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Plasma cell-free DNA (cfDNA) is a noninvasive biomarker for cell death of all organs.
Deciphering the tissue origin of cfDNA can reveal abnormal cell death because of dis-
eases, which has great clinical potential in disease detection and monitoring. Despite
the great promise, the sensitive and accurate quantification of tissue-derived cfDNA
remains challenging to existing methods due to the limited characterization of tissue
methylation and the reliance on unsupervised methods. To fully exploit the clinical
potential of tissue-derived cfDNA, here we present one of the largest comprehensive and
high-resolution methylation atlas based on 521 noncancer tissue samples spanning 29
major types of human tissues. We systematically identified fragment-level tissue-specific
methylation patterns and extensively validated them in orthogonal datasets. Based on
the rich tissue methylation atlas, we develop the first supervised tissue deconvolution
approach, a deep-learning-powered model, ¢fSorz, for sensitive and accurate tissue decon-
volution in cfDNA. On the benchmarking data, ¢fSorz showed superior sensitivity and
accuracy compared to the existing methods. We further demonstrated the clinical util-
ities of ¢fSorz with two potential applications: aiding disease diagnosis and monitoring
treatment side effects. The tissue-derived cfDNA fraction estimated from ¢fSor¢ reflected
the clinical outcomes of the patients. In summary, the tissue methylation atlas and
¢fSort enhanced the performance of tissue deconvolution in cfDNA, thus facilitating
cfDNA-based disease detection and longitudinal treatment monitoring.

cell-free DNA | DNA methylation | tissue deconvolution | disease diagnosis | disease monitoring

Dying cells from all tissues release their DNA into the bloodstream as cell-free DNA
(cfDNA) (1-3). The development and treatment of many diseases, such as cancer (4-9),
autoimmune diseases (10), and sepsis (11), can influence cell death rates, thus impacting
the fractions of cfDNA from respective tissues in blood (11, 12). Therefore, the abnormal
tissue-derived cfDNA fractions can reveal altered tissue homeostasis due to diseases and
collateral tissue damage due to treatments (13). As a result, cfDNA provides a noninvasive
and comprehensive profile of wellness across all tissues in the body. Deciphering the tissue
origin of cfDNA, i.e., tissue deconvolution of cfDNA, holds great clinical potential in
aiding disease diagnosis, prognosis, and treatment monitoring. Despite the great promise,
tissue deconvolution of cfDNA faces unique challenges: 1) cfDNA from solid organs
comprises only a minor fraction of ¢fDNA with an overwhelming background cfDNA
(~85%) from blood cells (14-16). The signal from the pathologic organs is usually weak
in cfDNA. 2) All tissues in the body can release cfDNA (3, 15), requiring the joint decon-
volution of as many tissue types as possible, not just a few tissue types, for an accurate
tissue deconvolution.

Thanks to the tissue specificity of DNA methylation, cfDNA can be traced back to the
tissues they originated from based on its methylation pattern (14). Several studies proposed
methylation-based tissue deconvolution methods to estimate the proportions of
tissue-specific cfDNA, including nonnegative least square methods (14, 15) and
likelihood-based methods (17, 18). Although these methods have demonstrated the via-
bility of methylation-based tissue deconvolution, their sensitivity and accuracy are still
inadequate to detect a minor fraction of tissue-derived cfDNA, due to three major limi-
tations: 1) They used unsupervised deconvolution approaches, which are known to be
inferior to supervised approaches in terms of power, generalizability, and robustness to
noises. 2) Only one or a few methylation profiles were available for a single tissue type,
which cannot sufficiently represent inter-individual variances. 3) High-resolution meth-
ylation profiles were only available for limited tissue types, which cannot permit compre-
hensive characterization of tissue-specific methylation and joint deconvolution of all tissue

types.
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Significance

Plasma cell-free DNA (cfDNA) is a
noninvasive biomarker for cell
death of all organs. Deciphering
the tissue origin of cfDNA can
reveal abnormal cell death
because of diseases, which has
great clinical potential in disease
detection and monitoring. To
fully exploit this potential, we
present one of the largest
comprehensive and high-quality
tissue methylation atlases,
constructed from 521 noncancer
tissue samples spanning 29
major human tissues. Based on
this rich data, we develop the
first deep-learning-powered
model, ¢fSort, for tissue
deconvolution. We demonstrated
that c¢fSort has superior sensitivity
and accuracy compared to
existing methods. We validated
¢fSort in patients with cirrhosis
and cancer. Our atlas and cfSort
shall have broad research and
clinical applications in disease
detection and monitoring.
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Here, we present a comprehensive and high-resolution tissue
methylation atlas and a deep neural network (DNN)-based model
named ¢fSorz for quantifying tissue composition sensitively and
robustly in cfDNA in a supervised manner. The methylation atlas
resolves the knowledge gap in tissue-specific methylation, and the
¢fSort addresses the technical limitations of the existing deconvo-
lution methods. Thus, they can improve the sensitivity and accu-
racy of tissue deconvolution in ¢fDNA, enhancing the clinical
utility of the tissue-derived cfDNA.

To construct the tissue methylation atlas, we systematically iden-
tified tissue-specific methylation signatures from high-resolution
Reduced Representative Bisulfite Sequencing (RRBS) data of 521
samples covering 29 major types of noncancerous human tissue,
including 8 tissue types that are not covered in ref. 16. These signa-
tures and data constitute one of the largest base-resolution tissue
methylation atlases. The traditional tissue-specific methylation sig-
natures were discovered at the population level using the average
methylation level of all DNA fragments in genomic bins (14, 15, 17).
However, because tissue samples usually comprise DNA from het-
erogeneous cell types, the average methylation across all DNA can
blur the tissue-specific signals that appear in a minor cell proportion
(15, 19). To address the tissue heterogeneity issue, here we analyze
methylation signals at the individual DNA fragment level, in order
to sensitively pick up signatures present even in minor cell popula-
tions (19). In addition, we carefully validated the methylation sig-
nature atlas in independent methylation datasets, orthogonal
epigenomic markers, and transcription regulatory elements.

Here we develop the first supervised method, ¢fSors, to sensitively
and accurately quantify the tissue composition in cfDNA. Taking
advantage of the rich tissue methylation data, we generated
large-scale diverse training samples of in silico tissue mixtures, which
fully exploit the experimental and interindividual variance and
ensure the robustness of ¢fSorz. Therefore, compared to the existing
unsupervised methods, ¢fSor intrinsically has advantages in accuracy
(20). Combining the comprehensive methylation atlas and ¢fSorz,
we demonstrated a more sensitive and accurate estimation of tissue
composition compared to the existing methods. In addition, we
showed that ¢fSorz was robust against the tissue epigenetic variability,
interindividual difference, and experimental noise. We further
demonstrated the clinical utilities of ¢fSors with two potential appli-
cations: 1) aiding disease diagnosis and 2) monitoring treatment
side effects. For disease diagnosis, we applied the ¢fSorz to plasma
cfDNA from healthy individuals and diseased patients, including
cancer patients and cirrhosis patients, where ¢fSort effectively iden-
tified a significantly elevated proportion of cfDNA from the affected
tissue in those patients, even with methylation data generated by
different platforms. For treatment monitoring, we applied ¢/Sorz to
serial plasma samples from non-small cell lung cancer (NSCLC)
patients who received anti-PD-1 immunotherapy. The tissue frac-
tions estimated by the ¢fSor# consistently reflected the organ damages
in agreement with biochemical test results. The results of these two
clinical scenarios demonstrated the applicability of ¢fSorz in nonin-
vasively disease diagnosis and monitoring.

Results

Building a Comprehensive Tissue Methylation Atlas. We gene-
rated base-resolution methylation data (RRBS) for 521 tissue
samples of noncancer participants from the Genotype-Tissue
Expression (GTEx) project (21). These tissue samples covered
29 major types of human tissues (S Appendix, Table S1). From
these RRBS data, we performed the analysis at the DNA fragment
level and systematically discovered tissue-specific methylation
markers. Briefly, we quantified methylation levels in individual
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DNA fragments, in contrast to the conventional marker discovery
using average methylation levels of all DNA fragments within large
genomic bins (14, 15). Using the fragment-level methylation,
we then identified genomic regions as tissue-specific methylation
markers if DNA fragments with tissue-specific methylation
patterns (namely tissue-specific DNA fragments) nearly exclusively
exist in one group of tissue types, regardless of the fraction, but
not in another group of tissue types (Materials and Methods).
Therefore, the fragment-level marker discovery is robust to the
heterogeneity in the tissue samples (17).

As shown in previous studies (14, 15, 22), different marker dis-
covery strategies focus on different differential methylation patterns
between tissues (e.g., one tissue type vs. other tissue types), which
can lead to different types of tissue markers. To build a comprehensive
tissue methylation atlas, we employed three marker discovery
strategies, resulting in three marker types that can cover nearly
all differential tissue patterns. Specifically, they include: 1) The
one-tissue-vs.-the-rest strategy identifies the Type I markers, with
differential methylation signatures between one tissue type and all
theothertissue types (Fig. 1A4).2) The one-group-vs.-the-another-group
strategy identifies the Type II markers (Fig. 1B), with differential
methylation between two tissue groups (tissue group defined by the
tissue phylogeny in early development (23), e.g., between the diges-
tive system and lymphatic system, Fig. 1C). 3) The one-tissue-
vs.-another-tissue strategy identifies Type III markers, with differen-
tial methylation between two tissue types (Fig. 1), which can help
distinguish similar tissue types from adjacent organs, such as the
esophagus and stomach. For each strategy, the markers were ranked
by their consistency across tissue samples, i.e., the number of samples
showing the tissue-specific methylation pattern (Materials and
Methods). The top-ranked 100 Type I markers, the top-ranked 200
Type II markers, and the top-ranked 50 Type III markers from each
comparison were utilized in the tissue deconvolution (Fig. 24), in
total 51,035 markers (3,775 Type I markers, 6,660 Type II markers,
and 40,600 Type I1I markers). The three types of tissue-specific meth-
ylation markers were complementary to each other. Over 70% of
markers were unique for each marker type (90.4% for Type I, 73.5%
for Type II, and 81.4% for Type III). Therefore, we combined these
markers to construct the tissue marker atlas.

Validation of the Tissue Specificity of the Tissue Methylation
Atlas. We validated the tissue marker atlas with independent data
sources from four aspects (87 Appendix): 1) The reproducibility
of the tissue-specific methylation. 92.9% of our tissue markers
showed consistent tissue-specific methylation in the whole-genome
bisulfite sequencing (WGBS) data of the Epigenome Roadmap
projects (24) (Fig. 2B and SI Appendix, Fig. S1A4). This indicated
that the tissue-marker atlas captured real tissue-specific methylation
patterns that were reproducible in the independent data with a
different cfDNA methylation assay (i.e., WGBS). 2) The association
with the tissue-specific histone modification. We focused on the
H3K27ac modification, which has the most abundant data in the
ENCODE project (25). We observed consistent tissue-specific
H3K27ac modification at 93.7% of the tissue markers (Fig. 2C
and S/ Appendix, Fig. S1B). Hypomethylated regions for a tissue
type usually correspond to a tissue-specific elevation of H3K27ac
modification, consistent with previous studies (24, 26). 3) The
association with the tissue-specific gene expression. In the RNA-seq
datain the GTEx project (21), 63.0% of tissue markers had increased
gene transcription levels when the corresponding promoter regions
were hypomethylated in the tissue types (Fig. 2D), implying that
tissue-specific methylation may impact the tissue-specific gene
expression. 4) The association with tissue-specific transcription
regulation. We performed the enrichment analysis of transcription
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Fig. 1. Three strategies to select the tissue-specific methylation signatures. lllustration of the tissue comparisons in the one-tissue-vs.-the-rest strategy (A), the
one-group-vs.-another-group strategy (B) following the tissue development phylogeny (C), and the one-tissue-vs.-another-tissue strategy (D). The fragment-level
methylation in a genomic region was compared between the negative group and the positive group. The phylogenetic tree (C) constructed was based on early
tissue development (23). The first layer corresponded to the three germ layers in early embryo development. The second layer corresponded to the function
systems. The third layer contained the 29 tissue types in our deconvolution model.

factor binding motifs at the tissue markers using HOMER (27).
The enriched motifs mostly relate to development, differentiation,
and tissue-specific expression (Fig. 2 and SI Appendix, Table S2).
For example, Homeobox protein Hox-D12 plays an important role
in morphogenesis and myocyte enhancer factor-2 also contributes
to the development of many tissues (28, 29). These results indicated
that the tissue markers of our atlas are indeed involved in tissue-
specific biological processes. Through these four validations using
independent datasets, we showed that the tissue markers in our
atlas were tissue-specific and biologically meaningful.

Overview of cfSort. Due to the limited quantity and quality of
available tissue methylation data, existing cfDNA deconvolution
methods relied on unsupervised models, such as non-negative
least squares (14, 15) and likelihood-based models (17, 18).
Without learning from the ground truth tissue composition, these
unsupervised models were intrinsically less powerful compared
to the supervised models (20). The major challenge of applying
supervised models is the lack of ¢fDNA data with ground-truth
tissue compositions for training and evaluation because it is
impossible to know the actual tissue compositions for real fDNA
samples. To address this challenge, we generated a large number of
in silico cfDNA data to comprehensively cover the landscape of
cfDNA tissue compositions. A similar framework has been proven
successful to predict cell composition from tissue expression
profiles (30). Using the large in silico cohort, we developed a

PNAS 2023 Vol.120 No.28 2305236120

DNN-based model, ¢fSorz, for cfDNA tissue deconvolution,
by considering the cfDNA properties in key components of the
DNN constructions, including 1) data generation, 2) feature
construction, 3) network architecture, and 4) model training.

Data generation. We used the RRBS data of the 521 tissue samples
to generate in silico cfDNA methylation data with predefined
tissue compositions and at different depths of coverage as the
training, validation, and testing data (Fig. 34). As the majority
of cfDNA comes from white blood cells (WBC) (3, 14, 15), we
required the WBC always to be the major contributor in an in
silico cfDNA sample. Specifically, we split the original tissue
samples into three groups (SI Appendix, Fig. S2): training (75%),
validation (10%), and testing (15%). The in silico cfDNA data
for the model training, validation, and testing were generated
from the tissue samples in the corresponding group respectively.
'The data of an in silico fDNA sample was generated in four steps
(SI Appendix, Fig. S3 and details see Materials and Methods): 1)
randomly select contributing tissue types; 2) randomly choose
one original tissue sample from each tissue type selected in step
1; 3) generate random tissue composition for the in silico fDNA
sample following symmetric Dirichlet distribution under the
cfDNA-specific constraint (i.e., WBC as the major contributor);
4) subsample DNA fragments from each tissue sample selected
in step 2, following uniform distribution based on the tissue
composition (generated in step 3) and mix them to generate the in
silico cfDNA sample. A large number of our tissue samples allowed
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Fig.2. Construction and validation of the tissue-specific methylation atlas. (A) Heatmap of three types of tissue-specific markers used in the tissue deconvolution
(i.e., the top-ranked tissue markers in the methylation atlas). The methylation atlas consists of the tissue markers that distinguish 29 human tissues. The tissue
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frequency between the corresponding tissues. Each point in the figure corresponds to a marker. The vertical dashed line indicated that the fold change was 1.
The horizontal dashed line indicated a significant P value (<0.01). (D) Marker association with tissue-specific transcription. For each marker, on the RNA-seq data
from the GTEx project, we performed the Wilcoxon rank-sum test between the corresponding tissues. Each point in the figure corresponds to a marker. The
vertical and horizontal dashed lines indicated a significant P value (<0.01). (E) Marker association with tissue-specific transcription regulation. We analyzed the
enrichment of transcription factor binding motifs at the marker regions using HOMER. The top 20 enriched motifs and their P values were shown in the figure.
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us to generate 295,484 diverse training samples and thousands
of validation and testing samples, which fulfilled the requirement
of the DNN training and evaluation (31). In addition, in the
data generation, we fully exploited the combination of different
tissue types, different samples, and different tissue compositions,
exploring the possible noise and bias in the data. As a result, ¢fSorz
would learn robust tissue-specific features from these data.

Feature construction and profile generation. e constructed the
input features of ¢fSort by leveraging the tissue markers in our atlas.
Note that cfDNAs protected by nucleosomes generally have higher
abundances than those not protected (32). Because different tissue
types have different nucleosome positioning (33), the tissue
composition in individual genomic regions can deviate from the
overall tissue composition, thus resulting in locally unstable cfDNA
methylation levels. However, such effects cannot be reflected by
our tissue-derived in silico cfDNA data. To address this problem,
we designed a marker clustering strategy to merge individual
tissue markers into a marker cluster that is robust against the
impact of nucleosome positioning. We performed the constrained
K-means clustering (34) on the individual markers based on their
methylation profiles across training samples, allowing four to seven
individual markers in a cluster. This resulted in 10,183 marker
clusters. A marker cluster (covering approximately 400 bp to 1,000
bp) has a much larger size compared to the DNA wrapped around
a nucleosome (~160 bp). For every marker cluster, we derived a
numerical feature as the fraction of tissue-specific DNA fragments

https://doi.org/10.1073/pnas.2305236120

at all markers within the cluster. Therefore, for each sample, we
derived 10,183 numerical features to form an input feature profile
for the DNN. For details see S/ Appendix, section S5.1.

DNN architecture. The basic structure of ¢fSorz is an ensemble of
two DNNs. The ensemble helps to reduce the prediction variance
(31). Each DNN takes the feature profiles as input and outputs
the predicted tissue compositions of the 29 tissue types (Fig. 3B).
For each DNN, we constructed three dense hidden layers with a
decreased number of nodes (1,024, 512, 128, and 256, 128, 32
respectively) and used the rectified linear unit (ReLU) (35) as the
activation function. The hidden nodes can automatically learn
weights that prioritize the input features and make the DNN
resistant to noises in the data. Considering the size and diversity of
our training data, we added a batch normalization layer before each
dense layer to stabilize and accelerate the training process (36).
In addition, we apply a dropout layer after each dense layer (with
dropout rate 0, 0.05, 0, and 0, 0, 0, respectively) to regularize the
DNN to increase model robustness and avoid overfitting (37). We
calculated the final predicted tissue composition as the averaged
predictions from the two DNNGs.

Model training. We applied the state-of-the-art optimizer Adam
(38) with a learning rate of 0.001 and a batch size of 32. We used
the mean absolute error between the estimated tissue composition
and the ground truth as the loss function. To avoid overfitting, we
applied two strategies in the training process: 1) Early stopping,
i.e., to stop training the DNN when the performance drops on the
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Fig.3. Overview of in silico cfDNA data generation and the DNN of the cfSort.
(A) lllustration of in silico cfDNA data generation. The data were generated by
in silico mixing of the data of tissue samples (Materials and Methods). For a
sample, we randomly selected the original tissue samples and generated a
tissue composition where the WBC was always the major contributor. Then
we uniformly and randomly sampled DNA fragments from the RRBS data of
the selected tissue samples based on the corresponding tissue fraction in the
tissue composition. The sampled DNA fragments from every tissue sample
were pooled together as the simulated sample. The tissue composition was
regarded as the ground truth. (B) lllustration of cfSort. cfSort is an ensemble
of two component DNNs, which have three dense hidden layers with the
RelLU activation. We applied a batch normalization layer before each dense
hidden layer and a dropout layer after each hidden layer. The output layer
of each DNN contained 29 nodes corresponding to the 29 tissue types in
the deconvolution. We utilized the softmax activation function in the output
layer. The final output of c¢fSort is the average of the output from the two
component DNNs.

validation data, i.e., when the model starts to overfit the training
data. This strategy has proven effective in cell-type proportion
estimation with gene expression data (30). 2) Independent
validation data from the training to fairly evaluate the validation
loss during the training process. Through these two strategies,
overfitting can be effectively avoided.

Analytical Performance of cfSort. We tested ¢fSorz on an
independent testing set of the in silico cfDNA samples (n = 3,660,
see Materials and Methods). We compared its performance to two
existing tissue deconvolution methods (57 Appendix): the non-
negative least square method (NNLS) (14-16) and the CelFiE
(17). We evaluated the accuracy of the methods using mean
absolute error, Lin’s concordance correlation coefficient, and
Pearson’s correlation between the estimated tissue fraction and
ground truth. ¢fSort outperformed NNLS and CelFiE on all three
metrics (Fig. 4A4). ¢fSort achieved a lower mean absolute error
[0.00286, 95% CI = (90.00279, 0.00293)] than NNLS [0.02076,
95% CI = (0.02040, 0.02112)] and CelFiE [0.00676, 95% CI =
(0.00664, 0.00688)], and higher Pearson’s correlation and Lin’s
concordance correlation [0.99707, 95% CI = (0.99704, 0.99711)

PNAS 2023 Vol.120 No.28 2305236120

and 0.99707, 95% CI = (0.99704, 0.99711), respectively] than
NNLS [0.93323, 95% CI = (0.93245, 0.93400) and 0.90557,
95% CI = (0.90467, 0.90645)] and CelFiE [0.99197, 95% CI =
(0.99188, 0.99207) and 0.99038, 95% CI = (0.99028, 0.99049)].
These results indicated that ¢fSorz achieved higher accuracy in
estimating tissue compositions than the two competing methods.

Deconvolution methods need to have a high detection limit to
detect tissue-derived cfDNA at low proportions. To assess ¢fSort’s
detection limit, we utilized a widely used approach based on in
silico dilution series (n = 20,960). For each sample in the dilution
series, we mixed a single tissue sample with a WBC sample in the
testing set with known tissue fractions (0%, 0.1%, 0.3%, 0.5%,
0.7%, 1%, 3%, 5%, 7%, 10%, 13%, 15%, 17%, 20%, 23%,
25%, 27%, and 30%) and at different depths of coverage (ranging
from 20x to 120x, see Materials and Methods). All tissue samples
from all tissue types in the testing group were used to generate
the dilution series. Therefore, the evaluation of the detection limit
shall reflect the overall performance of ¢fSort across all tissue types.
We determined the detection limit for tissue-derived cfDNA at a
specific tissue fraction 6 using one-sided Student 7 tests against
the control samples with 0% tissue fraction (Materials and
Methods). At 20x, ¢fSort detected tissue-derived cfDNA at 0.1%
tissue fraction (P value = 0.028, Fig. 4B), while NNLS detected
it at 5% (P value = 0.009, Fig. 4C) and CelFiE at 0.5% (2 value
= 0.010, Fig. 4D and SI Appendix, Table S3). As the depth of
coverage increased, ¢fSorr showed improved detection of
tissue-derived cfDNA (87 Appendix, Fig. S4). These results demon-
strate that ¢fSort has a better detection limit than the two com-
peting methods.

Robustness of cfSort. As aforementioned, the nucleosome
positioning and other factors (e.g., experimental noise) can cause
local fluctuation of the tissue-derived cfDNA fraction. To assess
¢fSort’s robustness against this local fluctuation, we compared the
consistency of estimated tissue composition from in silico cfDNA
samples with the same overall tissue composition but different
local compositions. We generated in silico cfDNA testing sample
pairs (n = 9,023) from the same test tissue samples with different
sampling distributions of sequencing reads (Fig. 54). For sample
A, dssue DNA fragments were randomly selected with a uniform
distribution, while for sample B, fragments were sampled following a
non-uniform tissue-specific distribution generated through random
permutation of the average read distribution in ¢fDNA from 167
healthy individuals (Materials and Methods). Different sampling
distributions led to different probabilities of sampling a tissue DNA
fragment in a local genomic region, mimicking the epigenetic impact
in different tissues. Thus, samples A and B had different local tissue
compositions despite having the same overall tissue composition.

The ¢fSort model was trained on data generated in the same process
as sample A and then applied to the testing sample pairs. Therefore,
the consistency of the estimated tissue fraction from the testing sam-
ple pairs can illustrate the robustness of ¢fSo7# under the fluctuation
of the local tissue compositions. We measured the consistency using
the intercept, slope, and R? of the fitted linear regression model
between the estimated tissue fractions of samples A and B. ¢fSorz
demonstrated remarkable robustness, as evidenced by a regression
equation close to a perfect diagonal line (intercept = 0.00069 and
slope = 0.98) with R = 0.99 on the simulated testing sample pairs
(Fig. 5B). This result demonstrated that ¢fSorz can estimate tissue
fractions with high accuracy even when faced with unexpected
randomness not present in the training process. It showed the gen-
eral applicability of ¢fSort to the cfDNA samples from diverse
individuals.

https://doi.org/10.1073/pnas.2305236120 5 of 11
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Fig. 4. Analytical performance of the c¢fSort and comparisons with the
existing methods. (A) The accuracy of the estimated tissue composition from
the cfSort, NNLS, and CelFiE on the independent testing set. The accuracy
was measured by Lin's concordance correlation, Pearson’s correlation, and
mean absolute error between the estimated tissue composition and the
ground truth. The dots indicated the metric values, and the line segments
indicated the 95% Cl. (B-D) The detection limit of the ¢fSort (B), NNLS (C), and
CelFiE (D) were evaluated on the testing dilution series. The detection limit
was measured by the statistical significance of a one-sided Student's t test
between the estimated tissue fractions of the samples at every dilution level
and the control samples (i.e., 0% tissue fraction). The statistical significance
in the figures indicated the P values of the one-sided Student's t tests at 0.1%,
0.3%, 0.5%, and 1%: “ns” means not statistically significant (P value > 0.05); “*"
means P value < 0.05; “**” means P value < 0.01; “***" means P value < 0.001;
"kkEE means P value < 0.0001.

Clinical Application: Elevated Tissue Fraction in Diseased
Patients. Discases, including cancers, can impact cell death
in affected tissues (3). Decomposing the tissue composition in
cfDNA can reveal altered homeostasis in affected tissues (13).
In this study, we applied ¢fSort to cfDNA methylome data [i.c.,
cfMethyl-Seq data (19) and WGBS data (39)] of healthy and
diseased individuals to investigate if the tissue fractions in cfDNA
can indicate the incidence of diseases (S Appendix, Fig. S5). We
collected the cfMethyl-Seq data of the plasma cfDNA samples
from 100 healthy individuals, 21 cirrhosis patients, and 201
cancer patients (98 lung, 27 liver, and 47 colorectal, 29 stomach
cancer patients) (19). The ¢fMerhyl-Seq technology is a revised
RRBS technology, specifically adapted to cost-effectively profiling
cfDNA methylome (19). Additionally, we curated the WGBS data
of the plasma cfDNA samples from 32 healthy individuals and 24
liver cancer patients (39) for cross-platform validation.

We compared the affected tissue fraction in diseased and healthy
cohorts using Student’s 7 tests. In all comparisons, we observed a
significantly higher affected tissue fraction in the diseased patients
than in the healthy individuals (Fig. 6 A~E, Wilcoxon rank sum
test P value = 1.408e-09, 3.132e-12, 1.468e-07, 1.141e-06, and
0.0029, for liver cancer, lung cancer, colorectal cancer, stomach
cancer, and cirrhosis respectively). In addition, the affected tissue
fraction increased with cancer stages (S/ Appendix, Fig. S6). For
colon cancer patients, we included both the small intestine and
the colon as the affected tissues. The colon tissues in the GTEx
project were collected only from the middle and end parts of the
colon, which cannot represent a full picture of the colon (21).

https://doi.org/10.1073/pnas.2305236120

Therefore, we utilized the small intestine tissues collected near the
start of the colon to complement the incomplete profile of the
colon (21). We also evaluated the performance of disease detection
using the affected tissue fraction as the sole predictor (Fig. 6 A-E).
Our results demonstrated that ¢fSorz can detect elevated cfDNA
originating from diseased tissues, indicating the broad clinical
utility of ¢fSort in disease detection and monitoring. However, for
a specific disease (e.g., cancer), the integration of tissue-specific
and disease-specific (e.g., cancer-specific) methylation patterns, if
known, shall lead to the best detection results (19). Our results
on the cfDNA WGBS data of liver cancer and healthy individuals
(Fig. 6F, Wilcoxon rank sum test 2 value = 0.0030) further vali-
dated the applicability of ¢fSor# on methylation data from different
platforms to reveal disease-caused tissue composition changes.

Clinical Application: Tissue Fraction Changes Reflecting
Tissue Damage during Anti-PD-1 Immunotherapy. The rapidly
developing cancer treatments have been improving the survival
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Fig.5. Evaluation of robustness of the c¢fSort. (A) Generation of the simulated
testing sample pairs for the evaluation of robustness. We generated a testing
sample pair (A and B) using the same tissue composition and the same original
tissue samples but with different sequencing read sampling distributions.
For sample A, we randomly sampled DNA fragments from the original tissue
samples following a uniform distribution. For sample B, we used a nonuniform
distribution to sample DNA fragments from the original tissue samples. The
non-uniform distribution was randomly generated for each tissue type, and
the distribution was different for different tissue types. (B) Robustness of the
cfSort. The robustness was evaluated by the intercept, slope, and R? of the
fitted linear regression model between the tissue fractions estimated from
the testing sample pairs.
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Fig.6. The tissue-derived cfDNA fractions of the affected tissue in the diseased and normal individuals. (A) The liver-derived cfDNA fractions from the cfMethyl-
Seq data of liver cancer patients and normal individuals. (B) The lung-derived cfDNA fractions from the cfMethyl-Seq data of the lung cancer patients and
normal individuals. (C) The intestine-derived cfDNA fractions (including colon and small intestine) from the cfMethyl-Seq data of the colon cancer patients and
normal individuals. (D) The stomach-derived cfDNA fractions from the cfMethylSeq data of the stomach cancer patients and normal individuals. (E) The liver-
derived cfDNA fractions from the cfMethyl-Seq data of the cirrhosis patients and normal individuals. (F) The liver-derived cfDNA fractions from the WGBS data
of the liver cancer patients and normal individuals. The difference between the diseased and normal individuals was evaluated by the Wilcoxon rank sum tests
between the estimated fractions of affected-tissue-derived cfDNA. The statistical significance of the tests was indicated by the asterisks: “**” means P value <
0.01; “***" means P value < 0.001; “****” means P value < 0.0001. The receiver operating characteristic (ROC) curve and the area under ROC curve (AUC) showed
the performance of disease detection using the tissue-derived cfDNA fractions of the affected tissue as a sole predictor. The number at the top of each violin

showed the number of samples.

of cancer patients (40). However, side effects commonly arise
from these cancer treatments, often causing tissue damage (41).
Considering the large patient population with a history of cancer,
the management of side effects is an essential part of their care,
affecting the completion of treatment and quality of life (41). The
standard evaluation of side effects is based on biochemical tests

a patient to have tissue damage if a biochemical marker had abnor-
mal values for at least two consecutive time points, or multiple
biochemical markers had abnormal values at the same time; we
regarded a patient to have no tissue damage if no biochemical
markers had abnormal values at any time, and we regarded a
patient as unanalyzable if the patient had only transient abnormal

on tissue-specific markers (42), e.g., alanine transaminase for the
liver. Since tissue damage can lead to abnormal cfDNA levels of
the affected tissue, tissue-derived cfDNA levels theoretically can
provide a novel path to monitor side effects to all tissues in the
body.

To investigate the clinical potential of tissue-derived cfDNA
potential in detecting side effects, we applied ¢fSorz to fDNA
series from 4 NSCLC patients receiving anti-PD-1 immunother-
apy (SI Appendix, Fig. S5). Their plasma cfDNA was collected at
0, 6, and 12 wk from the start of treatment. The side effects of
anti-PD-1 immunotherapy often impact liver and kidney func-
tions for lung cancer patients, so we focused on the liver and
kidney cfDNA fractions. Standard biochemical markers for the
liver (including alkaline phosphatase, alanine transaminase, aspar-
tate aminotransferase, direct bilirubin, and total bilirubin) and
kidney (blood urea nitrogen and creatinine) were measured along-
side the treatment to compare tissue fraction changes. We regarded

PNAS 2023 Vol.120 No.28 2305236120

test results at one time point.

For liver damage, three of the four patients were analyzable, and
their biochemical tests indicated the presence of liver damage.
Consistent with their biochemical test results, all three patients
showed an increased level of liver-derived cfDNA (Fig. 74). For kid-
ney damage (Fig. 7B), one of the four patients (plasma-317) had
kidney damage and showed an increased level of kidney-derived
ofDNA. In contrast, the other three patients (plasma-304,
plasma-318, and plasma-319) did not have kidney damage. Two of
them (plasma-318 and plasma-319) have undetectable kidney-derived
cfDNA. The other one of the three patients (plasma-304) showed
an unstable kidney-derived cfDNA level. In addition, we observed
a consistently strong correlation (average Pearson’s correlation =
0.899) between the abnormal biochemical test results and the affected
tissue fractions for the side effects on both liver and kidney
(81 Appendix, Table S4). In general, the tissue-derived cfDNA levels

changed consistently with the biochemical test results, indicating

https://doi.org/10.1073/pnas.2305236120 7 of 11
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Fig. 7. The tissue-derived cfDNA fractions and the biochemical marker levels of four NSCLC cancer patients who received anti-PD-1 immunotherapy. (A) The
liver-derived cfDNA fractions and the levels of biochemical markers indicating liver functions. (B) The kidney-derived cfDNA fractions and the levels of biochemical
markers indicating kidney functions. The plasma cfDNA samples were collected at the 0 wk, 6 wk, and 12 wk, measured starting from the beginning of the
treatment. The biochemical markers were tested during the treatment. The affected tissue fraction was estimated by cfSort; the ratio to baseline was the ratio
between the affected tissue fraction at a certain time point and the fraction at the 0 wk.

potential tissue damage from cancer treatments. Although further
validation in large patient cohorts is needed, our case study showed
the first indication of detecting side effects on noncancer tissues of
cancer patients using cfDNA. The results implied the potential of
tissue-derived cfDNA in comprehensive side effect monitoring dur-
ing cancer treatments, which is especially meaningful for those organs
without standard biochemical markers.

Discussion

We presented a comprehensive high-resolution tissue methylation
atlas and the first supervised tissue deconvolution method for
cfDNA, namely ¢fSorz. They enabled sensitive and robust quan-
tification of tissue fractions in cfDNA. We validated the atlas of
tissue markers by multiple independent datasets, and we showed
that these markers were associated with tissue development, tissue
differentiation, and tissue-specific transcription.

https://doi.org/10.1073/pnas.2305236120

We developed the supervised tissue deconvolution method for
cfDNA, ¢fSort, by using the tissue methylation atlas to simulate
large-scale training data with ground truth, facilitating supervised
learning. To ensure the robustness of tissue deconvolution, we
generated diverse training samples to exploit the potential exper-
imental noise and individual variance in the population. To model
the complicated relationship of tissue methylation and prioritize
the tissue-specific markers, we applied the nonlinear hidden layers
and dropouts in the DNN. We have shown that the ¢fSort out-
performed the existing methods in terms of accuracy and detection
limit: making more accurate tissue fraction estimation and distin-
guishing a lower level of tissue-derived ¢fDNA. In addition, the
¢fSort demonstrated nearly perfect robustness toward the unseen
local fluctuations of tissue compositions, indicating its wide appli-
cability to diverse individuals.

While preparing this manuscript, a large WGBS dataset of human
cell types has been published (16). While our dataset is on tissue
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samples, this other dataset is on cell types. Note that a tissue may
contain many cell types. Thus, our dataset provides more compre-
hensive coverage of tissue characteristics, while the other dataset
provides more homogenous profiles of specific cell types. In addition,
our atlas contains more samples for each tissue (median 15 in our
dataset vs. 3 in the other dataset) and covers eight more tissue types.
Although our dataset uses RRBS profiling, we showed that the RRBS
data covered the majority of the cell-type—specific markers identified
by WGBS in this study (SIAppendix, Table S5). Therefore, both
datasets are complementary in covering the human tissue atlas. Note
that this other study utilized the unsupervised NNLS for deconvo-
lution, while we proposed the supervised DNN deconvolution.
The ¢fSort is a general tool for quantifying tissue composition
in cfDNA, which could be widely used in all tissue-related appli-
cations. In this study, we presented two clinical applications that
1) identified elevated tissue fractions in cancer and cirrhotic
patients compared to controls and 2) detected tissue fraction
changes consistent with liver and kidney damages in NSCLC
patients treated with anti-PD-1 immunotherapy. In addition, we
showed that the ¢fSorz was directly applicable to the cross-platform
data (i.e., WGBS), although it was trained on the data of different
platforms (e.g., enriched methylome sequencing data, such as
RRBS and cfMethyl-Seq). With these results, we demonstrated
the potential clinical utilities of the ¢fSorz. We believe that the
¢fSorr will facilitate and advance cfDNA-based disease detection,
therapy prognosis, and longitudinal treatment monitoring.

Materials and Methods

Data Collection. We collected the cfMethyl-Seq data of the plasma samples from
100 healthy individuals, 21 cirrhosis patients, and 201 cancer patients (98 lung,
27 liver, and 47 colon, 29 stomach cancer patients) under the accession code
EGAS00001006020 in the European Genome-Phenome Archive (19). We also
collected the WGBS data of the plasma cfDNA samples from 32 healthy individ-
uals and 24 liver cancer patients under the accession code EGAS00001000566
in the European Genome-Phenome Archive (39). These data were used as an
example of applications for cfSort. We curated orthogonal validation data for the
tissue methylation atlas from public databases (S/Appendix, Table S6), including
the WGBS data from the Epigenome Roadmap projects (24), the RNA-seq data
from the GTEx project (21), and the chromatin immunoprecipitation sequencing
(ChIP-seq) data from the ENCODE project (25).

Human Subjects. We collected 12 plasma cfDNA samples from 4 NSCLC patients
treated with anti-PD-1immunotherapy at the University of California, Los Angeles
for KEYNOTE-001 under clinical trial registration ClinicalTrials.gov number
NCT01295827. All patients provided written consent before any study-related
procedures were performed.The plasma samples were collected from each patient
at 0wk, 6wk, and 12 wk, measured at the start of the treatment. We collected 521
genomic DNA samples, including 464 non-WBC tissue samples from the GTEx
project(21)and 57 WBC samples from UCLA hospitals. This project was approved
by the Institutional Review Board of the University of California, Los Angeles (IRB#
12-001891, IRB# 11-003066, IRB#19-000618, IRB#19-000230, IRB#19-001488,
IRB#16-000659, IRB#17-000985, and IRB# 13-00394). Our research complies
with all relevant ethical regulations. All participants gave their written informed
consent. The RRBS libraries of the genomic DNA were constructed following the
standard RRBS protocol (43); the cfMethyl-Seq libraries of the serial plasma cfDNA
samples from the four NSCLC patients were constructed following the standard
protocol (19) (S Appendix). The preprocessing of the RRBS and cfMethyl-Seq data
followed a standard procedure described in ref. 19 (SI Appendix).

DNA Fragment Level Discovery of Methylation Markers. To conquer the
cell-type heterogeneity in the tissue samples (15), we employed a DNA-fragment-
level marker discovery framework to stratify tissue-specific DNA fragments from
background DNAfragments (tissue-invariant DNAfragments) for capturing tissue
signals sensitively and specifically (19). In this method, we utilized our previously
proposed fragment-level methylation measurement (so-called a--value), defined

PNAS 2023 Vol.120 No.28 2305236120

as the fraction of methylated CpGs out of all CpGs on a DNA fragment (19). This
fragment-level measurement has been utilized in several studies to identify
cancer-specific methylation markers (19, 44). In brief, we identified the tissue
markers between two groups (namely positive and negative groups) of tissue
samples at the fragment level. We first generated the o -value distribution of the
DNAfragments in a genomic region for the tissue samples in the positive and neg-
ative groups respectively. The acvalue distribution D(ar) was defined as a function
of a-value (o € [0, 1]). Fora given o, D(a) was calculated as the number of tissue
samples containing fragments whose o-value was less than o. Then we identified
markers as the genomic regions where the a-value distribution in the samples of
the positive group (namely positive samples) has a well-separated component
from those of the negative group (namely negative samples). Specifically, for a
genomic region, we looked for a threshold a,,, such that a number of positive
samples (denoted as n ) contained DNA fragments with o-values < &, but

cut
nearly no negative samcf)lltes (denoted as 7, ) contained such DNA fragments. If
an a,,, can be found for a genomic region, we treated that genomic region as a
tissue marker for the positive group with a tissue-specific a-value-threshold a,,,
i.e., all DNA fragments with o-value < e, were treated as tissue-specific DNA
fragments from the positive group. The more tissue samples with tissue-specific
DNAfragments in the positive group (i.e., the largern’" ), the higher quality and
more stable the markers are. Therefore, the identified markers were ranked by
n* .The DNA-fragment-level marker discovery was applied to all three strategies
of identifying tissue-specific methylation markers.

Construction of the Tissue Marker Atlas. We constructed the tissue meth-
ylation atlas by using three strategies for identifying tissue-specific methylation
markers: one-tissue-vs.-the-rest comparisons (Type | markers), one-group-vs.-
another-group comparisons (Type Il markers), and one-tissue-vs.-another-tissue
comparisons (Type Il markers). The three strategies complementarily identified
different types of tissue-specific methylation markers. In the one-tissue-vs.-the-
rest comparisons, we used the samples from one tissue type as the positive group
and all samples from other tissue types as the negative group (Fig. 14) and then
applied the DNA-fragment-level marker discovery framework to identify markers.
Therefore, we discovered the unique methylation patterns for each tissue type
by this strategy. Because the negative group contained hundreds of samples,
we required n”, of the selected markers to be less than 20. In the one-group-vs.-
another-group comparisons, we discovered markers following the tissue phylog-
eny (Fig. 1B)in early human development. We constructed this phylogeny based
on the literature (23). The comparison was conducted at every tree level, and every
node was compared againstits siblings (Fig. 1C). In other words, when all samples
under a node were regarded as the positive group, all samples under its sibling
nodes were regarded as the negative group in the comparison. In this way, we
discovered markers following the tissue differentiation trajectory by employing
the DNA-fragment-level marker discovery framework on the defined negative and
positive groups. We required n~, of the selected markers to be less than 10. In the
one-tissue-vs.-another-tissue comparisons, we only considered two tissue types
at a time. We used the samples from one tissue type as the positive group and
the samples from the other tissue type as the negative group (Fig. 1D). Using this
strategy together with the DNA-fragment-level marker discovery framework, we
can identify differential methylation patterns that distinguish two similar tissue
types, e.g., vagina and uterus. Considering the size of the negative group, we
required n_, of the selected markers to be less than 2. In the tissue deconvolu-
tion, we used the top 100 Type | markers (29 comparisons), the top 200 Type Il
markers (38 comparisons), and the top 50 Type Il markers per comparison (812
comparisons).Ties were included. In total, 51,035 individual tissue markers were
used in the tissue deconvolution.

Simulation of Tissue Mixtures from the RRBS Data of Tissue Samples.
Because cfMethyl-Seq and RRBS profile the exact same genomic regions (19), we
can directly utilize the RRBS data of tissues to generate the simulated cfMethyl-
Seq data of plasma ¢fDNA with known tissue compositions. Specifically, the
simulated cfMethyl-Seq data of an in silico cfDNA sample was generated in four
steps (S/ Appendix, Fig. S3). In step 1, we chose a number of tissue types that
contributed to the simulated sample with positive fractions. In addition to WBC,
we randomly selected a certain number (ranging from 1to 9) of non-WBC tissue
types. Note that we did not use 29 tissue types altogether, because the number
of combinations went up exponentially as the number of tissue types increased.

https://doi.org/10.1073/pnas.2305236120 9 of 11
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In addition, the tissue fraction of most tissue types can be quite low if we mix
29 tissue types altogether. Therefore, it will be computationally impractical to
obtain enough samples with tissue fractions spanning a desirable range. In
step 2, we randomly chose a real tissue sample for each selected tissue type
and WBC. Note that we pooled multiple real WBC samples together, if a single
real WBC sample contained inadequate reads to generate the simulated data.
The corresponding RRBS datasets of these selected tissue samples were to be
used as the data sampling source for the simulated tissue mixture. In step 3, we
created random tissue composition for the simulated sample. Briefly, a random
positive integer was chosen for each selected tissue type and WBC, and then this
number was divided by the sum of all random numbers to ensure the tissue
fractions added up to 1. The tissue fraction of a tissue type t was calculated

asf, = ’—fr where r, was the random number generated for the tissue i. We

specificalllyl required the WBC to always have a large fraction (on average 75%)
in the tissue composition. This ensured that the WBC was the main contributor,
consistent with the characteristics of real cfDNA samples. We assigned zero as the
tissue fraction if a tissue type was not selected in step 1.Therefore, we generated
the ground truth composition for the simulated sample. In step 4, we randomly
sampled sequencing reads from the selected tissue samples (from Step 2) based
on the tissue composition (generated in Step 3). We generated the simulated
cfMethyl-Seq data at 20x, 40x, 60x, 90x, and 120x coverage, equivalent to
approximately 20, 40, 60, 90, and 120 million paired-end sequencing reads.
Therefore, for a tissue type t, we randomly sampled N, = N - £, read pairs from
the RRBS dataset of the selected tissue sample, where N is the total number of
reads to be sampled. Finally, we mixed the sampled read pairs from all tissue
types as the in silico cfMethyl-Seq data to represent a simulated (fDNA sample.
Due to the limited depth of the original WBC data, we pooled multiple WBC
samples together to generate in silico cfDNA samples at high depths (>20x).

We split the original tissue samples into three groups (S/ Appendix, Fig. S2):
training (75%), validation (10%), and testing (15%). Then we applied the above
simulation procedure to each of the three groups and generated the correspond-
ing simulated training, validation, and testing fDNA data with known tissue
compositions.

Evaluation of Robustness Toward Nonrandom Fragmentation. To evaluate
the robustness of cfSort, we created the simulated testing sample pairs (n =
9,023) with different tissue-specific read distributions, but with the same tissue
composition and the same source of tissue fragments (Fig. 54). We generated a
pair of testing samples (samples Aand B) following Steps 1 to 3 described above.
For sample A, we followed Step 4 described above. For sample B, we used the
same selected tissue samples and the same tissue composition. Instead of sam-
pling reads using a uniform distribution, we enforced the sampled tissue-specific
reads to follow a tissue-specific read distribution. To generate the tissue-specific
read distribution, we calculated the average read count per million (RCPM) at each
region in the cfMethylSeq data of 167 healthy plasma samples. We directly used
the average RCPM as the read distribution for WBC; while for each non-WBCtissue
type, we permutated the average RCPM in the regions as the read distribution.
Then for a region, the number of reads sampled from the original tissue sample
was proportional to the respective tissue-specific read distribution in the region.
The robustness of cfSort was evaluated as the consistency of the estimated tissue
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