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Abstract
As web applications grow more complicated and rely on
third-party libraries to deliver new features to their users, they
become bloated with unnecessary code. This unnecessary
code increases a web application’s attack surface, which can
be exploited to steal user data and compromise the underlying
web server. One approach to deal with bloated code is the
process of selectively removing features that users do not
require – debloating.

In this paper, we identify the current challenges with
debloating web applications and propose a semi-automated
static debloating scheme. We implement a prototype of our
proposed method, called Minimalist that generates a call-graph
for a given PHP web application. Minimalist performs a
reachability analysis for the features users require and removes
unreachable functions in the analyzed web application.
Compared to prior work, Minimalist debloats web applications
without relying on heavy runtime instrumentation. Further-
more, the call-graph generated by Minimalist can be reused
(in combination with web server logs) to debloat different
installations of the same web application. Due to the inherent
complexity and highly dynamic nature of the PHP language,
Minimalist cannot guarantee the soundness of its call-graph
analysis. However, Minimalist follows a best-effort approach
to model the majority of PHP features used by popular web
applications, such as WordPress, phpMyAdmin, and others.

We evaluated Minimalist on 12 versions of four popular
PHP web applications with 45 recent security vulnerabilities.
We show that Minimalist reduces the size of web applications
in our dataset on average by 18% and removes 38% of known
vulnerabilities. Our results demonstrate that the principled
debloating of web applications can lead to significant security
gains without relying on instrumentation mechanisms that
degrade the performance of the server.

1 Introduction
The growth in features and capabilities of software applica-

tions is fueled by the constant introduction of additional and
increasingly complex code. This ever-increasing codebase can

be partially explained by the reliance on third-party libraries
and frameworks. While these artifacts may simplify the de-
velopment process of applications, they also contribute to the
resources attackers can misuse to exploit the system [18]. Cru-
cially, developers include entire libraries and frameworks in
their applications while only using a small portion of the code
from each framework [4]. An example of this situation are bi-
nary applications that only rely on a small number of functions
in common shared libraries, such as libc, while loading the
entire library into the program’s address space at runtime [2].

At the same time, users do not always use the entirety of
the features of an application, leading to yet another source
of unnecessary code (i.e., features in the application that are
unnecessary for a given set of users). The unused portion
of code introduced during the development process or the
environment of the application can be considered as bloat.

One approach to deal with unused code in an application is
called debloating. Debloating is the process of determining the
functionality that a user or system requires to fulfill its purpose
and subsequently preventing the execution of all other code
in that application. A crucial aspect of the debloating process
is determining what code to remove, which can be determined
statically or dynamically. Debloating techniques detect
unused code, for example, based on dynamic traces of appli-
cations [1, 4, 5, 13], static construction of call-graphs [2, 8, 26],
and dependency graphs of JavaScript applications [15].

Dynamic debloating of web applications relies on a training
phase and records execution traces to determine the used
portion of the code and remove any code not executed during
training. Profiling user interaction with the web application
is a resource-intensive task, which cripples the server’s
response-time and subsequently affects the users’ experience
with the web application. In the case of Less is More [4] (LIM)
(the most recent system for dynamically debloating web appli-
cations), our experiments show that the server’s response time
experiences a significant slowdown, all the way up to 17× for
specific complicated pages of the evaluated web applications.

A key goal for both static and dynamic debloating ap-
proaches is that false positives (i.e., the incorrect removal of



required functionality) have to be minimized. Unfortunately,
the current state-of-the-art systems in both categories use
approaches that give rise to breakage for features not exercised
during the training phase. Our experiments demonstrate that
just by adding simple variations to the already exercised
features (e.g., changing an option in a dropdown list on a
submitted form), users can observe a breakage in 33% of
their actions for web application debloated by dynamic code
coverage (more details in Section 4.5). An example of such
breakage is in the media upload functionality of WordPress,
where the training dataset of LIM only includes uploading a
PNG-formatted image to the web application. As a result, de-
bloating removes the file upload handlers of other media files,
therefore, users cannot upload any media file other than PNG-
formatted images to the WordPress instance debloated by LIM.
The performance overhead of profiling in LIM and its potential
for breakage is a motivation for building practical debloating
schemes that can reliably be used to debloat web applications.

In contrast to dynamic techniques, static approaches
perform static analysis over the call-graph, control-flow graph,
or other representations of the application to identify and
debloat unused code. While a purely static analysis does not
rely on potentially incomplete training data, these systems
will trigger false positives if the implemented analysis is
unsound. The dynamic nature of interpreted languages such
as JavaScript and PHP makes static analysis challenging.
For instance, Mininode generates an unsound call-graph
of Node.js modules as it does not resolve all the dynamic
imports [15]. As a result, the reduction in Node.js modules by
Mininode is susceptible to runtime errors that occur when the
Node.js app invokes a function that was incorrectly debloated.

To address these shortcomings, in this paper we propose
Minimalist, a semi-automated static analysis system for web
applications written in PHP, the most prolific programming
language for web applications [32]. Minimalist generates a
call-graph for a given PHP web application, which is then
used to debloat that application. Due to the complexity of PHP
language, (e.g., dynamic function calls or script inclusion)
Minimalist cannot guarantee the soundness of the generated
call-graph. However, unlike prior work such as Mininode,
Minimalist makes a concerted best-effort to reason about
the above dynamic features and be soundy (more details in
Section 6). According to the soundiness manifesto [17], "an
analysis is soundy if most common language features are
over-approximated by modeling all their possible behaviors
[...]. On the other hand, some specific language features, well
known to experts in the program analysis area are best under
approximated." In order to generate the call-graph, Minimalist
needs to identify all the invoked functions in the target
web applications. PHP provides various APIs for invoking
functions, which makes static analysis a challenging task.
Our tool automatically identifies the vast majority (99.95%)
of invoked functions in target applications in our dataset. In
order to address the challenges introduced by highly dynamic

features in the PHP interpreter, such as evalwhich can execute
dynamically generated code, Minimalist relies on the anno-
tations provided by an analyst. We quantify the difficulty of
producing these annotations and find that analysts can produce
them with a minimal time investment (less than 15 minutes
per callsite) and that analysis efforts from one version of a web
application can be amortized over multiple followup versions.

At a high level, our debloating scheme consists of three
major steps. First, Minimalist statically analyzes the given
PHP web application to generate a call-graph. Second,
Minimalist prunes the call-graph by removing the functions
that the web application does not require to respond to users’
requests, as determined by readily available web server logs.
Finally, Minimalist performs a function-level debloating to
remove the unused functions.

Given an accurate call-graph, Minimalist can then use
information about how users interact with the web application
in order to remove more than just unreachable code. We can
capture users’ interactions by: 1) running simulations of user
interactions, 2) deploying monitoring tools on real-world
deployed web applications, and 3) using already recorded
access-log files from web-servers. Minimalist obtains historic
information of user interactions with the web application
by taking advantage of already recorded access-log files on
the server. This approach allows us to avoid the unrealistic
simulation of users using automation tools as well as avoid
deploying resource-intensive, monitoring tools for tracking
code coverage on the server side. By using the set of accessed
files and the generated call-graph to tailor the web appli-
cation based on user interactions, Minimalist preserves the
functionality that web applications need to respond to users.

Overall, our main contributions are the following:

• We propose a semi-automated static debloating scheme
that removes the unused functionality of PHP applications
refined with information from prior user interactions.

• We design and instantiate our approach in a prototype
called Minimalist, using static analysis to generate a
call-graph for a given web application. To facilitate the
handling of few (< 50 call sites per application in our
dataset) edge cases, Minimalist provides an API for
developers and experts to develop custom static analyses
(CSAs) for PHP web applications.

• We analyzed the source-code of the four most popular
web applications accounting for more than 45% of all
public websites and developed a set of CSAs to handle
the unresolved function calls of the PHP web applications
in our dataset.

• We extensively evaluated the security benefits of debloat-
ing web applications using Minimalist. Our findings
show that Minimalist reduces the size of web applications
by 18% on average and removes 38% of high-severity
vulnerabilities in our dataset. Evaluating our CSAs shows



1 ## Class.php
2 class ParentClass {
3 public $feature = 0;
4 public function __construct() {
5 $this ->feature = 1;
6 }
7 public function Cprint(){
8 echo $this ->feature."\n";
9 }

10 }
11 class ChildClass extends ParentClass {
12 public function call() {
13 call

Invoke Cprint in ParentClass

_user_func(array($this , ’Cprint’));
14 }
15 }
16
17 ## test.php
18 define(’classpath’, __DIR__ );
19 $included = classpath."/Class";
20 include_once $included.’.php’;

Variable file inclusion
21 $type = "ChildClass";
22 $obj = new $type;

Invoke the parent constructor23 $method = "call";
24 $obj ->$method(); Variable invocation

Listing 1: Usage of dynamic PHP language constructs in
file inclusion, class instantiation and function calls.

that, on average, 80% of the code (i.e., ∼780 lines) in a
CSA is identical and hence reusable between different
versions of the same web applications. This allows
developers to amortize their efforts across months and
years of consecutive web application versions.

We will open-source Minimalist and our dataset to encourage
further research in the area of web-application debloating.

2 Background
Static analysis of dynamic languages such as PHP is

inherently challenging. In this section, we review the language
constructs that complicate static analysis. First, we review
common PHP code snippets that use dynamic language
features. Then we discuss the sources of dynamicity in
the control flow of PHP applications and the call-graph
construction and its properties.

2.1 File Inclusion Schemes in PHP
PHP provides two mechanisms for file inclusion. Direct

inclusion using include and require statements and
autoloaders.

Direct file inclusion enables developers to load PHP files
corresponding to different classes and modules at runtime.
Lines 18 and 19 in Listing 1 incorporate a constant variable defi-
nition based on the path of the current directory (using__DIR__
built-in constant) to generate the file path that is then used in the
include statement on line 20. This file inclusion scheme is com-
monly used in applications such as WordPress and phpMyAd-
min. In order to statically resolve such file paths, an application-
wide “variable analysis” step is required which properly mod-
els the data flow (e.g., direct variable assignments, use of arrays,
constants and global variables) for the target variables.

Autoloaders allow developers to dynamically resolve and
load undeclared classes without explicit calls to include or

require. A PHP application can introduce autoloading rules
to the PHP interpreter using spl_autoload_register. This
way the PHP interpreter can automatically use the defined
rules to load undeclared classes. In Listing 1, autoloaders
could be used instead of direct file inclusion on line 20. This
way, the PHP interpreter would automatically include the
Class.php file inside test.php on line 22 when the class
instantiation occurs with an undefined class name. Regardless
of the file inclusion mechanism, the PHP engine executes all
the code in the main body (i.e., not part of a function or a class)
of the included PHP script upon inclusion.

2.2 Call Graph Generation
A call-graph is a directed graph where the vertices represent

functions and directed edges between vertices represent
function invocations where the caller invokes the callee [10].
Each node (i.e., caller) can have multiple edges to other nodes
(i.e., callee) depending on the number of invoked functions
by the caller. One important property for a call-graph is the
soundness property. A call-graph is sound if it includes all
possible edges for every function call in an application.

PHP provides various language APIs to invoke functions
(e.g., direct invocation, variable function names, and call-
backs). In order to build a sound call graph of an application,
one needs to resolve dynamic function calls to their set of
feasible target functions. A dynamic function call refers to
a function invocation where the function to be invoked is
determined at runtime. Next, we go over the PHP language
APIs and constructs that can result in dynamic function calls:

Reflection can be used to dynamically instantiate a class,
list available methods and properties or invoke class methods.
As a result, static analyzers need to understand the reflection
API to resolve the correct class instantiations and method calls.

Variable functions in PHP is an implicit way of calling
functions using reflection. In this scheme, the target function
name is stored in a variable, which is then used in a function
invocation. Lines 23 and 24 of Listing 1 demonstrate this use
case where the variable $method is assigned with the function
name call. Likewise, the class name that implements this
method is defined on line 21 by a variable named $type.

Callback functions allow a function name to be passed
as an argument to another function. Certain PHP built-in
functions such as array_filter, call_user_func, and
set_error_handler accept callback functions through
their parameters. Line 13 in Listing 1 showcases a call-
back function named Cprint which is invoked instantly
by call_user_func. Popular web applications such as
WordPress use callbacks to provide APIs for plugin and theme
developers.

Inheritance and building the class hierarchy is an impor-
tant step in generating the call graph of PHP applications.
Object-Oriented Programming (OOP) in PHP allows the
invocation of a method from a given object’s class or any of its
parent classes. Accurate resolution of method calls relies on
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Figure 1: Minimalist statically generates a call-graph from the web application under analysis, prunes the call-graph of the web
app based on a server access-log, and removes the unused functionality from the web application.

correct identification of the target object in the class hierarchy.
As depicted in Listing 1, the Cprint function is provided as
the callback on line 13. In this example, ChildClass does
not define the Cprint function and the static analyzer has
to follow the inheritance chain to find the correct function
implementation inside the ParentClass.

Evidently, PHP provides multiple constructs for dynamic
functions calls (i.e., variable functions, callbacks, and the re-
flection API) and it is up to the developers and coding standards
of different web applications to use any of these mechanisms.

2.3 Debloating Applications using their Call-
Graphs

Call graphs in conjunction with application entry points can
be used to identify unused functions within a web application,
which can then be removed via debloating. The soundness and
accuracy of the call graphs directly affect the performance and
correctness of debloated web applications.

Leveraging an unsound call-graph to debloat applications
can lead to false positives (i.e., removing parts of the code that
are needed by the application). However, over-approximations
due to the imprecise resolution of dynamic code constructs
lead to the generation of a call-graph that, despite being sound,
is unusable for debloating. For example, a fully connected
graph (i.e., connecting all pairs of functions in the application)
is trivially sound, but is not useful for debloating since every
function is reachable from every entry point. Therefore,
over-approximation and lack of precision during the call-graph
generation leads to degraded debloating results (i.e., keeping
pieces of code that are not used in practice). As a result, our
goal for Minimalist is to mount a best-effort to be soundy
in its call-graph generation while limiting the amount of
over-approximation.

Threat Model and Environmental Conditions. Our
threat model targets PHP web applications which may
contain unknown security vulnerabilities running atop a non-

compromised OS. We assume that the administrators cannot
host their web applications with the profiler code turned on due
to its high overhead and negative effect on page-load time. Our
assumption also entails that operators/developers/administra-
tors can invest time in developing custom static analysis which
Minimalist then uses to debloat web applications. As our
evaluation in Section 4 shows that Minimalist can remove up
to 38% of security vulnerabilities from PHP web applications
with a minimal effort from developers.

3 System Architecture
In this paper, we aim to debloat PHP web applications. Our

tool consists of three main steps: 1) Generating a call-graph for
the selected PHP web application. 2) Pruning the call-graph
based on the PHP files that users (via their HTTP requests)
accessed. 3) Debloating the unreachable functionality from
the web application. We implemented our approach for PHP
web applications in a prototype called Minimalist.

As described in the background section, generating a sound
call-graph through the use of “generous” over-approximations
is trivial but not useful for the purpose of debloating. Our
system takes a multi-step approach to construct the call-graph
by leveraging three analyses of inheritance, variables, and
script inclusions to handle the dynamic features that the web
application uses to invoke a function. Figure 1 demonstrates
the overall architecture of our system. In this section, we
first explain each analysis and how Minimalist combines
the results to generate a call-graph. Finally, we explain the
pruning process of the generated call-graph and the eventual
debloating of the given PHP web application.

3.1 Generate the call-graph
The first step for Minimalist to debloat a PHP web

application is to represent it in the form of a call-graph. To
generate the call-graph, Minimalist performs three preliminary
analyses on the web application to handle dynamic features
in the PHP web applications: 1) Class Hierarchy Analysis,



2) Variable Analysis, 3) Script Inclusion Analysis. Our tool
uses the php-parser library [29] to parse each PHP script in
the web application into its corresponding Abstract Syntax
Tree (AST) and then performs each analysis. Next, we discuss
the details of each analysis and how Minimalist incorporates
this information to generate the call-graph.

3.1.1 Class Hierarchy Analysis
In this step, Minimalist performs the class hierarchy

analysis on the given PHP web application. This analysis
allows Minimalist to identify the inheritance relationships
between the implemented classes in the web application. For
the class hierarchy analysis, Minimalist identifies the class
definition statements (e.g., Line 11 in Listing 1) by iterating
over the AST nodes of each PHP script. In a class definition
statement (Line 11 in Listing 1), Minimalist extracts the name
of the defined class and the extended class, which follow
the keywords class and extends respectively. Our tool
generates a global hashmap called Inherit, where the key
is the defined class and its value is the parent class name.

3.1.2 Variable Analysis
In this step, Minimalist performs a flow-insensitive analysis

on the source code of the target web applications. PHP
applications often use dynamic features such as variable
invocation and script inclusion to deliver dynamic content.
This analysis allows Minimalist to correctly resolve the list of
target functions in dynamic invocations and included files in
further analyses. The variable analysis in Minimalist involves
tracking assignment statements in the web application and
recording the assigned values in a hashmap. In our analysis,
a variable can take any of the following values:

• Constant: The assignment statement contains only
constant values.

• Unbound: The variable analysis cannot restrict the
possible values for a variable such as assignments based
on user-input.

• Mixed: The assigned value to the variable is a mixture of
constants and unbounded values.

Each assignment statement is comprised of three compo-
nents: the left hand side (lhs), the right hand side (rhs), and the
operation. Minimalist tracks the variable assignments for each
PHP script in a separate hashmap structure named ValueSet.
In this hashmap, the key is the name of the variable on the lhs
and the value is the string representing the assigned value. For
each assignment, we resolve the lhs expression to extract the
name of the target variable, which includes variables, arrays,
and class property assignments. Similarly, the rhs is resolved
iteratively by traversing the AST nodes provided by the PHP
parser. The rhs is resolved to a string representing the assigned
value. In PHP, variables are scoped. There are three different
variable scopes in PHP [25]: 1) global, 2) local, and 3) static.

A variable’s scope is global when the variable is defined
outside a PHP function. Furthermore, a variable defined inside
a function is by default limited to the local function scope.
Similar to local scope, a static variable can only be accessed
inside the local function scope [25]. Minimalist conservatively
promotes all variables to the global scope and combines the
resulting ValueSets (i.e., set union) of all variables that share
the same name, irrespective of the variables’ scopes (Pseu-
docode in Appendix D). This approach leads Minimalistto
over-approximate the possible values a variable can hold.

$included = classpath."/Class";
variable constant literal

Key

included
/var/www/html/Class

Previously defined in the script

Value1
2

3
classpath /var/www/html

included

ValueSet hashmap

/var/www/html/Class

Figure 2: Minimalist analyzes the assignment statements by
1) Extracting the name of the variable from LHS, 2) Resolving
the RHS to a string representing the assigned value, 3) Storing
the mapping in the ValueSet hashmap.

We categorize the rhs expressions into six groups, which
we handle as follows:

Literal: There is no further analysis on string literals.
Magic Constants and PHP built-in functions: The

PHP interpreter defines a set of constants with predefined
values such as __dir__ and __function__, which refer
to the current directory and current function, respectively.
Minimalist models the commonly-used PHP file operations
functions such as dirname as well as magic constants. This
way, we can resolve dynamic file inclusions statically.

Object Instantiation: For object instantiation statements,
Minimalist extracts the name of the instantiated class and
determines the type of the instantiated object. If Minimalist
cannot reason about the type of an object in rhs, it marks the
variable as “unbound”.

Variables: If the rhs contains a variable, this means that
the variable must have been initialized previously in the web
application. In this case, Minimalist resolves each variable
on the rhs by looking up its assigned value in the ValueSet
hashmap. If we cannot find the variable in the hashmap for
the current script, we perform a global search across other
PHP scripts for its definition. If the variable is not found,
Minimalist marks the variable as “unbound”.

User-defined Function Call: Minimalist only resolves
direct function calls used in assignment statements. To do
this, Minimalist identifies the implementation of the invoked
function in the web application, and analyzes the return
statement inside the function’s body. Our tool iteratively
analyzes the AST nodes of the return statement, similar to
the analysis of the assignment statements. Next, we translate



test.php

Class.php

##test.php

include_once $included.' . php';

/var/www/html/Class .php
concat

/var/www/html/Class.php

Figure 3: Minimalist analyzes the include statements and
generates a script dependency graph for the web application
under analysis.

the sequence of nodes that compose the return statement into
a string representing the returned value. We then replace the
function call in the assignment statement with this string.
In the case of recursion in function calls, Minimalist only
analyzes the return statement once. If Minimalist cannot
determine the target function (i.e., variable invocations) or its
returned value, it marks the return value as “unbound”.

Unbound: For any other type of node that does not
belong to the above categories, Minimalist marks the string
representation of the node as “unbound”.

Minimalist applies this procedure recursively on every node
of the rhs in the assignment statement until it includes only
literals, unbounds, and string concatenation. Minimalist then
translates the rhs into a regular expression (regex). In doing so,
Minimalist over-approximates the unbounds (e.g., user-input,
database records) by replacing them with a wildcard (.*) in the
generated regex. Over-approximating the values of variables
in this step allows Minimalist to include all possible values
assumed by a variable in the regex. In the case of multiple
assignments to the same variable, Minimalist joins the regexes
for each option with the or operator. In the end, Minimalist
creates an entry in the ValueSet hashmap with the name of the
variable as the key and the generated regex as the value. Fig-
ure 2 demonstrates how Minimalist analyzes different types of
nodes in the AST for the assignment statements in Listing 1 and
stores the mapping of their values in the ValueSet hashmap.

3.1.3 Analyze Script Inclusions

In this analysis, Minimalist generates a script dependency
graph for the PHP web application. A script dependency graph
is a directed graph where the nodes are the files in the web
application and a directed edge between two nodes (i.e., two
files) represents the inclusion of scripts. The PHP interpreter
always executes the main body (i.e., global context) of an
included script. This is critical to constructing the call graph
since each included script can invoke a series of functions
or include other scripts. Minimalist iterates over the AST of
each script in the PHP web application and identifies script
inclusion expressions. For each script inclusion expression,
Minimalist iterates over all the nodes that compose the string
passed to the expression.

Minimalist handles dynamic script inclusions in web ap-
plication by resolving the value of variables using the variable
analysis results. If there is a variable in the argument, we

method call

ValuetSet hashmap

##test.php
$obj->$method();

ChildClass\call

main:test.php

ChildClass\call:Class.php

obj ChildClass
1

2

3

Figure 4: Minimalist uses the information from previous anal-
ysis, 1) Looks up for variables values in ValueSet hashmap,
2) Retrieves and replaces the values in the function call , and 3)
Draws the associated edges in the call-graph. main:test.php
represents the global scope of the test.php script.

replace the variable with its value in the valueSet hashmap.
Next, Minimalist translates the sequence of arguments into
a regex. Finally, we draw edges between the file under analysis
and every file that matched the regex. If the passed argument
to the script inclusion function is a wildcard regex, we draw
edges from the file under analysis to every file in the web
application. In Figure 3, we demonstrate how Minimalist
resolves the arguments into the files matching the regex, and
generates the script dependency graph for Listing 1.

PHP scripts frequently use auto-loaders to instantiate
objects from classes without explicitly including the file which
contains the implemented class. Minimalist handles auto-
loaded classes in scripts by analyzing the new expression used
for instantiating the object. As with resolving the argument
passed to include statements, Minimalist resolves the argu-
ments passed to the new expression. Afterward, Minimalist
draws a dependency edge from the current file under analysis
to the script(s) which contain(s) the class implementation(s).

3.1.4 Generate the Call-graph
In this step, Minimalist generates a call-graph for the web

application under analysis. To generate the call-graph, Min-
imalist must identify the caller-callee relationships between
functions in the web application. This is accomplished by
iterating over the AST of each PHP file, to identify function
call expressions residing in the caller. The target of this
expression identifies the callee. As callers and callees are
functions, Minimalist maintains a special caller corresponding
to the global script contenxt (i.e., function invocations not part
of a function body). For direct invocations, Minimalist adds
a node to the call-graph for the caller and callee, if they do not
exist, and draws an edge from the caller to the callee.

In case of variable invocations, our tool leverages the col-
lected information in the variable and class hierarchy analysis
to resolve the values of variables. Minimalist extracts the
nodes that compose the variable and performs a lookup in the
ValueSet hashmap to find the regex for the assigned values.
For keywords within the object’s context (e.g., parent),
Minimalist uses the Inherit mapping to replace the keyword
with the name of the current class or its parent. Next, our tool
resolves the variable invocation by matching the regex against
all defined functions and methods in the web application.



Finally, Minimalist draws edges in the call-graph between the
caller and each of the matching functions. Note that the over-
approximation of variable values in the variable analysis leads
Minimalist to draw edges to every possible invoked function at
each call-site. Figure 4 demonstrates how Minimalist resolves
the assigned values to variables in a function call and draws
the edge between the caller and the callee in the call-graph.

If the variable involved in the variable invocation is unbound
(i.e., wildcard (.*)), Minimalist cannot resolve the function call
to a subset of defined functions in the web application. In such
a case, we draw edges to every defined function in the web ap-
plication. call-graph. Minimalist also creates a report of the un-
resolved instances, including the target file, function, and line
number. This report provides the necessary information for im-
plementing custom static analysis (described in Section 3.1.5).

Furthermore,Minimalist models the set of higher-order func-
tions provided by the PHP interpreter that take the name of a
function as an argument, which is then invoked by the inter-
preter. Higher-order functions affect the call-graph by invoking
the functions passed as arguments. Hence,Minimalist needs to
take such functionality into account while generating the call-
graph of the web application. We identified the set of higher-
order PHP functions by manually analyzing the arguments and
return values of the functions according to the PHP documen-
tation [24]. We then modeled their behavior according to the
arguments accepted by each higher-order function and their
return values in Minimalist. In the case of calling a higher-
order PHP function, Minimalist infers the target function’s
name passed as arguments by leveraging the corresponding
variable’s ValueSet. Then, Minimalist adds a node to the call-
graph for the caller and callee (if they do not already exist) and
draws an edge between them. Note that, if there are multiple
functions that match the passed argument (i.e., function to be
invoked) to the higher-order function, Minimalist draws an
edge between the caller and each of the matching functions.
Similar to higher-order function invocation, we modeled the
behavior of PHP’s reflection API in Minimalist. Specifically,
to address reflection, Minimalist extracts the argument that
represents the function to be invoked and draws the respective
edges in the call-graph. Analogous to variable function calls,
Minimalist generates a report for unresolved instances of the
invoked functions by higher-order functions or the reflection
API, which should be addressed by an analyst through CSA.
For script inclusion functions, Minimalist uses the script in-
clusion analysis result and creates a dummy node for the main
body of the included script if it does not exist and draws an
edge from the caller to the dummy node.

At the end of this step, Minimalist generated a call-graph
for the web application using the information acquired
from the previous analyses. Our tool needs to construct the
call-graph once per web application. Whenever there is a
modification in the source-code of the target web application,
such as upgrading to a new version or installing a new module,

1 function test() {
2 //Retrieve the callable action from the database
3 $query ="SELECT * FROM actions WHERE ".$conds;
4 $result_db = mysql_query($query);
5
6 //Assign the value to the variable action
7 $action = mysql_fetch_row($result_db);
8 // Invoke the retrieved function name
9 // from the database

10 $result = $action();
11 }

Listing 2: Drupal retrieves the name of the function to
invoke from database. The function test is implemented
in actions.php.

Minimalist needs to repeat the call-graph construction step,
including the preliminary analyses.

3.1.5 Custom Static Analysis
In this analysis, Minimalist resolves the problematic

function calls and script inclusions into a small set of
functions/scripts. For a small subset of function calls and file
inclusions, Minimalist cannot statically resolve the callees or
target scripts. In the absence of such information, Minimalist
draws edges to every node in the call-graph or the script
dependency graph. This level of abstraction can render the
debloating process ineffective if an invoked function has edges
to all the functions in the web application.

Since Minimalist is not able to fix the unresolved instances
alone, alternative methods are necessary. Our tool leverages an
analysts’ knowledge in order to resolve the missing function
calls. Using the report from the previous step, a human analyst
can inspect the source code of the web application and provide
the annotations using the CSA API. Using these annotations,
Minimalist can resolve the specific challenging call sites and
file inclusions to a subset of functions and files. Minimalist
cannot verify the soundiness of a manually created CSA.
However, we discuss the implications of soundiness on such
CSAs in Section 6.

To put this into perspective, we investigate an unresolved
function call in Drupal 7.34 in Listing 2. Drupal registers a
set of functions called “actions” in the database while getting
installed or whenever there is a new module installed. Drupal
retrieves the function names from the database to invoke under
certain conditions, such as when a user comments on a post
or replies to a comment. In Listing 2, Drupal issues a query to
the database on line 4 to extract the name of the target function
from the database and store it in the action variable on line 7.
Given that the values fetched from dynamic queries executed
on a database are not accessible to the static analysis, such
cases pose a challenge to any static analysis tool, including
Minimalist. In such a case, an analyst can assist Minimalist by
providing the routine to query the database and retrieve all pos-
sible invoked target function calls and update the call-graph.

Listing 3 demonstrates the CSA for Drupal, which adds the
edges in the call-graph for the function test based on the query
results on the first line. Note that Minimalist needs to rebuild
the call-graph whenever there is a change in the web applica-



1 list_actions=db.Query(’SELECT callbacks FROM actions’)
2 foreach list_actions.Next() {
3 // grab items from the list of actions
4 var item
5 list_actions.Scan(&item)
6 // update the callgraph of function test
7 // with the retrieved action called item
8 update_callgraph("test", "actions.php", item)
9 }

Listing 3: The code snippet in the CSA to resolve the actions
retrieved from the database in Drupal

tion source-code (e.g., a new installed module). Considering
that new installed modules in Drupal have their own actions in
the database, communicating with the database allows the CSA
to update the call-graph with the latest target function calls.
The function test in Listing 2 only retrieves one action to
invoke, which is determined by the provided conditions in vari-
able conds. Since we cannot reason about the value of conds
in Line 3 of Listing 2, the analyst needs to identify all possible
invoked functions on Line 10. On lines 2 to 8 of Listing 3, we
iterate over the values of the variable action retrieved from
the database and add the target functions in the call-graph for
the function test in actions.php inside Drupal.

3.2 Debloating the Web application
Up to this point, Minimalist generated the call-graph of

the entire web application. In this step, our tool removes the
pieces of code from the web application that are not necessary
to respond to users’ requests. Each individual request from the
users of web applications invokes a small subset of the files
within the whole codebase of the application. Moreover, not all
functions contained within these files get invoked to respond
to users’ requests. The debloating process in Minimalist
consists of identifying the reachable files and functions from
the set of files accessed by users within the call-graph and then
removing the unreachable parts of the graph.

First, we use access-log files to obtain the set of files that
users access during their interaction with a web application.
There are alternatives to this approach, including instrument-
ing the PHP interpreter and the web application to log every
executed file, function, and line at runtime. This approach
slows down the server’s response-time by up to 17x in certain
cases. Moreover, recording synthetic interaction with a web
application for a short period of time does not encompass
the behavior of real users’ interactions. Our approach infers
the accessed entry points in the application by analyzing
existing access-log files, which are readily available on the
web servers. The web server records the requests that users and
administrators send to the server for browsing the website, ex-
ercising the offered functionality, and debugging problems [7].
Compared to instrumentation approaches, access-log files
allow Minimalist to obtain real users’ interaction over longer
periods without causing additional performance overhead.

Second, for every file recorded in the access-log file,
Minimalist identifies the node associated with the global
context of the accessed file in the call-graph. Afterwards,

Minimalist performs a reachability analysis to identify all
the files and functions reachable from each accessed file.
Minimalist repeats this process for all unique entries from
the access-log file to build its overall reachable call-graph and
prunes the nodes of unreachable files and functions.

In the last step, we debloat the web application at a
function-level granularity based on prior users’ interactions.
Leveraging function-level debloating allows Minimalist to
selectively remove functions and PHP files from the web
application. To achieve this, Minimalist determines the set of
line numbers associated with the body of reachable functions
and the global scope of the scripts. Finally, it iterates over the
PHP files in the web application and removes any lines that are
not associated with the set of line numbers for the functions
or scripts remaining in the pruned call-graph.

4 Evaluation
We assess the effectiveness of Minimalist from different

perspectives on a set of popular PHP web applications. First,
we assess our static analysis and its capability to resolve
function calls in the web applications. Next, we analyze the
CSAs that we implemented for the web application in our
dataset. Finally, we evaluate the impact of debloating web
applications in terms of reducing bloated code and removing
security vulnerabilities. Our evaluation aims to answer the
following research questions:

RQ1. How precise is Minimalist in resolving function calls
and generating the call-graph for a web application? (§ 4.2)

RQ2. How much effort do analysts need to implement a CSA
for Minimalist? (§ 4.3)

RQ3. How effective is Minimalist in debloating web
applications in terms of reducing the lines of code? (§ 4.4.1)

RQ4. What is the impact of Minimalist on removing severe
security vulnerabilities? (§ 4.4.2)

RQ5. What is the effect of different debloating techniques
on the usability of debloated web applications? (§ 4.5)

4.1 Evaluation Dataset
We evaluated Minimalist on four popular PHP web applica-

tions. Our evaluation dataset includes three open-source PHP
content management systems (CMS): WordPress, Joomla, and
Drupal, and phpMyAdmin as a database administration tool.
In practice, administrators customize CMSes by installing
plugins. To reflect this, we installed the top five (at the time
of writing) featured plugins [33] on WordPress 4.6.0 in
accordance to official WordPress website: Jetpack, Akismet,
Health-check, classic editor, and classic widgets. According to
W3Tech, these open-source CMSes account for 45.2% of all
the websites on the Internet [31]. For each web application in
our dataset, we selected the versions with the largest number of
high-severity vulnerabilities based on the vulnerability CVSS



Table 1: We break down the static and dynamic function calls for each web application in our dataset. The last two columns
in the Static Analysis section present the number of unresolved function calls in each web application and the number of new
implemented lines in their CSAs. The Vulnerability Reduction section presents the number of removed security vulnerabilities
from the web application debloated by LIM, and Minimalist.

Static Analysis Vulnerability Reduction

Web app Version Function Calls New
LoC

Total
CVEs

Total Removed CVEs
Total Direct Dynamic Resolved Fuzzy Resolved Unres LIM [4] Minimalist

WordPress

4.6.0 64,692 60,010 4,682 (7%) 63,719 (98%) 927 (1.4%) 46 768 2 0 0
4.6.0 + Plugins 102,328 93,773 8,555 (8%) 100,416 (98%) 1,888 (0.33%) 24 123 - - -

4.7.1 65,575 60,664 4,911 (7%) 64,631 (98%) 888 (1.3%) 56 37 2 1 0
4.7.19 66,080 61,161 4,919 (7%) 65,157 (98%) 874 (1.3%) 49 0 - - -

5.0 71,030 56,906 5,124 (7%) 70,055 (98%) 926 (1.3%) 49 10 - - -

PhpMyAdmin

4.0.0 26,079 23,424 2,655 (10%) 25,819 (99%) 253 (0.9%) 7 215 8 7 5
4.4.0 29,232 25,009 4,223 (14%) 28,352 (97%) 874 (2.9%) 6 14 7 7 4
4.6.0 44,415 34,503 9,912 (22%) 42,986 (97%) 1,421 (3.2%) 8 54 9 7 3
4.7.0 46,119 34,792 11,327 (24%) 43,802 (95%) 2,271 (4.9%) 46 274 1 0 0

Drupal
6.15 14,298 14,101 197 (1%) 14,152 (99%) 90 (0.6%) 56 302 2 1 1
7.34 29,833 23,434 6,399 (21%) 27,354 (92%) 2,435 (8.1%) 44 200 7 6 2

Joomla
3.4.2 89,087 59,834 29,253 (32%) 79,389 (89%) 9,677 (10.8%) 21 680 3 1 0
3.7.0 101,477 67,673 33,804 (33%) 88,608 (87%) 12,850 (12.6%) 19 167 4 3 2

Average (w.r.t. Total Calls) 100% 83.21% 16.79% 95.23% 4.72% 0.05%
Total 45 33 (-73%) 17 (-38%)

score [23]. Collectively, we analyzed 12 different versions (see
Table 1) of the aforementioned web applications in our dataset
and mapped 45 security vulnerabilities to their source code.

For our evaluation of Minimalist, we compared our tool
with Less is More (LIM) [4]. LIM is a dynamic debloating
approach that records the executed lines of code in the web
application while performing a series of interactions using
Selenium scripts. Next, LIM removes the lines of code that
were not exercised during the above interaction. We used
LIM’s source code, which is publicly available [3]. In order
to assess Minimalist using the analyst-provided CSAs, we
implemented a custom static analysis for each web application
in our dataset, which we describe in Section 4.3.

4.2 Static Analysis Evaluation
The static analysis in Minimalist is an integral part of our

debloating scheme. Our tool analyzes a PHP web application
to generate a call-graph which is then used to debloat the
given web application based on prior user interaction. The
debloating performance of Minimalist is directly affected by
the accuracy of its static analysis.

Table 1 presents the function call resolution statistics for the
web applications in our dataset. The Direct calls column shows
the total number of function calls that simply use the name of
the function for invocation. The Dynamic calls column shows
the number of function calls in a given web application that are
not string literals. The Resolved, Fuzzy-Resolved, and Unres
Function calls provide a breakdown of how the static analysis
resolved each function call in a given web application. Namely,
the Resolved function call column contains the number of
function calls that are resolved to a single function definition.
The Unres function call column presents the number of func-
tion calls that Minimalist cannot resolve to a subset of defined
functions in the web application. Finally, the Fuzzy-Resolved
function call column shows the number of function calls that

Minimalist resolves to a subset of defined functions which is
less than total number of functions in the web application.

The static analysis in Minimalist resolved 99.95% of all
function calls in the web application to a single function
(95.23%) or a subset of defined functions (4.72%) in each web
application in our dataset. To handle unresolved function calls,
Minimalist requires an analyst to provide the CSA annotations.
For our evaluation, we implemented the CSA for all the web
applications in our dataset. The last column in Table 1 present
the manual effort required to implement a CSA in terms
implemented lines of code (LoC) per version.

In a further analysis of Minimalist’s call-graph generation,
we assessed the number of resolved higher-order functions.
Higher-order functions in PHP take a target function name as an
argument, which gets invoked by the interpreter. Such behavior
poses a challenge for any static analysis, including Minimalist.
Thus, we investigated all 4,143 invocations of higher-order
PHP functions in our dataset of web applications and counted
the number of resolved higher-order functions. Minimalist
resolved 99.92% of all higher-order functions. To handle the
remaining 0.08%, Minimalist relies on the implemented CSAs
for the web applications.

4.3 Custom Static Analyses
In this section, we quantify the effort required by an analyst

to implement a CSA for a given web application and maintain
it over time across multiple web application updates and new
releases. As described in Section 4.1, we implemented a CSA
for each web application in our dataset to handle instances
of unresolved call-sites. First, we look into the development
of CSAs for different versions of web applications and the
reusability of previous CSAs when migrating them to a new
version of the same web application. Next, we investigate the
major version changes in web applications and the underlying
changes that affect the CSA implementation. Finally, we



examine the use of third-party libraries in different web
applications and their effects on implementing CSAs.

Custom Static Analysis. Our data in Table 1 indicate that
the manual effort required to implement a CSA varies between
versions of a web application. We see in the last column of
Static Analysis section in Table 1 that the first version of a
CSA often requires the largest number of new implemented
lines. This is because the first version needs to implement
annotations for all the function calls that Minimalist does
not resolve. Our analysis of the unresolved function calls
shows that the majority of the unresolved functions remain
unchanged across versions. In such cases where there is little to
no change in the unresolved dynamic function calls, analysts
can reuse the same CSA annotations from the previous
versions of the web application with zero to minimal change.

Figure 5 plots the number of new lines of code (y-axis)
implemented over time for multiple versions of phpMyAdmin
and WordPress. According to Figure 5, the first imple-
mented CSA for WordPress requires the highest number
of implemented lines, which then drastically reduces for
the next versions of WordPress. During our evaluation, we
observed that on average, 80% of the code in the CSA remains
unchanged between two consecutive versions of the same
web application. In the case of WordPress, from 2016 to 2020,
analysts only need to add or modify an average of 10 lines
of code each year. For instance, although WordPress 4.7.19
was released three years after 4.7.1, an administrator can fully
reuse the CSA on version 4.7.1 with zero modifications.

Major releases and architectural changes. Major
changes in the architecture of web applications can affect
the reusability of CSAs. In our dataset, phpMyAdmin from
version 4.7.0 started incorporating the Composer package
manager and its provided third-party libraries. This resulted
in a 45% increase in Logical Lines of Code (LLOC) between
versions 4.6.0 to 4.7.0 in this application and 41 unresolved
function calls that need to be included in the CSA. This
increase in the number of unresolved function calls is evident
by the increase in the required number of new implemented
lines of code in the CSA in Figure 5.

Reusability of CSAs for third-party libraries across
web applications. Web applications rely on third-party
libraries to provide common functionality, such as sending
emails (e.g., PHPMailer). WordPress and Joomla in our
dataset both use PHPMailer in their source-code, which
allows Minimalist to reuse the CSA for unresolved function
calls of PHPMailer between WordPress and Joomla. Although
WordPress and Joomla use different versions of PHPMailer,
the list of unresolved function calls remains unchanged. This
enables analysts and developers to provide the CSA for popular
libraries, which can then be shared and reused to debloat a
wide range of web applications and their third-party libraries.

Cross-validation of CSA: While plugins bring new fea-
tures to web applications, they also introduce unresolved func-
tion calls to our analysis, which an analyst needs to address via

768

37 10 0
215

14 54

274

Jan-13 Jan-14 Jan-15 Jan-16 Jan-17

0

200

400

600

800

Jan-16 Jan-17 Jan-18 Jan-19 Jan-20

PMA Release Date

Li
ne

s o
f C

od
e

WordPress Release Date

WordPress

PMA

Figure 5: The number of new lines of code implemented in
CSAs for various versions of WordPress and PMA over time.

CSA. In our evaluation of WordPress’ plugins, Minimalist re-
quired the analyst to create CSAs that resolve 24 unbound func-
tion call-sites. Note that not all plugins introduce unresolved
function calls. In our dataset, only two out of five WordPress
plugins did: Jetpack and Health-check. During this evalua-
tion, we measured the time it takes for two different analysts
to resolve each instance in the CSA. To achieve this, two of
the authors independently implemented the CSA for the 24
instances of unresolved calls in the WordPress plugins while
recording the time required to address each instance.

Figure 6 shows the distribution of times it took both authors
to implement the CSA for each unresolved instance. Our
experiment shows that the time needed for each unresolved
instance varies depending on the complexity of the code.
However, there are instances (e.g., instances 8, 9, and 15
in Figure 6) that take less than 30 seconds to resolve. The
reason behind such short analysis times is the similarity of
the instance with previously handled cases, which reduces
the time of analysis and implementation. Overall, the first
and second authors of this paper spent 75 and 65 minutes
implementing the CSA for WordPress plugins, respectively.

In our examination of the CSAs, we also investigated the
differences in the authors’ implementation of the CSAs. Since
different analysts can create different CSAs for the same
unresolved instance, we assessed whether such differences
affect the overall accuracy of Minimalist. For this evaluation,
we inspected the implemented CSAs by the two authors. Our
analysis shows that, while each author follows different coding
practices, the differences in the implemented CSAs do not
lead to any discrepancies in the generated call-graph or later
on in the debloating process.

Overall, it took less than 20 person-hours for the authors
of this paper to implement the first version of a CSA for
each web application in our dataset. This process includes
inspecting the source-code of the the unresolved instances
listed in Table 1 and writing the CSA plugins. The reusability
of CSAs among different web applications and versions of the
same web application amortizes the effort of implementing
one for newer web applications. Furthermore, crowd-sourcing
the tasks in the implementation of CSAs among developers
and administrators of web applications (CSAs are globally
valid) can further minimize the effort of authoring CSAs.
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4.4 Debloating results of Minimalist
In this section, we evaluate the effectiveness of our debloat-

ing scheme by measuring the reduction in lines of code and
security vulnerabilities after debloating. Minimalist reuses the
same usage profiles as LIM to generate the entry-point infor-
mation and feature usage. We collected the access-log files for
each web application in our dataset using the Selenium scripts
available on LIM’s website and exercised the web applications.
For Drupal and Joomla, we adopted the same approach as
LIM, produced the Selenium scripts based on online tutorials
(See Table 4), and collected access-logs to get the ground truth
of coverage information from the LIM framework.

4.4.1 LLOC Reduction
According to McConnel [19], the number of programming

errors in an application is proportional to the size of the
program. Given the correlation between the size of an
application and its overall security, we look into the reduction
of web applications’ size in terms of LLOC. LLOC represents
the number of lines in the source code, excluding comments
and empty lines.

Figure 7 demonstrates the LLOC reduction for different
versions of web applications that Minimalist debloated. On
average, Minimalist debloated 17.78% of LLOC in all the
web applications in our dataset while using the implemented
CSAs. LIM debloats 53.47% of the web applications in our
dataset. As discussed before, LIM is a dynamic debloating
mechanism that removes all functions and scripts that are not
exercised during its training with Selenium scripts. As seen
in Figure 7, relying on dynamic traces for debloating leads
to more removed lines in debloated web applications. At the
same time, any slight variation in user interactions from the
dynamic training data with the web application can lead to
breakage. We discuss this issue in Section 4.5 in more detail.

According to Figure 7, we observe a sudden expansion
in phpMyAdmin 4.7 compared to its previous versions. As
noted by Amin Azad et al. [4], the sudden expansion of
the source code of phpMyAdmin 4.7 is due to changes in
development practices. Namely, phpMyAdmin 4.7.0 started
relying on external libraries, which introduced a large amount
of unused code and increased the size of phpMyAdmin 4.7.0
by 45% compared to phpMyAdmin 4.6.0. We observed that
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Figure 7: LLoC reduction of Minimalist. The 4.6.0*, presents
the LLoC reduction in WordPress and its five featured plugins.

Minimalist removes 62% of the lines in the external libraries
that reside in the vendor directory of phpMyAdmin 4.7.0.

4.4.2 Security Vulnerability Reduction
In addition to LLoC reduction, we evaluated Minimalist’s

security benefits by analyzing its debloating effect on security
vulnerabilities. Minimalist removes a vulnerability if it
resides in an unreachable function with respect to the users’
interaction with the web application.

In the Vulnerability Reduction section of Table 1, we com-
pare the number of removed vulnerabilities after debloating
each web application in our dataset using Minimalist and LIM.
In Table 1, we present the total number of security vulnera-
bilities in our dataset for each web application. The last two
columns present the number of removed vulnerabilities in our
work and LIM. On average, our debloating scheme can remove
38% of vulnerabilities in web applications, while LIM removes
73% of the vulnerabilities. Our analysis of the removed
vulnerabilities by LIM that Minimalist preserved shows that
all the vulnerable functions are reachable from the entry-points
in the analyzed access-log files. Thus, Minimalist does not
remove the vulnerable functions to preserve the functions
required by the users in the debloated web application.

Compared to Minimalist, LIM favors a more aggressive
approach on debloating web applications and consequently
removing vulnerabilities. A case study for this argument is
the CVE-2016-6609 vulnerability in phpMyAdmin 4.4.0 and
4.6.0. This vulnerability resides in an export module, where
an attacker can run arbitrary PHP commands using a specially
crafted database name. The excessive debloating of LIM
removes the security vulnerability as well as all but one of the
exporting functions from phpMyAdmin. Compared to LIM,
Minimalist preserves all exporting functions, thereby retaining
the vulnerable code but also all the export features that users
might require (more details in Appendix A). This demon-
strates the clear dichotomy between the dynamic, LIM-like
approaches that favor aggressive debloating gains (accepting
breakage while doing so) vs. Minimalist that aims to provide a
balance between debloating-based security gains and preserv-
ing the functionality and usability of the debloated software.

Overall, in our debloating experiments, we demonstrated
the reduction of LLOC in web applications and its effect



on eliminating vulnerabilities. Compared to prior work, we
observed higher debloating numbers in LIM. LIM was built as
a means to quantify the benefits of debloating and its potential
to remove security vulnerabilities, assuming the system is
provided with complete dynamic traces. In contrast, Mini-
malist is a practical debloating scheme that provides a balance
between debloating source-code, removing vulnerabilities,
and keeping debloated web applications usable.

4.5 Robustness of Debloated Web applications
In this experiment, we evaluated the robustness against

false positives of web applications debloated by Minimalist.
False positives (i.e., breakage) in a debloated web application
occur when a user’s interaction causes the invocation of an
(incorrectly) removed function. To this end, we used two
different approaches to investigate the occurrence of false
positives in debloated web applications: 1) Automatic random
testing and 2) Official testsuites.

4.5.1 Automatic Random Testing
In this experiment, we evaluated the robustness of debloated

web applications using the crawling feature of Burp-suite to
mimic random user behavior. We argue that there should not be
any false positives in the debloated web applications as long as
Burp-suite targets the already visited PHP scripts by Selenium.
Note that we debloated the web application based on the prior
user interaction recorded in the LIM’s Selenium. To assess
robustness, we crawled the debloated web applications using
Burp-suite with a custom-defined scope. This scope forces
Burp-suite to only crawl a predefined set of PHP scripts in the
debloated web application, which, in this case, are the PHP
scripts visited by Selenium. While Burp-suite will target the
same web application entry points, it will randomly vary the
passed parameters and values leading to execution paths that
differ from those observed during the Selenium interactions.
Whenever Burp-suite invokes a removed PHP function, the
debloated web application raises an alert. Thus, we calculated
the number of alerts raised by Burp-suite to examine the robust-
ness of the debloated web application. In our experiment, we
crawled the debloated WordPress and phpMyAdmin for one
hour each using Burp-suite. Collectively, Burp-suite sent 1,055
requests to both debloated WordPress (603) and phpMyAdmin
(452) and raised no false positives.

In the next step of our analysis, we looked into the function
coverage of the web applications while browsing with Burp-
suite compared to Selenium scripts. Note that the Burp-suite
browsing tests are only meaningful if they cover a different
set of functions in the web applications during their browsing
compared to the Selenium scripts. Thus, we recorded the set of
invoked functions during both Burp-suite and Selenium brows-
ing. Figure 9 (Appendix H) shows the set of different invoked
functions during both browsing patterns. Burp-suite browsing
led to the invocation of 114 (7.5%) functions that were not
covered during Selenium browsing. Importantly, we note that
the invocation of 114 new functions by Burp-suite would yield

up to 114 false positives in a dynamic debloating approach
such as LIM. However, Minimalist correctly debloated the
web applications using the access-log files and preserved the
necessary functionality to respond to users’ requests.

4.5.2 Official Testsuites
In a further experiment, we evaluated the breakage of de-

bloated applications by using the official testsuites obtained
from their respective Github repositories. In order to execute
the official testsuite of the web applications, we manually pre-
pared the testing environment, which included creating con-
figuration files, database tables, and inserting sample data to
the database. For this evaluation, we executed all 7,238 test
cases from the official testsuites of both phpMyAdmin and
WordPress on Minimalist-debloated web applications.

Table 2 presents the results of this experiment. Each set of
tests from the official testsuites belongs to a category, which is
shown in the second column of Table 2. The next two columns
present the total number of tests in each category and the num-
ber of failed tests. On average, the debloated web applications
in our dataset failed 12% of the official testsuite (885 out of
7,238 total unit-tests). During our experiment, we randomly
chose 6% of failed test cases (52 out of 885 total failed unit-
tests) and investigated the cause of failure. All 52 failures were
rooted in a few correctly debloated functions. The last column
in Table 2 shows the name of the debloated function that failed
the test cases in each group. Note that, these failed test cases are
not false positives of Minimalist. Specifically, our analysis of
both web applications reveals that neither of these functions are
reachable from the PHP files in the access-log, and were either
deprecated (e.g., wp_shrink_dimensions) or exclusively in-
voked from entry points not found in the access-log. Hence,
Minimalist correctly debloated the functions.

Table 2: On average, Minimalist-debloated web applications
fail 12% of official testsuite. The last column presents the
name of functions and the number of failed tests due to
debloating each function in paranthesis.

Web app Test Group Tests Example Reason
Total Failed

WordPress

Admin 741 22 get_help_tab(2),
comment_exists(5)

Authentication 16 0
Comment 311 21 unreigster_taxonomy(6)
File Operation 20 0
Others 5152 709 parseISO(6), getISO(4),

wp_shrink_dimensions(4),
is_comment_feed(5),
remove_permastruct (8)

Total 6240 752 (12%)

phpMyAdmin
Unit 509 39 npgettext(2),

StringReader::currentpos(3)
Engines 26 0
Classes 463 93 HasErrors(1), HasUserErrors(1),

getVersion(3), getPrintPreview(1),
locale_emulation(1)

Total 998 132 (13%)

In a further evaluation, we examined the set of features that
Minimalist preserves in the web application but LIM removes.
During this experiment, we observed that unlike Minimalist,
LIM causes up to 33% false positives in new real-user



browsing patterns on average (details in Appendix E). Overall,
in our evaluation, we performed several experiments on web
applications debloated by Minimalist and the state-of-the-art
approach, LIM [4]. We evaluated Minimalist and LIM in terms
of reducing the LLoC of web applications and its effect on
removing vulnerabilities. We observe that although dynamic
debloating techniques such as LIM have higher debloating
numbers compared to our approach, their debloating approach
causes false positives in debloated web applications.

Artifact Availability: Minimalist is open-source and
available at https://github.com/BUseclab/Minimalist. We
provide the source-code of our tool as well as containers that
we used to evaluate Minimalist, along with the instructions
for reproducing the experiments. These artifacts were major
components of our evaluation and we believe that they can
be useful for future research in this space.

5 Related Work
The application of software debloating to vulnerability

reduction has recently received a great deal of attention. Prior
work has applied debloating techniques to a wide spectrum
of software applications ranging from low-level platforms
such as kernels and containers [1, 8] to higher level bina-
ries [9,11,16,20–22,26–28,30] and web applications [4,5,15].

Debloating web applications. Prior work focused on
debloating different parts of web apps. SQLBlock protects
legacy web apps against SQL injection attacks by only
allowing a limited set of SQL APIs in each function of a
web application [13]. Orthogonally, Saphire protects web
applications by limiting the list of system calls available to
each PHP script extracted by static analysis [5]. Mininode
focuses on third-party dependencies in Node.js applications
and their code bloat [15]. Less is More, demonstrates that
debloating web apps can lead to the removal of high-severity
vulnerabilities and the reduction of up to 60% of their source
code [4]. The authors synthetically generate a set of baseline
usage profiles for their target applications and dynamically
record the files and lines covered while running their tests. We
reuse these profiles to reproduce baseline coverage information
and access-log entry points for our static debloating scheme.

Debloating browsers and other platforms. Hoe et al.
explored the idea of reinforcement learning for source code
removal in software debloating [11]. Abubakar et al. apply the
idea of debloating to kernels [1]. Orthogonally, Cofine aims
to build restrictive system call policies for container environ-
ments [8]. Another line of work focuses on the identification
and removal of unreachable code in binaries that can be used in
code-reuse attacks [27, 28]. Qian et al. debloat the Chromium
browser based on the feature usage of top Alexa websites [26].
Snyder et al. perform a cost-benefit study of providing browser
APIs to websites based on the usage statistics of each API and
historic CVEs targeting those APIs [30]. Our work protects
web applications against vulnerabilities, while the work of
Qian and Snyder et al. protect end users. Finally, Koo et al.

debloat up to 77% of NGINX and OpenSSH by analyzing spe-
cific configurations of each instance of these applications and
removing code that is not exercised with each configuration
profile [16]. Our work is similar in that we use an abstraction
of the outside environment to identify the set of features that
will not be used within that abstraction (i.e., web server logs).

6 Discussion and Limitations
In this section, we discuss some of Minimalist’s limi-

tations. Of particular interest are the code practices that
challenges Minimalist to generate a call-graph, and the fact
that manually-created CSAs might introduce unsoundness
into the generated call-graph. Furthermore, we elaborate on
extending Minimalist to debloat web applications using other
languages such as JavaScript.

Soundiness in CSAs: Minimalist resolved the majority of
function calls (99.95%) in the web applications in our dataset.
The remaining 0.05% of call-sites required the development
of CSAs, inducing small amounts of developer attention (even
zero in the case of WordPress 4.7.19). Obviously, unsound
CSAs can render the resulting call-graph unsound too. As
Minimalist cannot assess whether a CSA is sound, it is the de-
veloper’s responsibility to ensure the developed CSA preserves
soundiness. CSAs are necessary in scenarios where Minimalist
cannot reason about specific program constructs (e.g., custom
call-back schemes), or where control flow is determined based
on factors external to the web application’s code (e.g., by in-
formation stored in a database). In theory, these challenges
can become arbitrarily complex. In practice, we observed that
during the development of all the CSAs used in this work,
soundiness can be manually ascertained. Based on the obser-
vation that our evaluation covers the largest and most popular
web applications in use today, we are confident that CSAs for
other web applications can be created in a soundy manner too.

Unsupported PHP features in Minimalist: Minimalist
models most features in the PHP interpreter to generate call-
graphs. However, there are features in the PHP interpreter that
challenge any static analysis, including Minimalist. Among
the PHP features, there are two that Minimalist does not sup-
port in its current implementation: 1) dynamically loaded code
through eval and assert and 2) arguments passed by refer-
ence. eval and assert evaluate their string arguments as PHP
code, which can originate from arbitrary origins (e.g., a remote
URL) or computation (e.g., the decryption of encrypted con-
tent). Such functionality is widely recognized to be beyond the
reach and capability of static analysis techniques. Besides that,
there exists a set of PHP features that Minimalist partially sup-
ports, which includes, 1) dynamic file inclusion, 2) reflection
API, 3) higher-order functions, and 4) variable function calls.
All the above features use variables to either include a dynamic
script or invoke a function that is determined at runtime. Thus,
resolving the variables is an essential step to identifying the
invoked function. Minimalist over-approximates the value of
variables used in dynamic function calls. Thus, in cases where



the system cannot constrain the value of variables, it draws
edges to all defined functions in the web application. However,
such aggressive over-approximation limits the utility for de-
bloating purposes, and hence Minimalist calls the analyst’s
attention to these instances, which have to be resolved via CSA.
Table 3 includes the full list of features that Minimalist partially
supports or does not support. We identified the features listed
in Table 3 by relying on prior work such as Pixy [14], RIPS [6],
and Hills et al. [12], as well as our expertise on analyzing PHP
applications. Note that we cannot guarantee the completeness
of the features listed in Table 3 due to the complexity of the
PHP interpreter as well as its large codebase (1.3M LOC).

Table 3: The list of dynamic PHP features that Minimalist par-
tially supports or does not support while generating call-graph.

Type Function name
Partially Supported Features

Higher-order function call_user_func, call_user_func_array, array_map,
preg_replace_callback, array_walk, array_walk_recursive,
array_reduce, array_intersect_ukey, array_uintersect,
array_uintersect_assoc, array_intersect_uassoc, ar-
ray_uintersect_uassoc, array_diff, array_diff_ukey, ar-
ray_udiff_assoc, array_diff_uassoc, array_udiff_uassoc,
array_filter, array_udiff, usort, uasort, uksort, ob_start, ses-
sion_set_save_handler, assert_option, sqlite_create_function,
register_shutdown_function, register_tick_function,
set_error_handler, set_exception_handler, iterator_apply,
spl_autoload_register

Reflection API ReflectionClass, ReflectionMethod, ReflectionFunction
Dynamic file inclusion use of variables in script inclusion functions
Variable function call use of variables for invoking a function

Unsupported Features
dynamic loaded code eval, assert
Pass by reference

Extend Minimalist to Other Languages: In the current
implementation of Minimalist, we focus on PHP web appli-
cations, which power more than 77% of all live web sites [32].
While each programming language has unique characteristics,
there are similarities between PHP and other server-side
languages such as JavaScript or Python. For example, both
JavaScript and Python support variable function calls in
scripts, which is similar to PHP. Furthermore, both Python
and JavaScript also allows the dynamic inclusion of modules,
which is similar to include in PHP. These similarities suggest
that our approach of handling dynamic features in the PHP
interpreter is applicable to other interpreted applications such
as JavaScript and Python. Of course, the technical details
and idiosyncrasies of other languages would still require
significant engineering efforts. However, not all programming
languages provide such a diverse set of dynamic features.
For example, Java only provides a fraction of the dynamic
features (e.g., the reflection API) that are available in PHP.
As a result, the challenges of analyzing dynamic features
to debloat Java applications might be fewer than those of
interpreted languages such as PHP.

7 Conclusion
In this paper, we proposed Minimalist, a semi-automated

static-analysis-driven solution to debloat PHP web applica-
tions based on prior user interactions. Minimalist analyzes a

PHP web application and generates a call-graph and uses this
in tandem with historical information from access log-files.
By combining these two sources of information, Minimalist
is able to debloat the web application, while retaining the
code that could plausibly be exercised by users in the future,
without the need of dedicated and likely incomplete training
data. In our experiments on four popular web applications
in 12 versions, Minimalist debloated more than 18% of the
web applications’ code and removed 38% of historical CVEs
residing in their code. Our results demonstrate that Minimalist
captures the reliability guarantees of static analysis with the
aggressive-debloating abilities of dynamic analysis.
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Appendix
A Security Vulnerability Reduction
Dynamic debloating approaches such as LIM, which solely
relies on dynamic traces, favor aggressive debloating while
potentially breaking the functionality of the debloated web
applications. A case study for this argument is the CVE-2016-
6609 vulnerability in phpMyAdmin 4.4.0 and 4.6.0. This
vulnerability resides in the Phparray export module, where
an attacker can run arbitrary PHP commands using a specially
crafted database name. The Selenium scripts in LIM perform
a series of tasks on the phpMyAdmin web application. One of
the tasks includes exporting a table from the database to a .sql
file. This interaction leads LIM to debloat all the exporting
functionality in phpMyAdmin except for the module related
to exporting a SQL file. Thus, LIM removes the vulnerability
related to exporting tables to PHP arrays. At the same time, the
debloating in LIM breaks the functionality of phpMyAdmin,
resulting in an exception when a user tries to export data to any
format but a .sql file, such as PDF, CSV, and PHP Arrays.

B Tutorials
Table 4: List of tutorials collected from the first page of Google
search results

Drupal
https://websites.ucsf.edu/drupal-tutorials
https://www.greengeeks.com/tutorials/topic/drupal-tutorials/page/2/
https://www.fastcomet.com/tutorials/drupal
https://www.drupal.org/documentation/customization/tutorials
https://www.tutorialspoint.com/drupal/index.htm
https://www.hostinger.com/tutorials/drupal
https://www.ostraining.com/blog/drupal/
https://www.siteground.com/tutorials/drupal/

Joomla
https://websitesetup.org/build-website-with-joomla/
https://docs.joomla.org/Tutorials:Beginners
https://www.tutorialspoint.com/joomla/index.htm
https://www.siteground.com/tutorials/joomla/
https://www.hostinger.com/tutorials/joomla/
https://www.fastcomet.com/tutorials/joomla
https://www.cloudaccess.net/joomla-knowledgebase.html
https://www.joomla-monster.com/documentation/joomla-tutorials

C Single-entrypoint Web Applications
In our dataset, Joomla and Drupal provide dedicated mech-
anisms to route incoming requests to their corresponding
internal modules. In these web applications, a specific file
(e.g., “index.php”) is responsible for all incoming requests,
and the desired module is communicated as an extra parameter.
For instance, a sample URL from access-logs of Joomla would
look like /index.php/author-login. For this request, the routing
logic inside index.php is responsible for loading the correct
module, which in this case is the authentication module.
We used a customized reachability analysis in order to analyze
the access-log files for single-entrypoint web applications.

Note that every module in web applications like Joomla
is reachable from the routing mechanism, and the routing
mechanism loads the requested module based on passed
parameters. In this analysis, for every request in the access-log
file, Minimalist extracts the accessed file and the requested
module in the web application using regexes. During the
reachability analysis of the accessed files (e.g., index.php in
Joomla), Minimalist only preserves the invoked functions in
the requested module passed as a parameter and removes the
rest of the modules in the web application.

D Variable Analysis Pseudocode
1 # n is the AST node under analysis
2 # ValueSet is the hashmap
3 # which holds all the variable values
4 function RecordVariable(Node n) {
5 # This function takes a node in the AST
6 # and returns the assigned value
7 Value = Resolve_Variable(Node n)
8
9 # Variable_name take a node in the AST

10 # and returns the name of the variable
11 Var_name = Variable_name(Node n)
12
13 if Var_name in ValueSet {
14 # If Minimalist already recorded
15 # a value for the same variable name ,
16 # merge the values using OR operation
17 ValueSet[Var_name] += "|" + Value
18 } else {
19 ValueSet[Var_name] = Value
20 }
21 return
22 }

Listing 4: Pseudocode of Minimalist variable analysis.

E Removal of Features
In this experiment, we look for features that are kept by
Minimalist but debloated by LIM. As a case study, we
inspected the source code of the debloated WordPress 4.6.
The Selenium script for WordPress performs a series of
common tasks such as creating a new user, signing in to the
web application, creating posts, uploading media files, and
so on. One of the exercised tasks within WordPress is to attach
an image to a blog post. WordPress uses the ID3 library to
generate the metadata for media files. ID3 supports various file
formats, covering images, videos, and audio. For each type of
media file, ID3 invokes a dedicated function within its library.
The Selenium script exclusively uploaded an image with
the PNG format to the deployed web application. Thus, after
debloating the web application using LIM, uploading any
media file other than PNG-formatted pictures results in an error
as that functionality is debloated. To confirm this finding,
we performed an experiment with the debloated version of
WordPress 4.7.1 by LIM and identified that a user indeed
cannot upload any media files other than PNG-formatted
pictures to the debloated web application. Unlike LIM, when
Minimalist generates the call-graph of WordPress, all the
uploading functionality for different file types is reachable
from the media upload script in WordPress.



Furthermore, we investigated the possible breakage in de-
bloated web applications by deploying the web applications
and interacting with them. We started by taking the existing
tutorials encoded as Selenium tests provided by the authors
of Less is More and generating new tests by mutating existing
ones. Our mutation consists of performing the same actions
provided by the Less is More Selenium tests while changing the
options on the forms (e.g., changing check boxes, selecting a
different option in drop down lists, or uploading a different file
type) or interacting with another action on the same page (e.g.,
Saving the post as a draft instead of publishing in WordPress).

Table 5: Aggressive debloating of web applications by LIM
leads to reducing the usability of debloated web application.

Web App # Mutated Tasks # Breakage
WordPress 14 5 (36%)
phpMyAdmin 13 4 (30%)
Total 27 9 (33%)

Table 5 shows a summary of our experiments on WordPress
4.7.1 and phpMyAdmin 4.7.0. The last column shows the
number of mutated tasks that led to breakage (i.e., interacting
with a feature that has been removed via debloating in LIM).
Our observation shows that aggressive debloating of LIM
leads to breakage for 33% of the mutated actions on the
debloated web applications. For the same set of mutated tests,
our analysis of debloated web applications by Minimalist did
not show any breakage. Table 6 shows detailed information of
the performed tasks and the causes of false positives in LIM.

F Breakage in Debloated Web applications
Table 6: Aggressive debloating of web applications leads to
raising false positives (i.e., invocation of removed function)
in debloated web apps.

Task Modified operation Result Removed function
WordPress 4.7.1

Login Wrong Credentials Success -
Create New Post Save draft Fail delete_post_thumnail
Install theme Upload invalid file Success -
Modify theme Add menu Fail sanitize
Change settings Change default role Success -
Categories Bulk delete Fail wp_delete_term
Categories View posts Success -
Comments Add image Success -
Comments Reply with formatting Success -
Add user Change role Success -
Modify user Bulk change roles Success -
Upload media Upload non-PNG image Fail wp_handle_upload_error
Upload media Bulk delete Success -
Upload media Upload Video Fail wp_read_video_metadata

phpMyAdmin 4.7.0
Login Wrong Credentials Success -
Create database Change collation Success -
Create table Use Json col. type Success -
Create table Add comments Success -
Create table change storage engine Success -
Run Query Enable rollback Fail PMA_handleRollbackRequest
Create view Create view Success -
Export Change format to Json Fail exportHeader
Add user Change auth type Success -
Check status View query Tab Fail server_status_queries.php
View variables Edit a variable Fail setValueAction
Databases Enable statistics Success -
Databases Drop multiple dbs Success -

G Fuzzy-resolved Function Calls
On average, Minimalist resolves 4.72% of all function calls
to a subset of defined functions in the web applications. A key
factor in the fuzzy-resolving of function calls in Minimalist is
the number of candidate functions for each dynamic function
call. For each web application in our dataset, we analyzed
each regex by Minimalist for the dynamic function calls and
calculated the number of defined functions that match each
regex. Due to the space limit, we only present the findings for
four of our web applications in Figure 8.
Our observation shows that on average, Minimalist resolves
90% of all dynamic function calls to less than 1% of the
defined functions in each web application. As an example,
looking at WordPress 4.6 (blue line in Figure 8), we observed
that Minimalist resolved 871 (94%) of all dynamic function
calls to fewer than 66 (1%) functions in the source-code. Our
observation shows that there are seven function calls in Drupal
7.34 (gray line in Figure 8), which Minimalist resolves to
the majority of the defined functions (85%) in Drupal. Our
analysis of Drupal 7.34 shows that all of these function calls
have the similar code pattern, which can be easily addressed
by implementing one piece of code as a CSA to resolve the
dynamic function calls.
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Figure 8: The number of functions that match the generated
regular expressions for dynamic function calls by Minimalist.
The x-axis shows the percentages of dynamic function call
in each web application. The y-axis presents the percentages
of defined functions that matches the regular expressions
generated by Minimalist.

H Function Coverage of Random Testing

Figure 9: The function coverage of Burp random testing
compared to Selenium browsing for debloated PhpMyAdmin
(left) and WordPress (right).
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