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Abstract. Complexity rank for C∗-algebras was introduced by the second author and Yu
for applications towards the UCT: very roughly, this rank is at most n if you can repeatedly
cut the C∗-algebra in half at most n times, and end up with something finite-dimensional. In
this paper, we study complexity rank, and also a weak complexity rank that we introduce;
having weak complexity rank at most one can be thought of as “two-colored local finite-
dimensionality”.

We first show that, for separable, unital, and simple C∗-algebras, weak complexity rank
one is equivalent to the conjunction of nuclear dimension one and real rank zero. In par-
ticular, this shows that the UCT for all nuclear C∗-algebras is equivalent to equality of the
weak complexity rank and the complexity ranks for Kirchberg algebras with zero K-theory
groups. However, we also show using a K-theoretic obstruction (torsion in K1) that weak
complexity rank one and complexity rank one are not the same in general.

We then use the Kirchberg–Phillips classification theorem to compute the complexity
rank of all UCT Kirchberg algebras: it equals one when the K1-group is torsion-free, and
equals two otherwise.

1. Introduction

Background. In recent work, the second author and Yu [35] introduced the
notion of decomposability of a C∗-algebra over a class of C∗-algebras. This was
motivated by two earlier ideas: the first of these was decomposability in coarse
geometry (introduced by Guentner, Tessera, and Yu [16, 17]) and dynamics
(introduced by Guentner, the second author, and Yu [18]); the second was
nuclear dimension (introduced by Winter and Zacharias [40]).

Before going on with the general discussion, let us state the formal definition.
For a subset S of a C∗-algebra A and a ∈ A, write “a ∈ǫ S” to mean that there
is s ∈ S with ‖a− s‖ < ǫ.

Definition 1.1. Let A be a unital C∗-algebra, and let C be a class of unital
C∗-algebras. Then A decomposes over C if, for every finite subset X of A and
every ǫ > 0, there exist C∗-subalgebras C, D, and E of A that are in the class C
and contain 1A, and a positive contraction h ∈ E such that
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(i) ‖[h, x]‖ < ǫ for all x ∈ X ;
(ii) hx ∈ǫ C, (1A − h)x ∈ǫ D, and h(1A − h)x ∈ǫ E for all x ∈ X ;
(iii) for all e in the unit ball of E, e ∈ǫ C and e ∈ǫ D.

In words, the definition says that one can use an almost central element
(h above) to locally cut the C∗-algebra A into two pieces (C and D above)
with well-behaved approximate intersection (E above).

The main application of this notion is to the Universal Coefficient Theorem
(UCT) of Rosenberg and Schochet [31]. For this paper, we do not need any
details about the UCT; suffice to say that the UCT is a K-theoretic property
that a C∗-algebra may or may not have, and that whether or not the UCT
holds for all nuclear C∗-algebras is an important open question. The following
theorem is the main result of [35]. For the statement, recall that a unital
C∗-algebra A is a Kirchberg algebra if it is separable, nuclear, and if, for any
nonzero a ∈ A, there are b, c ∈ A with bac = 1A.

Theorem 1.2. If A is a separable, unital C∗-algebra that decomposes over
the class of nuclear UCT C∗-algebras, then A itself is nuclear and satisfies
the UCT. Moreover, all nuclear C∗-algebras satisfy the UCT if and only if
any unital Kirchberg algebra with zero K-theory decomposes over the class of
finite-dimensional C∗-algebras.

Due to the importance of the UCT, it thus becomes interesting to better
understand the class of C∗-algebras that decompose over finite-dimensional
C∗-algebras. Inspired by this and coarse geometry [17, Def. 2.9], the second
author and Yu introduced a “complexity hierarchy” on C∗-algebras: we say
a C∗-algebra has complexity rank zero if it is locally finite-dimensional (if A is
separable, this is the same as being an AF algebra), and has complexity rank
at most n+ 1 if it decomposes over the class of C∗-algebras of complexity rank
at most n; note that having complexity rank at most one is then the same
as decomposing over the class of finite-dimensional C∗-algebras. One of our
goals in this paper is to better understand the complexity rank for Kirchberg
algebras, partly due to the connections to the UCT, and partly for the intrinsic
interest of complexity rank as an invariant in its own right.

Results. We first aim to make the connection between decomposability over
the class of finite-dimensional C∗-algebras and nuclear dimension one more
precise. For this purpose, we introduce the notion of weak decomposability:
this is a variant of Definition 1.1 above “with conditions on E dropped”. There
is then a corresponding notion of weak complexity rank. Let us spell out what
this means for the weak complexity rank to be at most one.

Definition 1.3. Let A be a unital C∗-algebra. Then A is of weak complexity
rank at most one if, for every finite subset X of A and every ǫ > 0, there
exist finite-dimensional C∗-subalgebras C and D of A that contain 1A, and
a positive contraction h ∈ A such that
(i) ‖[h, x]‖ < ǫ for all x ∈ X ;
(ii) hx ∈ǫ C and (1A − h)x ∈ǫ D for all x ∈ X .
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We think of the pair {h, 1A − h} of approximately central positive con-
tractions in Definition 1.3 as being a “partition of unity”, and we think of
having weak complexity rank at most one as being “two-colored locally finite-
dimensional”.

This notion turns out to be very closely related to nuclear dimension one.

Theorem 1.4. For a separable, unital, simple C∗-algebra A, the following are
equivalent.
(i) A has nuclear dimension at most one, and real rank zero.
(ii) A has weak complexity rank at most one.

See Theorem 3.2 below for a more general version. Having established Theo-
rem 1.4, it is important to determine if weak complexity rank and complexity
rank are actually the same: indeed, if they were, Theorem 1.2 (plus the fact
that all Kirchberg algebras have nuclear dimension one [6, Thm. G] and real
rank zero [41]) would imply the UCT for all nuclear C∗-algebras. This question
motivates the next theorem.

Theorem 1.5. Let A be a unital C∗-algebra of complexity rank at most one.
Then K1(A) is torsion-free.

As there are Kirchberg algebras with arbitrary countable K-theory groups
[27, Sec. 3], it follows from Theorems 1.4 and 1.5 that complexity rank and
weak complexity rank are different in general. Whether they are equal in
special cases is still interesting, however: Theorems 1.2 and 1.4 show that
the UCT for all nuclear C∗-algebras is equivalent to equality of the weak and
strong complexity ranks for Kirchberg algebras with zero K-theory.

For general Kirchberg algebras, all we can say about the complexity rank is
that it is at least one, and that it is at least two if the K1-group has torsion. If,
however, we assume the UCT, and thus give ourselves access to the Kirchberg–
Phillips classification theorem [20, 25], then we get a complete computation.

Theorem 1.6. All unital UCT Kirchberg algebras have complexity rank one
or two. Moreover, the rank one case occurs if and only if the K1-group of the
C∗-algebra is torsion-free.

This theorem provides a striking contrast to the case of nuclear dimension/
weak complexity rank, which are both always one for Kirchberg algebras.

Outline of the paper. In Section 2, we discuss the main definitions and give
some reformulations of the main definitions (the version of decomposability
used in this introduction is one of the stronger ones). We also establish some
consequences of weak complexity rank for nuclear dimension and existence
of projections and show that the complexity rank is subadditive on tensor
products.

In Section 3, we study the class of C∗-algebras with weak complexity rank
one in detail and in particular establish Theorem 1.4. Most of the section does
not need anything beyond basic facts about nuclear dimension, as established
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in the seminal paper [40]. However, the results going from weak complexity
rank one to real rank zero are different: they use deep structure results for
simple C∗-algebras from [38, 29, 13, 9]. Moreover, some of the arguments used
for this implication are due to the anonymous referee: see the acknowledgments
at the end of the paper for details.

In Section 4, we use techniques from controlledK-theory as developed in [34]
to establish Theorem 1.5. This and the results of the previous section allow
us to distinguish weak complexity rank and complexity rank. They will also
be used for our results determining the complexity rank of UCT Kirchberg
algebras in the next section.

In Section 5, we establish Theorem 1.6. Our argument proceeds by adapting
a technique developed by Enders [14] to estimate the nuclear dimension of
Kirchberg algebras. The Kirchberg–Phillips classification theorem [25, 20] is
crucial here; we note that we need the existence and uniqueness theorems for
morphisms that come as part of this (see Theorems 5.8 and 5.13 below for
the precise versions we use), not “only” the fact that UCT Kirchberg algebras
are classified by K-theory. Following Enders, we also need Rørdam’s crossed
product models for Kirchberg algebras [27].

Finally, in the short Section 6, we list some natural questions.

Notation and conventions. The symbol A is reserved throughout for a C∗-
algebra. The unit of A will be denoted 1, or 1A if there is risk of confusion.

Let ǫ > 0. For a, b ∈ A, we write “a≈ǫ b” if ‖a− b‖ < ǫ. For a subset S of A
and a ∈ A, we write “a ∈ǫ S” if there exists s ∈ S such that ‖a− s‖ < ǫ. For
subspaces S and T of A, we write “S ⊆ǫ T ” if, for all elements s of the unit
ball of S, there exists t in the unit ball of T with ‖s− t‖ < ǫ.

For a C∗-algebra A, A1 := {a ∈ A | ‖a‖ ≤ 1} is the closed unit ball, and
A+ := {a ∈ A | a ≥ 0} is the positive elements. The multiplier algebra of a C∗-
algebra A is written M(A). The symbol K denotes the compact operators
on ℓ2(N). For C∗-algebras A and B, A⊗B is always the spatial (equivalently,
minimal) tensor product. For a unitary u ∈ M(A), Adu : A → A denotes the
conjugation automorphism defined by a 7→ uau∗.

For a C∗-algebra A, K0(A) and K1(A) are its even and odd (topological)
K-theory groups, and K∗(A) := K0(A) ⊕K1(A) is the corresponding graded
group; here “graded” means that the direct sum decomposition is remembered
as part of the structure. Homomorphisms α : K∗(A) → K∗(B) will always be
assumed to be graded, i.e. satisfying α(Ki(A)) ⊆ Ki(B) for i ∈ {0, 1}. If φ
is a ∗-homomorphism from A to B, or an element of KK0(A, B), we write
φ∗ : K∗(A) → K∗(B) for the induced (graded) homomorphism, and we will
also use the same notation for the maps φ∗ :Ki(A)→Ki(B) for i ∈ {0,1} that
are defined by restricting (and co-restricting) φ∗.

2. Definitions and basic properties

In this section, we introduce the main definitions that we will study in this
paper.
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Definition 2.1. Let C be a class of C∗-algebras. A C∗-algebra A is locally
in C if, for any finite subset X of A and any ǫ > 0, there is a C∗-subalgebra C
of A that is in C, and such that x ∈ǫ C for all x ∈ X .

The following definition is a priori weaker than Definition 1.1 and should be
regarded as the “official” definition of what it means to decompose over a class
of C∗-algebras. The two will be shown to be equivalent in Corollary 2.14 below.

Definition 2.2. Let C be a class of unital C∗-algebras. A unital C∗-algebra
A decomposes over C if, for every finite subset X of A and every ǫ > 0, there
exist C∗-subalgebras C, D, and E of A that are in the class C, and a positive
contraction h ∈ A such that
(i) ‖[h, x]‖ < ǫ for all x ∈ X ;
(ii) hx ∈ǫ C, (1− h)x ∈ǫ D, and h(1 − h)x ∈ǫ E for all x ∈ X ;
(iii) E ⊆ǫ C and E ⊆ǫ D;
(iv) for all e ∈ E1, he ∈ǫ E.

We now come to the fundamental definition for this paper.

Definition 2.3. Let α be an ordinal number.
(i) If α = 0, let D0 be the class of unital C∗-algebras that are locally finite-

dimensional.
(ii) If α > 0, let Dα be the class of unital C∗-algebras that decompose over

C∗-algebras in
⋃

β<α Dβ .
A unital C∗-algebra has finite complexity if it is in Dα for some α, in which
case its complexity rank is the smallest possible α.

Remark 2.4. Definition 2.3 is partly motivated by a notion of geometric
complexity due to Guentner, Tessera, and Yu [17, Def. 2.9]. In previous work
of the second author and Yu [35, App. A.2], we showed that if X is a bounded
geometry metric space then the geometric complexity of X in the sense of [17,
Def. 2.9] is an upper bound for the complexity rank of the uniform Roe algebra
C∗

u(X); there are other examples based on groupoid theory coming from [19].
We will not pursue this further here, however.

We record three basic lemmas for use later in the paper. The first two follow
from straight-forward transfinite inductions on α that we leave to the reader.

Lemma 2.5. Let A1, . . . , An be unital C∗-algebras. Then, for any ordinal α,
A1 ⊕ · · · ⊕An is in Dα if and only if each Ai is in Dα. �

Lemma 2.6. For any ordinal α, the class Dα is closed under taking quotient
C∗-algebras. �

Lemma 2.7. For any ordinal α, any unital C∗-algebra that is locally in Dα

is in Dα. Moreover, Dα is closed under inductive limits with unital connecting
maps.

Proof. As the definitions are all local in nature, the fact that a C∗-algebra that
is locally in Dα is in Dα is straight-forward. To see closure under inductive
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limits, note that, by Lemma 2.6, we may assume that the connecting maps in
a given inductive system are injective. Given this, the part on inductive limits
follows from the part on local containment. �

2.8. Equivalent formulations. In this subsection, we show that the defini-
tion of decomposability bootstraps up to stronger versions of itself. We then
use techniques of Christensen [11] to show that the class of C∗-algebras of
complexity rank at most one admits a particularly nice characterization.

We need four very well-known lemmas; we record them for the reader’s
convenience as we will use them over and over again.

Lemma 2.9. Let a and b be bounded operators on a Hilbert space with b
normal. Then the spectrum of a is contained within distance ‖a − b‖ of the
spectrum of b.

Proof. We need to show that if d(z, spectrum(b)) > ‖a − b‖, then a − z is
invertible. Indeed, in this case, the continuous functional calculus implies that
‖(b− z)−1‖ < ‖a− b‖−1. Hence

‖(a− z)(b− z)−1 − 1‖ ≤ ‖(a− z)− (b− z)‖‖(b− z)−1‖ < 1,

whence (a− z)(b− z)−1 is invertible, and so a− z is invertible too. �

Lemma 2.10. Let a ∈ A be an element in a C∗-algebra, let ǫ > 0, and let B
be a C∗-subalgebra of A such that a ∈ǫ B.
(i) If a is positive, then there is positive b∈B such that ‖b‖≤ ‖a‖ and a≈2ǫ b.
(ii) If a is a projection and ǫ < 1/2, there is a projection p ∈ B such that

a ≈2ǫ p.

Proof. For part (i), let b0 ∈ B be such that a≈ǫ b0. Let b1 =
1
2 (b0 + b∗0), which

is selfadjoint and still satisfies b1 ≈ǫ a. Then b1 has spectrum contained in
(−ǫ, ‖a‖+ ǫ) by Lemma 2.9. Hence if f : R → R is defined by

f(t) :=





0, −∞ < t ≤ 0,

t, 0 < t < ‖a‖,
‖a‖, ‖a‖ ≤ t < ∞,

then by the functional calculus, b := f(b1) is a positive contraction such that
b ≈ǫ b0. Hence a ≈ǫ b ≈ǫ b0, and we are done.

Part (ii) is similar: this time, b1 chosen as above has spectrum contained in
(−ǫ, ǫ) ∪ (1− ǫ, 1 + ǫ), and if χ is the characteristic function of (1/2,∞), then
p := χ(b1) is a projection in B such that p ≈2ǫ a. �

Lemma 2.11. Let a be a selfadjoint element of a C∗-algebra A such that
‖a2 − a‖ < ǫ ≤ 1/4. Then there is a projection p ∈ A such that p ≈√

ǫ a.

Proof. Let t be in the spectrum of a. Then t(1− t) is in the spectrum of a2 − a,
so |t(1− t)|< ǫ. Hence either |t|<√

ǫ, or |1− t|<√
ǫ, and so the spectrum of a

is contained in (−√
ǫ,
√
ǫ) ∪ (1−√

ǫ, 1 +
√
ǫ). As

√
ǫ ≤ 1/2, the characteristic

function χ of (1/2,∞) is continuous on the spectrum of a, and the functional
calculus implies that p := χ(a) is a projection that satisfies p ≈√

ǫ a. �
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Lemma 2.12. Let A be a C∗-algebra. Let p, q be projections in A, and assume
that ‖p− q‖ < ǫ ≤ 1/4. Then there is a unitary u in the unitization of A (or
in A itself if it is already unital) such that ‖u− 1‖ < 10ǫ and p = uqu∗.

Proof. Passing to the unitization of A if necessary, we may assume A is unital.
Let v=(1− p)(1− q)+ pq. Then one computes that v− 1= p(q− p)+ (p− q)q,
so

(1) ‖v − 1‖ < 2ǫ.

As 2ǫ < 1, v is invertible. Moreover, one checks that vp= pq= qv, so vpv−1 = q.
Hence also v∗vp = v∗qv = (qv)∗v = (vp)∗v = pv∗v, so in particular, (v∗v)−1/2

commutes with p. Let now u := v(v∗v)−1/2. Then u is unitary, and the previous
computations show that up = v(v∗v)−1/2p = vp(v∗v)−1/2 = qv(v∗v)−1/2 = qu,
so upu∗ = q. Note moreover that

‖v∗v − 1‖ ≤ ‖v∗ − 1‖‖v‖+ ‖v − 1‖ < ǫ(1 + 1 + 2ǫ) = 2ǫ(1 + ǫ) < 3ǫ

as ǫ ≤ 1/4. Hence, by the functional calculus,

(1 + 3ǫ)−1/2 ≤ (v∗v)−1/2 ≤ (1− 3ǫ)−1/2,

and so, by elementary estimates using that ǫ ≤ 1/4, ‖1 − (v∗v)−1/2‖ ≤ 4ǫ. It
follows from this and line (1) (which also implies that ‖v‖ < 1 + 2ǫ) that

‖1− u‖ ≤ ‖v‖‖1− (v∗v)−1/2‖+ ‖1− v‖ < (1 + 2ǫ)4ǫ+ 2ǫ = 10ǫ,

as claimed. �

We hope the following lemma clarifies the definition of decomposability; see
the arXiv version of the paper for a schematic diagram of what this lemma
says.

Lemma 2.13. Let C be a class of unital C∗-algebras. A unital C∗-algebra A
decomposes over C if and only if it satisfies the following condition.

For every finite subset X of A and every ǫ > 0, there exist C∗-subalgebras C,
D, and E of A that are in the class C, and a positive contraction h ∈ A such
that
(i) ‖[h, x]‖ < ǫ for all x ∈ X;
(ii) hx ∈ǫ C, (1A − h)x ∈ǫ D, and h(1A − h)x ∈ǫ E for all x ∈ X;
(iii) E ⊆ǫ C, E ⊆ǫ D, and 1E ∈ C ∩D;
(iv) h= hE + p and 1A − h= (1E − hE) + q, where hE is a positive contraction

in E, and p ∈ C and q ∈ D are projections that are orthogonal to 1E and
satisfy 1A = 1E + p+ q.

Proof. Assume first that A satisfies the conditions from Lemma 2.13. Let h,
C, D, and E have the properties in Lemma 2.13 for a given X and ǫ; we claim
they also satisfy the properties in Definition 2.2. Indeed, we need only check
that, for any e ∈ E1, we have he ∈ǫ E. For this, note that if h = hE + p with
hE ∈ E and p1E = 0, then he = (hE + p)1Ee = hEe, which is (precisely) in E.

Conversely, assume A satisfies the conditions from Definition 2.2. Let ǫ > 0,
and let X be a finite subset of A. Let δ > 0, to be determined in the course of
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the proof in a way depending only on ǫ. Let C, D, and E be C∗-algebras in
C and h a positive contraction that have the properties in Definition 2.2 with
respect to the finite set X ∪ {1A} and δ. Throughout the proof, the notation
“δn” refers to a quantity that converges to zero as δ tends to zero, and that
depends only on δ.

Now, as 1E ∈δ C, Lemma 2.10 (ii) gives δ1 and a projection pE ∈ C such
that ‖pE − 1E‖ < δ1. Hence, by Lemma 2.12, there are a unitary u ∈ A and
δ2 > 0 such that ‖u− 1A‖ < δ2 and so that u1Eu

∗ = pE . Similarly, there are
a projection qE ∈ D and a unitary v ∈ A such that ‖v − 1A‖ < δ3 for some δ3,
and such that v1Ev

∗ = qE . Hence, replacing C with u∗Cu and D with v∗Dv,
we may assume that C, D, E and h satisfy the conditions in Definition 2.2 for
X ∪ {1A} and some δ4 > 0, and moreover that 1E ∈ C ∩D.

As 1Eh1E ∈δ E, Lemma 2.10 gives a positive contraction hE ∈ E with
1Eh1E ≈2δ hE . Moreover, as h1E ∈δ E, we have (1A − 1E)h1E ≈δ 0, and
taking adjoints gives 1Eh(1A − 1E) ≈δ 0. Hence if we write

hE⊥ := (1A − 1E)h(1A − 1E),

then

h ≈2δ 1Eh1E + (1A − 1E)h(1A − 1E) ≈2δ hE + hE⊥ .

Replacing h with hE + hE⊥ , we may assume h is a sum of two positive contrac-
tions, one of which is in E, and one of which is orthogonal to E; in particular,
h multiplies E into itself. Note then that

h(1A − h) = hE(1E − hE)− h2
E⊥ + hE⊥ ,

and so hE(1E − hE)− h2
E⊥ + hE⊥ ∈δ4 E. As hE(1E − hE) is in E, this implies

that h2
E⊥ − hE⊥ ∈δ4 E; however, h2

E⊥ − hE⊥ is in (1A − 1E)A(1A − 1E), so we
get h2

E⊥ − hE⊥ ≈δ4 0. Assuming δ is small enough to ensure that δ4 < 1/4,
Lemma 2.11 implies there is δ5 and a projection p ∈ (1A − 1E)A(1A − 1E)
such that p ≈δ5 hE⊥ . Now, as h = h · 1A ∈δ5 C and as hE ∈ E ⊆δ4 C, we have
that there is δ6 such that p ∈δ6 C. As 1E ∈ C and as p is orthogonal to 1E ,
Lemma 2.10 (ii) gives a projection pC ∈ (1C − 1E)C(1C − 1E) and δ7 > 0 such
that pC ≈δ7 p. Hence Lemma 2.12 gives a unitary u ∈ (1A − 1E)A(1A − 1E)
and δ8 such that ‖(1A − 1E)− u‖ < δ8 and such that upCu

∗ = p. Replacing C
by (1E + u)C(1E + u∗), we may assume that C contains p.

On the other hand, we have 1A − h = 1E − hE + (1A − 1E − p). Write
q = (1A − 1E − p). Arguing analogously to the above, we also see that q ∈δ9 D
for some δ9, and so that there exists a unitary v ∈ (1A − 1E)A(1A − 1E) such
that ‖(1A − 1E)− v‖ < δ10 for some δ10 and such that v∗qv ∈D. Replacing D
by (1E + v)D(1E + v∗) and taking the original δ small enough, we are done. �

We are now able to deduce that Definition 2.2 is equivalent to the definition
of decomposability (Definition 1.1) that we used in the introduction.

Corollary 2.14. Let C be a class of unital C∗-algebras that contains C and
is closed under finite direct sums and under taking ∗-isomorphic C∗-algebras.
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A unital C∗-algebra A decomposes over C if and only if it satisfies the following
condition.

For every finite subset X of A and every ǫ > 0, there exist C∗-subalgebras C,
D, and E of A that are in the class C and contain 1A, and a positive contraction
h ∈ E such that
(i) ‖[h, x]‖ < ǫ for all x ∈ X;
(ii) hx ∈ǫ C, (1− h)x ∈ǫ D, and h(1− h)x ∈ǫ E for all x ∈ X;
(iii) E ⊆ǫ C and E ⊆ǫ D.

Proof. It is immediate that the condition in Corollary 2.14 implies the condi-
tion in Definition 2.2.

For the converse, given X and ǫ, let h, C, D, E satisfy the conditions
in Lemma 2.13. Define E′ := Cp ⊕ E ⊕ Cq, C′ := span{C, 1A}, and D′ :=
span{D, 1A}. Note that E′ is ∗-isomorphic to E (if p = q = 0), E ⊕ C (if one
of p or q is zero), or E ⊕ C ⊕ C (if both p and q are nonzero). Similarly, C′

(respectively D′) is isomorphic to C or C ⊕ C (respectively D or D ⊕ C); in
all cases, E′, C′, and D′ are therefore still in C. Direct checks then show that
E′, C′, D′, and h satisfy the conditions in Corollary 2.14. �

In the remainder of this section, we show that complexity rank at most one
bootstraps up to a stronger version of itself. This will be useful for the results
of Section 4 on torsion in K1-groups. For this, we need to recall a theorem
of Christensen [11, Thm. 5.3] about perturbing almost inclusions of finite-
dimensional C∗-algebras to honest inclusions.

Theorem 2.15 (Christensen). Let A be a C∗-algebra, and let E and C be
C∗-subalgebras of A with E finite-dimensional. If 0 < ǫ ≤ 10−4 and E ⊆ǫ C,
then there exists a partial isometry v ∈ A such that ‖v − 1E‖ < 120

√
ǫ and

vEv∗ ⊆ C. �

Proposition 2.16. A unital C∗-algebra A has complexity rank at most one if
and only if it has the following property.

For any finite subset X of the unit ball of A and any ǫ > 0, there exist
finite-dimensional C∗-subalgebras C, D, and E of A that contain the unit and
a positive contraction h ∈ E such that
(i) ‖[h, x]‖ < ǫ for all x ∈ X;
(ii) hx ∈ǫ C, (1A − h)x ∈ǫ D and (1A − h)hx ∈ǫ E for all x ∈ X;
(iii) E is contained in both C and D.

Proof. Using Corollary 2.14, a C∗-algebraA with the property in the statement
has complexity rank at most one. Assume then that A has complexity rank
at most one, and let X be a finite subset of the unit ball of A, and let ǫ > 0.
Fix δ > 0, to be chosen by the rest of the proof in a way depending only on ǫ.
Throughout the proof, anything called “δn” for some n is a positive constant
that depends only on the original δ, and tends to zero as δ tends to zero.

Let h0, C0, D0, and E0 satisfy the conclusion of Lemma 2.13 for X and δ; in
particular, then each of C0, D0, and E0 are unital and locally finite-dimensional
C∗-subalgebras of A (although not necessarily with the same unit as A), and we
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can write h= hE0 + p, where hE0 ∈E0 is a positive contraction, p ∈C0 is a pro-
jection that is orthogonal to 1E0 , and q := 1A − 1E0 − p is a projection in D0.

Choose a finite-dimensional C∗-subalgebra E1 of E0 that contains the unit
1E0 of E0 (whence 1E0 is also the unit of E1), and is such that h(1A − h)x ∈2δ

E1 for all x ∈ X , and such that hE0 ∈2δ E1. Choose a finite-dimensional
C∗-subalgebra C1 of C0 such that E1 ⊆2δ C1, hx ∈2δ C1 for all x ∈ X so
that p ∈2δ C1 and so that 1E0 ∈2δ C1. As 1E0 ∈2δ C1, Lemma 2.10 gives
a projection pCE ∈ C1 such that ‖1E0 − pCE‖ < 4δ. As long as δ is suitably
small, Lemma 2.12 gives δ1 > 0 and a unitary u ∈ A such that ‖u− 1A‖ < δ1
and so that upCEu

∗ = 1E0 . Define C2 := uC1u
∗. Then 1E0 ∈ C2, and for

some δ2 > 0, we have that E1 ⊆δ2 C2, hx ∈δ2 C2 for all x ∈ X , and that
p ∈δ2 C2. As p ∈δ2 (1A − 1E0)C2(1A − 1E0), we similarly find a projection pC ∈
(1A − 1E0)C2(1A − 1E0) and a unitary v ∈ (1A − 1E0)A(1A − 1E0) such that,
for some δ3 > 0, ‖v − (1A − 1E0)‖ < δ3 and such that vpCv

∗ = p. Define C3 :=
(1E0 + v)C2(1E0 + v∗). Then C3 is a finite-dimensional C∗-subalgebra of A
that contains p and 1E0 , and such that there is δ4 > 0 such that E1 ⊆δ4 C3 and
hx ∈δ4 C3 for all x ∈ X . Analogously, find a finite-dimensional C∗-subalgebra
D3 ofD0 that contains q and 1E0, and such that E1 ⊆δ4 D3 and (1− h)x ∈δ4 D3

for all x ∈ X .
Now, let E2 be the (finite-dimensional) C∗-subalgebra of A spanned by

E1 and p and q, and let C4 (respectively D4) be the (finite-dimensional) C∗-
subalgebra of A spanned by C3 (respectively D3) and 1A. These C∗-algebras
E2, C4, and D4 satisfy the following conditions: all contain 1E0 , p, and q (and
therefore 1A); E2 ⊆δ4 D4 and (1 − h)x ∈δ4 D4 for all x ∈ X ; E2 ⊆δ4 C4 and
hx ∈δ4 C4 for all x ∈ X ; hE0 ∈2δ E2. Define E := E2 and use Lemma 2.10 (i)
to choose a positive contraction hE in 1E0E1E0 = E1 such that hE ≈4δ hE0 .

Now, using Theorem 2.15, if δ4 ≤ 10−4, then there exists a partial isome-
try wC ∈ A such that wCEw∗

C ⊆ C4, w
∗
CwC = 1E , and so that ‖wC − 1E‖ ≤

120
√
δ4 =: δ5. As 1E = 1A, wC must be unitary as long as δ is small enough

that 120
√
δ4 < 1. Assuming this, define C5 := w∗

CC4wC , so C contains E and
satisfies hx ∈δ6 C for some δ6 > 0 and all x ∈ X . Similarly, there is a uni-
tary wD ∈ A such that ‖wD − 1E‖ ≤ δ5 and so that wDEw∗

D ⊆ D4. Define
D :=w∗

DD4wD. At this point, the reader can check that the C∗-subalgebras C,
D, and E together with h := hE + p satisfy the conditions in the statement of
this proposition with respect to some δ7 > 0. Taking the original δ suitably
small, we are done. �

2.17. Weak finite complexity. The main motivation for introducing finite
complexity is that it gives a sufficient condition for a C∗-algebra to satisfy the
UCT. In contrast, the weaker version that we introduce here does not obviously
have anyK-theoretic consequences. Instead, we introduce it as it seems of some
interest as a structural property in its own right, and as it serves as a bridge
between complexity rank and some more established dimension notions for C∗-
algebras like nuclear dimension and real rank; these relations will be explored
in the rest of this subsection and in Section 3 below.
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Definition 2.18. Let C be a class of unital C∗-algebras. A unital C∗-algebra
A weakly decomposes over C if, for every finite subset X of A and every ǫ > 0,
there exist C∗-subalgebras C and D of A that are in the class C, and a positive
contraction h ∈ A such that
(i) ‖[h, x]‖ < ǫ for all x ∈ X ;
(ii) hx ∈ǫ C and (1 − h)x ∈ǫ D for all x ∈ X .

In other words, weak decomposability is like decomposability, but with the
conditions on the “intersection” E dropped.

Definition 2.19. Let α be an ordinal number.
(i) If α= 0, let WD0 be the class of unital C∗-algebras that are locally finite-

dimensional.
(ii) If α> 0, letWDα be the class of unital C∗-algebras that weakly decompose

over C∗-algebras in
⋃

β<α WDβ .
A C∗-algebra D has weak finite complexity if it is in WDα for some α, in which
case its weak complexity rank is the smallest possible α.

Clearly, the weak complexity rank of a C∗-algebra is bounded above by its
complexity rank. We will see later in the paper (see Corollary 4.2) that the
two are different in general.

In the remainder of this subsection, we discuss two basic consequences of
weak finite complexity: the first gives a weak existence of projections property
(see [2] for background), and the second gives bounds on nuclear dimension
(see [40] for background).

Here is the weak existence of projections property; see Subsection 3.10 below
for a stronger conclusion under stronger hypotheses.

Lemma 2.20. If A is a unital C∗-algebra with finite weak complexity, then
the span of the projections in A is dense.

Proof. We proceed by transfinite induction on the weak complexity rank. The
base case is clear, so let α > 0 be an ordinal number, and assume the result
holds for all ordinals β < α. Let a ∈ A be arbitrary, let ǫ > 0, and let h, C,
and D be as in the definition of weak decomposability with respect to X = {a}
and ǫ/3. Choose c∈C and d∈D with ‖ha− c‖< ǫ/3 and ‖(1− h)a− d‖< ǫ/3.
The inductive hypothesis implies that the span of the projections in C and D
are dense, so each of c and d can be approximated within ǫ/6 by a linear
combination of projections. Hence c + d can be approximated within ǫ/3 by
a linear combination of projections. Putting this together with the fact that
‖a− (c+ d)‖ < 2ǫ/3, we are done. �

It is shown in [35, Lem. 7.3] that C∗-algebras of finite complexity are always
nuclear. Here we give a variant of this result. First we need to recall the
definition of nuclear dimension from [40, Def. 2.1].

Definition 2.21. A completely positive map φ : A → B between C∗-algebras
has order zero if, whenever a, b ∈ A are positive elements such that ab = 0, we
have that φ(a)φ(b) = 0.
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A C∗-algebraA has nuclear dimension at most n if, for any finite subsetX of
A and any ǫ > 0, there exist a finite-dimensional C∗-algebra F and completely
positive maps

A A

F
ψ φ

such that
(i) φ(ψ(x)) ≈ǫ x for all x ∈ X ;
(ii) ψ is contractive;
(iii) F splits as a direct sum F = F0 ⊕ · · · ⊕ Fn and each restriction φ|Fi

is
contractive and order zero.

We recall a useful estimate of Pedersen, which is (a special case of) the main
result of [24].

Lemma 2.22. Let a and b be elements of a C∗-algebra with b ≥ 0. Then

‖[a, b1/2]‖ ≤ 5

4
‖a‖1/2‖[a, b]‖1/2. �

Proposition 2.23. Let α be an ordinal number.
(i) If α = n ∈ N ∪ {0}, then any C∗-algebra in WDn has nuclear dimension

at most 2n − 1.
(ii) In general, any C∗-algebra in WDα is locally in the class of C∗-algebras

that are both in WDα and have finite nuclear dimension.

Proof. We first establish part (i) by induction on n. If A belongs to D0,
then it is locally finite-dimensional, and this implies nuclear dimension zero:
this is essentially contained in [40, Rem. 2.2 (iii)], but we give an argument
for the reader’s convenience. Let X ⊆ A be a finite subset, and let ǫ > 0.
Choose a finite-dimensional C∗-subalgebra F of A such that x ∈ǫ F for all
x ∈ X . Let ψ : A→ F be any choice of conditional expectation (such exists by
the finite-dimensional case of Arveson’s extension theorem—see for example
[8, Thm. 1.6.1]), and let φ : F → A be the inclusion ∗-homomorphism; it is
straight-forward to see that these maps have the right properties.

Assume then that N ≥ 1, and the result has been established for all n < N .
Let a finite subset X of A and ǫ > 0 be given; we may assume X consists
of contractions. Let C and D be C∗-subalgebras of A in some class WDn

for some n < N , and let h ∈ A be a positive contraction as in the definition
of weak decomposability with respect to the finite subset X and parameter
ǫ2/(25 · 22N ). The inductive hypothesis implies that C and D have nuclear
dimension at most 2N−1 − 1. Choose a set XC ⊆ C such that, for each x ∈ X ,
there is xC ∈ XC such that ‖hx − xC‖ < ǫ/(4 · 2N ). Using finite nuclear di-
mension, choose completely positive maps ψC : C → FC and φC : FC → C such
that ψC is contractive, such that φC(ψC(x)) ≈ǫ/8 x for all x ∈ XC , and such

that FC decomposes into 2N−1 direct summands such that the restriction of
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φC to each summand is contractive and order zero. Let XD, ψD, φD, and FD

have analogous properties with respect to D and with h replaced by 1− h.
Now, using Arveson’s extension theorem, we may extend each of ψC and

ψD to contractive completely positive (ccp) maps defined on all of A (we keep
the same notation for the extensions). Define F := FC ⊕ FD, and

ψ : A → F, a 7→ ψC(h
1/2ah1/2) + ψD

(
(1 − h)1/2a(1− h)1/2

)
,

which is easily seen to be ccp. Define moreover

φ : F → A, (fC , fD) 7→ φC(fC) + φD(fD).

To show that A has nuclear dimension at most 2N − 1, it suffices to show that
φ(ψ(x)) ≈ǫ x for any x ∈ X ; the remaining properties are easily verified. First
note that, as ‖[h, x]‖ < ǫ2/(25 · 22N), we have that ‖[h1/2, x]‖ < ǫ/(4 · 2N ) and
‖[(1− h)1/2, x]‖ < ǫ/(4 · 2N ) by Lemma 2.22. Hence

ψ(x) = ψC(h
1/2xh1/2) + ψD

(
(1− h)1/2x(1− h)1/2

)

≈ǫ/(4·2N) ψC(hx) + ψD

(
(1− h)x

)
.

Choose xC ∈ XC and xD ∈ XD such that

(2) ‖hx− xC‖ < ǫ/(4 · 2N ) and ‖(1− h)x− xD‖ < ǫ/(4 · 2N ),

so we get

ψ(x) ≈ǫ/(2·2N) ψC(xC) + ψD(xD).

As ‖φ‖ ≤ 2N , this implies that

φ(ψ(x)) ≈ǫ/2 φ
(
ψC(xC) + ψD(xD)

)
= φC

(
ψC(xC)

)
+ φD

(
ψC(xD)

)
.

By choice of φC and ψC , we have that φC(ψC(xC)) ≈ǫ/8 xC , and similarly
for xD, whence

φ(ψ(x)) ≈3ǫ/4 xC + xD.

Finally, using (2) and that N ≥ 1, we see that xC + xD ≈ǫ/4 hx+ (1− h)x= x,
and so φ(ψ(x)) ≈ǫ x, as required.

Part (ii) can be proved using transfinite induction: essentially the same
argument as used above for case (i) works. �

2.24. Tensor products. In this subsection, we establish a permanence result
for the complexity rank of tensor products: see Proposition 2.27 below. For
readability, we just state the result for complexity rank; the analogous fact
holds for weak complexity rank as well, with a (simpler) version of the same
proof.

The key ingredient we need is a result of Christensen on inclusions of tensor
products of nuclear C∗-algebras: it follows by combining [11, Prop. 2.6 and
Thm. 3.1].

Proposition 2.25 (Christensen). Let E and C be C∗-subalgebras of a C∗-
algebra A such that E ⊆ǫ C for some ǫ > 0, and let B be a C∗-algebra. Assume
moreover that E and B are nuclear. Then E ⊗B ⊆6ǫ C ⊗B. �
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Lemma 2.26. Let B be a nuclear and unital C∗-algebra, and assume that A
is a unital C∗-algebra that decomposes over some class C of nuclear and unital
C∗-algebras. Then A⊗B decomposes over the class of C∗-algebras C ⊗B with
C in C.

Proof. LetX be a finite subset ofA⊗B, and let ǫ> 0. Up to an approximation,
we may assume every element of X is a finite sum of elementary tensors. Fix
such a finite sum x =

∑n
i=1 ai ⊗ bi for each x ∈ X , and let XA be the finite

subset of A consisting of all the elements ai appearing in such a sum for some
x ∈X . Let M be the maximum of the sums

∑n
i=1‖bi‖ as x ranges over X . We

claim that if δ = min{ǫ/M, ǫ/6} and if E, C, and D are C∗-subalgebras of A
in the class C and h ∈ A is a positive contraction that satisfy the conditions
in Lemma 2.13 with respect to XA and δ, then E ⊗ B, C ⊗ B, D ⊗ B, and
h ⊗ 1B satisfy the conditions in Definition 2.2 with respect to X and ǫ; this
will suffice to complete the proof.

Let us check the conditions from Definition 2.2. For condition (i), if x =∑n
i=1 ai ⊗ bi is one of our fixed representations of an element of X , then

‖[h⊗ 1B, x]‖ ≤
n∑

i=1

‖[ai, h]‖‖bi‖ < δ

n∑

i=1

‖bi‖ < ǫ

by assumption on δ. For condition (ii), note that, for x =
∑n

i=1 ai ⊗ bi ∈ X
and each i, there is ci ∈ C with hai ≈δ ci. Hence

∥∥∥∥(h⊗ 1B)x −
n∑

i=1

ci ⊗ bi

∥∥∥∥ =

n∑

i=1

‖hai − c‖‖bi‖ < ǫ

by choice of δ, and so (h⊗ 1B)x ∈ǫ C ⊗B. Similarly,

(1A⊗B − h⊗ 1B)x ∈ǫ D ⊗B and h⊗ 1B(1A⊗B − h⊗ 1B)x ∈ǫ E ⊗B

for all x ∈X . For condition (iii), we have that E ⊗B ⊆ǫ C ⊗B and E ⊗B ⊆ǫ

D ⊗ B by choice of δ, Proposition 2.25, and the assumption that B and ev-
erything in C is nuclear. Condition (iv) from Definition 2.2 follows as, if h and
E satisfy condition (iv) from Lemma 2.13, then he ∈ E for all e ∈ E, whence
also (h⊗ 1B)e ∈ E ⊗B for all e ∈ E ⊗B. �

Proposition 2.27. If A is in Dα and B is in Dβ, then A⊗B is in Dα+β.

Proof. We first assume α = 0 and proceed by transfinite induction on β. The
base case β = 0 says that a tensor product of unital locally finite-dimensional
C∗-algebras is unital and locally finite-dimensional, which is straight-forward.
Assume β > 0, and let B be a C∗-algebra in Dβ. Using Lemma 2.23, B is
nuclear. Hence, by Lemma 2.26, A ⊗ B decomposes over the class of C∗-
algebras of the form A ⊗ C, with C ∈

⋃
γ<β Dγ . The inductive hypothesis

therefore implies that A⊗B decomposes over the class
⋃

γ<β Dγ , so A⊗B is
in Dβ by definition.
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Now fix β, and proceed by transfinite induction on α. The base case α = 0
follows from the discussion above. For α> 0, the inductive step follows directly
from Lemma 2.26 just as in the case above, so we are done. �

3. Weak complexity rank one

In this section, we study C∗-algebras of weak complexity rank (at most)
one. Let us first recall a definition from [7].

Definition 3.1. A C∗-algebra A has real rank zero if any selfadjoint element
of A can be approximated arbitrarily well by a selfadjoint element with finite
spectrum

The following theorem is our main goal in this section.

Theorem 3.2. Let A be a separable, unital C∗-algebra with real rank zero and
nuclear dimension at most one. Then A has weak complexity rank at most
one.

Conversely, let A be a separable, unital C∗-algebra with weak complexity
rank at most one. Then A has nuclear dimension at most one. If in addition
A is simple, then it has real rank zero.

It is conceivable that weak complexity rank at most one implies real rank
zero in general: this seems quite an interesting question for the reasons dis-
cussed in Remark 3.17.

Remark 3.3. Weak complexity rank zero is the same as being locally finite-
dimensional by definition, and this is in turn equivalent to having nuclear
dimension zero by a slight elaboration on [40, Rem. 2.2 (iii)]; moreover, locally
finite-dimensional C∗-algebras are easily seen to have real rank zero. Hence if
one replaces “at most one” by “one” everywhere it appears in Theorem 3.2,
the theorem is still correct.

3.4. From nuclear dimension and real rank to weak complexity rank.
In this subsection, we establish the sufficient condition for a C∗-algebra to have
weak complexity rank at most one from Theorem 3.2.

Let us start by recalling the basic structure theorem for order zero maps
from [39, Thm. 2.3] (see also [36, Prop. 4.1.1] for the case of finite-dimensional
domain, which is all we will actually use).

Theorem 3.5 (Winter–Zacharias). Let φ : A → B be an order zero ccp map
between C∗-algebras with A unital, and define h := φ(1A). Let M(C∗(φ(A)))
be the multiplier algebra of the C∗-subalgebra of B generated by the image
of F , and let {h}′ be the commutant of h. Then there is a ∗-homomorphism
π : A → M(C∗(φ(A))) ∩ {h}′ such that φ(a) = hπ(a) for all a ∈ A. �

The following lemma gives a version of Theorem 3.5 in the case of finite-
dimensional domain and real rank zero codomain that allows us to assume
h has finite spectrum, at the price of introducing an approximation; see [37,
Lem. 2.4] for a similar result.
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Lemma 3.6. Let A be a C∗-algebra of real rank zero, and let φ : F → A be
an order zero ccp map from a finite-dimensional C∗-algebra F into A. Let
h0 := φ(1) and π : A→M(C∗(φ(A))) ∩ {h0}′ be as in Theorem 3.5. Then, for
any ǫ > 0, there exists a positive contraction h ∈ A with finite spectrum, that
commutes with the image of π, and that satisfies

‖φ(f)− hπ(f)‖ ≤ ǫ‖f‖

for all f ∈ F .

Proof of Lemma 3.6. Let h0 := φ(1), and let π : F → M(C∗(φ(F ))) ∩ {h0}′
be the homomorphism given by Theorem 3.5 such that φ(f) = h0π(f) for all
f ∈ F . Write F = Mn1(C)⊕ · · · ⊕Mnk

(C), and let

{e(l)ij | l ∈ {1, . . . , k}, i, j ∈ {1, . . . , nl}}

be a set of matrix units for F . Define

m
(l)
ij := π(e

(l)
ij ) ∈ M(C∗(φ(F ))).

For each l, let (b
(l)
λ ) be a net of positive contractions in C∗(φ(F )) that converges

to m
(l)
11 in the strict topology; for simplicity, we assume that the index set for

all these nets is the same as l varies. Replacing each b
(l)
λ with m

(l)
11 b

(l)
λ m

(l)
11 , we

may assume that b
(l)
λ ≤ m

(l)
11 for all λ and all l. Let λ be large enough that

‖b(l)λ h0b
(l)
λ −m

(l)
11h0m

(l)
11‖ < ǫ/2,

which exists by strict convergence. Note that b
(l)
λ h0b

(l)
λ is an element of the

hereditary C∗-subalgebra

b
(l)
λ Ab

(l)
λ

of A. Hence, using that real rank zero passes to hereditary subalgebras (see
[7, Thm. 2.6 (iii)]), we may find a positive contraction

h
(l)
11 ∈ b

(l)
λ Ab

(l)
λ

with finite spectrum such that ‖h(l)
11 −m

(l)
11h0m

(l)
11‖ < ǫ. Define now

h :=

k∑

l=1

nl∑

j=1

m
(l)
j1h

(l)
11m

(l)
1j .

We claim that this h has the right properties.
We have to show that

(i) the image of π commutes with h;
(ii) h has finite spectrum;
(iii) ‖φ(f)− hπ(f)‖ ≤ ǫ‖f‖ for all f ∈ F .
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Indeed, for (i), note that, for any m
(l)
ij ,

m
(l)
ij h =

nl∑

k=1

m
(l)
ij m

(l)
k1h

(l)
11m

(l)
1k = m

(l)
i1 h

(l)
11m

(l)
1j

=

nl∑

k=1

m
(l)
k1h

(l)
11m

(l)
1km

(l)
ij = hm

(l)
ij .

As the m
(l)
ij span π(F ), this implies that h commutes with π(F ) and thus that

π takes image in {h}′, as we needed.
For (ii), note that, as

h
(l)
11 ∈ b

(l)
λ Ab

(l)
λ and b

(l)
λ ≤ m

(l)
11 ,

we have that h
(l)
11 ≤m

(l)
11 . Hence the elements m

(l)
j1h

(l)
11m

(l)
1j are mutually orthog-

onal as j and l vary. As j varies, each element is moreover unitarily equivalent
to h

(l)
11 , so has the same (finite) spectrum as this element. It follows that the

spectrum of h is the union of the spectra of the h
(l)
11 as l varies, so finite.

For (iii), note that

‖φ(f)− hπ(f)‖ = ‖h0π(f)− hπ(f)‖ ≤ ‖h0 − h‖‖π(f)‖ ≤ ‖h− h0‖‖f‖.
Hence it suffices to prove that ‖h− h0‖< ǫ. For this, note that, as h commutes
with π(F ) and as

h ≤
k∑

l=1

nl∑

j=1

m
(l)
jj ,

we have that

h =

( k∑

l=1

nl∑

j=1

m
(l)
jj

)
h =

k∑

l=1

nl∑

j=1

m
(l)
j1m

(l)
1j h =

k∑

l=1

nl∑

j=1

m
(l)
j1hm

(l)
1j

=

k∑

l=1

nl∑

j=1

m
(l)
j1m

(l)
11hm

(l)
11m

(l)
1j

Hence

h− h0 =

k∑

l=1

nl∑

j=1

m
(l)
j1h

(l)
11m

(l)
1j −

k∑

l=1

nl∑

j=1

m
(l)
j1m

(l)
11h0m

(l)
11m

(l)
1j ,

and so

‖h− h0‖ =

∥∥∥∥
k∑

l=1

nl∑

j=1

m
(l)
j1 (h

(l)
11 −m

(l)
11h0m

(l)
11 )m

(l)
1j

∥∥∥∥

As the terms m
(l)
j1 (h

(l)
11 − m

(l)
11hm

(l)
11 )m

(l)
1j are mutually orthogonal as j and l

vary, this equals

sup
l,j

‖m(l)
j1 (h

(l)
11 −m

(l)
11h0m

(l)
11 )m

(l)
1j ‖ ≤ ‖h(l)

11 −m
(l)
11h0m

(l)
11‖ < ǫ,

and we are done. �
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For the next result, let A∞ :=
∏

N A/
⊕

N A denote the quotient of the prod-
uct of countably many copies of a C∗-algebra A by the direct sum. We iden-
tify A with its image in A∞ under the natural diagonal embedding and write
A∞ ∩ A′ for the relative commutant. More generally, if (Bn) is a sequence of
C∗-algebras, we also write B∞ :=

∏
N Bn/

⊕
N Bn for the associated quotient.

Given a bounded sequence of linear maps φn : A → Bn, we write φ : A → B∞
for the map induced by the “diagonal map” a 7→ (φ1(a), φ2(a), . . .). Similarly,

given a bounded sequence of linear maps φn : An → B, we write φ : A∞ → B∞
for the map induced on quotients by the map

∏
N An → ∏

N B defined by
(an) 7→ (φn(an)).

Proposition 3.7. Let A be a separable, unital C∗-algebra with real rank zero
and nuclear dimension at most one. Then there exists a positive contraction
h∈A∞ ∩A′ and sequences (Cn) and (Dn) of finite-dimensional C∗-subalgebras
of A such that ha ∈ C∞ and (1 − h)a ∈ D∞ for all a ∈ A.

Proof. Since A is separable and of nuclear dimension at most one, by [40,
Thm. 3.2], there exists a sequence (ψn, φn, Fn) where
(i) each Fn is a finite-dimensional C∗-algebra that decomposes as a direct

sum Fn = F (0)
n ⊕ F (1)

n ;
(ii) each ψn is a ccp map A → Fn such that the induced map ψ : A → F∞ is

order zero;

(iii) each φn is a map Fn → A such that the restriction φ
(i)
n of φn to F

(i)
n is

ccp and order zero for i ∈ {0, 1};
(iv) for all a ∈ A, φnψn(a) → a as n → ∞.
For i ∈ {0, 1}, we will also need to consider the (order zero, ccp) maps

φ(i) : (F (i))∞ → A∞ induced from φ(i)
n : Fn → A,

and the canonical projection ∗-homomorphism κ(i) : F∞ → F
(i)
∞ .

As, for each n, the map φ(0)
n :F (0)

n →A is ccp and order zero, by Theorem 3.5,
there exist a positive contraction h(0)

n ∈A and a ∗-homomorphism π(0)
n : F (0)

n →
M(C∗(φ(0)

n (F (0)
n ))) ∩ {h(0)

n }′ such that

φ(0)
n (b) = h(0)

n π(0)
n (b)

for all b ∈ F (0)
n . As in [39, Cor. 3.1], the formula

ρ(0)n (f ⊗ b) := f(h(0)
n )π(0)

n (b)

determines a ∗-homomorphism

ρ(0)n : C0(0, 1]⊗ F (0)
n → A.

Similarly, we get a ∗-homomorphism ρ(1)n : C0(0, 1]⊗ F (1)
n → A. Define Sn :=

ρ(0)n (C0(0, 1]⊗ F (0)
n ) and Rn := ρ(1)n (C0(0, 1]⊗ F (1)

n ).
As in (the proof of) [34, Prop. A.1], the element

h := φ(0) ◦ κ(0) ◦ ψ(1)
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is a positive contraction in A∞ ∩ A′ and has the property that, for all a ∈
A ⊆ A∞,

ha = φ(0) ◦ κ(0) ◦ ψ(a) and (1− h)a = φ(1) ◦ κ(1) ◦ ψ(a).
For each n, if x ∈ C0(0, 1] is the identity function, then

φ(0)
n (F (0)

n ) = ρ(0)n (x⊗ F (0)
n ) ⊆ ρ(0)n (C0(0, 1]⊗ F (0)

n ) = Sn;

hence ha ∈ S∞ for all a ∈ A, and similarly, (1− h)a ∈ R∞ for all a ∈ A.
From Lemma 3.6, since A has real-rank zero, for each n, there exists a pos-

itive contraction η(0)n ∈ A with finite spectrum that commutes with the image
of π(0)

n and that satisfies

(3) ‖φ(0)
n (b)− η(0)n π(0)

n (b)‖ ≤ ‖b‖
n

for all b ∈ F (0)
n . Let σ(0)

n : C0(0, 1]⊗ F (0)
n → A be the ∗-homomorphism deter-

mined on elementary tensors by f ⊗ b 7→ f(η(0)n )π(0)
n (b). This factors through

a finite-dimensional C∗-algebra as in the diagram

C0(0, 1]⊗ F (0)
n A,

C(spec(η(0)n ))⊗ F (0)
n

σ(0)
n

and so the image of σ(0)
n is a finite-dimensional C∗-subalgebra of A. Define Cn

to be the image of σ(0)
n , and let C∞ :=

∏
N Cn/

⊕
N Cn denote the corresponding

C∗-subalgebra of A∞. Working instead with i = 1, we choose η(1)n and use it
to define σ(1)

n , Dn, and D∞ precisely analogously.
Let a ∈ A ⊆ A∞, and denote b := κ(0) ◦ ψ(a) ∈ (F (0))∞. Choose a sequence

(bn) in
∏

N F (0)
n that lifts b and that satisfies ‖bn‖ ≤ ‖a‖ for all n. For a se-

quence (an) in
∏

NAn, let us write [(an)] for the corresponding element of A∞.
Then we compute that, in A∞,

ha− [(η(0)n π(0)
n (bn))] = [φ(0)

n (bn)]− [(η(0)n π(0)
n (bn))] = [(φ(0)

n − η(0)n π(0)
n )(bn)].

Line (3) implies that

‖(φ(0)
n − η(0)n π(0)

n )(bn)‖ ≤ ‖bn‖
n

≤ ‖a‖
n

→ 0 as n → ∞.

Hence ha = [(η(0)n π(0)
n (bn))] = [σ(0)

n (x ⊗ bn)] ∈ C∞. A similar argument shows
that (1− h)a ∈ D∞, and we are done. �

From Proposition 3.7, we have the following.

Theorem 3.8. If A is a separable, unital C∗-algebra with real rank zero and
nuclear dimension at most one, then A has weak complexity rank at most one.

Proof. Let (Cn), (Dn), and h be as in the conclusion of Proposition 3.7. Lift
h to a positive contraction (hn) in

∏
NAn. Then one checks that directly that,

for any finite subset X and ǫ > 0, there is N so that, for all n≥N , Cn, Dn, and
hn satisfy the conditions needed for weak complexity rank at most one. �
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The following corollary gives an interesting class of C∗-algebras with weak
complexity rank one that we will use later. For the statement, recall that
a unital C∗-algebra A is a Kirchberg algebra if it is separable, nuclear, and if,
for any nonzero a ∈ A, there exist b, c ∈ A such that bac = 1A (note that this
last condition implies simplicity). See for example [28, Chap. 4] for background
on this class of C∗-algebras.

Corollary 3.9. Any unital Kirchberg algebra has weak complexity rank one.

Proof. Kirchberg algebras have real rank zero by the main result of [41] and
nuclear dimension one by [6, Thm. G], whence weak complexity rank at most
one by Theorem 3.8. Kirchberg algebras do not have weak complexity rank
zero as they are not locally finite-dimensional. �

3.10. From weak complexity rank to real rank. We now establish a par-
tial converse to Theorem 3.8. First, recall that Proposition 2.23 shows that
if A has weak complexity rank at most one, then it has nuclear dimension at
most one. To establish a converse to Theorem 3.8, we therefore need to show
that weak complexity rank at most one implies real rank zero. We can do this
for simple (separable, unital) C∗-algebras but not in general; moreover, the
proofs of our main result (see Proposition 3.11 below) are not self-contained
but rely on deep structural results for simple nuclear C∗-algebras. Some key
ideas in this section are due to the anonymous referee: in our first version of
this paper, we also assumed that A has at most finitely many extreme tracial
states in Proposition 3.11 below.

We have generally tried to explain the properties we use as we need them:
the most glaring omission is probably any discussion of Z-stability, which we
just use as a black box.

Proposition 3.11. Let A be a simple, separable, unital C∗-algebra with weak
complexity rank at most one. Then A has real rank zero.

To establish this, we will need some facts about Cuntz (sub)equivalence
and its interaction with tracial states. We will recall the facts we need; we
recommend [26, 1] for further background on these topics.

Let A be a C∗-algebra, and let A⊗ K be its stabilization. Let A be repre-
sented faithfully on a Hilbert space H , and use the corresponding representa-
tion of A⊗K onH ⊗ ℓ2(N) to identify elements of A⊗K with (certain) N-by-N
indexed matrices with values in A. Let M∞(A) be the dense ∗-subalgebra of
A⊗K consisting of matrices with only finitely many nonzero entries, and iden-
tify M∞(A) with the ∗-algebraic direct limit of the system

Mn(A) → Mn+1(A), a 7→
(
a 0
0 0

)
.

Note that M∞(A) is closed under functional calculus in A⊗K.
Let now (A⊗K)+ denote the positive elements in A⊗K, and let M∞(A)+

denote the positive elements in M∞(A). For a, b ∈ (A⊗K)+, we say a is Cuntz
subequivalent to b, and write a . b, if there is a sequence (rn) in A⊗ K such
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that rnbr
∗
n converges in norm to a. We say a and b are Cuntz equivalent, and

write a∼ b, if a. b and b. a. Note that . is a transitive and reflexive relation,
and ∼ is an equivalence relation.

Fix a (spatially induced) isomorphism φ : M2(K) → K, and define

a⊕ b := (idA ⊗ φ)

((
a 0
0 b

))
for a, b ∈ (A⊗K)+.

As any two isomorphisms φ,ψ : M2(K) → K are conjugate by a unitary multi-
plier of K, the Cuntz equivalence class of a⊕ b does not depend on the choice
of φ.

We record some basic properties of Cuntz subequivalence in the following
lemma. For a selfadjoint element a in a C∗-algebra, let us write a+ for its
positive part. Note that, for any positive element a in a C∗-algebra and any
ǫ > 0, (a− ǫ)+ is in the original C∗-algebra and not just in its unitization.

Lemma 3.12. Let A be a C∗-algebra, and let a, b ∈ (A⊗K)+ and x ∈ A⊗K.
The following hold.
(i) If a ≤ b, then a . b.
(ii) For any ǫ ≥ 0, (xx∗ − ǫ)+ ∼ (x∗x− ǫ)+.
(iii) a+ b . a⊕ b, and if a and b are orthogonal, then a⊕ b . a+ b.
(iv) If ‖a− b‖ ≤ ǫ, then (a− ǫ)+ . b.

Proof. Part (i) follows from [26, Lem. 2.3] or [1, Lem. 2.8]. For part (ii), let
x= u|x| be the polar decomposition of x in the double dual (A⊗K)∗∗ (compare
for example [4, III.5.2.16]). Then, for any ǫ > 0, y := u(x∗x− ǫ)1/2+ is in A⊗K,
and we have y∗y = (x∗x− ǫ)+ and yy∗ = (xx∗ − ǫ)+. We have y∗y ∼ yy∗ by
[1, Cor. 2.6], completing the argument for (ii). Part (iii) follows from [1,
Lem. 2.10], and part (iv) follows from [26, Prop. 2.2] or [1, Thm. 2.13]. �

The next lemma is the only place in this subsection where the assumption
of weak complexity rank at most one is used.

Lemma 3.13. Let A be a unital C∗-algebra with weak complexity rank at most
one. Then, for any a ∈ M∞(A)+ and ǫ > 0, there is a projection p ∈ M∞(A)
such that (a− ǫ)+ . p . a⊕ a.

Proof. Fix n so that a is in Mn(A). Note that Mn(A) also has weak complexity
rank at most one by (an easy variant of) Proposition 2.27. Let δ = ǫ/10.
The definition of weak complexity rank at most one and Lemma 2.22 give
a positive contraction h ∈ Mn(A) and finite-dimensional C∗-subalgebras C,D
of Mn(A) such that h1/2ah1/2 ∈δ C and (1− h)1/2a(1− h)1/2 ∈δ D, and such
that ‖[a, h1/2]‖ < δ and ‖[a, (1 − h)1/2]‖ < δ. Lemma 2.10 then gives positive
contractions c ∈ C and d ∈ D such that

‖h1/2ah1/2 − c‖ < 2δ and ‖(1− h)1/2a(1− h)1/2 − d‖ < 2δ.
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Note that

a ≈2δ h
1/2ah1/2 + (1− h)1/2a(1 − h)1/2

≈4δ c+ d ≈4δ (c− 2δ)+ + (d− 2δ)+,

whence by Lemma 3.12 (iv), (a − 10δ)+ . (c − 2δ)+ + (d − 2δ)+. Hence, by
Lemma 3.12 (iii),

(4) (a− 10δ)+ . (c− 2δ)+ ⊕ (d− 2δ)+.

On the other hand, as ‖c − h1/2ah1/2‖ < 2δ, whence Lemma 3.12 (iv) again
gives (c− 2δ)+ . h1/2ah1/2 . a (where the second Cuntz subequivalence is clear
from the definition). Similarly, (d − 2δ)+ . a. Combining these observations
with line (4) gives

(a− 10δ)+ . (c− 2δ)+ ⊕ (d− 2δ)+ . a⊕ a.

Now, (c − 2δ)+ is contained in a finite-dimensional C∗-algebra, so has finite
spectrum, whence it is Cuntz equivalent to its support projection pC ∈ C;
similarly, (d− 2δ)+ is Cuntz equivalent to its support projection pD. Setting
p := pC ⊕ pD, we are done. �

We need some more terminology. Let A be a unital C∗-algebra, and let
T (A) be its tracial state space. We equip T (A) with its weak-∗ topology, so it
is a compact convex (possibly empty) subset of the unit ball of the dual space
A∗ of A. For any τ ∈ T (A), we abuse notation and also write τ for the map

τ : (A⊗K)+ → [0,∞], (aij) 7→
∑

i∈N

τ(aii)

(here we use our fixed identification of elements of A⊗K with N-by-Nmatrices
over A); the definition of τ : (A ⊗ K)+ → [0,∞] depends only on the original
element of T (A) and not on the choice of identification.

For ǫ > 0, let fǫ : [0,∞) → [0, 1] be the continuous function which is zero
on [0, ǫ/2], 1 on [ǫ,∞), and linear on [ǫ/2, ǫ]. For a ∈ (A ⊗ K)+, we define a
function

(5) â : T (A) → [0,∞], τ 7→ lim
ǫ→0

τ(fǫ(a))

(the limit exists as the net (τ(fǫ(a))ǫ>0 is increasing as ǫ tends to zero). Note
that if a ∈M∞(A)+, then â is finite-valued and affine (as it is a pointwise limit
of affine functions). It need not be continuous in general, but if p ∈ M∞(A)+
is a projection, then p̂ is continuous, as then fǫ(p) = p for all ǫ ≤ 1.

Lemma 3.14 below records the properties of the maps â that we will need.

Lemma 3.14. Let A be a unital C∗-algebra, let a, b ∈ (A⊗K)+, and let â, b̂ :
T (A) → [0,∞] be as in line (5) above.

(i) If a . b, then â ≤ b̂.

(ii) â⊕ b = â+ b̂.
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Proof. Part (i) is well-known, but we could not find an exact statement in
the literature (compare [5, Thm. II.2.2] or [12, Prop. 2.1] for closely related
results), so we give an argument here for the reader’s convenience; we thank
the referee for providing the current much shorter version. Assume that a . b.
According to the condition in [26, Prop. 2.4 (iv)], for any ǫ > 0, there exist
δ > 0 and r ∈ M∞(A) such that fǫ(a) = rfδ(b)r

∗. Define x := fδ(b)
1/2r∗, and

note that x∗x = fǫ(a) and xx∗ is in the hereditary subalgebra bAb generated
by b. Hence, for any τ ∈ T (A), using that ‖xx∗‖ = ‖fǫ(a)‖ ≤ 1, we have

(6) τ(fǫ(a)) = τ(x∗x) = τ(xx∗) ≤ ‖τ |bAb‖.
On the other hand, for any c ∈ bAb, we have

c = lim
δ→0

fδ(b)
1/2cfδ(b)

1/2,

whence for any positive c ∈ bAb,

τ(c) = lim
δ→0

τ
(
fδ(b)

1/2cfδ(b)
1/2

)
≤ ‖c‖ lim

δ→0
τ(fδ(b)) = ‖c‖b̂(τ).

Hence ‖τ |bAb‖ ≤ b̂(τ) (whence ‖τ |bAb‖ = b̂(τ) as the opposite inequality is
straight-forward). Combining this with line (6) implies τ(fǫ(a))≤ b̂(τ). Taking
the limit as ǫ → 0 gives â(τ) ≤ b̂(τ), and as τ was arbitrary, we are done.

Part (ii) is straight-forward from the fact that fǫ(a⊕ b) = fǫ(a)⊕ fǫ(b) for
any a, b, and ǫ. �

Variants of the following lemma are probably well-known.

Lemma 3.15. Let A be a C∗-algebra, and let a, b∈A be positive elements such
that ‖a1/2ba1/2 − a‖ < ǫ. Then there exists x ∈ A such that (a − ǫ)+ = x∗x,
and xx∗ is in b1/2Ab1/2.

Proof. Using [21, Lem. 2.2] (or see [1, Thm. 2.13]), there is d ∈ A such that
da1/2ba1/2d∗ = (a− ǫ)+. The element x := b1/2a1/2d∗ has the desired property.

�
The following lemma was communicated to us by the referee. For the state-

ment, let A be a unital C∗-algebra with tracial state space T (A), and let
Aff(T (A)) denote the space of continuous affine functions from T (A) to R. We
equip Aff(T (A)) with the supremum norm. As already noted, if p ∈ M∞(A)+
is a projection, then p̂ is an element of Aff(T (A)).

Lemma 3.16. Let A be a separable, unital, simple C∗-algebra with T (A)
nonempty and with weak complexity rank at most one. For any strictly positive
element α ∈ Aff(T (A)), either there exists a projection q ∈ M∞(A) such that
â= q, or there exists a projection p∈M∞(A) such that α− p̂ is strictly positive
and ‖α− p̂‖ ≤ 3

4‖α‖.
The proof relies on [9, Prop. 2.6], which in turns depends on several results

from [13]: the reader is referred to [9, Sec. 1] for explanations of the terminol-
ogy and notation used in [9, Prop. 2.6], which in particular contains enough
information to explain why that result is applicable in our setting.
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Proof of Lemma 3.16. Note first that A has finite nuclear dimension by Propo-
sition 2.23, whence in particular it is exact. If Z is the Jiang–Su algebra, then
as A is simple, unital, and has finite nuclear dimension, it is Z-stable by [38,
Cor. 6.3]. We may thus apply [9, Prop. 2.6] to conclude that there is a positive
contraction a ∈ A⊗K such that â = 1

2α. For each n, the function

φn : T (A) → [0,∞], τ 7→ τ(f1/n(a))

is continuous, and the sequence (φn) is increasing and converges pointwise to â
by definition of the latter function. Hence, by Dini’s theorem, (φn) converges
uniformly to â. Note that f1/n(a) ≤ fδ((a − ǫ)+) for any δ ≤ 1/2n and any
ǫ ≤ 1/2n. Hence

φn ≤ ̂(a− ǫ)+ ≤ â

whenever ǫ ≤ 1/2n, and so the net ( ̂(a− ǫ)+)ǫ>0 in Aff(T (A)) also converges
uniformly to â as ǫ → 0. Choose ǫ > 0 such that

(7) ‖â− ̂(a− ǫ)+‖ ≤ 1

4
‖α‖.

Now, if the spectrum of a is contained in {0} ∪ [ǫ/2, 1], then q0 := fǫ/4(a) is
a projection in A such that q̂0 = â. Moreover, Lemma 3.14 (ii) implies that if
q := q0 ⊕ q0, then q̂ = 2q̂0 = 2â = α, and we are done.

Assume then that the spectrum of a intersects (0, ǫ/2) nontrivially. Let
g ∈ C0((0, ǫ/2)) be a nonnegative function such that g(t) ≤ t for all t, and so
that g is nonzero somewhere on the spectrum of a. Note that the function ĝ(a) :
T (A)→ [0,∞] is finite-valued as g(a) ≤ a, whence ĝ(a) ≤ â by Lemma 3.14 (i).
As g(a) is nonzero, as A is simple, and as the kernel of any trace is an ideal,
we have moreover that ĝ(a) : T (A) → [0,∞) is strictly positive. We also have
that

(a− ǫ/2)+ ⊕ g(a) . (a− ǫ/2)+ + g(a) . a,

where the first subequivalence uses that g(a) and (a− ǫ/2)+ are orthogonal and
Lemma 3.12 (iii), and the second subequivalence uses that (a− ǫ/2)++ g(a)≤ a
and Lemma 3.12 (i). Hence Lemma 3.14 (i) and (ii) imply that

â− ̂(a− ǫ/2)+ ≥ ĝ(a),

and so, in particular,

(8) â− ̂(a− ǫ/2)+

is strictly positive.
Now, for each n, let pn be the unit of Mn(A) ⊆ A ⊗ K. As the sequence

(pn) is an approximate unit for A ⊗ K, Lemma 3.15 (with b = pn for some
large enough n) gives n and x ∈ A⊗K such that x∗x = (a− ǫ/2)+ and xx∗ ∈
pn(A⊗K)pn = Mn(A). Lemma 3.13 implies there is a projection p ∈ M∞(A)
such that

(9) (xx∗ − ǫ/2)+ . p . xx∗ ⊕ xx∗.

We claim this p has the property in the statement.
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Indeed, as x∗x = (a − ǫ/2)+, Lemma 3.12 (ii) (in the special case ǫ = 0)
implies that

(10) (a− ǫ/2)+ ∼ xx∗.

Lines (9) and (10), and Lemma 3.14 (i) and (ii), imply that

p̂ ≤ 2 ̂(a− ǫ/2)+.

Recalling also that 2â = α and rearranging, we get

2(â− ̂(a− ǫ/2)+) ≤ α− p̂,

whence α− p̂ is strictly positive as the element in line (8) has that property.
On the other hand, as (a − ǫ)+ = ((a − ǫ/2)+ − ǫ/2)+ = (x∗x − ǫ/2)+,

Lemma 3.12 (ii) implies that

(11) (a− ǫ)+ ∼ (xx∗ − ǫ/2)+.

Lines (9) and (11), and Lemma 3.14 (i) imply that ̂(a− ǫ)+ ≤ p̂, whence

α− p̂ ≤ α− ̂(a− ǫ)+.

Hence, using line (7) and that â = 1
2α,

‖α− p̂‖ ≤ ‖α− ̂(a− ǫ)+‖ ≤ 1

2
‖α‖+ ‖â− ̂(a− ǫ)+‖ ≤ 3

4
‖α‖,

and we are done. �

We are now ready for the proof of Proposition 3.11, which was communi-
cated to us by the referee.

Proof of Proposition 3.11. Assume first that T (A) is empty. Then, as A has
finite nuclear dimension by Proposition 2.23, it follows that A is purely infinite
by [40, Thm. 5.4], so has real rank zero by the main result of [41].

Assume next that T (A) is nonempty. As A has finite nuclear dimension, it is
in particular exact. Moreover, if Z is the Jiang–Su algebra, then as A is simple,
unital, and has finite nuclear dimension, it is Z-stable by [38, Cor. 6.3]. Using
the universal property of the K0-group (see for example [30, Prop. 3.1.8]), it
is straight-forward to see that the map p 7→ p̂ from projections in M∞(A) to
Aff(T (A)) induces a well-defined group homomorphism

ιK : K0(A) → Aff(T (A)), [p]− [q] 7→ p̂− q̂.

Using [29, Thm. 7.2], it suffices to show that ιK has uniformly dense image.
Let then ǫ > 0, and let α be an element of Aff(T (A)) that we want to

approximate uniformly by elements in the image of ιK . Replacing α with
α + n · 1̂A, we may assume that α is strictly positive. If there is a projection
q ∈ M∞(A) with q̂ = α, we are done; assume this does not happen.

In this case, Lemma 3.16 gives a projection p1 ∈ M∞(A) such that α − p̂1
is strictly positive and ‖α − p̂1‖ ≤ 3

4‖α‖. Set then α2 := α − p̂1. Similarly, if
there is a projection p ∈ M∞(A) such that α2 = p̂, then with q := p1 ⊕ p, we
have α = q̂ by Lemma 3.14 (ii), and we have contradicted our assumption that
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α is not of this form. Hence α2 6= p̂ for any p ∈ M∞(A), and so Lemma 3.16
gives a projection p2 ∈M∞(A) such that α2 − p̂2 is strictly positive and so that
‖α2 − p̂2‖ ≤ 3

4‖α2‖, which implies that ‖α− p̂1 ⊕ p2‖ ≤ (34 )
2‖α‖. Continuing

in this way, we recursively find a sequence of projections (pn) in M∞(A) such
that if qn := p1 ⊕ · · · ⊕ pn, then ‖α − q̂n‖ ≤ (34 )

n‖α‖. Hence (q̂n) converges
uniformly to α, and we are done. �

Remark 3.17. We do not know if (weak) complexity rank at most one implies
real rank zero without the simplicity and separability assumptions. This seems
an interesting question. For example, the uniform Roe algebra C∗

u(|Z|) of the
integers has complexity rank one: the rank is at most one by [35, Ex. A.9],
and it contains a proper isometry (for example, the unilateral shift) so is not
locally finite-dimensional and thus does not have complexity rank zero (see [23,
Thm. 2.2] for a more general result along these lines). Whether or not C∗

u(|Z|)
has real rank zero is quite an interesting problem: a positive answer would
imply the existence of a stably finite C∗-algebra with real rank zero but stable
rank larger than one (compare the comment at the bottom of [4, p. 455]), while
a negative answer would allow one to characterize when uniform Roe algebras
have real rank zero. See the discussion below [23, Quest. 3.10] for more details
on all this.

On the other hand, the uniform Roe algebra of Z2 has complexity rank
at most two by [35, Ex. A.9] again and does not have real rank zero by [23,
Thm. 3.1], so it is certainly not true that (weak) finite complexity implies real
rank zero in general.

4. Torsion in odd K-theory

In this section, we show that the K1-group of a C∗-algebra with complexity
rank at most one is torsion-free. This seems to be of interest in its own right
and is also a key ingredient in our computation of the complexity rank of UCT
Kirchberg algebras.

Here is the main theorem of this section. The result was inspired by a com-
ment of Ian Putnam, who suggested the methods of [34] could be used to prove
something like this.

Theorem 4.1. Let A be a unital C∗-algebra with complexity rank at most one.
Then K1(A) is torsion-free.

Before we get into the proof of us, let us use it to show that weak complexity
rank and complexity rank are genuinely different.

Corollary 4.2. There are C∗-algebras with weak complexity rank one that do
not have complexity rank one.

Proof. Any unital Kirchberg algebra has weak complexity rank one by Corol-
lary 3.9. A Kirchberg algebra can have any countable abelian group as its
K1-group (see [27, Thm. 3.6] or [28, Prop. 4.3.3]), so by Theorem 4.1, there
are Kirchberg algebras that do not have complexity rank one. �
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Throughout this section, if a ∈ Mn(A), then a⊕k is the diagonal matrix
with all entries a in Mk(Mn(A)) = Mkn(A). If A is unital, we write the unit
in Mn(A) as 1n. We will rely heavily on ideas from [34]: we will give precise
statements for what we need, but some proofs just refer to that paper. The
methods of proof we use rely on K-theory groups based on idempotents and
invertibles, not just projections and unitaries as is common in C∗-algebra K-
theory: we recommend [3, Chap. 5, Chap. 8] as a background reference for this.

The following two lemmas are contained in the proof of [34, Lem. 2.4] (see
also [3, Prop. 4.3.2] for the second).

Lemma 4.3. For any c ≥ 1 and ǫ > 0, there exists δ > 0 with the following
property. Let A be a C∗-algebra, let B be a C∗-subalgebra, and let e ∈ Mn(A)
be an idempotent with ‖e‖ ≤ c and e ∈δ Mn(B). Then there is an idempotent
f ∈ Mn(B) with ‖e− f‖ < ǫ. �

Lemma 4.4. Let d ≥ 1, and let A be a unital C∗-algebra. If e, f ∈Mn(A) are
idempotents that satisfy ‖e‖ ≤ d, ‖f‖ ≤ d, and ‖e− f‖ ≤ (2d+ 1)−1, then the
classes [e] and [f ] in K0(A) are the same. �

Now, assume c ≥ 1, ǫ ∈ (0, (4c + 6)−1), and let δ have the property in
Lemma 4.3 for this c and ǫ. Assume B is a unital C∗-subalgebra of a C∗-
algebra A and that e ∈Mn(A) is an idempotent with ‖e‖ ≤ c and e ∈δ Mn(B).
Then Lemma 4.3 gives an idempotent f ∈ Mn(B) with ‖f − e‖ < ǫ, and so,
in particular, ‖f‖ ≤ d := c + 1. Moreover, if f ′ ∈ Mn(B) is another idempo-
tent satisfying ‖f ′ − e‖ < ǫ, then ‖f − f ′‖ < 2ǫ < (2c+ 3)−1 = (2d+ 1)−1, so
Lemma 4.4 implies that [f ] = [f ′] inK0(B). In conclusion, we get a well-defined
class in K0(B) associated to e.

The following is [34, Def. 2.5].

Definition 4.5. Assume c≥ 1, ǫ ∈ (0, (4c+ 6)−1), and let δ have the property
in Lemma 4.3 for this c and ǫ. Let B be a unital C∗-subalgebra of A, and
let e ∈ Mn(A) be an idempotent such that ‖e‖ ≤ c, and e ∈δ Mn(B). We
write {e}B for the class in K0(B) of any idempotent f in Mn(B) that satisfies
‖e− f‖ < ǫ as in the above discussion.

The following is [34, Def. 2.6]. For the statement of this definition and the
rest of this section, if E is a C∗-subalgebra of a unital C∗-algebra A, we write

Ẽ for the C∗-subalgebra of A spanned by E and 1A.

Definition 4.6. Let c ≥ 1, let ǫ ∈ (0, (4c + 6)−1), and let δ > 0 satisfy the
condition in Lemma 4.3. Let A be a unital C∗-algebra, let C and D be C∗-
subalgebras of A. Let u ∈ Mn(A) be an invertible element for some n. Then
an element v ∈ M2n(A) is a (δ, c, C,D)-lift of u if
(i) ‖v‖ ≤ c and ‖v−1‖ ≤ c;

(ii) v ∈δ M2n(D̃);

(iii) v
(
u−1 0
0 u

)
∈δ M2n(C̃);

(iv) v
(
1n 0
0 0

)
v−1 ∈δ M2n(C̃ ∩D);
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(v) with notation as in Definition 4.5, the K-theory class

∂v(u) :=

{
v

(
1n 0
0 0

)
v−1

}

C̃∩D

−
[(

1n 0
0 0

)]
∈ K0(C̃ ∩D)

is actually in the subgroup K0(C ∩D).

We need another definition.

Definition 4.7. Let C and D be C∗-subalgebras of a C∗-algebra A, with
corresponding inclusion maps ιC : C → A and ιD : D → A. Let σ : K1(C) ⊕
K1(D) → K1(A) be the map defined by σ := ιC∗ + ιD∗ .

The following result is contained in the proof of [34, Prop. 2.7].

Lemma 4.8. Let c ≥ 1, and let ǫ ∈ (0, (4c + 6)−1). Then there is a δ > 0
depending only on ǫ and c, and with the following property. Let A be a unital
C∗-algebra, and let u ∈ Mn(A) be an invertible element such that ‖u‖ ≤ c
and ‖u−1‖ ≤ c. Let C and D be C∗-subalgebras of A, and let v ∈ M2n(A) be
a (δ, c, C,D)-lift of u as in Definition 4.6. If the K-theory class

∂v(u) :=

{
v

(
1n 0
0 0

)
v−1

}

C̃∩D

−
[(

1n 0
0 0

)]

of Definition 4.6 is zero, then the class [u] ∈ K1(A) is in the image of the
map σ from Definition 4.7. �

We need a little more notation before we recall another result from [34].

Definition 4.9. Let A be a unital C∗-algebra, let h be a positive contraction
in A, and let u be an invertible element of Mn(A). Abusing notation slightly,
we conflate h∈A with the corresponding diagonal matrix h⊗ 1n ∈Mn(A), and
define a := h+ (1− h)u ∈ Mn(A) and b := h+ (1− h)u−1 ∈ Mn(A). Define

v(u, h) :=

(
1 a
0 1

)(
1 0

−b 1

)(
1 a
0 1

)(
0 −1
1 0

)
∈ M2n(A).

The following result is contained in the proof of [34, Prop. 3.6].

Lemma 4.10. For any δ > 0 and n ∈ N, there exists γ > 0 with the following
property. Let A be a unital C∗-algebra and u ∈ Mn(A) a unitary. Let X ⊆ A
be a (possibly infinite) subset of A containing the matrix entries of u.

Then if (h, C, D) is a triple satisfying the conditions in Lemma 2.16 with
respect to X and any ǫ ∈ (0, γ], then v(u, h) is a (δ, 8, C,D) lift of u. �

For k ∈N, let sk ∈M2k(C) be the (unitary) permutation matrix determined
by

(z1, z2, . . . , zk, zk+1, . . . , z2k) 7→ (z1, z3, . . . , z2k−1, z2, z4, . . . , z2k).

For any unital C∗-algebra A and any n ∈ N, we abuse notation by identifying
sk with the element sk ⊗ 1Mn(A) of Mkn(A) = Mk(C)⊗Mn(A).

The following fact is closely related to [34, Lem. 4.2]. The proof consists in
direct checks that we leave to the reader. (We also take this opportunity to
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correct a mistake in [34, Lem. 4.2]: this claims that the element we have called
sk is self-inverse, which is clearly wrong. However, this does not significantly
affect that lemma, having replaced sk(v

⊕k)sk with sk(v
⊕k)s∗k as appropriate.)

Lemma 4.11. Let c≥ 1 and ǫ ∈ (0, (4c+ 6)−1). Let A be a unital C∗-algebra,
let u ∈ Mn(A) be unitary, and let v ∈ M2n(A) be a (δ, c, C,D)-lift of u, where
δ, C, and D satisfy the conditions in Definition 4.6. Then the following hold.
(i) For any k ∈ N, sk(v

⊕k)s∗k is a (δ, c, C,D)-lift of u⊕k.
(ii) The K-theory classes ∂sk(v⊕k)s∗k(u

⊕k) and k · ∂v(u) are equal in K0(C ∩D).
(iii) If v = v(u, h) is given by the formula in Definition 4.9, then sk(v

⊕k)s∗k =
v(u⊕k, h). �

Proof of Theorem 4.1. Let κ ∈ K1(A) be such that n · κ = 0 for some n ∈ N;
our goal is to show that n = 0 or κ = 0. Let w ∈ Mm(A) be a unitary element
such that [w] = κ. As [w⊕n] = n · κ = 0, we have that w⊕n ⊕ 1r is homotopic
through unitaries to 1nm+r for some r. Letting s = nm + nr, we have that
(w ⊕ 1r)

⊕n is homotopic via a rotation homotopy to w⊕n ⊕ 1r ⊕ 1(n−1)r, and
therefore is homotopic to 1s. Define u := w ⊕ 1r, so [u⊕n] = n · κ = 0 and u⊕n

is homotopic to 1s. Let (ut)t∈[0,1] denote a path of unitary elements in Ms(A)
with u0 = u⊕n and u1 = 1s.

Let c=8, and let ǫ=(12c+18)−1. Let δ > 0 have the property in Lemma 4.8
with respect to this ǫ and c. Let γm+r (respectively γn(m+r)) be as in Lem-
ma 4.10 with respect to δ and the integer m+ r (respectively m(n+ r)), and
let γ := min{γm+r, γn(m+r)}. Choose a finite partition 0 = t0 < · · · < tk = 1
of [0, 1] such that, for any t ∈ [ti, ti+1], we have ‖ut − uti‖ < γ/2. For each
i ∈ {0, . . . , k}, let Xt ⊆ A be the finite subset consisting of all matrix entries
of ut. Let X :=

⋃k
i=1 Xti . Let (h,C,D) be a triple satisfying the conditions in

Proposition 2.16 with respect to the finite setX and error parameter γ/2. Note
that, for any t and any x ∈ Xt, there are i and xti such that ‖x− xti‖ < γ/2.
It follows that (h,C,D) satisfies the conditions in Lemma 2.16 with respect to
the (possibly infinite) set

⋃
t Xt and the error parameter γ.

At this point, Lemma 4.10 gives us that (with notation as in Definition 4.9)
vt := v(ut, h) is a (δ, 8, C,D)-lift for ut for all t. The choice of δ then gives us
elements

∂vt(ut) :=

{
vt

(
1s 0
0 0

)
v−1
t

}

C̃∩D

−
[(

1s 0
0 0

)]
∈ K0(C ∩D)

for all t. We claim that

(12) ∂v1(u1) = ∂v0(u0).

The path

[0, 1] → M2s(A), t 7→ vt

(
1s 0
0 0

)
v−1
t

is continuous, whence there exists a finite partition 0 = t0 < · · · < tl = 1 such
that ∥∥∥∥vtj+1

(
1s 0
0 0

)
v−1
tj+1

− vtj

(
1s 0
0 0

)
v−1
tj

∥∥∥∥ < ǫ
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for all j ∈ {0, . . . , l − 1}. Hence if fj and fj+1 are idempotents in M2s(C̃ ∩D)
satisfying ∥∥∥∥fj − vtj

(
1s 0
0 0

)
v−1
tj

∥∥∥∥ < ǫ,

then ‖fj − fj+1‖ < 3ǫ = (4c+ 6)−1. Hence [fj] = [fj+1] in K0(C̃ ∩D) for all j
by Lemma 4.4, whence the claim.

As u1 = 1s and the formula from Definition 4.9 implies that v1 =
(
1s 0
0 1s

)
,

whence ∂v1(u1) = 0 by the formula from Definition 4.6 (v). Hence, by the claim
from line (12) that we just established,

(13) ∂v0(u0) = 0.

Let v = v(u, h), which is a (δ, 8, C, D) lift of u by our choice of γ, and
Lemma 4.11 (i) implies sn(v

⊕n)s∗n is a (δ, 8, C, D) lift of u⊕n, whence the
element ∂sn(v⊕n)s∗n(u

⊕n) of Definition 4.6 makes sense. On the other hand,
Lemma 4.11 (iii) implies that sn(v

⊕n)s∗n = v(u⊕n, h) = v0, and so the classes
∂sn(v⊕n)s∗n(u

⊕n) and ∂v0(u0) are equal. Hence ∂sn(v⊕n)s∗n(u
⊕n) = 0 by line (13).

Lemma 4.11 (ii) implies that n · ∂v(u) = ∂sn(v⊕n)s∗n(u
⊕n), so we get

(14) n · ∂v(u) = 0.

Now, as C ∩D is finite-dimensional, K0(C ∩D) is torsion-free, so line (14)
forces n = 0 or ∂v(u) = 0. If n = 0, we are done, so assume ∂v(u) = 0. From
Lemma 4.8, we thus have that [u] is in the range of σ. However, the domain
of σ is K1(C)⊕K1(D), which is zero as C and D are finite-dimensional. Hence
[u] = 0; as u = w ⊕ 1r, this implies that [w] = 0 too, and we are done. �

5. Kirchberg algebras

Our goal in this section is to study the complexity rank of Kirchberg alge-
bras. Recall that a C∗-algebra is a Kirchberg algebra if it is simple, separable,
nuclear, and purely infinite. Our theorems will only apply to unital Kirchberg
algebras, but nonunital Kirchberg algebras will play an important role in the
proof.

The following theorem is our goal in this section.

Theorem 5.1. Let A be a unital UCT Kirchberg algebra. Then A has com-
plexity rank one or two. Moreover, it has complexity rank two if and only if
K1(A) contains nontrivial torsion elements.

There is quite a striking contrast here with the theory of nuclear dimension
(and with weak complexity rank). Indeed, all Kirchberg algebras have nuclear
dimension one by [6, Thm. G] (we note that this holds regardless of the UCT,
but was established earlier under a UCT assumption in [32]). As a consequence
of this and real rank zero, all Kirchberg algebras have weak complexity rank
one as recorded in Corollary 3.9 above. As already noted in the introduction,
proving Theorem 5.1 (or even an a priori much weaker statement, such as
that a Kirchberg algebra with zero K-theory has finite complexity) without
the UCT assumption would imply the UCT for all nuclear C∗-algebras.
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The proof of Theorem 5.1 will make repeated use of (part of) the Kirchberg–
Phillips classification theorem [25]; see also the exposition in [28, Chap. 8] and
the recent approach in [15].

5.2. The rank one case (after Enders). In this subsection, we adapt ideas
of Enders [14] to establish the following theorem.

Theorem 5.3. Let B be a unital UCT Kirchberg algebra with torsion-free K1

group. Then B has complexity rank one.

Throughout this subsection, we will be dealing with large matrices, so adopt
some shorthand notation for convenience. Let eij denote the matrix units in
Mn(C), and for j ∈ {−(n− 1), . . . ,0,1, . . . ,n− 1}, write dj for the matrix which
has ones on the jth subdiagonal and is zero elsewhere, i.e. dj :=

∑n−j
i=1 e(i+j)i.

Note for example that d0 is the identity and that d−1 = e12 + e23 + · · ·+ e(n−1)n

is the matrix with ones on the first superdiagonal and zeros elsewhere. For
a C∗-algebra B with multiplier algebra M(B), we will identify Mn(M(B))
with Mn(C)⊗M(B); for example, if u ∈ M(B) is unitary, then we will write
things like

d1 ⊗ 1 + d−(n−1) ⊗ un ∈ Mn(C)⊗M(B)

for the matrix

(15)




0 0 · · · 0 0 un

1 0 · · · 0 0 0
0 1 · · · 0 0 0
...

...
. . .

...
...

...
0 0 · · · 1 0 0
0 0 · · · 0 1 0




∈ Mn(M(B)).

For a C∗-algebra B and b1, . . . , bn ∈ B, we will write diag(b1, . . . , bn) for the
diagonal matrix in Mn(B) with entries b1, . . . , bn, i.e. for




b1 0 · · · 0
0 b2 · · · 0
...

...
. . .

...
0 0 · · · bn


 ∈ Mn(B)

We need a definition: the following is [14, Def. 1.1].

Definition 5.4. Let A be a C∗-algebra equipped with an action α of Z, and
let n ∈ N. Let ιn be the ∗-homomorphism

ιn : A⋊ Z → Mn(A⋊ Z)

determined by the formulas

ιn(a) := diag(α−1(a), α−2(a), . . . , α−n(a))

for a ∈ A and

ιn(u) := d1 ⊗ 1 + d−(n−1) ⊗ un
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for u ∈ M(A⋊ Z) the canonical unitary implementing the Z action (line (15)
above with B = A⋊ Z writes out ιn(u) as a matrix).

The key technical result is as follows: although somewhat different from the
conclusions of Enders’ arguments, it follows the same basic strategy.

Lemma 5.5. Let A be an AF C∗-algebra equipped with a Z-action. Let X be
a finite subset of A⋊ Z, and assume there exists a projection p ∈ A such that
px = xp = x for all x ∈ X. Let ǫ > 0.

Then there exists N ∈N such that, for all n≥N , if ιn :A⋊Z→Mn(A⋊Z)
is as in Definition 5.4, and q := ιn(p), then there exist a positive contraction
h ∈ q(Mn(A ⋊ Z))q and AF C∗-subalgebras C and D of q(Mn(A ⋊ Z))q with
the following properties:
(i) ‖[h, ιn(x)]‖ < ǫ for all x ∈ X;
(ii) hιn(x) ∈ǫ C, (1− h)ιn(x) ∈ǫ D, and (1− h)hιn(x) ∈ǫ C ∩D for all x ∈X;
(iii) E := C ∩D is an AF algebra;
(iv) h multiplies E into itself.

Proof. Define a unitary v ∈ Mn(C)⊗M(A⋊ Z) = M(Mn(A⋊ Z)) by

v := d1 ⊗ u−1 + d−(n−1) ⊗ un−1 =




0 . . . . . . 0 un−1

u−1 . . . 0

0
. . .

. . .
...

...
. . .

. . .
. . .

...
0 . . . 0 u−1 0



.

Write n = 2m if n is even and n = 2m+ 1 if n is odd, and note that

(16) vm = dm ⊗ u−m + d−(n−m) ⊗ un−m.

Let jn : Mn(A) →֒ Mn(A⋊α Z) denote the canonical inclusion, and define two
∗-homomorphisms

Λ0
n,Λ

1
n : Mn(A) → Mn(A⋊α Z), Λ0

n := jn, Λ1
n := Advm ◦ jn.

Let us compute the image of Λ1
n more concretely. Write elements in Mn(A) in

the form

(17)

(
a b
c d

)
∈ M(n−m)+m(A),

where writing n as the sum of n − m and m in the subscript on the right
records the sizes of the blocks. Using line (16), one then computes that Λ1

n

acts via sending the matrix in line (17) to the element

(18)

(
αn−m(d) 0

0 α−m(a)

)
+

(
0 αn−m(c)
0 0

)
· un +

(
0 0

α−m(b) 0

)
· u−n

in Mm+(n−m)(A⋊Z) (note the switch from “(n−m) +m” to “m+ (n−m)”).
Define also

q := ιn(p) = diag(α−1(p), . . . , α−n(p)).
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One checks directly that q multiplies Λ0
n(Mn(A)) into itself, while the fact that

q multiplies Λ1
n(Mn(A)) into itself follows from the formula in line (18) above.

Hence C := q(Λ0
n(Mn(A)))q and D := q(Λ1

n(Mn(A)))q are well-defined AF sub-
algebras ofMn(A⋊Z). Note moreover that, with respect to the decomposition
in line (17), the intersection of C and D can be concretely described as the set

E :=

{
q

(
a 0
0 d

)
q

∣∣∣∣ a ∈ Mm(A), d ∈ Mn−m(A)

}

and is in particular also an AF algebra.
For 1 ≤ i ≤ n, define scalars hi ∈ [0, 1] by

hi :=





0, 1 ≤ i ≤
⌊
n
6

⌋
,

i−
⌊
n
6

⌋
⌊
2n
6

⌋
−
⌊
n
6

⌋ ,
⌊
n
6

⌋
≤ i ≤

⌊
2n
6

⌋
,

1,
⌊
2n
6

⌋
≤ i ≤

⌊
4n
6

⌋
,⌊

5n
6

⌋
− i⌊

5n
6

⌋
−
⌊
4n
6

⌋ ,
⌊
4n
6

⌋
≤ i ≤

⌊
5n
6

⌋
,

0,
⌊
5n
6

⌋
≤ i ≤ n,

and let h ∈ Mn(A) be defined by

h := diag(h1, . . . , hn)q = diag(h1α
−1(p), . . . , hnα

−n(p)).

Note that h multiplies C and D into themselves, whence it also multiplies E
into itself.

We claim now that, for n suitably large, C, D, E, and h have the properties
claimed in the statement of the lemma. We have already observed properties
(iii) and (iv), so it remains to check properties (i) and (ii).

Let us look first at property (i). As qιn(x) = ιn(px) = ιn(x) = ιn(xp) = ιn(x)q
for all x ∈ X and as q commutes with

(19) h(0) := diag(h1, . . . , hn),

it suffices to show that

[h(0), ιn(x)] → 0 as n → ∞.

To show this, it suffices to show that, for any contraction a ∈ A and any
k ∈ N ∪ {0}, we have that [h(0), ιn(a · uk)] → 0 as n → ∞.

Fix then y = a · uk and compute h(0) · ιn(y):
h(0) · ιn(y) = h(0) · ιn(a · uk) = h(0) · ιn(a)ιn(uk)(20)

= h(0) diag(α−1(a), . . . , α−n(a))(dk ⊗ 1n + d−n+k ⊗ un)

=

(
0 0
g1 0

)
+

(
0 g2
0 0

)
· un,

where g1 is the (n− k)× (n− k) matrix

(21) g1 := diag(hk+1α
−(k+1)(a), hk+2α

−(k+2)(a), . . . , hnα
−n(a))
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and g2 is the k × k matrix

(22) g2 = diag(h1α
−1(a), . . . , hkα

−k(a)).

If we choose n large enough so that k ≪
⌊
n
6

⌋
, then

(
0 g2
0 0

)
· un = 0 since hi = 0

for 1 ≤ i ≤
⌊
n
6

⌋
. Hence, for large enough n,

h(0) · ιn(y) =
(
0 0
g1 0

)
.(23)

Computing ιn(y) · h(0) is similar: if again n is large enough so that k ≪
⌊
n
6

⌋
,

we have

ιn(y) · h(0) =

(
0 0
e 0

)
,

where e is the (n− k)× (n− k) matrix defined by

e := diag(h1α
−(k+1)(a), h2α

−(k+2)(a), . . . , hn−kα
−n(a)).

At this point, if we let Mn :=max{
⌊
2n
6

⌋
−
⌊
n
6

⌋
,
⌊
5n
6

⌋
−
⌊
4n
6

⌋
}, then we compute

that, for all large enough n,

‖h(0) · ιn(y)− ιn(y) · h(0)‖ =

∥∥∥∥
(
0 0
g1 0

)
−
(
0 0
e 0

)∥∥∥∥ = ‖g1 − e‖

= max
k+1≤i≤n

‖hi−kα
−i(a)− hiα

−i(a)‖

≤ max
k+1≤i≤n

|hi−k − hi|‖α−i(a)‖

≤ k

Mn
→ 0 as n → ∞,

which completes the proof of condition (i).
We now look at condition (ii). Define

C(0) := Λ0
n(Mn(A)), D(0) := Λ1

n(Mn(A)), and E(0) := C(0) ∩D(0).

Then, with h(0) as in (19), it suffices to show that, for n suitably large and any
x ∈ X ,

h(0)ιn(x) ∈ǫ C
(0), (1− h(0))ιn(x) ∈ǫ D

(0),

and that h(0)(1− h(0))ιn(x) ∈ǫ E
(0). Similarly to the above, it suffices to show

that if a ∈ A is a contraction and if k ∈ N ∪ {0}, then for y := a · uk, we have
h(0)ιn(y) ∈ C(0), (1− h(0))ιn(y) ∈ D(0), and that h(0)(1− h(0))ιn(y) ∈ E(0).

First, note that it follows from the computation of h(0) · ιn(y) in line (23)
that h(0) · ιn(y) ∈ C(0) for large enough n. To see that (1− h(0)) · ιn(y) ∈D(0),
analogously to lines (20), (21), and (22) above, we compute that

(24) (1− h(0)) · ιn(y) =
(
0 0
f1 0

)
+

(
0 f2
0 0

)
· un,

where f1 is the (n− k)× (n− k) matrix given by

f1 = diag
(
(1− hk+1)α

−(k+1)(a), (1 − hk+2)α
−(k+2)(a), . . . , (1− hn)α

−n(a)
)
,
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and as long as n is chosen large enough so that k ≪
⌊
n
6

⌋
, f2 is the k× k matrix

given by

f2 := diag(α−(k+1)(a), . . . , α−n(a)).

Note that (1 − hi) = 0 for
⌊
2n
6

⌋
+ 1 ≤ i ≤

⌊
4n
6

⌋
. Thus the matrix

(
0 0
f1 0

)
can

be written as the following sum:
(
dk · diag

(
(1− hk+1)α

−(k+1)(a), . . . , (1− h⌊n
3
⌋)α

−⌊n
3 ⌋(a), 0, . . . , 0

))

+
(
dk · diag

(
0, . . . , 0, (1− h⌊ 2n

3
⌋)α

−⌊ 2n
3 ⌋(a), . . . , (1− hn)α

−n(a)
))

=

(
f3 0
0 f4

)
,

where f3 is an m ×m matrix built from the entries of the first summand in
the middle line above, and f4 is an (m+ 1)× (m+ 1) matrix built from the
entries in the second summand in the middle above. Comparing this with line
(24) above, we see that (1− h(0)) · ιn(y) ∈ D(0).

Finally, we consider E. We already have that

(1− h(0)) · ιn(y) =
(
f3 0
0 f4

)
+

(
0 f2
0 0

)
· un.

Multiplying by h(0) on the left will make the second term zero as hi = 0 for 1≤
i≤

⌊
n
6

⌋
, and n has been chosen so that k≪

⌊
n
6

⌋
. Thus h(0)(1− h(0)) · ιn(y)∈E,

and we are done. �

Corollary 5.6. Let A be an AF C∗-algebra equipped with a Z-action. Let X
be a finite subset of A ⋊ Z, and assume there exists a projection p ∈ A such
that px = xp = x for all x ∈ X. Let ǫ > 0. For each n ∈ N, define

φn : Mn(A⋊ Z)⊕Mn+1(A⋊ Z) → M2n+1(A⋊ Z), (a, b) 7→
(
a 0
0 b

)
,

let ω : Mn(A⋊Z) → Mn(A⋊ Z) be any ∗-isomorphism, let ιn be as in Defini-
tion 5.4, and define

κn := φn ◦ ((ω ◦ ιn)⊕ ιn+1) : A⋊ Z → M2n+1(A⋊ Z).

Then there exists N ∈ N such that, for all n ≥ N , if q := κn(p), then there are
a positive contraction h ∈ q(M2n+1(A⋊Z))q and AF C∗-subalgebras C and D
of q(M2n+1(A⋊ Z))q with the following properties:
(i) ‖[h, κn(x)]‖ < ǫ for all x ∈ X;
(ii) hκn(x)∈ǫ C, (1−h)κn(x)∈ǫ D, and (1− h)hκn(x)∈ǫ C ∩D for all x∈X;
(iii) E := C ∩D is an AF algebra;
(iv) h multiplies E into itself.

Proof. Let N be large enough so that the conclusion of Lemma 5.5 holds for
all n ≥ N with respect to the given X , ǫ, and p. Fix n ≥ N . Let Cn, Dn

be subalgebras of ιn(p)(Mn(A ⋊ Z))ιn(p) and hn a positive contraction in
ιn(p)(Mn(A ⋊ Z))ιn(p) with the properties in Lemma 5.5 and similarly for
Cn+1, Dn+1, and hn+1 with respect to ιn+1(p)(Mn+1(A⋊ Z))ιn+1(p).
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Define

C := φn(ω(Cn)⊕ Cn+1), D := φn(ω(Dn)⊕Dn+1),

and
h := φn(ω(hn)⊕ hn+1).

Direct checks show these elements have the right properties. �

Enders computes the effect of ιn on K-theory: the following result is a spe-
cial case of [14, Prop. 3.2].

Lemma 5.7. Let A be a C∗-algebra with K1(A) = 0 and equipped with an
action of Z. Let ιn : A ⋊ Z → Mn(A ⋊ Z) be as in Definition 5.4, and let
in : A ⋊ Z → Mn(A ⋊ Z) be the standard top-left corner inclusion. Then, as
maps on K-theory, (ιn)∗ = n · (in)∗. �

For the next step, we need to use part of the Kirchberg–Phillips classification
theorem. For the reader’s convenience, we state the versions of the Kirchberg–
Phillips theorem we will use, and how to deduce them from the literature.

Theorem 5.8 (Kirchberg–Phillips). The following statements hold.
(i) Let A and B be stable Kirchberg algebras. Then, for any invertible element

x of KK(A,B), there exists a ∗-isomorphism φ : A→B such that [φ] = x.
(ii) Let A and B be stable UCT Kirchberg algebras. Then, for any (graded)

isomorphism α :K∗(A)→K∗(B), there exists a ∗-isomorphism φ :A→B
that induces α.

(iii) Let A and B be stable UCT Kirchberg algebras, and let φ, ψ : A → B
be ∗-isomorphisms that induce the same class in KK(A,B). Then there
is a sequence of unitaries (un) in the multiplier algebra of B such that
unφ(a)u

∗
n → ψ(a) as n → ∞ for all a ∈ A.

Proof. Parts (i) and (ii) are exactly [28, Thm. 8.4.1 (i) and (ii)]. Part (iii)
can be deduced from [28, Thm. 8.2.1 (ii)]. (The references we give here are
to a readable textbook exposition that explains the ideas but does not quite
contain complete proofs. For references with proofs that one can deduce the
results from, see [25, Thm. 4.2.1] or [15, Thm. C] for part (i), [25, Thm. 4.2.4]
or [15, Thm. D] for part (ii), and [25, Thm. 4.1.3] or [15, Thm. C] for part (iii).)

�
The next result again follows Enders’ work: the proof proceeds along similar

lines to [14, proof of Thm. 4.1]

Corollary 5.9. Let A be an AF algebra equipped with an action of Z so
that the associated crossed product A ⋊ Z is a Kirchberg algebra. Let X be
a finite subset of A⋊ Z, and assume there exists a projection p ∈ A such that
px = xp = x for all x ∈X. Then, for any ǫ > 0, there exist AF C∗-subalgebras
C and D of p(A⋊Z)p and a positive contraction h ∈ p(A⋊ Z)p such that the
following hold:
(i) for all x ∈ X, ‖[h, x]‖ < ǫ;
(ii) for all x ∈ X, hx ∈ǫ C, (1− h)x ∈ǫ D, h(1− h)x ∈ǫ C ∩D;

Münster Journal of Mathematics Vol. 16 (2023), 51–94



Complexity rank for C∗-algebras 87

(iii) E := C ∩D is an AF algebra;
(iv) h multiplies E into itself.

Proof. We first follow the argument of [14, Thm. 4.1]. LetN be large enough so
that the conclusion of Corollary 5.6 holds for the givenX and p, and parameter
ǫ/2, and fix any n ≥ N .

Note first that, as A⋊ Z is a Kirchberg algebra, A cannot have any tracial
states that are invariant for the Z action, which forcesA to be nonunital. Hence
A⋊Z is stable by Zhang’s dichotomy: see [28, Prop. 4.1.3], or [42, Thm. 1.2] for
the original reference. As then Mn(A⋊Z) is a stable UCT Kirchberg algebra,
Theorem 5.8 (ii) implies there is a ∗-isomorphism ω :Mn(A⋊Z)→Mn(A⋊Z)
such that the map ω∗ : K∗(Mn(A ⋊ Z)) → K∗(Mn(A ⋊ Z)) induced by ω is
multiplication by −1 in both even and odd degrees.

Let now κn be as in Corollary 5.6, built using this ω. From Lemma 5.7, the
map induced by κn on K-theory is the same as the canonical top-left corner
inclusion i2n+1 :A⋊Z→M2n+1(A⋊Z) and in particular is an isomorphism on
K-theory. Hence, by the UCT (see [31, Prop. 7.5] for the precise consequence
of the UCT being used here), κn is invertible in KK(A⋊ Z, M2n+1(A⋊ Z)).
Theorem 5.8 (i) thus gives a ∗-isomorphism ψn :A⋊Z→M2n+1(A⋊Z) whose
class in KK(M2n+1(A⋊ Z), A⋊ Z) is the inverse of the class of κn.

The fact that ψn ◦ κn equals the class of the identity in KK(A⋊Z, A⋊ Z)
and Theorem 5.8 (iii) imply that there is a sequence (um)∞m=1 of unitaries in
the multiplier algebra of A⋊ Z such that um(ψnκn(a))u

∗
m → a as n → ∞ for

all a ∈ A⋊ Z.
Now, let q := κn(p), and let hn ∈ q(M2n+1(A ⋊ Z))q and qCnq, qDnq ⊆

M2n+1(A⋊ Z) be as Corollary 5.6. Define pm := umψn(q)u
∗
m, which is a pro-

jection in A⋊Z such that pm → p as m→∞. Hence, by Lemma 2.12 (applied
to the multiplier algebra M(A⋊Z) of A⋊Z), for all suitably large m, there is
a unitary vm ∈M(A⋊Z) such that vmpmv∗m = p and such that vm → 1M(A⋊Z)

as m → ∞.
Direct checks now show that, for sufficiently large m, the element h :=

vmumψn(hn)u
∗
mv∗m and C∗-subalgebras C := vmumψn(Cn)u

∗
mv∗m and D :=

vmumψn(Dn)u
∗
mv∗m have the properties in the statement. �

The next corollary follows directly from Corollary 5.9 and the definition of
complexity rank (see Definition 2.3 above).

Corollary 5.10. Let A be an AF algebra equipped with an action of Z so that
the associated crossed product A ⋊ Z is a Kirchberg algebra, and let p ∈ A ⊆
A⋊ Z be a projection. Then p(A⋊ Z)p has complexity rank at most one. �

We are finally ready to complete the proof of Theorem 5.3. We will use
corner endomorphisms and the associated crossed products by N: see [27,
Sec. 2] for background on this.

Proof of Theorem 5.3. Let B be a unital Kirchberg algebra that satisfies the
UCT. Using [27, Thm. 3.6], there is a simple, unital AF algebra A0 with unique

Münster Journal of Mathematics Vol. 16 (2023), 51–94



88 Arturo Jaime and Rufus Willett

trace and a proper corner endomorphism ρ of A0 such that the associated
crossed product A0 ⋊ N is a UCT Kirchberg algebra with the same K-theory
invariant as B. Hence, by the Kirchberg–Phillips classification theorem (see
for example [28, Thm. 8.4.1] for an appropriate version), B is isomorphic to
A0 ⋊N. Hence it suffices to prove that A0 ⋊N has complexity rank at most one.

Define now A to be the direct limit of the sequence

A0
ρ−→ A0

ρ−→ A0
ρ−→ · · · .

Then A is a direct limit of AF algebras so itself an AF algebra, and as discussed
in [28, pp. 75–76, and also pp. 72–73], A is equipped with a Z-action and
a projection p ∈ A such that p(A⋊ Z)p ∼= A0 ⋊ N. Thanks to Corollary 5.10,
we are done. �

5.11. The general case. In this subsection, we finish the proof of Theo-
rem 5.1 by computing the complexity rank of general unital UCT Kirchberg
algebras. We will need existence of a good class of “models”, i.e. a collection of
C∗-algebras with well-understood structure so that every UCT Kirchberg alge-
bra is isomorphic to one in the collection. Our models will be built from Cuntz
algebras, and one other Kirchberg algebra with special K-theory. We need
some notation. For n ∈ {2, 3, 4, . . .} ∪ {∞}, we let On denote the Cuntz alge-
bra. We also let O1,∞ be a unital UCT Kirchberg algebra with K0(O1,∞) = 0
and K1(O1,∞) = Z; such exists by [28, Prop. 4.3.3] (and is unique up to iso-
morphism by the Kirchberg–Phillips classification theorem).

The next proposition gives the models we will use. Variants of this are
very well-known: see for example [28, Prop. 8.4.11] (and the erratum on the
author’s webpage).

Proposition 5.12. Any unital Kirchberg algebra in the UCT class can be
written as an inductive limit of C∗-algebras of the form

(25) B0 ⊕ (B1 ⊗O1,∞),

where B0 and B1 are both of the form

N⊕

j=1

Mnj
(Omj

)

with N ∈ N, each nj ∈ N, and each mj ∈ {2, 3, . . .} ∪ {∞}.
To establish this, we will need another variant of the Kirchberg–Phillips

classification theorem, due to Kirchberg (as far as we are aware, Kirchberg’s
proof has not been published in full: the reader can consult [15, Thm. A] for
a proof, which is independent of Kirchberg’s). For the statement, recall that
a ∗-homomorphism φ : A → B is full if, for any nonzero a ∈ A, φ(a) generates
B as a two-sided ideal.

Theorem 5.13 (Kirchberg). Let A be a separable, nuclear, unital C∗-algebra
that satisfies the UCT, and let B be a unital, properly infinite C∗-algebra. Let
[1A] ∈ K0(A) ⊆ K∗(A) be the class of the unit, and similarly for [1B]. Then,
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for any (graded) homomorphism α : K∗(A) → K∗(B) such that α[1A] = [1B],
there exists a full, unital ∗-homomorphism φ : A → B inducing α.

Proof. Let A be a separable, nuclear, unital C∗-algebra, and let B be a unital,
properly infinite C∗-algebra. Then [15, Thm. A] implies that, for any x ∈
KK(A,B) such that the map x∗ : K∗(A) → K∗(B) on K-theory induced by x
takes [1A] to [1B], there exists a full unital ∗-homomorphism φ : A → B such
that the class [φ] in KK(A, B) equals x: precisely, the given reference has
strictly weaker assumptions on A and B (in particular, only that A is exact)
and works with classes in KKnuc(A,B) rather than KK(A,B). However, we
assume above that A is nuclear, which implies that KKnuc(A,B) =KK(A,B).

On the other hand, as A satisfies the UCT, the canonical map

KK(A,B) → Hom(K∗(A),K∗(B))

is surjective. The result follows from this and the comments above on lifting
α to some x ∈ KK(A,B). �

Proof of Proposition 5.12. We note first that any C∗-algebra as in line (25) sat-
isfies the UCT. Indeed, Cuntz algebras are in the UCT class as discussed on [28,
p. 73], and the UCT class is preserved under direct sums by [31, Prop. 2.3 (a)],
under taking matrix algebras by [31, Prop. 2.3 (a)], and under taking tensor
products by [31, Thm. 7.7].

Let (K0(A), [1A], K1(A)) be the K-theory invariant of A. Choose a se-
quence (Gn,0, Gn,1) such that Gn,0 is a finitely generated subgroup of K0(A)
containing [1A], Gn,1 is a finitely generated subgroup of K1(A), and such that
Ki(A) =

⋃
n∈N Gn,i for i ∈ {0, 1}. As C∗-algebras of the form in line (25) and

the various building blocks involved satisfy the UCT, the K-theory Künneth
formula applies (see [33, p. 443] or [3, Thm. 23.1.3]). Using this and the
well-known K-theory of the Cuntz algebras (see for example [28, p. 74]), it is
straight-forward to see that, for each n, there is a C∗-algebra Cn of the form
in line (25) such that (K0(Cn), [1Cn

],K1(Cn)) ∼= (G0,n, [1A],G1,n). Identifying
these groups via a fixed isomorphism, Corollary 5.13 implies that, for each n,
the inclusion map

(G0,n, [1A], G1,n) → (G0,n+1, [1A], G1,n+1)

is induced by a full unital ∗-homomorphism φn : Cn → Cn+1. We claim that
A is isomorphic to the inductive limit C of the system (Cn, φn). Indeed, as
each φn is unital and full, C is unital and simple. Using continuity of K-
theory, (K0(C), [1C ],K1(C)) ∼= (K0(A), [1A],K1(A)). As each Cn is nuclear, C
is nuclear (see for example [8, Thm. 10.1.5]). As each Cn is a finite direct sum
of purely infinite C∗-algebras, C is purely infinite (one can check this using
the condition in [27, Prop. 4.1.8 (iv)], for example). As each Cn satisfies the
UCT, C also satisfies the UCT by [31, Prop. 2.3 (b)]. Hence, by the Kirchberg–
Phillips classification theorem (for example, in the form of [25, Thm. 4.3.4]),
A is isomorphic to C as claimed. �
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Theorem 5.14. Any unital UCT Kirchberg algebra A has complexity rank at
most two.

Proof. Proposition 5.12 writes A as an inductive limit of C∗-algebras of the
form B0 ⊕ (B1 ⊗ O1,∞) with B0 and B1 a finite direct sum of matrix alge-
bras over Cuntz algebras. Using Theorem 5.3, any unital UCT Kirchberg
algebra with torsion-free K1-group has complexity rank one. Using this and
Lemma 2.5, each of B0, B1, and O1,∞ has complexity rank at most one. Hence
Proposition 2.27 implies that B1 ⊗O1,∞ has complexity rank at most two, and
thus so does B0 ⊕ B1 ⊗O1,∞ using Lemma 2.5 again. As complexity rank is
non-increasing under taking inductive limits (Lemma 2.7), the complexity rank
of A is at most two. �

We finish this section by recording a proof of Theorem 5.1.

Proof of Theorem 5.1. Let A be a unital UCT Kirchberg algebra. Then A has
complexity rank at most two by Theorem 5.14. As A is not locally finite-
dimensional, it does not have complexity rank zero.

If A has complexity rank one, then it has torsion-free K1-group by Theo-
rem 4.1. Conversely, if A has torsion-free K1 group, then it has complexity
rank one by Theorem 5.3. �

6. Questions

We conclude the paper with some open questions that seem interesting to
us. The first question is important (and probably difficult) as it is equivalent
to the UCT for all nuclear C∗-algebras.

Question 6.1. Do all (unital) Kirchberg algebras have finite complexity?

Even knowing finite complexity for Kirchberg algebras with trivialK-theory
would imply the UCT for all nuclear C∗-algebras.

The next question is about the most interesting example that we do not
currently know the complexity rank of.

Question 6.2. What is the complexity rank of an irrational rotation algebra?

We conjecture the answer is always one; more generally, we conjecture that
the complexity rank of a separable AT-algebra of real rank zero (and which is
not AF) is always one.

Question 6.3. What is the complexity rank of (classifiable) AH (or even ASH)
algebras of real rank zero?

It would also be interesting to give nontrivial upper bounds, maybe in terms
of the dimensions of the spectra of (sub)homogeneous algebras appearing in
a directed system for the given A(S)H algebra.

The following question is very natural. We know too little to hazard a rea-
sonable guess at the moment.
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Question 6.4. Which ordinal numbers can be the complexity rank of a C∗-
algebra?

We did not seriously attempt to address this question, but at the moment,
the only values we know can be taken are 0, 1, and 2. It is conceivable that,
for the uniform Roe algebras C∗

u(X) associated to a space X , the complexity
rank of C∗

u(X) and the complexity rank of X in the sense of [17, Def. 2.9]
coincide (at present, we know only that the complexity rank of the C∗-algebra
is bounded above by that of the space). If these ranks were equal, it would
follow for example from [17, Sec. 4, Sec. 5] and [10] that many complexity
ranks are possible for C∗-algebras.

Question 6.5. Does (weak) complexity rank at most one imply real rank zero
in general?

There are some interesting connections of this question to other problems:
compare Remark 3.17 above.

The question below seems interesting from the point of view of the structure
of C∗-algebras. Recall from the discussion below Definition 1.3 that we think
of having weak complexity rank at most one as being “two-colored locally
finite-dimensional”.

Question 6.6. Can one make a reasonable version of being “two-colored AF”
that is also equivalent to having weak complexity rank at most one?

This would mean somehow arranging the different C∗-subalgebras C and D
that arise into systems ordered by inclusion in some sense (to be made pre-
cise by the answer to the question!). By analogy with the classical (non-)
equivalence between being AF and being locally finite-dimensional, one prob-
ably wants to assume separability in the above.

The following question seems basic (we tried to find an answer and were not
able to).

Question 6.7. Does having complexity rank at most α pass to corners?

This would be interesting to know even for α = 1. The answer is “yes” for
weak complexity rank at most one: one can see this by adapting the proof of
[22, Prop. 3.8], for example.

Our last question is a little vague, but would be useful to have, particularly
with regard to permanence properties.

Question 6.8. Is there a “good” definition of decomposability in the nonunital
case?

Many of the results in this paper have reasonably natural variants in the
nonunital case, but we were not able to come up with a really clean and natural
definition, so in the end opted to write the paper entirely in the unital setting
for the sake of simplicity. Certainly, having a notion that applied equally in
the unital case would be very interesting, however.
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2565 McCarthy Mall, Keller 401A
Honolulu, HI 96816, USA
E-mail: rufus@math.hawaii.edu
URL: https://math.hawaii.edu/~rufus/

Münster Journal of Mathematics Vol. 16 (2023), 51–94


