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Abstract
Anaphora resolution is an important task,
which traditionally has required costly super-
vised training datasets for each new language,
text genre, and domain. Meanwhile, prompting
large language models with a few in-context
examples has emerged as a promising approach
to reduce labeling costs, however there are a
number of challenges in applying in-context
learning to resolve anaphora. In this paper,
we present MICE (Mixtures of In-Context Ex-
perts), which we demonstrate is effective for
few-shot anaphora resolution in the domain of
scientific protocols (Tamari et al., 2021). Given
only a handful of training examples, MICE com-
bines the predictions of hundreds of in-context
experts, yielding a 30% increase in F1 score
over a competitive prompt retrieval baseline.
Furthermore, we show MICE can be used to
train compact student models without sacrific-
ing performance. As far as we are aware, this
is the first work to present experimental results
demonstrating the effectiveness of in-context
learning on the task of few-shot anaphora reso-
lution in scientific protocols.1

1 Introduction

Prompting large language models (LMs) with in-
context demonstrations has enabled surprisingly
effective few-shot learning (Brown et al., 2020).
However, more complex linguistic annotations over
paragraph-length inputs, such as anaphora and
coreference, have proven challenging (Yang et al.,
2022). Prompting language models with demon-
strations of anaphora and their corresponding an-
tecedents requires encoding long sequences of to-
kens, limiting the number of demonstrations that
can be used within a single prompt. Furthermore,
the performance of in-context learning has been
shown to be sensitive to the choice of demonstra-
tions (Liu et al., 2022b) and their ordering in the
prompt (Lu et al., 2022).

1Our code and datasets are available at https://github.
com/nle18/mice

To address these challenges, this paper presents
Mixtures of In-Context Experts (MICE). We
demonstrate the effectiveness of MICE on anaphora
resolution in chemical synthesis protocols (see ex-
amples in Figure 1). Scientific protocols make
an ideal testbed for few-shot anaphora resolution
because they contain rich coreference and bridg-
ing links. Furthermore, these linguistic structures
are expressed very differently from well-studied
domains with extensive annotated resources, such
as newswire, and they are not easily amenable to
annotation by non-expert crowd workers.

MICE works as follows. Given an anaphor, such
as “the mixture”, it uses in-context learning to pre-
dict a list of substances contained in the mixture
that are referenced earlier in the procedure, for ex-
ample: “Bromoacetyl bromide”, “compound 54”
and “water”. With only a handful of training ex-
amples (e.g., 16 or 32), MICE generates an ensem-
ble of up to kd in-context experts, each of which
consists of a prompt containing d demonstrations
chosen from the k available training examples. For
instance, if d = 2 in-context demonstrations per
prompt and k = 16 training examples, MICE gen-
erates up to 256 in-context experts (prompts) to be
ensembled. The experts’ predictions are then com-
bined in a mixture model, where mixture weights
are computed by comparing embeddings of the in-
put mention and available training examples.

We find that, although some prompts and prompt
orderings perform better than others, individual
prompts act as local experts in different regions
of the input space (Jacobs et al., 1991; Jordan and
Jacobs, 1994; Shazeer et al., 2017), and no single
prompt works better than others on all inputs (see
Figure 2). Furthermore, if the same antecedent
is predicted by multiple in-context experts, this
provides independent sources of evidence, increas-
ing the probability the answer is correct (Downey
et al., 2005). In extensive experiments, we show
MICE significantly improves the performance of
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Figure 1: Resolving antecedents of “the mixture” in a chemical synthesis procedure using MICE. Given a small
training set of 16 examples and a test input, we construct 256 prompts, each with two in-context demonstrations.
The prompts are then fed into a pre-trained language model (e.g. GPT-J) to generate candidate antecedents. The
probabilities of each candidate antecedent are computed and combined in a mixture of in-context experts using a
similarity-based gating function. MICE then selects the antecedents with the highest probabilities. In the figure,
orange, blue, red denote the anaphor, the true antecedents, and incorrect antecedents, respectively.

in-context learning for anaphora resolution in syn-
thetic procedures. For example, given 32 demon-
strations, using a single prompt achieves an F1
score of 38.6, whereas by combining the predic-
tions of 256 prompts, MICE achieves 53.9 F1.
While MICE consistently improves in-context

anaphora resolution, inference is relatively expen-
sive, due to the large number of prompts involved.
To address this limitation, we show that fine-tuning
BERT-based models on data that is automatically
labeled with MICE yields further performance im-
provements, while also producing much more com-
pact models (Schick and Schütze, 2021a,b; Lang
et al., 2022).

2 Anaphora Resolution in Scientific
Protocols

Split-antecedent anaphors (Vala et al., 2016; Yu
et al., 2020; Paun et al., 2022) are plural mentions
that refer to two or more antecedents in the previ-
ous discourse. For instance in the following text:
“[Alice]antecedent and [Bob]antecedent went to
the store. [They]anaphor bought some bread.”
the word “[They]” refers to two both “[Alice]”
and “[Bob]”.
Similar references to multiple antecedents ap-

pear in chemical synthesis protocols, for example,
“the mixture”. These references arise naturally as
the result of context change accommodation (Web-
ber and Baldwin, 1992), and are crucial for under-
standing the steps needed to synthesize a molecule
(Fang et al., 2021). Resolving anaphoric references
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Figure 2: Heatmap visualizing the performance of 64
prompts on 64 sampled anaphors. Each prompt encodes
two in-context demonstrations randomly sampled from
8 training examples. Each square represents F1 of a sin-
gle prompt applied to a single anaphor (typically these
are associated with multiple antecedents). The prompts
and test inputs are sorted from high (top, left) to low
(bottom, right) F1. Note that no single prompt performs
best on all test inputs. This suggests that it could be ben-
eficial to combine lists of predicted antecedents made
independently by many in-context experts.

in synthetic protocols could be beneficial for au-
tomating protocols described in natural language
(Sanderson, 2019; Vaucher et al., 2021), in addi-
tion to automatically extracting chemical reaction
databases from scientific literature (Lawson et al.,
2014; Mysore et al., 2019). However, anaphora is
costly to annotate (Yuan et al., 2022) and scientific

2694



protocols are not easily amenable to annotation by
non-expert crowd workers (Kulkarni et al., 2018).
This motivates the need for few-shot learning meth-
ods that can resolve anaphora in procedural texts
without extensive annotated resources.

3 Mixtures of In-Context Experts

While in-context learning has achieved good per-
formance when prompted with a few examples, the
performance can vary significantly depending on
different prompt design choices (Lu et al., 2022;
Liu et al., 2022b). Furthermore, anaphora resolu-
tion requires paragraph-length contexts, limiting
the number of in-context examples that can be en-
coded in a single prompt (Figure 3). We address
these challenges with MICE. We show MICE is an
effective method for few-shot anaphora resolution
in §5, and demonstrate that it can be used to auto-
matically label data for fine-tuning more compact
models, without sacrificing performance, in §4.1.
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Figure 3: Distribution of the maximum number of in-
context demonstrations of an anaphor, synthesis pro-
tocol, and corresponding antecedents that can be en-
coded in a single prompt. We compute the max num-
ber of demonstration tokens by subtracting the max
sequence length (2048) by a fixed number for generated
tokens (256) and the number of tokens for the test input.
Demonstrations are randomly sampled until the max
number of tokens is reached. Given the longer contexts
needed to demonstrate anaphora resolution, a prompt
can encode at most 8 demonstrations, much less than
the 32 used in Brown et al. (2020).

In-Context Learning We formulate the task of
anaphora resolution in synthetic protocols as fol-
lows. The input includes a document D and a
query anaphor a. Our goal is to identify a set
of antecedents Y = {y0, y1, ..., ym} that corre-
spond to text spans in D. To tackle this problem
via in-context learning, we frame it as a SQuAD-
style extractive question answering task (Wu et al.,
2020). Specifically, as shown in Figure 1, each ex-
ample (D, a) is formatted as the concatenation of

document D and template question: “What does
a contain?” An autoregressive language model
then completes this sequence by generating Y , with
the antecedents separated by a special marker “|”.
Following the typical approach to in-context learn-
ing, the prompt includes a few demonstrations in
the prefix and ends with the test input.

Mixture of Experts For a given test input x =
(D, a), we aim to find the antecedents yi with the
highest probabilities P (yi|x). The notation yi de-
notes an antecedent from the union of antecedents
generated by all prompts. MICE computes P (yi|x)
using a mixture of experts (Jacobs et al., 1991; Cho
et al., 2019), treating the prompt, z, as a latent
variable (Guu et al., 2020):

P (yi|x) =
∑

z

P (yi|z, x)P (z|x) (1)

In Eq.1, P (z|x) represents the likelihood that
prompt z is constructed given x, and P (yi|z, x)
represents the probability that the LM predicts an-
tecedent yi when prompted with z and x.

Similarity-based Gating We compute P (z|x)
by summing similarity scores s(x, u1), ..., s(x, ud)
between x and the in-context demonstrations
u1, ..., ud encoded in z:2

P (z|x) ∝ exp
d∑

i=1

s(x, ui)

where s(x, ui) is the cosine similarity between the
embeddings of x and ui. Details of the similarity
measures used in our experiments are presented in
§4.1.

Estimating Antecedent Probabilities Comput-
ing probabilities P (yi|z, x) that are comparable
across variable-length antecedents is not easy.
Longer sequences will naturally have smaller LM
probabilities, suggesting the need for length nor-
malization, or averaging per-token probabilities,
neither of which we found to work well.3 There-
fore, following Zhao et al. (2021), we estimate
P (yi|z, x) using first token probabilities. Specifi-
cally, let yi,0 denote the first token of yi. We then

2We also experimented with multiplying the similarity
scores and observed similar results.

3Similar to Zhao et al. (2021), we observe that, for a gen-
erated antecedent, the first token probabilities vary the most,
while probabilities of subsequent tokens are highly determin-
istic.

2695



have:

P (yi|z, x) ≈ max
j

Pj(yi,0|z, x) (2)

where the max is taken over Pj(yi,0|z, x) – the
probability of token yi,0 being the first token of the
jth antecedent generated by the language model,
when prompted with z and x.

Approximation with Sampling Approximating
P (yi|z, x) using first-token probabilities in Eq.2
has a drawback: it disregards the length of the an-
tecedents and treats different antecedents with the
same first token as equivalent. As an alternative, we
present MICE-SAMPLING: a simple Monte Carlo
approximation of P (yi|z, x) that uses a binary in-
dicator 1[yi ∈ Yz,x] of whether or not antecedent
yi is in Yz,x (the set of generated antecedents given
prompt z and x):

P (yi|x) =
∑

z

P (yi|z, x)P (z|x)

≈
∑

z

1[yi ∈ Yz,x]P (z|x)

In §4, we show empirically that when using hun-
dreds of prompts, MICE-SAMPLING is actually a
better approximation than the LM probability of the
first token (Zhao et al., 2021). In addition, MICE-
SAMPLING is simpler to implement, as it does not
require storing output logits and computing the
softmax to obtain first token probabilities.

Train (full) Dev-64 Dev-256 Test

# anaphors 4,766 64 256 898
# antecedents 21,673 293 996 4,016
# documents 856 11 52 166
# sentences 5,833 76 346 1,066
# tokens 984,032 10,150 45,825 140,614

Table 1: Statistics of selected CHEMU-REF splits. De-
tails on few-shot train sets are shown in Table 9 in the
Appendix.

4 Experimental Setup

We evaluate our approach on CHEMU-REF, a cor-
pus of synthetic procedures from chemical patents
that are annotated with coreference and anaphora
(Fang et al., 2021). The CHEMU-REF annotations
contain fine-grained chemistry-specific relations
such as TRANSFORMED, which indicates the mix-
ture components undergo a chemical transforma-
tion, or WORK-UP, which represents a combina-
tion of compounds to isolate or purify a reaction

product. In this work, we focus on modeling the
general structure of anaphora in scientific protocols
and understanding which compounds are combined
at each step of the procedure, which does not re-
quire making these more fine-grained distinctions.
Therefore, we pre-processed the data by collaps-
ing all one-to-many CHEMU-REF relations into a
single MULTIPLE-ANTECEDENT relation. We re-
move anaphors comprising compounds described
with IUPAC nomenclature (Skonieczny, 2006), for
example “2,2,6,6-tetramethylpiperidine”, while re-
taining nominal anaphors, such as “the mixture”,
“the solution” and “the reaction”, which make up
90% of anaphors in the CHEMU-REF corpus. For
train/dev/test splits, we use the original train split
for training and development, and the original dev
split for evaluation.4 Following Gao et al. (2021),
for each k-shot experiment, we sample five differ-
ent training sets from the full training split using
different seeds and report the mean. For model
development and ablation studies, we use a small
development set of 64 examples (Dev-64) to simu-
late a true few-shot learning setting. For evaluation
on held-out data, we use the full CHEMU-REF

development set as test data (Test) as well as a sub-
sampled version with 256 examples (Dev-256) to
control for high GPT-J inference costs. Selected
dataset statistics are shown in Table 1.

We use F1 as our evaluation metric. In particular,
we compute the micro-F1 between the predicted
and gold sets of antecedents of the evaluation data.
A predicted and a gold antecedent are considered
the same if they are an exact match.

4.1 Implementation Details

Models We use GPT-J-6B (Wang and Komat-
suzaki, 2021) as the backbone language model for
MICE and in-context baselines since it was the
largest publicly available autoregressive language
model at the time we started this work.5 Com-
pared with other similar language models like GPT-
2, GPT-J has a larger maximum sequence length
of 2048. It is also pre-trained on the Pile (Gao
et al., 2020), which covers in-domain data includ-
ing chemical patents from USPTO6 and PubMed
articles. Similarly, we choose PROCBERT (Bai
et al., 2021) for the student model in knowledge

4The official CHEMU-REF test set is hidden at http:
//chemu2021.eng.unimelb.edu.au/.

5Larger models, such as OPT-175B (Zhang et al., 2022),
have become available recently.

6https://www.uspto.gov/
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distillation due to its in-domain pre-training on syn-
thetic procedures.

MICE We ensemble up to 256 prompts, with 2 or
5 in-context demonstrations in the prompt, for all
few-shot settings. To calculate the similarity score
s(x, u) between the input x and a demonstration
example u, we use SBERT model (Reimers and
Gurevych, 2019)7 with the roberta-large check-
point since this model is widely used for measuring
text similarity (Wang et al., 2020). We also experi-
mented with calibrating the language model to be
bias-free by applying the calibration procedure de-
scribed in Zhao et al. (2021); however, we found
that it did not improve performance in the context
of anaphora resolution in scientific protocols.8

Antecedent Filtering To further improve the
quality of predicted antecedents, we apply several
post-processing rules that were developed on the
Dev-64 split. Namely, we (1) filtered out all predic-
tions that exceed a threshold length of 250 tokens
(2) merged the antecedents that are sub-strings to
the longest predicted antecedents (e.g. “CH2CL2”
is merged into “CH2CL2 (40 mL)”) and (3) filtered
out all the antecedents with probability P (yi|z, x)
in Eq. 2 less than 0.02 and probability P (yi|x) in
Eq. 1 less than 0.1.

Knowledge Distillation To produce a compact
model for inference, we perform knowledge dis-
tillation (Sanh et al., 2019; Jiao et al., 2020) via
self-training, where the student model is trained
on pseudo labels generated MICE. We experiment
with three few-shot settings k ∈ {8, 32, 64}. In
each setting, out of five training runs, we select
the MICE-SAMPLING-{2} model checkpoint (2
in-context examples) that achieves the median per-
formance on the Dev-256 set as the teacher model.
To train the student model (Schick and Schütze,
2021b; Lang et al., 2022), we randomly sample real
unlabeled synthetic protocols from the chemical
patent corpus collected in Bai et al. (2021). We then
run rule-based anaphor detection (Appendix A) to
identify anaphors within the sampled documents.
Subsequently, the teacher model is used to pre-
dict antecedents. Finally, we train the PROCBERT

7https://www.sbert.net/docs/pretrained_models.
html

8When prompted with content-free inputs, such as “N/A”,
the language model already generates bias-free answers (e.g.
the LM generates "N/A" given "N/A" as a test input) without
calibration, suggesting there is no significant bias towards
specific answers for anaphora resolution.

student model in a two-stage process. We first fine-
tune PROCBERT on M pseudo-labeled examples
(M ∈ {50, 100, ..., 2000}) for 50 epochs, then fur-
ther fine-tune it on the k examples with gold labels
for 200 epochs. For the student model, we frame
antecedent resolution as a sequence-labeling prob-
lem by transferring span-level antecedent labels
into token-level labels with a BIO tagging scheme.
We train the student model for token-level classi-
fication, where the input anaphor is marked with
two special tokens [Ana-start] and [Ana-end].

Computational Cost In addition to performance,
we also measure the computational cost of the
teacher and student models in knowledge distil-
lation. Concretely, we measure floating point oper-
ations (FLOPs) of the two models for both training
and inference using the FLOPs-counting code pro-
vided in Clark et al. (2020)9. Note that, the training
of the student model requires M pseudo-labeled
examples, so the training FLOPs of the student
model will also include the FLOPs of generating
those pseudo labels using the teacher model.
For all GPT-J-based experiments, generation is

performed using greedy decoding up to a maximum
of 256 tokens on 48GB A40 GPUs. When using
256 in-context experts, about three anaphors can
be resolved per GPU hour.

4.2 Baselines

We compare MICE to the fine-tuning and in-context
learning baselines described below. We use the k-
shot training set to train the fine-tuning models or
select in-context demonstrations for the in-context
models. For all baselines, we use the development
set Dev-64 for model selection and report the re-
sults on the held-out Dev-256 and test sets. Details
on baseline implementation can be found in Ap-
pendix C.

E2E (Fang et al., 2021): We train this end-to-end
neural anaphora resolution model developed for
chemical procedures with minimal adaptations. 10

PROCBERT (Bai et al., 2021): The student
model in knowledge distillation (§4.1). For base-
line comparison, we fine-tune only on gold data.

T5/T0-3B (Raffel et al., 2020; Sanh et al., 2022):
We fine-tune T5-3B (3 billion parameters) and T0-

9https://github.com/google-research/electra/
blob/master/flops_computation.py

10https://github.com/biaoyanf/ChEMU-Ref
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Model 4-shot 8-shot 16-shot 32-shot 64-shot full

E2E (Fang et al., 2021) 0.91.1 10.35.3 31.68.1 42.55.4 51.92.3 77.4
PROCBERT (Bai et al., 2021) 20.37.9 27.13.7 36.14.1 45.36.7 55.04.4 87.7
T0-3B (Sanh et al., 2022) 23.57.0 30.84.3 42.12.3 49.51.3 58.13.2 83.2
T5-3B (Raffel et al., 2020) 27.33.7 33.63.9 42.56.7 55.66.2 61.01.1 83.8
KATE (Liu et al., 2022b) 36.29.6 44.75.0 46.82.9 46.43.9 48.41.5 -
KATE+ (Liu et al., 2022b)∗ 34.33.6 40.00.0 47.70.7 51.00.4 51.50.0 -
PRODUCT (Min et al., 2022a) 36.710.5 39.48.6 41.35.3 42.42.3 45.12.7 -

MICE-{2} 44.46.2 49.85.3 52.93.8 54.62.1 54.53.1 -
MICE-SAMPLING-{2} 44.75.8 50.65.4 55.12.9 56.83.0 59.03.1 -
MICE-{5} 44.56.5 52.65.0 55.84.4 57.41.2 58.41.9 -
MICE-SAMPLING-{5} 44.46.5 52.55.0 56.84.0 57.53.4 59.22.1 -

Table 2: Results on Dev-256. Bracketed numbers indicate the maximum number of demonstrations per prompt. For
instance, MICE-{2} represents a mixture ofmin(k2, 256) prompted language models where each prompt encodes
two training examples. For each k-shot experiment, we report the mean and standard deviation across five different
training set samples. Models marked with an asterisk * are reported with less than five trials, due to time/resource
constraints. The full CHEMU-REF training split contains 4,766 examples. Results on the test set are presented in
Table 3.

3B for antecedent resolution using a QA prompt
similar to MICE.

KATE (Liu et al., 2022b): For this model, each
test example is associated with a single prompt
constructed using K-nearest neighbors. For the
sentence encoder, we use a pre-trained RoBERTa
large model (all-roberta-large-v1) from the
SBERT library (Reimers and Gurevych, 2019).

KATE+ Given a single prompt constructed by
KATE, we sample 256 antecedent lists using nu-
cleus sampling (Holtzman et al., 2020) and ensem-
ble the predictions in a similar manner to MICE.
This baseline ensembles the same number of pre-
dictions as MICE, with the difference being they
are all sampled from the language model when
conditioned on a single prompt.

PRODUCT (Min et al., 2022a): We adapt this
ensemble-based demonstration method for text
classification by first obtaining the output probabil-
ities k times (one training example per prompt)
and then computing the conditional probability
of the antecedents given the input by taking the
product of the aforementioned probabilities (i.e.
P (y|x) = ∏

z P (y|z, x)).

5 Results and Analysis

Results on Dev-256 are presented in Table 2. We
observe that variations of MICE either outperform
(4-shot, 8-shot, 16-shot, 32-shot) or are competi-
tive (64-shot) with the baselines. Furthermore, we
found that while T5-3B works well for 64-shot, it
still trails behind MICE and MICE-SAMPLING (and

Model 8-shot 32-shot 64-shot full

E2E (Fang et al., 2021) 9.9 42.3 51.8 75.8
PROCBERT (Bai et al., 2021) 30.8 41.9 57.6 78.3
T5-3B (Raffel et al., 2020) 33.9 52.0 58.6 72.6
KATE (Liu et al., 2022b) 37.9 38.6 42.3 -
PRODUCT (Min et al., 2022a) 34.3 38.5 49.0 -

PRODUCT-{2} 45.6 51.1 51.3 -
MICE-{2} 48.1 52.6 53.9 -
MICE-SAMPLING-{2} 48.5 53.9 55.7 -
Know. Distill. (2000 exam.) 56.2 59.4 64.6 -

Table 3: F1 on the full test set. For the knowledge dis-
tillation model, we picked the median trial from MICE-
SAMPLING-{2} of Table 2 to run experiment on, due to
the expensive inference cost on large amount of unla-
beled data. For others, we averaged over five training
samples.

4 8 16 32 64
k-shot (size of training set)
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Figure 4: Mean F1 of in-context learning models vs.
training set size k, on Dev-256.

even KATE) when using fewer labeled data.11 Ad-

11We also experimented with T-few (Liu et al., 2022a), a
performant T0-based parameter-efficient fine-tuning approach.
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ditionally, we observe that MICE outperforms other
in-context learning models that use a single most
performant prompt (KATE) or a single training ex-
ample per prompt (PRODUCT). This is highlighted
in Figure 4, where we plot the performance of var-
ious in-context learning models as a function of
training set size k.
Results on the full test set (Table 3) shows

similar trends. We also experiment with extend-
ing the PRODUCT baseline to include two in-
context demonstrations per prompt (PRODUCT-
{2}). While increasing the number of in-context
demonstrations in PRODUCT also boosts the perfor-
mance for all k-shot, MICE and MICE-SAMPLING

still outperform PRODUCT-{2}.

KATE+ vs. MICE We highlight the results
of KATE+ in comparison to KATE and MICE.
KATE+ performs somewhat better than KATE,
likely due to state-of-the-art text generation meth-
ods (e.g. nucleus sampling) as well as ensembling
independently-sampled sequences conditioned on
a single prompt. However, MICE significantly out-
performs KATE+, indicating the importance of en-
sembling prompts with different demonstrations
and permutations.

Knowledge Distillation The impact of knowl-
edge distillation is explored in Table 4. We ob-
serve that with only 50 pseudo-labeled examples,
the student model outperforms the PROCBERT
baseline by 8.0 F1 for 8-shot, 5.1 F1 for 32-shot
and 1.7 F1 for 64-shot, showing the effectiveness
of distillation. The performance of the student
model improves as the number of pseudo-labeled
examples increases. With 2000 pseudo-labeled
examples, the inference-efficient student model
(110M parameters) outperforms the teacher model
MICE-SAMPLING. We hypothesize that the stu-
dent model outperforms the teacher because after
training on pseudo-labels generated by MICE, the
student model is further fine-tuned on the k avail-
able gold-labeled examples, as described in §4.1.
This approach combines the benefits of in-context
learning with fine-tuning achieving better perfor-
mance than either in isolation. In-context learning
does not incur any training costs, but the number
of FLOPs required by MICE-SAMPLING for infer-
ence is roughly 1,500 times the computational cost
of the student model.
With suggested hyper-parameters, T-few performs worse than
the full-model fine-tuning of T0-3B on anaphora resolution,
so we leave the further exploration of T-few to future work.

Model F1 Train FLOPs Infer FLOPs
8-shot 32-shot 64-shot (1000 exam.)

PROCBERT 28.0 41.1 56.7 3.2e15 1.2e14

Teacher 54.1 55.7 59.9 0 1.9e17
Student (# pseudo labels)
- 50 36.0 46.2 58.4 1.4e16 1.2e14
- 100 43.5 49.9 62.2 2.4e16 1.2e14
- 200 42.1 52.3 60.4 4.5e16 1.2e14
- 500 49.1 52.2 63.3 1.1e17 1.2e14
- 1000 50.1 51.8 64.1 2.1e17 1.2e14
- 2000 54.3 55.8 64.3 4.1e17 1.2e14

Table 4: Dev-256 F1 and training/inference FLOPs of
the teacher model (MICE-SAMPLING) and the student
model in knowledge distillation. The training FLOPs
of the student model under different few-shot settings
are almost the same. With 2000 pseudo-labeled exam-
ples, the student model (110M parameters) can match or
outperform the teacher model in terms of F1. Although
inference FLOPs of the teacher model are around 1500
times the FLOPs of the student model, considering the
cost of training the student model to match the teacher
model’s performance, the teacher model is actually more
cost effective than the student model for inference when
the number of inference examples is low, e.g., less than
2100 for 32-shot. For rows where the number of FLOPs
varies depending on the number of training examples,
we show the maximum.

1.5 37.5 75.0 112.5 150.0 187.5 225.0 262.5 300.0
FLOPs per test input (×1012)

1 25 50 75 100 125 150 175 200
Number of prompts per test input

35

40

45

50

55

60

65

70

F1

MICE-Sampling-{2}
MICE-{2}

Figure 5: Mean F1 (± one std. dev.) vs. the number
of prompts used in MICE. Performance plateaus after
the number of experts is increased to 75, suggesting an
appropriate choice for the minimum number of prompts
in this context. The number of prompts corresponds
to the number of inference passes, which we measure
using FLOPs per test example (§4.1).

Number of mixture prompts vs. Performance
We explore the effect of varying the number of
mixture prompts in Figure 5. While adding more
prompts leads to rapid F1 improvement, the per-
formance plateaus after about 75 prompts. This
suggests an appropriate minimum number of ex-
perts to use in MICE.
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Figure 6: Mean F1 (± one std. dev.) vs. max number
of in-context demonstrations per prompt. We observe a
large performance gap between MICE-SAMPLING and
KATE.

Number of in-context demonstrations vs. Perfor-
mance Figure 6 shows the effect of varying the
number of in-context demonstrations per prompt,
for mixture models (MICE-SAMPLING) and single-
prompted models (KATE). As the number of in-
context demonstration per prompt increases, KATE

F1 steadily increases. This effect is less pronounced
in MICE, where adding more than three in-context
demonstrations per prompt does not significantly
improve performance. However, there is still a
large performance gap between MICE and KATE,
regardless of the number of in-context demonstra-
tions.

6 Related Work

Ensembling prompts Recent work has explored
different strategies for ensembling LM predictions.
Lester et al. (2021) and Zhao et al. (2022) aggre-
gate predictions from multiple prompts via either
majority voting or weighting on development set
performances. Jiang et al. (2020) and Qin and Eis-
ner (2021) ensemble a small number of prompt
templates or soft prompts, then learn their weights
from a large training set. Asai et al. (2022) com-
bines soft prompts pre-trained on multiple source
tasks with fine-tuned attention weights to gener-
ate prompts for a target task. In contrast to all the
above work, MICE generates a large number of
prompts from a small number of training examples
and combines their predictions using mixtures of
experts with similarity-based gating.
Similar to our work, Min et al. (2022a) shows

that ensembling the predictions of k one-shot

prompts by multiplying their LM probabilities is
better than concatenating all k examples as one
prompt, which we use as a baseline (PRODUCT).
Concurrently, Lang et al. (2022) demonstrates the
advantage of ensembling k one-shot prompts via
co-training the ensembling parameters using a
smaller model. However, they train the ensembling
parameters with an MLP layer and thus require all
training examples to share the same label space,
which is not applicable to anaphora resolution. Im-
portantly, both Min et al. (2022a) and Lang et al.
(2022) only consider a small number of prompts,
whereas we demonstrate the benefits of generating
and combining hundreds of prompts as a mixture-
of-experts.

Few-shot anaphora resolution There is very lit-
tle prior work on few-shot coreference or anaphora
resolution. Prior work (Perez et al., 2021; Min
et al., 2022b) has applied in-context learning to
the benchmark datasets Winograd Schema Chal-
lenge (WSC) (Levesque et al., 2012) and Wino-
Grande (Sakaguchi et al., 2019). Both datasets are
intended to be an alternative to the Turing Test.
As such, they contain short, syntactically simple
sentences, and require a different type of world
knowledge to resolve references than those seen in
scientific protocols. Agrawal et al. (2022) demon-
strates the effectiveness of zero-shot prompting for
coreference resolution on clinical data. They in-
troduce task-specific programs (called resolvers)
that map language model outputs to discrete label
space, which can be used in conjunction with MICE

for further improvements on few-shot coreference
resolution.

Mixture-of-Experts in Language Modelling
Mixture-of-Experts (MoE) based language mod-
els have been shown to improve performance and
efficiency across a variety of NLP tasks (Shazeer
et al., 2017; Du et al., 2022; Gururangan et al.).
These models were pre-trained on a mixture of
datasets with different domains, either via learning
the gating weights at a token level (Shazeer et al.,
2017; Du et al., 2022) or document level (Guru-
rangan et al.). Unlike prior work, MICE combines
the predictions of many in-context experts, each
of which encodes a permutation of demonstrations
drawn from a handful of training examples. The
gating weights in MICE are computed based on
similarity scores between test input and in-context
examples.
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7 Conclusion

In this paper, we propose and demonstrate the ef-
fectiveness of Mixtures of In-Context Experts for
few-shot anaphora resolution in chemical synthe-
sis protocols. MICE generates a large number of
in-context experts (prompts) from a few training
examples, where each expert consists of randomly
permuted demonstrations. Predictions made by
these experts are combined in a mixture model
with a similarity-based gating function. Our exper-
iments show that MICE significantly improves the
performance of in-context learning for anaphora
resolution in scientific protocols, using just a hand-
ful of training examples. We further demonstrate
that knowledge distillation can dramatically reduce
the costs of inference while maintaining perfor-
mance, which increases MICE’s potential applica-
bility in working systems.

Limitations

A challenging bottleneck for MICE is its expensive
inference cost: despite the promising few-shot ca-
pabilities, the inference cost is even more expensive
when using a language model with over 6 billion
parameters. Although we show that knowledge dis-
tillation can address this problem, future work may
further investigate how to improve smaller models’
in-context capabilities.
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A Anaphor Detection

We develop a rule-based system using simple string
matching patterns. We developed the system using
the full train set, optimized on the Dev-64 develop-
ment set, and evaluated on Dev-256 and Test set.
Anaphora in synthetic protocols are expressed us-
ing relatively consistent and easy to identify expres-
sions, for example: "the mixture", "the reaction so-
lution", and "the resulting solution", making them
relatively easy to identify using a simple approach
using regular expressions. As a result, our system
can effectively identify most of these spans, achiev-
ing high F1 scores when evaluated on different eval-
uation splits (Table 5). An example of a pattern that
matches all anaphors in Figure 1 test input is shown
here: https://regex101.com/r/pImmBT/1

P R F1

Dev-64 98.5 100 99.2
Dev-256 97.6 95.7 96.6
Test 95.6 85.5 90.3

Table 5: Results of our rule-based anaphor detection
system on different evaluation splits.

B MICE Implementation Details

We present the hyperparameters for MICE (as well
as other in-context learning baselines) in Table 7.
We also experimented with different prompt order-
ing of in-context demonstrations Liu et al. (2022b)
and contextual calibration Zhao et al. (2021). All
ablation experiments were evaluated on Dev-64
development set.

Ordering of In-context Demonstrations Since
different prompt ordering can play a significant
role in the performance, we measure the effect of
different in-context ordering on KATE. Given a
test input, we first select the most similar examples
using based on the cosine similarity between the
test input and the example embeddings (encoded
using pre-trained RoBERTa large model). We then
consider the following ordering:

• ASCEND: Sorting the order of in-context
demonstrations from least to most similar ex-
amples (i.e. most similar example closest to
test input)

• DESCEND: Reverse of ASCEND

• MIXED: Random shuffle of in-context demon-
strations

The results on Table 6 show there is not much dif-
ference between different orderings. This result is
in line with the findings in ? that prompt ordering is
dataset-dependent. As such, we select ASCEND as
the de facto ordering for all our in-context learning
experiments.

Contextual Calibration Zhao et al. (2021)
shows that prompted LMs can be biased towards
specific outputs, regardless of the test input. We
thus experimented with the calibration procedure
for generation tasks described in Section 5 of Zhao
et al. (2021), also referencing their code.12 Specif-
ically, we computed calibration parameters using
the output probabilities of the content-free prompt
(e.g. prompt with "N/A" test input), and used these
parameters to update output probabilities when
prompted with actual test inputs. However, we
found that applying this calibration procedure does
not improve performance. We further observe that
when prompted with content-free inputs, the lan-
guage model already generates bias-free answers
(e.g. generates "N/A" given "N/A" test input) with-
out calibration. This suggests there is no significant
bias towards specific answers for the case of split-
antecedent resolution, whereas current calibration
techniques are designed for cases where the LM
generates biased answers given content-free inputs,
(e.g. generates a label given "N/A" test input).

C Baseline Implementation Details

For E2E (Fang et al., 2021), we run the TensorFlow
code provided in the original paper (following the
same hyperparameters) to get the model perfor-
mance under our few-shot settings. Other base-
lines, including PROCBERT, T5-3B, and T0-3B,
are implemented using Huggingface Transformers
(Wolf et al., 2020). The hyperparameters used for
these baselines are shown in Table 8.

12https://github.com/tonyzhaozh/
few-shot-learning
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4-shot 8-shot 16-shot 32-shot 64-shot

ASCEND 34.34.9 45.32.8 46.85.1 46.86.6 46.55.9
DESCEND 34.84.8 46.21.3 45.14.8 44.66.6 46.54.7
MIXED 34.17.6 43.93.3 46.14.7 46.24.3 46.34.1

Table 6: Order of in-context demonstration results.

Hyperparameter KATE KATE+ PRODUCT
MICE-{2} MICE-{5}

MICE-SAMPLING-{2} MICE-SAMPLING-{5}

# prompts per example 1 1 k min(256, k2) min(256, k2)
Max # in-context per prompt min(k, dx) min(k, dx) 1 2 5
Order of in-context ASCEND ASCEND - ASCEND ASCEND

P (yi|z, x) threshold 0.0 0.02 0.02 0.02 0.02
P (yi|x) threshold 0.0 0.1 0.1 0.1 0.1
top-k - 50 - - -
top-p - 0.95 - - -

Table 7: Hyperparameters for in-context learning models. k is the size of training set (k-shot). dx depends on the
length of test input x and retrieved in-context examples (Figure 3). ASCEND denotes sorting the order of in-context
demonstrations from least to most similar examples (i.e. most similar example closest to test input). Top-k and
top-p are hyperparameters for nucleus sampling used for KATE+.

Hyperparameter PROCBERT T5-3B / T0-3B

# epochs 200 20
batch size 32 4
learning rate 2e-5 1e-4
max. encoder length 512 512
max. decoder length - 256
optimizer AdamW AdamW

Table 8: Hyperparameters for PROCBERT, T5-3B, and T0-3B.

Data Split 4-shot 8-shot 16-shot 32-shot 64-shot Train (full) Dev-64 Dev-256 Test

# anaphors 4 8 16 32 64 4,766 64 256 898
# antecedents 13.4 24.2 61.2 132.8 266.0 21,673 293 996 4,016
# documents 2.2 3.8 6.0 9.6 17.6 856 11 52 166
# sentences 8.0 15.2 27.0 50.4 92.2 5,833 76 346 1,066
# tokens 445.8 939.6 2,257.6 4,665.2 9,775.8 984,032 10,150 45,825 140,614

Table 9: Dataset splits details. The k-shot dataset statistics are averaged over five random samples.
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