrolled in a four-year bachelor of science
degree in IEC education. A total of 581 PSTs completed
one PSM. Personal demographic data were not collected
during PSM administration; however, more than 90% of
PSTs in the IEC teacher preparation program are classi-
fied as white females. A unique characteristic of these
participants is that, in large, their K-12 educational expe-
riences as students should have aligned with the CCSSM
standards, which have a general focus on developing
mathematical problem solving abilities (National Gover-
nors Association & Council of Chief State School Officers,
2010). More specifically, participants would have been
enrolled in grades 2-5 when the Common Core State
Standards were adopted in 2010. To be clear, the large
majority of participants would have attended K-12
schools in a state that had adopted CCSS in 2010, but this
may not be true for all participants. The PSM3, PSM4,
and PSM5 were used to measure PSTs' ability to solve
word problems aligned to content they may be required
to teach. Each student completed one PSM. Table 3 dis-
plays the number of PSTs who completed their assigned
PSM, disaggregated by PSM and PSTs' status in their
teacher preparation program. Preservice teachers were
randomly administered a PSM while enrolled in one of
two courses exploring the teaching and learning of

elementary mathematics content. First-year PSTs were
enrolled in an introductory mathematics education
course. End-of-program PSTs were enrolled in a mathe-
matics methods course for IEC PSTs. Data were collected
between September of 2020 and September of 2021, dur-
ing the COVID-19 pandemic. Students completed their
assigned PSM online and outside of class time using Goo-
gle Forms.

Data were screened prior to and concurrent with
Rasch analysis and outliers were removed. Person point-
biserial indices, and infit and outfit mean square (MNSQ)
statistics were used to help identify eccentric individuals
who may or may not have taken the assessment seriously
(Boone & Noltemeyer, 2017). For example, submissions
that contained responses such as “IDK” or “I don't know”
rather than attempting to respond to each item were
identified and removed. As a result, 21 participants were
removed from the study for a grand total of 560 partici-
pants. Table 3 also displays the number of PSTs' that
were included following data screening.

4 | DATA ANALYSIS
4.1 | Validity evidence: Internal
structure

Validity evidence based on internal structure may be pro-
duced through analysis of an instrument's dimensionality
(Rios & Wells, 2014). Evidence of unidimensionality sup-
ports the claim that the PSMs measure a single construct
(i.e., problem-solving performance in relation to respec-
tive grade-level Common Core State Standards). Data
were examined using Rasch (1960) measurement for
dichotomous responses. Rasch measurement is one
method to establish validity evidence based on the inter-
nal structure of the instrument (Bostic et al., 2017;
Bostic & Sondergeld, 2015; Smith Jr, 2002). This approach
constructs a linear statistical model from observed counts
and categorical responses (Wright & Stone, 1999). Unidi-
mensionality is a requirement for any measurement
model. However, it is important to distinguish bet-
ween theoretical unidimensionality and practical or func-
tional unidimensionality. Functional unidimensionality
acknowledges that several constructs may work together
in measuring a latent trait (Smith, 1996). For instance,
factor analyses of arithmetic tests often identify four fac-
tors: addition, subtraction, multiplication, and division.
Yet, those four closely related factors are framed as mea-
suring a single construct: arithmetic (Smith, 1996). Unidi-
mensionality cannot be assessed dichotomously as
unidimensional or not, and there is no best approach to
examine unidimensionality (Smith Jr, 2002). Common
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across scholarship discussing Rasch measurement is the
idea that “the unidimensionality requirement is satisfied
when the data fit the model” (Smith, 1996, p. 26). Such a
definition posits an emphasis on fit statistics for items
and persons. We utilized several methods to holistically
examine the unidimensionality of the PSMs 3-5: item fit,
item point-biserial correlations, as well as item separation
and reliability.

Mean-square (MNSQ) infit and outfit statistics were
examined at both the item- and person-level (Boone &
Noltemeyer, 2017; Smith, 1996). Item fit describes the
degree to which responses for each particular item aligns
with the Rasch model expectation (Wright & Stone, 1999).
Person fit summarizes the degree to which that respon-
dent's pattern of performance aligns with how respondents
typically perform (Wright & Stone, 1999). Infit examines
patterns of performance when item difficulty and person
ability are similar. Outfit examines patterns of performance
when item difficulty and person ability are far apart
(Linacre, 2002). Fit statistics between 0.5 and 1.5 are accept-
able for low stakes assessments (Wright & Linacre, 1994).

Corrected point-biserial correlations were analyzed to
measure how items function in relation to one another. Cor-
relation indices range from —1 to 1. Items producing a nega-
tive point-biserial are a concern and should be considered for
removal from the analysis because such items fail to repre-
sent the latent trait being measured by the instrument
(Wright, 1992). Logically, items with a negative point-biserial
correlation pull in a direction opposite of the other items.

Rasch item separation and reliability were examined
to inform on the dimensionality of the PSMs. Item sepa-
ration indicates a hierarchy of item difficulty. More spe-
cifically, item separation is used to identify the number
of statistically distinct groups (i.e., strata) regarding item
difficulty. For example, a separation statistic of 2.0
equates to a strata of 3, or 3 statistically distinct groups.
These three groups could be interpreted as easy items,
moderate items, and challenging items. Item reliability
ranges from O to 1.00. Rasch item reliability is similar to
traditional measures of reliability (i.e., Cronbach's alpha),
but indicates consistency in item difficulty rather than
person performance. Item reliability and separation indi-
ces are respectively classified as excellent at 0.90 and 3.0,
good at 0.80 and 2.00, and acceptable at 0.70 and 1.50
(Duncan et al., 2003). Item invariance was considered by
comparing subsample performance on common linking
items. Common items across the PSMs link data sets
together. The invariance principle posits that relative
item difficulty should remain consistent across subsam-
ples of test-takers (Bond & Fox, 2015). In this case, PSTs
were randomly assigned a PSM to complete; therefore,
item difficulty should remain invariant across PST sub-
samples and the grade level test(s) containing said item.

Data were analyzed using Winsteps version 3.74
(Linacre, 2012) to examine the internal structure of the
PSMs 3-5.

4.1.1 | Validity evidence: Relationships to
other variables

PSTs' performance based on program year was examined
to collect validity evidence based on relations to other
variables. We hypothesized that end-of-program PSTs
might score statistically significantly greater than first-
year PSTs on the PSMs. This hypothesis was informed
by two ideas. First, prior research with the PSMs for
grade 6-8 indicated such a relationship. Second, end-of-
program PSTs have likely been exposed to more opp-
ortunities to engage in mathematical problem-solving
activities than first-year PSTs. Evidence of a statistically
significant difference in problem-solving performance
between first-year and end-of-program PSTs supports the
claim that test-takers' performance aligns with our expec-
tations - that performance is related to program year.

Rasch analysis person measures (i.e., logit scores) and
PSTs' raw scores were used to analyze PSTs' performance
on the PSM3, PSM4, and PSM5. Rasch person and item
measures are reported in logit units which describe a rela-
tive amount of the latent trait. A benefit of Rasch analysis is
that logit units are expressed on a linear scale and can be
used in subsequent statistical analyses (Bond & Fox, 2015;
Boone & Noltemeyer, 2017). Person measures were com-
pared to the mean item difficulty on each PSM to assess the
overall challenge students faced. To establish validity evi-
dence based on relationship to other variables, an ANOVA
was conducted for each PSM using PSTs' logit scores to
examine mean differences in scores based on program year.
PSTs' logit scores were used in subsequent analyses over
raw scores because logit scores are reflective of item diffi-
culty and logit scores are linear. For example, two individ-
uals that both correctly respond to 10 out of 15 PSM items
appear to contain an equal amount of the latent trait when
analyzing raw scores, but the logit score will be greater for
the person who correctly answered more difficult items.
Analysis of variance (ANOVA) for PSTs' logit scores were
conducted using SPSS version 27.

5 | RESULTS
5.1 | Validity evidence: Internal
structure

Our first research question was: What are the psychomet-
ric properties for the PSM3, PSM4, and PSM5 when used
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with preservice teachers? Rasch infit and outfit MNSQ
indices were appropriate for all PSM items. Table 5 dis-
plays the range of infit and outfit statistics for each PSM.
For low-stakes assessments, MNSQ indices between 0.5
and 1.5 are deemed acceptable (Wright & Linacre, 1994).
Values less than 0.5 are classified as overfitting. Overfit-
ting items are not productive in contributing unique
information about test takers, but they do not raise con-
cerns about the unidimensionality of the instrument.
MNSQ indices greater than 2.0 are classified as misfitting.
Such items do raise concerns regarding the dimensional-
ity of the instrument. As displayed in Table 4, no PSM
items reported MNSQ infit or outfit values greater than
1.46. One PSM item had a MNSQ outfit value of 0.37 and
was flagged as an overfitting item.

No items on any PSM produced a negative point-
biserial statistic suggesting all items appear to be working
together in measuring a single latent variable. Corrected
point-biserial statistics ranged from 0.18 to 0.57 across all

TABLE 4 PSM infit and outfit statistics
MNSQ infit statistics MNSQ outfit statistics
Minimum Maximum Minimum Maximum
PSM3 0.81 1.27 0.37 1.26
PSM4 0.85 1.15 0.73 1.34
PSM5 0.84 1.16 0.77 1.31

PSM items used in this study. Varma (2006) classifies
item point-biserial values greater than 0.25 as good and
values greater than 0.15 as acceptable; indicating some
PSM items fall within an acceptable to good range. Thus,
providing evidence that PSM items function well together
in measuring PSTs' ability to solve mathematical prob-
lems aligned to the Common Core State Standards.
Table 5 displays the item separation and item reliability
for each of the PSMs used in this study. Separation and
reliability indices were classified as excellent for each PSM
(Duncan et al., 2003). Regarding item invariance, item mea-
sures for five of six linking items were found to be invariant.
The difference of respective item measures (i.e., logit scores)
between the subsamples of PSTs were within one standard
error of the items, indicating PSM item difficulty is invari-
ant across subsequent grade-level tests and the sample of
students assigned to each PSM. However, there was one
linking item between the PSM3 and PSM4 for which the
item-measure difference exceeded one standard error of the
items but fell within two standard errors of the items. More
specifically, PSTs completing the PSM4 found the item eas-
ier than PSTs completing the PSM3. Taken collectively,
findings from psychometric item analyses suggest the
PSM3, PSM4, and PSM5 function reasonably well as unidi-
mensional measures of preservice teachers' problem-solving
performance.

5.2 | Validity evidence: Relations to
other variables

TABLE 5 Item separation and reliability Preliminary analysis of PSTs' problem-solving perfor-
PSM3 PSM4 PSMS5 mance indicates that PSTs were most successful solving
. roblems aligned to grade three content standards. Par-
Item separation 4.48 3.92 4.63 p . . & & .
o ticipants' mean raw score was 10.28 out of 14 and their
ITtem reliability 095 0.94 0-96 average logit score was 1.51 on the PSM3. Additionally,
TABLE 6 Descriptive statistics
PSTs' raw scores PST's logit scores
Mean SD Max Min Mean SD Max Min
PSM3 Total (n = 174) 10.28 2.35 14 4 1.51 1.31 4.47 —2.13
First-year (n = 93) 9.78 2.27 14 4 1.24 1.22 4.47 —2.13
End-of-program (n = 81) 10.77 2.33 14 4 1.83 1.36 4.47 —0.99
PSM4 Total (n = 194) 8.74 2.57 14 3 0.57 1.10 3.95 —2.95
First-year (n = 101) 8.49 2.77 14 3 0.51 1.13 3.95 —2.95
End-of-program (n = 93) 9.00 2.32 14 4 0.72 0.95 3.95 —1.13
PSM5 Total (n = 192) 9.54 2.78 15 3 0.84 1.14 4.37 —2.06
First-year (n = 98) 9.02 2.87 14 3 0.62 1.07 3.07 —2.06
End-of-program (n = 94) 10.04 2.70 15 3 1.07 1.17 4.37 —2.06
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end-of-program PSTs scored higher than first-year PSTs
on the PSM3, PSM4, and PSM5. Table 6 displays descrip-
tive statistics for each PSM.

Our second research question was: Are there signifi-
cant differences between first-year and end-of-program
PSTs' problem-solving performance using the PSMs?
ANOVA results indicate a statistically significant differ-
ence in PSTs' problem-solving performance based on
program year on the PSM3, F(1, 172) =9.184,p =0.002,
and PSM5, F(1, 190) =7.754,p = 0.003, one-tailed. There
was not a statistically significant difference in PSTs'
problem-solving  performance on  the  PSM4,
F(1, 192) =1.830,p = 0.089, one-tailed. The magnitude of
the difference in PSTs' problem-solving performance is
classified as a small effect for both the PSM3, 7> = 0.051,
and PSM5, 7> = 0.039 (Cohen, 1988). In other words,
end-of-program PSTs consistently scored better than first-
year PSTs on the PSM3 and PSM5. Regarding the PSM4,
fourth-year PSTs' logit scores (M = 0.72, SD = 0.95)
exceeded first-year PSTs' logit scores (M = 0.51,
SD = 1.13), but the difference in performance was not
statistically significant.

6 | DISCUSSION

We set out to accomplish two goals in this study: (a) to
examine the degree to which the PSMs, which were
designed for use with grades 3-5 students, are appropri-
ate for use with preservice teachers (PSTs), and (b) to
examine PSTs ability to solve mathematical word prob-
lems. Previous validation research regarding the PSMs
presents strong evidence that the PSMs are an appropri-
ate measure of grade-level students' ability to solve prob-
lems aligned to the Common Core State Standards in
Mathematics (CCSSM). We argue that evidence based on
test content and evidence based on response processes,
previously collected to support PSM use with grade level
students (Bostic, 2018; Bostic et al., 2022), also have merit
in supporting PSM use with PSTs. Specifically, that PSM
items align to the CCSSM and grade-level students are
able to read, interpret, and solve PSM items. We suggest
if grades 3-5 students read and interpret items as
intended, then PSTs ought to read and interpret items as
intended as well. However, future research may also
explore response processes validity evidence when using
the PSMs with PSTs. For example, findings from a quali-
tative research study exploring how PSTs respond to PSM
items may empirically support the claim that PSTs read
and interpret PSM items as intended. Such future
research exploring PSTs' response processes could also
delve deeper into the complexity of PSM items when used
with PSTs.
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In this validation study, we present validity evidence
based on internal structure and relationships to other
variables that support using the PSMs with PSTs. We con-
ducted a holistic examination of the PSMs' unidimension-
ality, and consequently present validity evidence based
on internal structure to support the claim that PSMs mea-
sure a single construct. Additionally, we examined a
hypothesized relationship between PSTs' performance on
the PSMs based on program year. We found that end-of-
program PSTs consistently outscored first-year PSTs,
although the difference in performance was statistically
significant for only the PSM3 and PSM5. We conclude
that PSTs generally perform as expected based on a
hypothesized relationship. Consequently, this validity
evidence based on relationships to other variables sup-
port the claim that PST performance is related to pro-
gram year; however, future research may examine this
relationship in closer detail. Taken collectively, the valid-
ity evidence presented supports the use of the PSMs with
PSTs as (a) formative assessments of mathematics
problem-solving performance, and (b) for evaluative pur-
poses regarding teacher preparation. This extends prior
work (see Nielsen & Bostic, 2020), which indicated that
PSMs for grades 6-8 were appropriate for use with preser-
vice teachers who might teach those grade-levels. As a
result of this research, mathematics teacher educators
may consider using the PSMs as a formative assessment
when working with preservice teachers.

PST performance on common linking items between
the PSM3 and PSM4 should be noted. Students complet-
ing the PSM4 exhibited a greater probability of correctly
responding to a given linking item compared to students
completing the PSM3. It is particularly interesting that
PSM4 is involved because ANOVA results regarding the
PSM4 indicated no significant difference between PST
performance. Item difficulty should be invariant across
samples of PSTs; thus, differences in performance across
grade level PSMs warrants further investigation.

Validation is an ongoing process (AERA et al., 2014;
Kane, 2013). Additional research has potential to strengthen
the validity argument for using the PSMs with PSTs. In this
manuscript, we present an argument that teachers' mathe-
matical content knowledge is important in making instruc-
tional decisions to support students’ mathematical problem
solving. Subsequent research of the relationship between
teachers' performance on the PSMs and the instructional
moves made by teachers to support students’ problem solv-
ing might present stronger evidence of validity based on
relationships to other variables. That is, further research
may explore the relationship between teachers' PSM perfor-
mance and independent measures of instructional quality.
Limitations of the current study include (a) the comparison
of PSTs from different cohorts, and (b) administering the
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PSM online. For instance, administering the tests online
may have disproportionately affected the PSM3 student sub-
sample, which had more cases removed from data analysis
compared to the PSM4 and PSM5 subsamples. Future
research may employ a longitudinal design to better war-
rant claims about expected PST performance based on pro-
gram year. We hypothesized that PST performance would
be related to program year, but our findings do not neces-
sarily support claims across all grade-levels that the teacher-
preparation program had a statistically significant effect on
PSTs' problem-solving performance. Future research may
seek to (a) explore mathematics teacher educators’ experi-
ences using PSM scores to discuss programmatic-level deci-
sions, and (b) examine the effect of the teacher preparation
program on PSTs' PSM performance. Such future research
has potential to strengthen the validity evidence based on
consequences of testing and relations to other variables.

The second purpose of this study was to examine
PSTs' abilities to solve mathematical problems aligned to
content they may be required to teach. Our findings are
analogous with those presented in Nielsen and Bostic
(2020). PSTs experienced some success with solving less
cognitively demanding mathematical word problems
designed for the grade-levels PSTs intend to teach. In
consideration of the descriptive statistics presented in
Table 6, an average logit score greater than zero for all
PSMs suggests PSTs experienced some success in solving
problems aligned to content they may be required to
teach. Lower logit values indicate less of the latent trait,
or easier items to respond to. Whereas greater logit values
indicate more of the latent trait, or more challenging
items to respond to. For each PSM, PSTs' average logit
score exceeded the average logit score of the items on the
test. This implies the typical preservice teacher is more
likely to respond to an item of average difficulty correctly
rather than incorrectly. The probability of a test taker
correctly responding to an item is 0.5 when the item mea-
sure is equal to the person measure (Embretson &
Reise, 2013).

However, the average logit scores also clearly indicate
that PSTs struggled to solve cognitively demanding prob-
lems, supporting the claim that the PSM items are com-
plex for PSTs. The probability of correctly responding to a
problem is less than 0.5 when the item logit-score exceeds
the person logit-score. For example, the Nut Task on the
PSM5 recorded a logit measure of 1.73, noticeably greater
than the average PST logit score on the PSM5 of 0.83.
The item, aligned to CCSSM standard 5.NBT.7, reads:

The State Nut Company buys 22 pounds of
pecans, 30 pounds of walnuts, and 31 pounds
of peanuts. They sell containers of mixed
nuts which contain exactly 0.5 pounds of

each kind of nut. How many containers can
they make?

Rasch analysis indicated the probability of the aver-
age PST to correctly respond to the Nut Task to be 0.3.
The low probability of success with this item is alarming.
If preservice teachers struggle to solve the problem them-
selves, then there must also be concern in PSTs' ability to
scaffold student thinking when students experience simi-
larly complex problems.

Student-level assessments have potential to serve as
powerful tools for researchers and teacher-educators
working with preservice teachers. Teacher preparation
programs may collect and consider such data when eval-
uating program effectiveness and program improve-
ments. Mathematics teacher educators should consider
the amount of problem-solving experiences PSTs are hav-
ing in their mathematics and mathematics education
course work. As previously described, the magnitude of
the difference in PSTs' problems solving performance was
classified as a small effect. Marginal differences between
first-year and end-of-program PSTs on the PSMs may
indicate that PSTs are not provided enough opportunities
to engage in problem solving during their coursework.

Mathematics teacher educators at the Midwest uni-
versity have worked to address concerns regarding PSTs'
problem-solving performance with grades 3-5 content
after examining the results from the PSM data. In the last
two years while these data were gathered, two new math-
ematics courses taught by mathematics educators have
been designed and added to program requirements. One
of those courses is described as an activity-based explora-
tion of geometry and measurement concepts taught in
grades PreK-5. Course content is taught through a
problem-solving approach, and a goal of the course is for
students to develop a deeper understanding of mathemat-
ical concepts required to teach elementary mathematics
while developing proficiencies in the Standards for Math-
ematical Practice. The second course is described as an
in-depth study of transdisciplinary learning through sci-
ence, technology, engineering, the arts, and mathematics
(STEAM). Emphases of the STEAM course include pro-
ject based learning, and developing the content knowl-
edge needed to plan and assess transdisciplinary learning
experiences. Both courses provide PSTs with additional
mathematical problem solving opportunities. Experiences
engaging in rich mathematical problem-solving activities
promote mathematical understanding (Lambdin, 2003),
particularly mathematical content knowledge (White
etal., 2013).

This study used an instrument designed to measure
grades 3-5 students’ mathematical problem solving per-
formance to evaluate PSTs' ability to solve word problems
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aligned to content they may be required to teach. Mathe-
matical problem solving is a major face of mathematics
education (NCTM, 2000). As indicated by the AMTE
(2017) standards, novice teachers should be able to solve
the problems their students solve. An important question
inherent to this research is whether PSTs possess the
mathematical content knowledge needed to facilitate
problem solving activities with elementary students. If
teachers are expected to scaffold student thinking during
times of problem solving, then it is reasonable to believe
that teachers can solve the problems their students expe-
rience. Therefore, teacher educators might consider vali-
dating the use of other student-level instruments to
measure PSTs' knowledge, in the hopes to better prepare
the teachers of tomorrow.
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