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Abstract

Deep models are known to be vulnerable to data
adversarial attacks, and many adversarial training
techniques have been developed to improve their
adversarial robustness. While data adversaries
attack model predictions through modifying data,
little is known about their impact on the neuron
activations produced by the model, which play a
crucial role in determining the model’s predictions
and interpretability. In this work, we aim to de-
velop a topological understanding of adversarial
training to enhance its interpretability. We analyze
the topological structure—in particular, mapper
graphs—of neuron activations of data samples
produced by deep adversarial training. Each node
of a mapper graph represents a cluster of activa-
tions, and two nodes are connected by an edge
if their corresponding clusters have a nonempty
intersection. We provide an interactive visual-
ization tool that demonstrates the utility of our
topological framework in exploring the activation
space. We found that stronger attacks make the
data samples more indistinguishable in the neu-
ron activation space that leads to a lower accuracy.
Our tool also provides a natural way to identify
the vulnerable data samples that may be useful in
improving model robustness.

1. Introduction

Despite the great success of deep learning, in the past
decade, researchers have found that overparameterized deep
neural network models are ubiquitously vulnerable to data
adversarial attacks. Specifically, Szegedy et al. (Szegedy
et al., 2013) and Goodfellow et al. (Goodfellow et al., 2014)
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showed that we can find and apply imperceptible perturba-
tions to the data samples such that the perturbed samples
are almost indistinguishable from normal examples and can
fool neural network models that are trained on normal sam-
ples. In particular, various types of data adversarial attack
methods have been developed for deep learning, including
the projected gradient descent (PGD) type attack (Madry
et al., 2018), single pixel attack for images (Su et al., 2019),
and physical patch attack that covers an image with a printed
adversarial patch to attack the model (Brown et al., 2017).
All these research findings have raised much concern about
the safety and robustness of deep learning in the community,
and have attracted a lot of attention on understanding and
improving the adversarial robustness of deep models.

To enhance the robustness of machine learning (ML) models
against data adversaries, a standard and popular approach is
adversarial training (Sinha et al., 2018; Goodfellow et al.,
2014), whose main idea is to generate adversarial samples
using a certain attack method and then use them to train the
model. This empirical approach has been shown to be able
to substantially improve the robustness of the model against
adversarial attacks.

In this paper, we are interested in forming a topological
understanding of adversarial training to increase its inter-
pretability. A number of previous works study the geometry
of adversarial training, most of which focus on a geometric
understanding of the decision boundaries, e.g., (He et al.,
2018; Khoury & Hadfield-Menell, 2018; Zhang et al., 2021;
Rade & Moosavi-Dezfooli, 2022; Liang et al., 2022; Xu
et al., 2023). However, to the best of our knowledge, few
works exist that study the topology of adversarial training.
In particular, little is known about the topological struc-
ture of the neuron activations of adversarially-trained deep
networks, which constitutes the main goal of this work.

1.1. Our Contribution

We propose a topological framework for summarizing and
analyzing the space of neuron activations in adversarial
training. We use neuron activations to refer to the high-
dimensional vector representations (i.e., the intermediate
outputs of neurons) produced by a particular layer of a
neural network, and activation space to refer to the space
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of these activations. We leverage the mapper graph (Singh
et al., 2007) to summarize the topological structure of the
activation space. Each node of the mapper graph represents
a cluster of activations, and two nodes are connected by
an edge if their corresponding clusters have a nonempty
intersection. Our contributions are as follows:

* We provide an open source interactive visualization tool
(Zhou, 2023) that demonstrates the utility of our topo-
logical framework in exploring the activation space of
adversarial training.

* We study the evolution of topology of activation spaces
across different levels of adversarial attacks.

* We analyze the weak regions of the activation space, that
is, topological neighborhoods with low prediction accu-
racy vulnerable to adversarial attacks.

* We work toward model refinement by leveraging the iden-
tified weak regions to improve robust test accuracy.

Our work is at the intersection of topological data analy-
sis (TDA) and visualization. It also contributes towards
the visualization of neuron activations, as an example of
visual analytics systems that support model explanation,
interpretation, debugging, and improvement for deep learn-
ing (Hohman et al., 2018).

1.2. Related Work

Adversarial attack. Various types of data adversarial attack
methods have been developed for deep learning. For exam-
ple, the Fast Gradient Sign Method (FGSM) (Goodfellow
et al., 2014) generates adversarial examples based on the
sign of gradients. The projected gradient descent (PGD)
attack is another popular attack (Madry et al., 2018), which
finds the adversarial perturbation using gradient updates fol-
lowed by projection onto certain constraints, €.g., £, or {2
ball constraints. There are other types of attacks that target
specific scenarios, such as the one-pixel attack that fools the
model by changing only one pixel of an image (Su et al.,
2019), physical patch attack that covers a part of an image
with a printed and adversarially designed patch to attack
the model (Brown et al., 2017), and backdoor poisoning
attack (Xian et al., 2023) that creates a few backdoor data
inputs with a specific trigger (e.g., a patch (Gu et al., 2017)
or watermark (Chen et al., 2017)) and target labels.

Adversarial training. A standard and popular adversarial
training approach is to train the model using adversarial
samples generated by a certain attack method (Sinha et al.,
2018; Goodfellow et al., 2014). In addition, adversarial
training has been formulated as a nonconvex minimax op-
timization problem (Madry et al., 2018), and convergence
of gradient-based algorithms has been established under
certain assumptions (Gao et al., 2019). The performance of
adversarial training was further improved (Ding et al., 2020)
by combining the usual cross-entropy loss with a margin

maximization loss term applied to the correctly classified
examples. It was shown that misclassified examples have
more impact on the final robustness than correctly classi-
fied examples, and incorporating misclassified examples
in adversarial training as a regularizer (Wang et al., 2020)
improves the adversarial robustness.

Visualization of neuron activations. A number of ap-
proaches have been proposed in recent years to explain the
behavior of deep learning by visualizing the features learned
by hidden units of the neural networks (Hohman et al., 2018).
Activation maximization (Erhan et al., 2009) finds the in-
put images that maximize the neuron activations, whereas
salience maps are obtained by projecting neuron activations
from hidden layers back onto the input space (Simonyan
et al., 2014). DeepVis (Yosinski et al., 2015) visualizes the
neuron activations produced on each layer of a CNN as it
processes images/videos live. Multifaceted feature visualiza-
tion synthesizes a visualization of input image that activates
a neuron (Nguyen et al., 2016). TCAV (Testing with Con-
cept Activation Vectors) uses directional derivatives of acti-
vations to quantify the sensitivity of model predictions to a
concept (Kim et al., 2018). Dimensionality reduction (DR)
has been applied to neuron activations (Karpathy, 2014;
Nguyen et al., 2016). In particular, activation atlas (Carter
et al., 2019) combines feature visualization with DR to vi-
sualize averaged activations, whereas SUMMIT (Hohman
et al., 2020) not only computes aggregated activations but
also captures relationships between neurons across layers.

Topology of deep leaning. Exploring the geometry and
topology of deep learning models, in particular, understand-
ing their decision boundaries/regions is an active area of
research, e.g., (Fawzi et al., 2018; Liu & Shen, 2022). A
number of prior works use tools from TDA to study topo-
logical complexity of deep learning. Topological capacity
(Guss & Salakhutdinov, 2018) and neural persistence (Rieck
et al., 2019) were introduced to quantify the learnability and
complexity of neural networks, respectively. Persistent ho-
mology (Edelsbrunner & Harer, 2007) of activations was
used to study how model complexity changes across layers
(Wheeler et al., 2021). Mapper graphs of learned weights
from convolutional layers were used to quantify topologi-
cal similarities among different CNN model architectures
(Gabrielsson & Carlsson, 2019). Activation graphs were
used to investigate the topology of neural networks (Gebhart
et al., 2019; Lacombe et al., 2021). The work that is most
relevant to ours is TopoAct (Rathore et al., 2021), which
explores mapper graphs of neuron activations from image
classifiers. TopoAct was further extended to study activa-
tions of images with Gaussian noise (Purvine et al., 2023)
and to explore the topology of word embeddings from large
language models (LLMs) during fine-tuning (Rathore et al.,
2023). Different from previous work, we apply the mapper
graph to study activations from adversarial training.
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2. Preliminaries
2.1. Mapper Graph

We capture the topology of neuron activations via a graph-
ical representation called the mapper graph, which arises
from a “partial clustering of the data guided by a set of
functions defined on the data” (Singh et al., 2007).

Let X be a high-dimensional point cloud. A cover of X is a
set of open sets in R%, U = {U,};es such that X C U;e;Us.
The one-dimensional nerve of I{ is a graph and is denoted as
N1 (U). Each node ¢ in V1 () represents a cover element
U;, and there is an edge between nodes ¢ and j if U; N Uj is
not empty.

In the classic mapper construction (Singh et al., 2007), ob-
taining a cover of X is guided by a set of scalar functions
defined on X, referred to as filter functions. In our set-
ting, we define a mapper graph with a single filter func-
tion f : X = R. Acover V = {Vi}}_, of f(X) C R
can be obtained such that f(X) C UiV}, and the cover
U of X can then be obtained by considering the clus-
ters induced by points in f~1(V}) for each V}, as cover
elements. The one-dimensional nerve of U/, denoted as
M= M(X, f) := N1 (U), is the mapper graph of (X, f).

Take Figure 1 as an example. A point cloud X is sampled
from the silhouette of a butterfly and equipped with a height
function f : X — R. Acover V = {Vi,---,Vs} of f(X)
is formed by six intervals (see Figure 1 middle). For each
k(1 <k < 6), f~1(V}) induces a number of clusters that
are subsets of X. These clusters (enclosed by rectangles)
form the elements of a cover U of X (see Figure 1 left). The
mapper graph of X is shown in Figure 1 (right). For instance,
f~1(v1) induces four cover elements of X, including Uy,
whereas f~1(V4) induces three cover elements, including
U,. U; and U; become nodes 1 and 2 in the mapper graph,
respectively. Since U3 N Uy # 0, an edge connects node 1
and node 2 in the mapper graph.
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Figure 1. A mapper graph (right) of a point cloud sampled from
the silhouette of a butterfly (left).

Here, we construct a mapper graph using a uniform cover,
that is, all intervals covering f(X) are of the same length.
Several parameters are needed, including the filter function
f, the number of cover elements 7, and their percentage of
overlap p, the metric dx on X, and the clustering method.

As shown in Figure 1, n = 6, p = 30%, dx is the Euclidean
distance, and the clustering method is the density-based
DBSCAN (Ester et al., 1996). With an appropriate choice
of parameters, the mapper graph captures the shape of the
input data. Another less widely used strategy is the balanced
cover implemented in giotto-tda (Tauzin et al., 2020), where
the inverse image of each interval contains an equal number
of points. For a discussion on parameter tuning, see (Zhou
et al., 2021; Chalapathi et al., 2021).

2.2. Adversarial Machine Learning

To enhance the robustness of ML models against data ad-
versaries, a standard and popular approach is to perform
adversarial training (Sinha et al., 2018; Goodfellow et al.,
2014), which generates adversarial samples using a certain
attack method and then uses them to train the model. Con-
sider a standard classification problem with a given set of
training samples {z;, y; }I", where z; is the i-th sample
and y; denotes the corresponding label. We aim to train a
classifier hg : X — Y parameterized by § € R to solve this
classification problem, where hy typically corresponds to a
deep neural network. In traditional deep learning, we train
the classifier by solving the empirical risk minimization
problem mingega = >, £(hg(z;),y;), where £ is usually
chosen to be the cross-entropy loss.

To perform adversarial training against the £,-PGD attack,
we aim to solve the following optimization problem,

n

((ho(&i),wi)- (D)

ax
PeRt {eallesmmill e n A

To elaborate, for any fixed model 6, the inner maximization
part of (1) aims to find data samples {&;}?_; that (i) are
e-close to the original samples {z;}7_, in terms of the ¢,
norm, and (ii) achieve very high classification loss. These
samples are called adversarial samples, and the ¢, con-
straint controls the search space of data adversary. On the
other hand, the outer minimization part of (1) aims to train a
robust model 6 that achieves low classification loss on these
advesarial samples {&;}7_,. In practice, we solve the above
adversarial training problem via an alternating approach,
i.e., we first apply PGD to generate adversarial data samples
¢ for a fixed model 6, and then train the model using these
adversarial data samples.

2.3. Neuron Activations

For an image classification task, the input to a neural net-
work is a tensor, and the output is a probability vector show-
ing the likelihood the input belongs to each class. The
intermediate outputs of neurons from each layer are called
activation tensors. Activation tensors may be sliced into spa-
tial activations or channel activations. We work with spatial
activations (referred to as activations or activation vectors)
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Figure 2. Illustration of a spatial activation within an activation
tensor for a MNIST (left) and a CIFAR-10 image (right).

in this paper, shown in Figure 2. For each image from the
MNIST dataset, a single spatial activation is generated at
the last layer of an MLP model across 10 channels, forming
a 10-dimensional point cloud with 60K points. For each
image from the CIFAR-10 dataset, we randomly sample a
single spatial activation from 4 x 4 images patches, gener-
ated at the last convolutional layer of ResNet-18, forming a
512-dimensional point cloud with 50K points. We focus on
the last layer as those are the features linearly separated by
the classifier; see (Purvine et al., 2023) for examples across
layers (without adversarial attacks).

2.4. Mapper Graphs of Neuron Activations

Given a high-dimensional point cloud X formed by activa-
tion vectors, we construct a mapper graph of X that captures
its topological structure, i.e., how the activation vectors
are organized with a dataset-model pair. We use £2-norm
of activation vectors as the filter function, which has been
shown to produce meaningful results in studying image acti-
vations (Rathore et al., 2021). We define a cluster of points
associated with a node in the mapper graph a fopological
neighborhood following (Rathore et al., 2023). Therefore,
each node in the mapper graph is a topological neighbor-
hood, and the edges between these nodes encode the over-
laps (or connectivity) between these neighborhoods. In
particular, two points x and y in X are in the same topolog-
ical neighborhood if they are close to each other in terms
of a metric dx (e.g., a Euclidean metric), and their function
values f(z) and f(y) fall in the same interval of f(X).

We also review the notion of purity of a topological neigh-
borhood (Rathore et al., 2023), defined to be p(X) :=

1-— b;{(éj DX)). Here, Dx is the observed distribution of la-
bels for points in X and D is a uniform distribution of all
labels; H denotes the Shannon entropy of a distribution.
p(X) reaches the highest value of 1 when all points in X
are from the same class, and the lowest value of 0 when the
points are uniformly distributed over all classes (Rathore
et al., 2023); pure neighborhoods have a purity of 1; other-

wise they are impure.

3. Visualizing the Topology of Neuron
Activations in Adversarial Training

Experimental setup. We conduct adversarial training exper-
iments using various standard image classification datasets
and deep learning models, including the MNIST (LeCun
etal., 2010) and CIFAR-10 (Krizhevsky, 2009) datasets, and
the multi-layer perceptron (MLP) and ResNet-18 models
(He et al., 2015). For each dataset-model pair, we train the
model with the dataset using two different approaches: (i)
standard training using the original clean data (i.e., without
adversarial training), and we denote the trained model as
Mjean; and (ii) adversarial training with different types of
attack, and we denote the adversarially-trained model as
M,qy. We explore two types of attack, /.- and ¢5-PGD
attack where /., attack is considered a stronger attack than
a /5 attack; see the supplementary material for details.

Interactive visualization tool. We present an interactive vi-
sualization tool, referred to as Mapper Interactive Adversar-
ial Training (or MIAT) to explore how the topological struc-
ture of neuron activations change under adversarial training.
The tool is an extension of Mapper Interactive (Zhou et al.,
2021), available open source. The tool takes as input a
high-dimensional point cloud of activations and computes
its mapper graph on-the-fly with user-defined parameters.
Specifically, it allows the exploration of image samples asso-
ciated with selected mapper nodes for both Mjean and Mgy .
Its frontend is implemented using HTML/CSS/JavaScript
stack with D3.js and JQuery JavaScript libraries, while its
backend uses Python via a Flask server.

Exploratory visual analysis. Using our interactive tool,
we mainly perform two exploratory analysis tasks. First,
we explore topological neighborhoods with high and low
prediction accuracy to better understand input images that
are vulnerable to adversarial attacks across different levels
(Section 3.1). Second, we study the evolution of topology
as we increase the attack level (Section 3.2).

3.1. Training MLP with MNIST

Topology of a clean model. We start with the MNIST-MLP
dataset-model pair. Figure 3 (top left) shows the mapper
graph generated from M;e,, using a uniform cover. The pie
chart on each node shows the composition of class labels
in that node. Figure 3 (top right) shows the node-wise
prediction accuracy. The overall prediction accuracy of
Mjean 18 97.48%, therefore, we observe that most of the
nodes have a very high node-wise prediction accuracy.

Using the interactive tool, we first explore pure and impure
nodes (topological neighborhoods) in the mapper graph. In-
tuitively, impure nodes may be considered as being centered
around the decision boundaries of the model where samples
from two or more classes have similar neuron activations.
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The average node purity has been shown to be correlated ~ 2023). As shown in Figure 3, node 156 is a pure node with
with model performance on the unseen data (Rathore et al.,  a prediction accuracy of 1.0: all images in the node have a
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accuracy (top right). Attack level e = 0.30. Nodes circled in orange are examples of weak regions.

true label of digit 3 and a predicted label of digit 3. Nodes
42,59, and 60 are all impure nodes with a high prediction
accuracy: they highlight the decision boundary among digits
{2,7},{3,5}, {3, 9}, respectively. Node 60 has a slightly
imperfect prediction accuracy as a digit 9 is predicted as 3.

Second, we explore the so-called weak topological regions
(weak regions for short), which are topological neighbor-
hoods with low prediction accuracy. We consider weak
regions to be candidates vulnerable to adversarial attacks.
As shown in Figure 3 (bottom), we explore the weak regions
such as node 1 in the mapper graph, which has a node-wise
prediction accuracy of 77%. We explore the images associ-
ated with the points (activation vectors) in node 1, with true
labels {0-1,3-9} (in green) and predicted labels {0-2,4-6,8-
9} (in orange). In particular, node 1 contains images that
are harder to identify, compared with the images of nodes
with higher accuracy, such as node 156.

Topology of adversarial models. We now explore mapper
graphs generated from adversarial models across different
attack levels. Figure 4 shows the mapper graph generated
from M,q, with a small £,,-PGD attack level (¢ = 0.05)
using a uniform cover. We focus on exploring the weak
regions (highlighted inside orange circles) and study where
and how the node-wise prediction accuracy changes with

adversarial attack, indicating model confusion.

We first observe that some pure nodes become weak regions
even with a small attack level. Node 13 (with a prediction
accuracy of 0.5) shows an example of the model confusion,
where samples in the node have a true label of {5} (in
green) and predicted labels of {1,5} (in orange); two of
the perturbed images of digit 5 are misclassified as digit
1. Node 15 contains digits 6 which are misclassified as
digits 1; this is interpretable as these digit 6 images contain
tiny loops that may be easily mistaken as digit 1 with small
perturbations. Furthermore, a few digits 9 in node 60 are
misclassified as digits 3. Next, some impure nodes become
weak regions, e.g., some digits 3 in nodes 86 and 95 are
misclassified as digits 7.

Figure 5 shows the mapper graph generated from M,4, with
a large {,,-PGD attack level (¢ = 0.30). Compared with
Figure 4, we observe more weak region candidates with
lower prediction accuracy. Specifically, we observe that dig-
its 3 and 7 become further mixed as more adversarial noises
are added to the images (see nodes 62 and 70). Furthermore,
the model becomes more confused with a larger attack level:
digits 3 and 7 are further confused not only among them-
selves (in node 97) but also with digits 9 (in nodes 62 and
70). In addition, the same class may be confused with dif-
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ferent classes in different parts of the activation space. For
example, digits 2 are misclassified as digits 6 in nodes 23
and 33, whereas digits 2 are mistaken as digits 3 in node
39. Digits 5 are confused with digits 6 in node 35, whereas
they become confused with digits 9 in node 40. Node 95
highlights model confusion among digits 4, 6 and 9.

Remark. We have a few takeaways from the above explo-
ration. For the clean model M.y, impure nodes in the
mapper graph capture decision boundaries. For the adversar-
ial model M,q4y, weak regions highlight data samples that are
vulnerable to adversarial attacks thus relevant to model con-
fusion. First, the same class may be confused with different
classes in different parts of the activation space. Second, as
we increase the attack level, classes that are easily confused
at a lower attack level remain confused at a higher attack
level, with more images joining the weak regions. Further-
more, new classes become confused with one another with
increased perturbation to the images.

3.2. Training ResNet-18 with CIFAR-10

Training ResNet-18 model with the CIFAR-10 dataset, we
now explore how the mapper graphs evolve as we increase
the attack level e. Figure 6 demonstrates the mapper graph
of M jean (using clean images) and the evolution of mapper
graphs of M,q, (using perturbed images) across five dif-
ferent attack levels: € € {0.01,0.05,0.10,0.20,0.30}. We
observe that as € increases, the number of impure nodes in
the mapper graph increases; at the same time, the test accu-
racy decreases dramatically, whereas the training accuracy
remains high (see the supplementary material). For instance,
at ¢ = 0.30, the test accuracy is at 79.41% with a training
accuracy of 99%, indicating that the underlying model is
over-fitting the training samples. Our observation that im-
pure nodes dominate the mapper graphs under adversarial
training aligns with the adversarial model being overfitted,
that is, even though most topological neighborhoods contain
highly mixed labels (low purity), the model still achieves
high training accuracy by over-fitting the decision boundary.

We further compute a weighted average purity of the nodes
for each mapper graph. It is computed by multiplying the
node purity with the number of samples within the node and
dividing it by the total number of samples across all nodes.
As illustrated in Figure 7, as the attack level increases, the
weighted average purity decreases.

4. Towards Model Refinement

Following the experimental setup in Section 3, we work
toward model refinement by leveraging the identified weak
regions and obtain mixed results, which we detail below.
We are interested in the following question: under what
conditions can we leverage the topology of the mapper graph

to improve robust accuracy?

Recall that we define weak regions to be topological neigh-
borhoods with low prediction accuracy. In practice, to in-
clude points from the weak regions for refinement, we first
rank the topological neighborhoods based on their node-
wise prediction accuracy in an ascending order, and then
select misclassified points from these neighborhoods un-
til the total number of selected points reaches around 20%
of the training data size, e.g., 10K. For MLP with MNIST
data, we observe a marginal improvement of robust accuracy
when the adversarially-trained model M,qy is further refined
using samples in the weak regions. However, for ResNet-18
with CIFAR-10, we observe no clear model improvement
following the same procedure.

We conjecture that the purity of topological neighborhoods
associated with adversarial training is correlated with the
utility of weak regions and plays an important role in ad-
dressing the above question. Specifically, if purity is rela-
tively high, then it is meaningful to identify weak regions
for refinement; otherwise the mapper graph is too noisy to
take advantage of weak regions in model refinement.

Training MLP with MNIST. We first train an MLP using
the MNIST dataset, the resulting M., has a test accuracy
of 97.48%. We then perform standard adversarial training
to obtain the robust model M,q,, based on which we further
perform model refinement by leveraging the misclassified
samples in the weak regions, and we denote the refined
model as Mefine.

Table 1 compares the robust (test) accuracy achieved by the
models M,qy and M..5ne under different levels of ¢..-PGD
attack. In particular, we train the refined model Mcfine us-
ing mapper graphs with a uniform cover and a balanced
cover, respectively. It can be seen that the two refined mod-
els consistently achieve higher robust accuracy than those
achieved by M,q, over different levels of ¢,,-PGD attack,
and their robust accuracies are comparable to each other.
Similarly, under different levels of {5-PGD attack, we ob-
serve marginal improvement of robust accuracy as shown
in Table 2. This shows that for MLP with MNIST, the topo-
logical structure in the mapper graph can effectively help
identify the weak regions containing samples vulnerable to
adversarial attack.

Training ResNet-18 with CIFAR-10. On the other hand,
we repeat the same experiment by training a ResNet-18 with
CIFAR-10. The resulting mapper graph appears to be inef-
fective in identifying weak regions that are useful for model
improvement. In particular, topological neighborhoods have
low purity and weak region identification is not as effective
as MLP with MNIST; see the supplementary material.

Remark. We provide an explanation for the above experi-
mental results on model refinement. Specifically, images in
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Figure 6. The mapper graph of M. and the mapper graphs of M,q, under £2-PGD attack with different e values for CIFAR-10 data and

ResNet-18 model.
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Figure 7. Weighted average node purity of mapper graphs across
different attack levels.

Attack level € 0.05 0.1 0.15 0.2 0.25 03

o 93240 90175 88730  86.505 84250 81.675

adv 0.354)  (1.704) (1.513) (2.864) (3.663) (5.211)

Vo (unif , 9349 90440 BROBS 86655 BATE0 82040
Mrefine (UMIOTM COVEN) y 540)  (1.400)  (1.336)  (2.977) (3.762)  (4.936)
: ) 0250 0265 0255 0150 0510 0365
mprovemen (0.113)  (0.304) (0.177) (0.113)  (0.099)  (0.276)

Mo (balanced covery 93445 90530 89010 86540 84755 82015
refine 0.332)  (1.499) (1.699) (2.871) (4.179) (5.084)
Imorovement 0205 0355 0280  0.035 0505 0340

P 0.021)  (0205) (0.156) (0.007) (0.516) (0.127)

Table 1. Robust accuracy: average and standard deviation of ro-
bust test accuracy for refined models. MNIST with L, PGD
attack. Standard deviations (in parentheses) are obtained using two
different seeds in the initialization.

the MNIST dataset have only a few modalities, i.e., they are
highly similar within each class. Consequently, we observe
in Figure 4 and Figure 5 that the topological structure (i.e.,
bifurcations) of its associated mapper graph is highly robust
to adversarial attacks, leading to a high robust test accuracy.
As a comparison, the images in the complex CIFAR-10
dataset have more modalities, i.e., they are highly diverse
even within each class. Consequently, we observe in Fig-
ure 6 that the topological structure of its associated mapper
graph is highly vulnerable to adversarial attacks. In fact,

Attack level € 0.05 0.1 0.2 0.3
o 97.160 96745  94.150  92.145
ady 0297)  (0.064) (2.857) (4.830)
97.175  96.830 94370  92.255
Myeine (balanced cover) — 191) (0260)  (2.300)  (4.589)
Imbrovement 0.015  0.085 0220  0.110
P 0.106)  (0.205)  (0.467)  (0.240)

Table 2. Robust accuracy: average and standard deviation of robust
test accuracy for refined models. MNIST with Lo PGD attack.

under a small ¢/5-PGD attack level ¢ = 0.05, the nodes in
the mapper graph of CIFAR-10 are already highly impure,
while the training robust accuracy is as high as 99%. This
shows that the adversarially-trained model basically overfits
all the adversarial samples, whose neuron activations are
actually hard to distinguish in the activation space.

5. Conclusion

We developed an interactive visualization tool to analyze
the topological structures of neuron activations in adversar-
ial training. Our analysis showed that stronger attacks on
more complex datasets make the neuron activations more
indistinguishable, reducing the purity of topological neigh-
borhoods in the activation space. We expect that our tool
can provide an effective way to diagnose the adversarial ro-
bustness of a model in the activation space and inspire new
approaches to quantify the closeness of trained models to
the theoretical limit (Zhang et al., 2022). We also envision
that a topological understanding of weak regions will lead
to new topologically inspired attacks and defenses.
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A. Supplementary Material

To compute the mapper graphs, we hand-tuned the mapper parameters. For MNIST data, n = 40 and p = 50%. For
CIFAR-10 data, n = 40 and p = 25%. For DBSCAN, minPts = 5, and the size of the neighborhood ¢ is determined by
the “elbow” approach (see (Zhou et al., 2021) for its details).

A.1. Details on Adversarial Training

In experiments, we train the standard adversarial model M4, with the projected gradient descent (PGD) type attack (Madry
et al., 2018). We explore the performance of M,q, against two variations of perturbation bound: /., and ¢5. For MNIST
data, we set the learning rate to be 0.01, and for CIFAR-10 data, the learning rate is 0.1. We train each instance of M4, for
200 epochs.

To perform the model refinement, we first identify weak regions in the mapper graph of activation vectors from the training
dataset. We then train Mg, using only the training images that belong to these weak regions. We train each instance of
Miefine for 50 epochs. To compute the test accuracy, we compare each activation vector from the test dataset with its nearest
neighbor of the activations from the training data. If the nearest neighbor belongs to a weak region, we identify the test
activation vector as in the weak region as well. For test images belonging to weak regions, we use Miefiqe to predict their
labels. For test images not belonging to weak regions, we use M,q4y to predict their labels. The overall prediction accuracy is
then calculated by adding the number of correctly predicted images from both Mgne and M,qy, and dividing it by the total
number of images in the test dataset.

A.2. Additional Experiments on Training MLP with MNIST for Model Refinement

Figure 8 shows the mapper graphs of neuron activations constructed using a uniform cover (left) and a balanced cover (right),
respectively. In a standard training with the clean data, the model’s corresponding mapper graphs contain clear bifurcations,
where different classes of images are located in separate branches of the mapper graph.
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Figure 8. Mapper graphs generated with a uniform cover (left) and a balanced cover (right). MNIST with MLP M_jean.

When we subject the model to /.-PGD attacks across different levels, the corresponding mapper graphs are shown in
Figure 9 with a uniform cover and Figure 10 with a balanced cover, where weak regions are highlighted by red circles.

When we subject the model to ¢5-PGD attacks across different levels, the corresponding mapper graphs are shown in
Figure 11 with a balanced cover, where weak regions are highlighted by red circles.
A.3. Training ResNet-18 with CIFAR-10

We train a ResNet-18 with the CIFAR-10 dataset, where the clean model M., has a test accuracy of 93.28%. Again, we
perform model refinement by leveraging the misclassified samples in the weak regions.

Figure 12 shows the mapper graphs of neuron activations from M;e,, constructed using a uniform cover (left) and a balanced
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Figure 9. Mapper graphs using a uniform cover, MNIST with MLP under ¢..-PGD attack (top). Weak regions are highlighted in red
circles (bottom).
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Figure 10. Mapper graphs using a balanced cover, MNIST with MLP under ¢..-PGD attack (top). Weak regions are highlighted in red
circles (bottom).

cover (right), respectively. They are shown to contain clear bifurcations that separate different image classes into branches.

Table 3 compares the (robust) test accuracy achieved by the models M,q, and M sy, respectively, under different levels of
£.o-PGD attack. We do not observe improved robust accuracy. Similar observations can be obtained under different levels of
£5-PGD attacks shown in Table 4. This observation shows that for ResNet-18 with the CIFAR-10, the topological structure
in the mapper graph is not effective in helping identify the weak regions containing samples vulnerable to adversarial attacks.

To dive deeper into the structures of the mapper graphs when the model is under ¢..- or £3-PGD attacks, we highlight the
mapper graphs with identified weak regions in Figure 13 and Figure 14. Topological neighborhoods under such a setting
typically have low purity but high training accuracy, indicating that the model is overfitting, thus making it difficult to
identify weak regions useful for model refinement.
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Figure 12. Mapper graphs generated with a uniform cover (left) and a balanced cover (right). CIFAR-10 with ResNet-18 Mcican-

Attack level e 0.01 0.02 0.03 0.05

75210  58.535 46.585  39.060
(0.156)  (0.049) (0.092) (0.240)

75170 58250  46.415  38.920
(0.085) (0.339)  (0.120) (0.113)

0040 -0285 -0.170  -0.140
(0.071)  (0.290) (0.212)  (0.354)

M, adv

Mefine (balanced cover)

Improvement

Table 3. Robust accuracy: average and standard deviation of robust test accuracy for refined models. CIFAR-10 with ResNet-18 under
£~-PGD attack. Standard deviations (in parentheses) are obtained using two seeds in the initialization.
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Attack level e 0.01 0.05 0.1 0.2 0.3

94.015 91.150 88.415 83.365 79.410
(0.163)  (0.156)  (0.092) (0.233)  (0.226)

93.990 91.085 88225 83.250  78.470
(0.170)  (0.148)  (0.078)  (0.184)  (0.891)

-0.025  -0.065  -0.190  -0.115  -0.940
(0.007)  (0.007) (0.014) (0.049) (0.665)

Madv

M.efine (balanced cover)

Improvement

Table 4. Robust accuracy: average and standard deviation of robust test accuracy for refined models. CIFAR-10 with ResNet-18 under
£2-PGD attack. Standard deviations (in parentheses) are obtained using two seeds in the initialization.
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Figure 13. Mapper graphs using a balanced cover, CIFAR-10 with ResNet-18 under /o, PGD attacks (top). Weak regions are highlighted
in red circles (bottom).
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Figure 14. Mapper graphs using a balanced cover, CIFAR-10 with ResNet-18 under £2-PGD attacks (top). Weak regions are highlighted
in red circles (bottom).
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