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Abstract

Translating training data into many languages
has emerged as a practical solution for im-
proving cross-lingual transfer. For tasks that
involve span-level annotations, such as infor-
mation extraction or question answering, an
additional label projection step is required to
map annotated spans onto the translated texts.
Recently, a few efforts have utilized a simple
mark-then-translate method to jointly perform
translation and projection by inserting special
markers around the labeled spans in the orig-
inal sentence (Lewis et al., 2020; Hu et al.,
2020). However, as far as we are aware, no
empirical analysis has been conducted on how
this approach compares to traditional annota-
tion projection based on word alignment. In
this paper, we present an extensive empirical
study across 57 languages and three tasks (QA,
NER, and Event Extraction) to evaluate the ef-
fectiveness and limitations of both methods,
filling an important gap in the literature. Exper-
imental results show that our optimized version
of mark-then-translate, which we call EasyPro-
ject, is easily applied to many languages and
works surprisingly well, outperforming the
more complex word alignment-based methods.
We analyze several key factors that affect the
end-task performance, and show EasyProject
works well because it can accurately preserve
label span boundaries after translation. !

1 Introduction

Zero-shot cross-lingual transfer, where models
trained on a source language (e.g., English) are di-
rectly applied to other target languages, has the po-
tential to extend NLP systems to many languages
(Nooralahzadeh et al., 2020; Keung et al., 2020;
Chen and Ritter, 2021; Niu et al., 2022; Huang

LOur code and data is available at: https://github.
com/edchengg/easyproject

et al., 2022a). Yet, its performance still lags be-
hind models that are directly fine-tuned on labeled
data (if available) from the target language. Recent
work has shown that combining training data in a
source language together with its automatic trans-
lation to the target language leads to consistent
performance improvements (Xue et al., 2021; Hu
et al., 2020). However, for NLP tasks that involve
span-level annotations, an additional label projec-
tion step is needed to map the span annotations
onto the translated texts (see Figure 1).
Traditionally, this annotation projection step is
performed based on word alignment after machine
translation (Akbik et al., 2015a; Aminian et al.,
2019). To avoid the use of complex word align-
ment models, several recent efforts (Lewis et al.,
2020; Hu et al., 2020) directly translated sentences
with span annotations wrapped between special
markers (e.g., <a> and </a>). However, due to lim-
ited analysis presented in prior work, it is unclear
(1) how well this approach works across different
language families, (2) how robust MT systems are
in handling special markers, as inserting markers
inevitably degrades the translation quality, and (3)
how well marker-based projection works in com-
parison to traditional alignment-based methods.
In this paper, we present the first systematic
study of the mark-then-translate annotation pro-
jection technique, which includes careful evalua-
tion of the choice of markers, projection accuracy,
impact on translation quality, robustness to dif-
ferent MT systems, as well as a comparison to
traditional alignment-based method across 57 lan-
guages (including 18 from Africa) on 5 datasets
and 3 NLP tasks. We also propose an improved
variant of marker-based projection, EASYPRO-
JECT, that consistently outperforms the alignment-
based approach, while being incredibly easy to use
to project a variety of annotations (QA, entities,
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Figure 1: Two methods for translating and projecting English ACE event triggers and named entities to Chinese. (a)
Pipeline method based on word alignment: starting with machine translation of the English sentence to Chinese,
followed by word-to-word alignment. Then, labeled spans are projected using heuristics. (b) Mark-then-translate:
markers are inserted around the annotated spans in the text. The modified sentence with markers inserted is then
fed as input to an MT system, projecting the label span markers to the target sentence as a byproduct of translation.

relations, events) across many languages. The key
is to use language-agnostic square bracket markers,
combined with an efficient fine-tuning strategy to
encourage the multilingual MT system to better
preserve the special markers during translation.

Our main findings include (1) the marker-based
method is surprisingly robust across different trans-
lation systems and languages, but the choice of
markers matters (§3.2); (2) EasyProject can project
annotated spans more accurately and is better at
preserving span boundaries than the alignment-
based methods, which is key to its success (§5.1);
(3) fine-tuning an MT system for only 200 steps is
sufficient to improve its robustness in handling spe-
cial markers during translation (§4); (4) the margin
of improved cross-lingual transfer is related to the
language/script family and amount of pre-training
data included in the multilingual model (§5.2). We
hope our work will inspire more research on ro-
bust models that better handle text markup for the
purpose of generating span annotations.

2 Background and Related Work

Alignment-based Projection. Projecting anno-
tations via word alignment typically consists of
the following steps: machine translate the avail-
able training data into the target language; run
word alignment tools on the original and trans-
lated sentences; and finally, apply heuristics to
map the span-level annotations from the original
to translated texts. Statistical word alignment tools
such as GIZA++ (Och and Ney, 2003) and fast-
align (Dyer et al., 2013) have been widely adopted
for projecting part-of-speech tags (Yarowsky et al.,
2001; Eskander et al., 2020), semantic roles (Akbik

et al., 2015b; Aminian et al., 2017; Daza and Frank,
2020; Fei et al., 2020), slot filling (Xu et al., 2020),
semantic parser (Moradshahi et al., 2020; Nicosia
et al., 2021), and NER labels (Ni et al., 2017;
Stengel-Eskin et al., 2019). Recent progress on
supervised neural aligners (Jalili Sabet et al., 2020;
Nagata et al., 2020; Dou and Neubig, 2021; Lan
et al., 2021) and multilingual contextualized em-
beddings (Devlin, 2018; Conneau et al., 2020) has
further improved alignment accuracy. However,
this pipeline-based method suffers from error prop-
agation, translation shift (Akbik et al., 2015b), and
non-contiguous alignments (Zenkel et al., 2020).
Our analysis in §5.1 shows that the alignment-
based methods are more error-prone when pro-
jecting span-level annotations, compared to the
marker-based approaches.

Marker-based Projection. A few efforts have
used mark-then-translate label projection method
to translate question answering datasets into other
languages (Lee et al., 2018; Lewis et al., 2020;
Hu et al., 2020; Bornea et al., 2021). However, the
focus of these papers was not the label projection
task itself and there was no in-depth analysis on the
effectiveness of the approach. For instance, Lewis
et al. (2020) used quotation marks to translate the
SQuAD training set into other languages but did
not present empirical comparison to any other la-
bel projection methods. Similarly, Hu et al. (2020)
used XML tags for the same purpose when creat-
ing the XTREME dataset, but this was only briefly
mentioned in a few sentences in appendix. Besides
QA, MulDA (Liu et al., 2021; Zhou et al., 2022) is
a labeled sequence translation method that replaces
entities with variable names for cross-lingual NER.



However, no comparison with existing projection
methods was presented, as the main focus is gener-
ating synthetic labeled data using language models.

3 Analysis of Marker-Based Projection

The idea of marker-based label projection is
straightforward — wrap labeled spans with special
marker tokens, then translate the modified sentence
(see an example in Figure 1b). The projected spans
can be directly decoded from the translation if the
markers are retrained. However, inserting markers
inevitably degrades the translation quality. In this
section, we analyze several questions left open by
prior work (Lewis et al., 2020; Hu et al., 2020), in-
cluding (1) how well are the special markers being
preserved in translation, (2) the impact of differ-
ent marker choices on translation quality and the
performance of cross-lingual transfer.

3.1 Experimental Setup

We conduct experiments on three NLP tasks and 57
languages with five multilingual datasets to com-
prehensively evaluate the marker-based method.
Most multilingual datasets are created by either (1)
directly collecting and annotating data in the tar-
get language, or (2) translating English data with
human or machine translation and then projecting
labels manually or automatically. Four of our se-
lected datasets were created with the first method,
as evaluation on the translated datasets may over-
estimate performance on a target language, when
in fact a model might only perform well on trans-
lationese (Riley et al., 2020).

Datasets. Our experiments include NER via
the WikiANN (Pan et al., 2017; Rahimi et al.,
2019) and MasahkaNER 2.0 (Adelani et al., 2022)
datasets (§5.1), in addition to CoNLL-2002/2003
multilingual NER datasets (Tjong Kim Sang, 2002;
Tjong Kim Sang and De Meulder, 2003) for com-
parison with Liu et al. (2021) (§F.1). For event
extraction, we use the ACEOQS corpus (Walker et al.,
2006), which consists of six sub-tasks: entity and
relation extraction, event trigger/argument identifi-
cation and classification. For QA, we use TyDiQA-
GoldP (Clark et al., 2020), which contains chal-
lenging questions written in eight languages. Data
statistics are shown in Table 1 and 10 in Appendix.

WikiANN MasakhaNER  ACE05 TyDiQA
# of Lang. 39 20 (from Africa) 2 8
# of Docs - - 526/31/40 3,696/440/—
# of Sent. 20k/10k/10k  4.4k/638/1.2k 19k/901/676 17k/2,122/—
Avg. Length -/8.0 —-/23.9 519.3/149 96.8/21.0
Avg. # of Spans 1.4 1.8 29 1.0

Table 1: The detailed statistics of train/dev/test sets
for each dataset. Avg. Length represents the average
number of tokens in each article/sentence, and Avg. # of
Spans denotes the average number of annotated spans
in each sentence (in each article for TyDiQA).

IE and QA Models. We use XLM-RoBERTaje
(Conneau et al., 2020) as the backbone model, ex-
cept where noted.” For NER and QA, we fine-tune
XLM-R with standard tagging and SQuAD-style
span prediction layers. For event extraction, we use
the OnelE framework (Lin et al., 2020), a joint neu-
ral model for information extraction with global
features. We report average F; scores over three
runs with different random seeds. More implemen-
tation details can be found in Appendix D.

MT Systems. We experiment with two MT sys-
tems: (1) the Google Translation (GMT) API3 and
(2) an open-sourced multilingual translation model
NLLB (No Language Left Behind) (Costa-jussa
et al., 2022) with 3.3 billion parameters, supporting
the translation between any pair of 200 languages.*

3.2 Choice of Markers

Ideally, a good span marker should minimize the
impact on translation quality while having a high
chance of being preserved during translation. How-
ever, prior works used quotation marks (“ ) (Lee
et al., 2018; Lewis et al., 2020) and XML/HTML
tags (e.g., <a> or <PER>) (Hu et al., 2020; Ahmad
et al., 2021) without much justification, which we
address below.

Preserved in Translation. In a pilot study, we
experimented with several markers, including
XML tags, [], “”, (), <>, and {}, etc. We found
that both MT systems work reasonably well to
retain square brackets ([]) and XML markers dur-
ing the translation across many languages, while
other markers that have language-specific formats

We also experiment with mT5;4rge, mT5x1, and
mT5xx, (Xue et al., 2021) on WikiANN-NER (Table 7).

3https://cloud.google.com/'cranslate

4https://gi’chub.com/facebookresearch/fairseq/
tree/nllb
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are easily lost in translation. For example, quota-
tion marks () are often translated in a language-
specific way, e.g., «» in Russian, and are some-
times lost entirely in Arabic and Finnish, leading
to low projection rates: 53% for Russian, 76% for
Arabic, and 79% for Finnish based on TyDiQA
dataset. The projection rate is measured by the per-
centage of data in which the numbers and type of
special markers in the translations match with the
source sentences. To improve the robustness of MT
system in handling markers, we found further fine-
tuning the MT system on synthetic data, where the
special markers are inserted around name entities
in parallel sentences, for only 200 steps is suffi-
cient to boost the projection rate while maintaining
translation quality (more details in §4).

Impact on Translation Quality. After narrow-
ing down the choices to XML tags and square
brackets, we further measure the impact of adding
markers on the translation quality by adopting the
evaluation setup used by Fan et al. (2021). We com-
pare translation quality, with and without markers
inserted, from English to various target languages
using BLEU score. Table 2 presents the experimen-
tal results with Google Translation. Examples of
errors are shown in Table 3. We find that inserting
special markers indeed degrades translation qual-
ity, but overall, square brackets have less negative
impact compared to XML tags. We hypothesize
this is because using [] introduces less number
of extra subword tokens in the encoding and de-
coding of the text during translation, compared to
XML tags. More results on 55 languages using the

en — Lang. Corpus # sent GMT - BLEU
Orig. XML []

Arabic (ar) TEDI18 1,997 20.7 14.0 15.1
German (de) TEDI18 1,997 445 339 419
Spanish (es) TED18 1,997 459 342 354
French (fr) TEDI18 1,997 37.6 31.0 319
Hindi (hi) TEDI18 1,070 145 128 13.0
Russian (ru) WMT 1,997 364 285 352
Vietnamese (vi) TEDI18 1,997 328 285 270
Chinese (zh) WMT 1,997 40.6 334 37.1
AVG 1,881 341 27.0 29.6

Table 2: Comparsion of translation quality with differ-
ent span markers, where the best and second best are
marked. Overall, square brackets ([]) have less nega-
tive impact compared to XML tags. “Orig.” denotes the
translation when no marker is inserted.

English #1: The divorce settlement called for Giuliani to pay Hanover
more than $6.8 million, according to the reporter .

Orig.: FHILHEM, BUEHMNEESRAEFIZ e PO B
FZAHHBIE680 A FETC -
[1:4B0CEMRE . [FIEIMESRIRRIZ B[]
[ BB 680 71 3£ T -

XML: fi<e>it# <, <a>BiB</a>FFEIML TR <b>KF) % R
<Ib><c>FH [ </e><d>PUHE Bi</d>HBIT 680 FTT - fe> -

English #2: The WTO is headquartered in Geneva .
RYE-RES JUL-J‘ 5l dolad d‘..SJHJE_l\CL

Orig.:

[1: g ] AW sl ol g ) Al s

XML: . </b> oo <b> §<fa>WTO <a>J i )| _jall o2y

Table 3: Example errors and correctly projected markers
with GMT. In #1, a necessary Chinese verb “#i& (re-
port)” is lost in the XML-marked translation, while tags
(<e>, /e>) are also mismatched due to the word reorder-
ing of “i2% (reporter)”. In #2, [ ]-marked translation
fails to preserve the square brackets ([]) around the
Arabic translation of “WTQO” (marked by underline).

GMT - TyDiQA F,

en — Lang. Hu et al.
XML (1 “r

Arabic (ar) 68.8 684 717 66.5
Bengali (bn) 58.6 648 64.1 69.3
Finnish (fi) 69.4 69.6 70.8 68.0
Indonesian (id) 75.5 76.0 78.6 773
Korean (ko) 56.8 556  59.0 59.6
Russian (ru) 49.5 657 661 523
Swabhili (sw) 69.1 704 70.1 70.1
Telugu (te) 70.2 69.0 67.3 679
AVG 64.7 674 68.5 0664

Table 4: Comparison of different markers on TyDiQA-
GoldP by training on the translated projected data only.
Overall, square brackets ([]) have the best transfer
learning performance.

NLLB translation system and more details about
the evaluation setup can be found in Appendix G.1.

Impact on Transfer Learning. We next evaluate
the impact of different marker choices on the per-
formance of cross-lingual transfer. The results on
the TyDiQA dataset are presented in Table 4. On
average, square brackets ([]) have the best trans-
fer learning performance. We also directly com-
pare with the projection data released by Hu et al.,
which utilizes XML tags and a Google internal
translation system in the year 2020 to translate QA
datasets. More results on NER and event extraction
tasks, and comparison with the alignment-based
projection methods are presented in Table 8.



@ EasyProject-[]

Dutch . .
Estonian Hungarim"o Italian Turkish

Afrikaans  German

80- O Awesome-align 1% °—o %o
) Portuguese
o ~ Bengali Taga.IMGRT:;a" Hindi French
o0 Spanish 0—0 o—o0
70- Basque b .\0
Swalhili
Javaneée%o ° Tamil Hebrew
- o :\O Vietnamese
w 60- Korean./o
o Persian ./) d ian
o e—oO
w O Yoruba
= Telugu Arabic
50- oo 60
-
(o] : 40
z
40- 20 Japanese
(o}
0 (0)
| 10 15 20 25 30
30 O (linece BLEU
25 30 35 40 45 50 55
BLEU

Figure 2: Comparison of translation quality (x-axis) and end-task performance (y-axis) for different label projection
methods on the WikiANN dataset using NLLB translation system. EasyProject@ (§4) outperforms alignment-
based approach O on F; scores for most languages, though inserting markers degrades translation quality. The

experimental setting is detailed in §5.1.
4 EASYPROJECT

Based on our analysis, we develop an optimized
version of the mark-then-translate method, which
we call EASYPROJECT.> Our improvements target
the two weaknesses of the marker-based approach:
(1) special markers may get lost during translation;
and (2) although square brackets ([]) show strong
performance, they don’t carry the correspondence
between original spans and the ones in the transla-
tion (e.g., [ Churchill ] was born in [ England ]
in [ 1874 1.), as the XML tags (e.g., <a> Churchill
</a> was born in <b> England </b> in <c> 1874
</c>.). If multiple annotated spans with different
labels exist in one sentence, it is challenging to
assign labels to the projected entities in the transla-
tion, as word order can change between languages.

4.1 Fine-tuning NLLB

To improve the robustness of the MT system in
handling special markers, we further fine-tuned
the NLLB model on synthetic data. We utilize
parameter-efficient fine-tuning by only updating
the last layer of the encoder and decoder, which
take 4.2% of all parameters. We found fine-tuning
200 steps is sufficient to improve the projection
rate on TyDiQA dataset from 70% to 96.4% while
maintaining the translation quality.

Creating Synthetic Data. We first construct a
parallel corpus where the special markers are in-
serted around the corresponding name entities in
source and target sentences, with following steps.

This name was inspired by Daumé III (2007).
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Figure 3: The changes of projection rate and translation
quality (measured by BLEU score) as fine-tuning more
steps. We found 200 steps are sufficient to boost the
projection rate while maintaining translation quality.

1000

1. Detect named entities on the English side of
the parallel corpus, using the SpaCy NER sys-
tem,® which covers 18 types of NER labels.

2. Translate the English entity names into the
target language, and use string matching to
find the corresponding entities from the target
sentence. Given a pair of entities in the source
and target sentences, we add square brackets
([1) around both of them.

3. Select all sentence pairs that contain more
than one []-marked entity. We also sort the
rest of the data based on length, and include
the top-k sentence pairs. In total, we use
5,000 sentence pairs for each language pair.

We utilize the training data of NLLB model’ as
the source of the parallel sentences, and use the
sentence pairs from high-resource language pairs
(en to {de,es,nl,zh,ar}), which are selected based
on the CoNLL-2002/2003 ({de,es,nl}) and ACE

6https ://spacy.io/models/en#en_core_web_sm
"https://huggingface.co/datasets/allenai/nllb


https://spacy.io/models/en#en_core_web_sm
https://huggingface.co/datasets/allenai/nllb

datasets ({zh,ar}).

Parameter-efficient Fine-tuning. To save com-
pute and preserve the translation ability of the
model, we only update the weights in the last
layer of the encoder and decoder for 200 steps,
with a learning rate of Se-5 and a batch size of
8, which takes around 2 minutes on an A40 GPU.
The changes in projection rate and the translation
quality during the fine-tuning process are shown in
Figure 3. The fine-tuned NLLB model is able to
improve the projection rate on TyDiQA from 70%
to 96.4%. TyDiQA is particularly challenging due
to its relatively long sentences, and the translation
model sometimes may ignore the inserted mark-
ers. By fine-tuning on high-resource languages,
we found the model is able to generalize well to
the other language pairs. In pilot study, we notice
that fine-tuning on low-resource languages, such as
African languages in MasakhaNER corpus, doesn’t
generalize well and leads to lower translation qual-
ity. We will release all the fine-tuned models.

Fuzzy String Matching. To identify the corre-
sponding labels when more than one projected en-
tity exists in the translation, we design a fuzzy
string-matching method. We first translate each
annotated span in the original sentence indepen-
dently, resulting in a set of labeled mentions. To
identify labels for the unlabeled spans in the []-
marked translation, we compare each unlabeled
span with the labeled mentions using the ratio()
function in the diff1ib library. 8 Two strings are
considered matched if they have >50% matched
subsequences, and the associated label is assigned
to the bracketed span. We also experiment with
matching span labels left-to-right based on their
relative position in the text. The results are shown
in Table 5. Using fuzzy string-matching leads to
overall better performance since it can assign the
span labels more accurately.

Putting all the improvements together, we call
this improved variant of marker-based method
EASYPROJECT for easily projecting labels.

5 Experiments

In this section, we comprehensively evaluate the
effectiveness of EASYPROJECT and analyze the

8https: //docs.python.org/3/1library/difflib.
html#difflib.SequenceMatcher.ratio

Original NLLB  Fine-tuned NLLB

Proj. Rate F;  Proj. Rate F1
[ 1 +Fuzzy String Match 87.0% 62.6 93.7% 62.9
[ 1 +Match by Sequence 87.7% 62.6 94.4% 62.3

Table 5: A comparison of varied methods to trans-
late sentences and assign labels on the devset of
MasakhaNER 2.0 corpus. “Proj.Rate” denotes the pro-
jection rate, which is defined in §3.2.

key factors that impact the performance of cross-
lingual transfer learning.

5.1 Comparison to Alignment-based Method

We first compare EasyProject with the traditional
pipeline approach based on state-of-the-art bilin-
gual word alignment models. For both methods,
we apply a simple filtering rule that removes sen-
tences with different numbers of annotations before
and after projection.

Bilingual Word Alignment. We experiment
with two state-of-the-art neural word aligners: (1)
the unsupervised version of Awesome-align (Dou
and Neubig, 2021) and its supervised version,
which we extended from 5 to 39 languages for
this paper, and (2) QA-align (Nagata et al., 2020)
which formulates the word alignment problem as
SQuAD-style QA task. More details on the word
alignment models can be found in Appendix C.

Transfer Learning Results. As summarized
in Figure 2, EasyProject outperforms alignment-
based projection for most languages, even though

Fine-tune,, NLLB+Aligner NLLB+Markers
Ref. mDeBERTa Awesome-align XML EasyProject.
56.9 55.0 632 (+8.2) 63.8 (+8.8)  64.3 (+9.3)

Table 6: Average results over 18 African languages on
the MasaKhaNER 2.0 corpus, as two languages are not
supported by NLLB model. The mDeBERTa model is
used here sinces it has the strongest performance on
African languages in the original paper (Adelani et al.,
2022), where the “Ref” column is from. Full results on
each languages are in Table 11 in Appendix B .

Model Ref.  Fine-tune,, GMT+EasyProject
mMTS1arge 58.2 61.2 68.5 (+7.3)
mT5xL 65.1 62.9 68.6 (+5.7)
XLM-Rjgge 63.3 64.3 68.9 (+4.6)

Table 7: Average results for mT5 models over 39 target
languages on WikiANN. The XLM-R model is listed
for comparison. “Ref.” column is the performance from
prior work (He et al.; Xue et al.).
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Fine-tune., NLLB+Word Align NLLB-+Markers GMT+Word Align GMT+Markers

en — Lang
Ref. XLMpi QAali. Awes. Awesg XML  EProj. (Axim R) QAali. Awes. Awesg XML  EProj. (Axim R)
yo 413 37.1 -
S
2 . . d
th 1.5 0.7 - 2.5 - 1. 1.
ur 542 63.6 - 71.6 71.8 - 702 723
he 54.1 56.0 - 583 58.1 A (+7. - 59.6 60.2
ms 69.8 64.1 - 69.4 727 73.9 (+9.8) - 73.0 73.8
my 51.3 535 - 61.6 62.9 60.1 (+6.6) - 60.2 60.1 .0 (+8.
ar 4377 485 493 487 47.6 50.5 (+2.0) 50.7 50.9 51.2 56.3 (+7.8)
Jjv 584 623 - 64.8 61.6 . 67.0 (+4.7) - 64.6 68.8 69.8 (+7.5)
tl 722 73.0 - 80.1 78.8 79.5 79.3 (+6.3) - 804 804 80.0 (+7.0)
hi 71.0 69.5 - 739 734 73.8 74.4(+4.9) - 75.6 76.0 75.7 (+6.2)
ka 68.9 68.8 - 74.5 175.0 704 742 (+5.4) - 73.5 732 74.7 (+5.9)
bn 76.3  75.1 - 80.5 80.2 80.1 80.7 (+5.6) - 82.0 81.7 80.9 (+5.8)
ta 56.9 58.8 - 63.1 63.7 53.8  63.5(+4.7) - 62.4 63.2 64.3 (+5.5)
eu 62.1 63.6 - 70.3  70.0 64.7  68.7 (+5.1) - 69.8 66.5 69.0 (+5.4)
ko 58.0 579 - 61.1 60.6 594 58.0(+0.1) - 629 624 61.9 (+4.0)
NER mr 64.1 63.9 - 63.6 64.0 62.9 64.9 (+1.0) - 62.6 61.2 67.1 (+3.2)
K% 70.0 68.5 - 70.6 71.5 70.1  69.7 (+1.2) - 702 71.5 70.7 (+2.2)
Vi 772 742 - 70.4  65.8 77.8 77.5(+3.3) - 704  67.2 76.0 (+1.8)
te 523 55.6 - 577 56.3 51.8 55.9 (+0.3) - 574 56.8 57.6 57.4(+1.8)
id 523 524 - 53.5 553 52.7 53.1 (+0.7) - 52.7  55.0 573 53.9(+1.5)
ml 65.8 63.5 - 63.2 64.8 56.5 61.3(-2.2) - 61.9 63.0 68.1 64.3 (+0.8)
es 68.8 74.8 - 722 70.2 733  71.7(-3.1) - 713 72.6 73.5 75.6 (+0.8)
de 779 794 797 795 79.6 81.5 80.0 (+0.6) 79.5 80.0 794 79.8 80.2 (+0.8)
kk 49.8 53.5 - 53.5 539 404 54.0 (+0.5) - 53.2 0 55.1 51.3 54.2(+0.7)
fr 79.0 80.1 80.7 79.8 80.9 80.9 = 81.5(+1.4) 79.6 80.7 794 81.5 80.8 (+0.7)
af 77.6 78.6 - 793 784 79.1  79.4 (+0.8) - 79.1 78.9 79.0 79.2 (+0.6)
et 78.0 79.6 - 80.7 79.2 80.2  79.9 (+0.3) - 80.2 79.6 78.6  80.1 (+0.5)
hu 79.3 81.0 - 80.3 79.8 79.7 80.4 (-0.6) - 799 79.7 80.6 80.7 (-0.3)
fi 78.6  80.6 - 81.0 80.9 80.4 79.8 (-0.8) - 80.7 79.7 78.8  80.3 (-0.3)
it 81.1 81.3 - 80.5 80.5 81.9 81.2(-0.1) - 80.3 804 81.1 80.9 (-0.4)
tr 78.9 80.3 - 80.6 81.0 80.1  79.5(-0.8) - 80.1 80.2 81.5 79.6 (-0.7)
nl 843 84.1 - 83.4 833 83.0 83.4(-0.7) - 83.5 829 83.0 83.1(-1.0)
bg 81.2 82.1 - 80.2 78.8 81.9 82.5(+0.4) - 80.9 79.7 82.5 80.6(-1.5)
pt 79.6 82.0 - 80.9 804 82.6 81.9(-0.1) - 79.0 80.2 80.6 80.1(-1.9)
ru 71.5 71.1 - 68.9 68.1 70.0 70.3 (-0.8) - 67.4 66.8 67.4 68.2(-2.9)
el 772 79.3 - 76.3 75.7 777  74.1 (-5.2) - 73.1 75.2 76.2 75.0 (-4.3)
fa 61.1 643 - 415 473 513 52.1(-12.2) - 529 524 455 52.0(-12.3)
AVG 633 643 - 66.4 66.4 66.1 68.4 (+4.1) - 66.7 66.6 68.3 68.9 (+4.6)
ko 319 56.1 - 369 364 64.8 - 37.6 37.1 60.9  65.0 (+8.9)
bn 64.0 66.0 - 71.1  72.6 63.7 .6 (+3. - 73.6 69.3 744  71.0 (+5.0)
fi 70.5 69.7 - 749 74.0 73.0 73.3 (+3.6) - 749 749 73.1  74.0 (+4.3)
te 70.1 729 - 749 174.6 69.9 | 78.3 (+5.4) - 759 69.9 77.0 77.0 (+4.1)
QA ar 67.6 724 | 742 76.8 764 727 75.9 (+3.5) 740 76.3 76.6 75.8  76.4 (+4.0)
K% 66.1 69.9 - 73.0 74.7 724 73.4(+3.5) - 723 734 73.6  73.5(+3.6)
ru 67.0 66.5 - 709 71.5 69.1 70.4(+3.9) - 71.6  69.7 70.2  69.8 (+3.3)
id 774 78.0 - 81.6 8I.1 79.6 80.3 (+2.3) - 804 813 789  79.7 (+1.7)
AVG 643 689 - 70.0 70.2 70.7  73.6 (+4.7) - 703 69.0 73.0 73.3(+4.4)
Fine-tune., NLLB+Word Align NLLB-+Markers GMT+Word Align GMT+Markers
Event Extraction - - - -
XLMgr QAali. Awes. Awesy XML  EProj. (Axim R) QAali. Awes. Awesg XML  EProj. (Axim R)
Entity 69.2 74.1 742 742 73.6  73.8 (+4.6) 744 743 74.0 73.7 74.0 (+4.8)
Relation 28.1 347 352 30.8 30.8 30.7 (+2.6) 348 33.1 342 31.8  33.7 (+5.6)
. Trig-1 42.7 435 43.0 44.7 433 437 (+1.0) 43.6 442 437 43.8 44.0 (+1.3)
Arabic Trig-C 40.0 414 413 429 41.1 41.8 (+1.8) 41.8 42.6 42.0 41.5 42.0 (+2.0)
Arg-1 335 37.1 38.1 37.6 37.1 37.6(+4.1) 377 379 37.6 36.9 37.8 (+4.3)
Arg-C 30.8 343 354 347 349 34.8 (+4.0) 346 345 345 34.1 352 (+4.4)
AVG 40.7 442 445 44.1 435 43.7 (+3.0) 445 444 443 43.6 445 (+3.8)
Entity 59.1 . .1 688
Relation 20.4 28.2 b
Trig-1 25.0
Chinese Trlg C 23.9
Arg-1 28.6
Arg-C 28.1 .
AVG 30.9 470 466 (+157)

Table 8: Cross-lingual transfer experiments from English to target languages on three tasks: (1) NER on WikiAnn,
(2) QA on TyDiQA-GoldP, and (3) Event extraction on ACE. Overall, EasyProject (EProj.) achieves stronger
performance compared to the alignment-based methods, and also outperforms using XML tags. “Fine-tune,,” refer
to the zero-shot baselines, where the models are trained only on English data. “Ref” column is the performance
from prior work: QA in Hu et al. (2020) and NER from He et al. (2021b); “XLMpg” is our reimplementation using
XLM-RoBERTajy, which A is calculated against. We show the results that use Google Translation (GMT) and
NLLB model separately. For ‘-’, the language is not supported by the supervised word aligner. Cells are colored by

AEE s 1 oo v
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English: He was buried in Woodlawn Cemetery in Bronx
New York City .

Alignment-based: fill 3 ZEAE AL AiBA 5007 (7
EasyProject: fth #3257 AT kA S A7

FRNE-.

S5 RBAE .

ClEf

Gl

Table 9: In this example, the correct projection should
be “HLATT 1RA 3B, The outputs from two label
projection methods are marked. For the alignment-
based projection, “5% 7 is incorrectly missed. The
translations are based on Google Translation.

span markers degrade translation quality. In Table
6 and 8, we show that EasyProject almost always
outperforms alignment-based projection on NER,
QA, and the more challenging event extraction
tasks, when training on a combination of English
data and the translated projected data in target lan-
guages. In addition, we find that EasyProject gen-
erally performs better than using XML tags, as the
former has less impact on the translation quality.
We also notice the relatively low zero-shot perfor-
mance in ja, zh, and th on WikiAnn dataset, which
is consistent with scores reported in prior litera-
ture (He et al., 2021b). We suspect this is due to
their distinct script systems, and adding EasyPro-
ject data brings significant improvements to all of
them — Japanese (+25.5 F;), Chinese (+18.8 Fy),
and Thai (+14.4 Fy). EasyProject (GMT) also im-
proves the performance of mT35jyee and mT5x
by 7.3 and 5.7 F; on average across all target lan-
guages, and mT5xx;. by 2.2 F; on a subset of 8
languages, as shown in Table 7. Full results of the
mT5 model are provided in Table 22 in Appendix.

Accuracy of Projected Annotations. To answer
why EasyProject can outperform alignment-based
method even though it degrades translation quality,
we manually inspect 400 sentences sampled from
the WikiANN training set. EasyProject correctly
projects 100% and 97.5% of the label spans, when
using Google Translation and NLLB, respectively.
Whereas the traditional method based on Awesome-
align only achieves 97.5% and 93.4% accuracy. We
found EasyProject can more accurately preserve
the boundaries of the label span. For the alignment-
based method, most errors are caused by partial
or missed alignments, as demonstrated in Table 9.
More analyses are provided in the Appendix G.2.

¥ Yoruba

Not Pre-trained

+ 30.0-

+20.0- No Word Spaces g chinese

Low-resource
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° T Semitic il
° Hebrew
+10.0 Burmese Arabic
'y ng\
B |>ﬂ'zung¢“ o Ta%” 1 Korean
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0.0--- 8- 0 Turkish L
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Afrikaans L) o F'"""Sh ° Hungarian
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Amount of pre-training data (GB)
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Figure 4: NER AF; (EasyProject+GMT over Fine-
tune,) vs. amount of pre-training data (GB) for XLM-
ROBERTage.

5.2 Size of Pre-training Data vs.
Improvement in Performance

Figure 4 shows improvements in NER F; using
EasyProject vs. size of data for each language in
XLM-RoBERT?2’s pre-training corpus. EasyPro-
ject provides larger improvements on low-resource
languages and languages without whitespaces. For
high-resource languages in the Indo-European
(e.g., Germanic and Romance) or Uralic families,
using projected data struggles to significantly im-
prove over a strong fine-tuning baseline.

5.3 Transfer from non-English Languages

Recent work has suggested that English may not
always be the best language to transfer from (Turc
et al., 2021). We demonstrate that the marker-
based method is not limited to English-centric
transfer learning; rather, it can be used for trans-
fer learning from any language to any language
provided with the availability of multilingual MT
systems. In Figure 5, we show the relative F; im-
provements of using EasyProject over fine-tuning
on source language only for 9 different languages
(81 directions in total), leveraging the multilingual
capabilities of NLLB. Fine-tuning models only on
source-language data does not work well when
transferring to or from Chinese, consistent with
observations from Hu et al. (2020). The marker-
based method addresses this problem by providing
substantial improvements in F; on the WikiANN
dataset for Chinese. Transferring to Arabic and
from Russian are also challenging, but again, the
marker-based method greatly boosts performance.
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Figure 5: (a) NER F; for fine-tuning on different source and target languages. (b) The relative difference of F;
for models trained on source and projected data together over source data only, when using EasyProject with
the NLLB translation system. EasyProject can be used for transfer learning from any language to any language

provided with the availability of multilingual MT systems.

5.4 More Experiments and Analyses in the
Appendix

We also compare EasyProject against MulDA (Liu
et al., 2021) (§F.1) and bitext projection (F.2), as
well as evaluating it on low-resource languages:
Maori and Turkmen (§F.3). In addition, we ana-
lyze the two branches of label projection methods
from other aspects, including projection rate (§G.2)
and translation speed (§G.3). Due to space limits,
we present all of them in the appendix. On the
data side, we fix a sentence splitting issue for 12
extremely long sentences in the ACEO5 Arabic test-
set (§E ). This issue is noticed by other researchers
(Huang et al., 2022b) as well. We will release the
improved ACE Arabic dataset to the community.

6 Conclusion

In this paper, we presnet a thorough empirical as-
sessment of various approaches for cross-lingual
label projection. We also design an improved
variant of the mark-and-translate method, which
we call EASYPROJECT. Experiments on 57 tar-
get languages and three well-studied NLP tasks
show that EasyProject consistently outperforms the
alignment-based methods and effectively improves
the performance of cross-lingual transfer.

Limitations

While our study shows that EasyProject can eftec-
tively translate the source sentences with special
markers inserted to the target languages, using the

Google Translation and NLLB model, it is unclear
whether all translation models can work well when
special markers are inserted. To generalize this ap-
proach to future MT systems, we design a simple
and computationally efficient approach to improve
the robustness of MT systems in handling special
markers. However, the translation quality for the
marker-inserted text still falls behind the original
text. We leave the work of further optimizing the
translation quality as future work.
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A Data statistics for CoNLL-2002/2003

The statistics of the CoNLL-2002/2003 multilin-
gual NER dataset are provided in Table 10.

CoNLL 2002/2003
# of Lang. 3
# of Docs -
# of Sent. 14k/3.2k/3.4k
Avg. Length —/14.5
Avg. # of Spans 1.7

Table 10: The detailed statistics of train/dev/test sets
for CoNLL-2002/2003 dataset. Avg. Length represents
the average number of tokens in each article/sentence,
and Avg. # of Spans denotes the average number of
annotated spans in each sentence.

B Full Results on MasakhaNER2.0

MasahkaNER?2.0 is a NER dataset in the news
domain, including the annotations on 20 African
languages. Following the setting in the original
paper (Adelani et al., 2022), we use CoNLL-03
dataset (Tjong Kim Sang and De Meulder, 2003) as
the source corpus, and train the mDeBERTv3 (He
et al., 2021a) model on it. Then the trained model
is evaluated on the test set of MasahkaNER?2.0,
with a focus on the PER, ORG, and LOC types.

Language Ref.  Fine-tune,, +Awes. +XML +EasyProj.
Bambara(bam) 384 37.1 45.0 443 45.8
Ghomala(bbj) 45.8 433 - - -
Ewe(ewe) 76.4 753 78.3 77.8 78.5
Fon(fon) 50.6 49.6 59.3 60.2 61.4
Hausa(hau) 72.4 71.7 72.7 71.6 722
Igbo(ibo) 61.4 59.3 63.5 59.6 65.6
Kinyarwanda(kin) 67.4 66.4 63.2 70.8 71.0
Luganda(lug) 76.5 753 71.7 719 76.7
Luo(luo) 53.4 35.8 46.5 50.0 50.2
Mossi(mos) 454 45.0 522 53.6 53.1
Chichewa(nya) 80.1 79.5 75.1 73.5 753
Naija(pcm) 755 752 - - -
chiShona(sna) 37.1 352 69.5 56.3 55.9
Kiswahili(swa) 87.9 87.7 824 81.7 83.6
Setswana(tsn) 65.8 64.8 73.8 72.9 74.0
Akan/Twi(twi) 49.5 50.1 62.7 64.7 65.3
Wolof(wol) 44.8 442 54.5 58.9 58.9
isiXhosa(xho) 245 24.0 61.7 71.9 71.1
Yoruba(yor) 40.4 36.0 38.1 36.8 36.8
isiZulu(zul) 44.7 439 68.9 74.8 73.0
Averaged Perf. 56.9 55.0 63.2 63.8 64.3

Averaged Proj. Rate 86.9%  77.5% 93.7%

Table 11: F1 scores on MasakhaNER?2.0 using NLLB
translation model. We skip Ghomala and Naija as they
are not supported by NLLB.
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C Details of Word Alignment Models

Awesome-align. This aligner (Dou and Neubig,
2021), when used in the unsupervised setting, pri-
marily relies on the normalized similarity scores
of all word pairs between the two sentences, which
are calculated based on pre-trained multilingual
word embeddings taken from specific Transformer
layers. In the supervised setting, with access to
parallel text, Awesome-align can be further im-
proved by fine-tuning towards a set of self-training
and language model objectives. We include experi-
ments of both the unsupervised (Awesome) and su-
pervised (Awesome f;) versions of Awesome-align
based on multilingual BERT, which has shown to
achieve better word alignment results than XL.M-
RoBERTay,g. For the supervised version, we fine-
tune an individual Awesome-align model for each
of the 39 target languages in WikiANN using par-
allel sentences sampled from the M2M model’s
(Fan et al., 2021) training datasets: CCAligned (EI-
Kishky et al., 2020) and CCMatrix (Schwenk et al.,
2021b). Specifically, we randomly sample 200k
parallel sentences from the CCAligned corpus for
language pairs from English to {te, ka, kk, my, th,
yo}, and the rest from the CCMatrix.

We use the codebase’ from Dou and Neubig
(2021) with the default softmax configuration to
extract alignment. We do not apply the consistency
optimization objective when fine-tuning the mod-
els because it may trade precision for recall, as
suggested in the official instruction written by the
authors.

QA-align. This is a state-of-the-art supervised
approach (Nagata et al., 2020) that formulates the
word alignment problem as a SQuAD-style ques-
tion answering task by fine-tuning multilingual
BERT. Specifically, given a word in the source
sentence, the model predicts the aligned span in
the target sentence and reconciles both source-to-
target and target-to-source directions by averaging
and thresholding probabilities. We trained the QA-
align model for English to Arabic, German, French,
Chinese, and Japanese, where gold annotated word
alignment data is available.

We use the codebase from Nagata et al. (2020).10
For the training data of word alignment between

https://github.com/neulab/awesome-align
Onhttps://github.com/nttcslab-nlp/word_align


https://github.com/neulab/awesome-align
https://github.com/nttcslab-nlp/word_align

Lang. Train Test
en-ar 40,288 9,280
en-de 300 208
en-fr 300 147
en-ja 653 357
en-zh 4,879 610

Table 12: Number of sentences in the train/dev sets of
the annotated word alignment datasets.

en and {de, zh, ja, fr}, we use the same data as in
Nagata et al. (2020). For en-ar, we use the GALE
English-Arabic word alignment data from LDC!!,
and use 80% of the sentence pairs for training. The
data statistics can be found in Table 12.

D Implementation Details of IE models

We follow the same learning rates and number of
epochs reported in prior work: Hu et al. (2020) for
QA, He et al. (2021b) and Pfeiffer et al. (2020) for
NER (the latter for mi and tk) and Yarmohammadi
et al. (2021) for ACE. For WikiANN NER (Pan
et al., 2017), CoNLL-2002/2003 NER (Tjong
Kim Sang, 2002; Tjong Kim Sang and De Meul-
der, 2003), MasakhaNER2.0 (Adelani et al., 2022),
and TyDiQA-GoldP (Clark et al., 2020), we use the
codebase from the XTREME benchmark (Hu et al.,
2020),'? and MasakhaNER2.0 '3, which is based
on the Huggingface transformers library (Wolf
et al., 2019). The hyperparameters of mDeBER-
TaV3 (276M) for MasakhaNER2.0 and XLM-
RoBERTay,(550M) and for other datasets are
presented in Table 13 following (Hu et al., 2020;
He et al., 2021b; Liu et al., 2021; Adelani et al.,
2022). We report the average result of three ran-
dom seeds and select models based on the English
development set.

mT5 NER Model. Training mT5xx, (Xue et al.,
2021) models, which have over 11 billion param-
eters, for the NER task is computationally chal-
lenging. We formulate the WikiANN NER task as
generating a sequence of tokens with special entity
tags (e.g. <per>, </per>) inserted around the
entity spans. To fit the model into GPU memory

"LDC2014T05, LDC2014T10, LDC2014T14,
LDC2014T19 LDC2013T10, LDC2013T14, LDC2014T03,
LDC2014T08

12https://github.com/google—resear‘ch/xtr‘eme

13https://github.com/masakhane—io/
masakhane-ner
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WikiANN CoNLL Masakha TyDiQA-GoldP

Task NER NER  NER QA
Epochs 5 10 5 3
Batch size 32 32 32 8
Learning rate 2e-5 2e-5 Se-5 3e-5
Warmup steps 0 0 0 500
Weight decay 0 0 0 0.0001

Table 13: Hyperparameters for fine-tuning the NER and
QA models.

for training, we freeze the embedding layer and the
bottom 12 layers of both encoder and decoder dur-
ing fine-tuning. We also use the DeepSpeed (Ra-
jbhandari et al., 2020) ZeRo3 with 32-bits config-
urations. We first fine-tune the model on English
data for 20 epochs with a learning rate of le-4.
To speed up the training process, we initialize the
model from the English fine-tuned checkpoint and
further fine-tune it on the combination of English
and EasyProject + GMT data with a learning rate
of 5e-5 for 5 epochs. We report results of mT5 ;g
by averaging over three random seeds. We use one
random seed for the XL and XXL models due to
the heavy computing cost. Experiment results of
average performance across languages are shown
in Table 7, and results of each language are re-
ported in Table 22 in Appendix.

ACEO05. For ACEO5 event extraction (Walker
et al.,, 2006), we use the OnelE joint model
v0.4.8 codebase'* with the same hyperparameters
as Yarmohammadi et al. (2021). For evaluation,
we use the OnelE scoring tool to report F; scores
for entities, relations, event triggers identification
(Trig-1) and classification (Trig-C), argument role
identification (Arg-I) and classification (Arg-C).
We train models on the combination of English
and projected Chinese data from scratch in the Chi-
nese experiment and select the model based on
the English development set. In the Arabic exper-
iment, we initialize the model from the English
fine-tuned checkpoint. We fine-tune the argument
role classifier for event extraction tasks (Entity,
Trig-I, Trig-C, Arg-1, Arg-C) and relation classifier
in relation task for 5 epochs. We set the learn-
ing rate of task-specific classifiers at 1e-6 and the
encoder at Se-4. During the decoding process of
relation classification, we only consider the joint
model’s relation and entity prediction scores.

14http://blender.cs.illinois.edu/software/
oneie/


https://github.com/google-research/xtreme
https://github.com/masakhane-io/masakhane-ner
https://github.com/masakhane-io/masakhane-ner
http://blender.cs.illinois.edu/software/oneie/
http://blender.cs.illinois.edu/software/oneie/

en en' zh ar art
Sent. 19,216 19,216 547 321 321
Entity 47,554 28,996 2388 2,897 1,971
Relation 7,159 4,925 672 469 411
Trig. 4,419 3,125 190 232 232
Arg. 6,607 5,128 332 447 348
Tok/Sent 14.2 14.2 37.4 324 324

Table 14: Statistic of the ACEO5 English(en) training set
and Chinese(zh)/Arabic(ar) test set. We hire an native
Arabic speaker to fix the Arabic test set by sentence-
splitting the 12 articles that miss punctuation. {: remove
pronoun entities and related annotations in the events
and relations.

On the Arabic data annotation side, the ACE
Arabic data contains language-specific annotations
on pronoun entities due to morphological stem-
ming (Zitouni et al., 2005), where we observe indi-
vidual Arabic letter (prefix or suffix) is annotated
as a pronoun entity. Because such annotations
don’t exist in English data, the label projection pro-
cess may cause inconsistency in translated-Arabic
data. Thus, we remove the pronoun entities in both
Arabic test data and English training data for the
Arabic experiment. The complete statistics of the
Arabic test set is in Table 14. We report the average
results of three random seeds.

E Fixing Issues in the Arabic ACE Data

The ACE data are pre-processed using the code
from Lin et al. (2020). We use the same document
splits as Lin et al. (2020) for English (ACEO05-
E™) and Chinese (ACE05-CN). For Arabic, we
use the document splits from Lan et al. (2020)
following Yarmohammadi et al. (2021).

In the processed Arabic test set from Yarmo-
hammadi et al. (2021), we observed 12 extremely
long sentences with an average length of 381 to-
kens, which are significantly longer than the rest
of the sentences with an average length of 28. This
issue was also independently noticed by Huang
et al. (2022b). A closer look reveals that these 12
sentences are 12 full articles in the original LDC
release, which appear to be missing punctuation.
We hire a native Arabic speaker to manually split
them into sentences, resulting in 106 additional sen-
tences. The data statistics are shown in Table 14.
Because the ACE data is licensed, we will release
the processing script instead.
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F More Experiments

In this section, we present more experiments to
compare EasyProject with other approaches.

F.1 Comparison to MulDA

Table 15 shows a direct comparison of EasyProject
with MulDA (Liu et al., 2021), another translation-
based label projection approach that has been re-
cently proposed for NER. MulDA replaces named
entities with placeholders one by one, such as
‘PER@’ and ‘LOC1’, then invokes the M T system sep-
arately for each entity to translate and project the
data. Thus, MulDA is more time-consuming and
costly than the EasyProject, which only requires
one invocation of the MT system per sentence. We
find that EasyProject outperforms MulDA in Ger-
man, Spanish, and Dutch at much less time cost. In
this experiment, we follow MulDA’s experimental
setup, which uses the CoNLL NER dataset and
trains only on the projected data.

In terms of translation speed, we calculate the
relative time cost of EasyProject compared to trans-
lating the original sentences in CoNLL English
data using the NLLB model on one A40 GPU. In
Table 15, we observe marker-based (XML and [])
translation takes 1.2x and 1.3 x longer of time to
translate, due to the additional markers in both the
input and output. More analysis of the translation
speed is provided in Appendix G.3.

Method MT de es nl  time
MulDA GMT 739 755 79.6 -
MulDA NLLB 745 735 775 24x
XML GMT 743 771 798 -
XML NLLB 753 749 783 1.2x
EasyProject GMT 749 703 799 -
EasyProject NLLB 752 730 775 1.3x

Table 15: Comparison of MulDA (Liu et al., 2021) and
EasyProject on CONLL NER (F,), using projected data
only. “time”: relative time cost compared to translating
the original sentence.

F.2 Comparison to Bitext Projection

Besides translation-projection, another alternative
is bitext-projection, in which bilingual parallel cor-
pora are used in place of a machine translation sys-
tem. For example, we can apply a trained English
IE model to the English side of the bilingual paral-
lel corpus, then use word alignment to project the



automatically predicted labels to the corresponding
sentences in target languages.

In Table 16, we show that bitext-projection im-
proves F; of WikiANN NER on 6 out of 8 lan-
guages used in (Yarmohammadi et al., 2021)
over the fine-tuning baseline (Fint-tune,,), but
is outperformed by EasyProject. For this ex-
periment, we randomly sample 100,000 parallel
sentences for each of the eight languages from
WikiMatrix (Schwenk et al., 2021a), an automat-
ically mined bitext corpus from Wikipedia that
matches the domain of WikiANN. We use an XLM-
RoBERTaj, ¢ NER model trained on WikiANN
English data with 83.9 F; to generate named entity
labels, and then apply Awesome-align to project
labels to the target language. Finally, we train the
XLM-RoBERTaj,rge model on English and bitext-
projected data together for 2 epochs (Bitextiggg).

Bitext;gor loses 13.9 F; score for Vietnamese
(vi), most likely due to Awesome-align projection
errors being magnified by fine-tuning on 100,000
projected sentences. One surprising finding is that
the Bitext;ggx improves by an absolute 4.4 F; score
on Spanish and 1.1 F; on Russian. Translation-
projection approaches struggle on these two lan-
guages as shown in Table 8.

. . EasyProject
Lang. FT., EasyProject Bitext;oox +Bitextron;
ar  48.5 | 56.3 (+7.6) 52.6 (+4.1)  51.3 (+2.8)
de 794 80.2 (+0.8) 81.0 (+1.6) 81.4 (+2.0)
es 74.8  75.6 (+0.8) 792 (+4.4)  77.7 (+2.9)
fr 80.1 80.8 (+0.7) 80.5 (+0.4)  82.4 (+2.3)
hi 69.5 | 75.7 (+6.2) 68.6 (-0.9) 74.6 (+5.1)
ru  71.1  68.2(-2.9) 722 (+1.1)  68.6 (-2.5)
vi 742 76.0 (+1.8) 60.3 (-13.9) 77.5 (+3.3)
zh  27.1 | 45.9 (+18.8) 31.7 (+4.6) = 44.5 (+17.4)
AVG 65.6  69.8 (+4.2) 65.8 (+0.2)  69.8 (+4.2)

Table 16: Comparison of NER F; on WikiANN be-
tween Bitext-Projection with 100,000 bilingual sen-
tence pairs and EasyProject with GMT.

F.3 Experiments on Low-resource Languages

To investigate the effectiveness of label projection
on very low-resource languages (Pfeiffer et al.,
2020), we conduct experiments on Maori (mi) and
Turkmen (tk), which are not covered by the pre-
trained language models (i.e., XLM-RoBERTa and
mBERT) and have a small number of Wikipedia
articles (~1.2k for Maori and ~0.5k for Turkman).
As shown in Table 17, EasyProject improves F;
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Method MT Maori(mi) Turkmen(tk)
mBERT? - 21.8 47.2
XLM-RoBERTa/, 15.9 43.4
XLM-RoBERTay,e - 30.3 52.2
+ word-translation PanLex  42.5 53.8
+ Awesome-align GMT  46.1 60.7
+ EasyProject GMT 53.0 58.1

Table 17: F; scores for cross-lingual NER from English
to two very low-resource languages on WikiANN. Pan-
Lex is a bilingual dictionary. {: English fine-tuning
results reported in (Pfeiffer et al., 2020).

score by an absolute 22.7 F; score on Maori and
5.9 F; on Turkmen compared to fine-tuning on En-
glish data only. We also include a lexicon-based
baseline, replacing English words with their word-
to-word translations based on PanLex (Kamholz
et al., 2014), a commonly used multilingual dic-
tionary. Both EasyProject and Awesome-align sig-
nificantly outperform the word-level translations,
likely because word-level translations still follow
the English word orders and fail to capture the vari-
ation of word orders in Maori and Turkmen. For
example, Maori has a verb-subject-object word
order, while Turkmen uses a subject-object-verb.
The improvement is less significant on Turkmen
than Maori, potentially because Turkmen is close
to Turkish, which is covered by both mBERT and
XLM-RoBERTa. This is also a plausible reason
why Awesome-align that uses mBERT did better
on Turkmen.

G More Analysis on EasyProject

Here, we present more analysis of the EasyProject
method in comparison with the traditional pipeline
approach based on word alignment.

G.1 Translation Quality

To further measure the impact of adding special
markers on the translation quality for the NLLB
model, we adopt the evaluation setup used by
NLLB (Costa-jussa et al., 2022) which utilizes the
professional human-translated FLORES-200 paral-
lel corpora (1000 sentences per language). For the
marker-based approaches (“XML” and “[]”), spe-
cial markers are removed from the outputs before
calculating the BLEU scores. Table 18 presents the
BLEU scores for the original NLLB model (3.3B)
and the NLLB model further fine-tuned with three



Laneus NLLB NLLBfnewne | . NLLB NLLBjinetune
anguage Language
Orig XML [] Orig XML [1 | Orig XML [] Orig XML []

Afrikaans(af)  44.0 443 43.6 459 454 455 Luo(luo) 156 156 153 165 160 159
Arabic(ar) 39.8 38,5 382 390 367 376 Malayalam(ml) 341 332 334 391 36.6 378
Bulgarian(bg) 47.8 475 46.7 484 450 46.7 Mossi(mos) 6.4 6.0 6.4 6.5 6.3 6.4
Bambara(bm) 105 105 103 104 100 10.2 Marathi(mr) 294 279 278 298 271 28.1
Bengali(bn) 346 326 332 353 31.1 330 Malay(ms) 45.0 439 435 451 436 435
German(de) 453 442 441 457 433 446 Burmese(my) 16.2 16.1 14.0 204 160 177
Ewe(ee) 16.3 160 164 167 159 16.2 Dutch(nl) 352 349 344 350 33.0 338
Greek(el) 376 367 362 371 346 355 Chichewa(ny) 174 176 170 205 195 199
Spanish(es) 327 323 320 321 310 313 Portuguese(pt) 537 530 525 546 522 531
Estonian(et) 335 329 323 33.0 305 313 Russian(ru) 40.2 38.8 395 40.1 369 389
Basque(eu) 26.1 263 249 30.8 288 29.2 | Kinyarwanda(rw) 24.6 242 227 269 246 257
Persian(fa) 324 31.8 314 323 303 308 Shona(sn) 194 182 182 196 166 175
Finnish(fi) 324 319 320 329 295 312 Swahili(sw) 376 37.1 374 40.1 382 39.1
Benin(fon) 53 5.0 5.7 53 4.0 5.6 Tamil(ta) 364 346 342 377 346 363
French(fr) 550 547 536 553 529 536 Telugu(te) 383 373 375 39.1 374 382
Hausa(ha) 292 28.6 280 294 28.0 285 Thai(th) 322 307 283 329 288 299
Hebrew(he) 412 396 389 394 356 37.1 Tagalog(tl) 369 351 354 348 328 334
Hindi(hi) 409 39.1 40.0 413 383 406 Tswana(tn) 258 258 252 265 245 265
Hungarian(hu) 355 347 341 355 330 338 Turkish(tr) 404 392 387 41.0 3777 389
Indonesian(id) 46.8 457 457 46,5 439 453 Twi(tw) 16.1 16.1 158 167 165 16.2
Igbo(ig) 197 198 193 202 19.5 200 Urdu(ur) 30.8 295 298 30.6 29.0 2938
Ttalian(it) 37.1 362 360 360 339 346 Vietnamese(vi) 42.1 415 413 419 398 408
Japanese(ja) 178 17.0 137 199 18.0 18.8 Wolof(wo) 9.2 9.2 9.4 9.1 9.7 9.2
Javanese(jv) 289 28.1 283 294 279 287 Xhosa(xh) 242 238 229 265 238 249
Georgian(ka) 322 312 310 326 287 313 Yoruba(yo) 9.0 10.4 8.5 6.8 6.4 8.0
Kazakh(kk) 306 30.1 299 332 301 314 Chinese(zh) 239 242 229 280 262 268
Korean(ko) 249 239 236 252 222 244 Zulu(zu) 303 29.1 292 30.8 27.8 285
Ganda(lg) 125 13.0 124 13.0 132 13.1

Average 302 295 291 309 288 297 ‘

Table 18: BLEU score of NLLB on FLORES-200 (Costa-jussa et al., 2022) dev set (1000 sentences per language).
We compare three types of translations: original translation (Orig), inserted with XML and [] special markers.
We also fine-tuned NLLB with different markers using the method described in Appendix 4.1. We found that the
fine-tuned NLLB model using square brackets has the least negative impact on translation quality

types of parallel sentences (original, inserted with
XML and [ ] markers).

As there is no gold NER annotation on the par-
allel corpus, we first train a NER model based
on XLM-RoBERT ;g on the WikiAnn dataset,
achieving an F; score of 83.9. We then apply the
trained model to the English side of the parallel cor-
pus and apply the EasyProject method to translate
sentences into the target language. After removing
the special markers from the translation outputs,
we use the sacreBLEU'" to calculate the BLEU
scores by comparing the translations against gold
references. We follow the NLLB evaluation setting
and use multilingual tokenizations (flores200).16

15https: //github.com/mjpost/sacrebleu
16https: //github.com/mjpost/sacrebleu/blob/
master/CHANGELOG. md
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G.2 Projection Rate

We then compare the projection rate for all label
projection methods, for which we divide the num-
ber of annotations after projection by the number
of annotations occurring in the original training
data. We also include the average number of suc-
cessfully projected sentences after filtering out the
incorrect ones, which have a different number of
annotations compared to the source sentence. For
example, the source sentence has a LOC and a PER
entity, but the projected sentence has two LOC enti-
ties. Such sentences will be filtered. For QA-align
in WikiANN NER, we show the average statistics
for 5 languages {ar, de, fr, ja, zh} that have super-
vised training data.

As shown in Table 21, Google Translation
(GMT) is very robust in handling special markers,
and EasyProject has a nearly perfect 100% projec-


https://github.com/mjpost/sacrebleu
https://github.com/mjpost/sacrebleu/blob/master/CHANGELOG.md
https://github.com/mjpost/sacrebleu/blob/master/CHANGELOG.md

English #1:Dean of Wolverhampton ( 1373 - 1394 )

Alignment-based: [k /1 36 POSI {HEE, 1373 - 1394 £

EasyProject: YK/R# POSHI (HEF 1373 - 1394

English #2:Pino Daniele ( 1955 - 2015)
Alignment-based: 7 if;- J}/E# /K (Pino Daniele , 1955 - 2015 4F)
EasyProject: 2. FH/2/RK (1955 - 2015 4F)

Table 19: Examples from WikiANN dataset using
NLLB translation. The joutputs from two projection
methods and correct answers are marked. In #1, the
alignment-based method incorrectly misses the “JK/R
#5”, which is a part of the translation for “Wolverhamp-
ton”. In #2, for the alignment-based method, the Chi-
nese translation (“JZ1%- £+ /JE#/R”) and the original
English span (“Pino Daniele”) occur together in the
translation. Alignment-based method incorrectly misses
the correct projection “FZi%- F+/E¥R/K” and project to
“Pino Daniele”.

#Inputs  #Outputs  Time (sec)
Original 279,678 335,963 4,452
XML 460,002 468,815 5,486
] 326,294 379,796 4,107
Entity 64,293 72,309 1,553

Table 20: Number of tokens in the three types of in-
put sentences: original CONLL NER English training
data, adding XML and [] special markers; and their
corresponding translations in German. Time is the total
translation clockwise time in seconds.

tion rate, higher than any word alignment-based
method. Our manual inspection of 100 sentences,
randomly sampled from the WikiANN training
set for English to Chinese projection, also reveals
that GMT+EasyProject successfully projects all the
sentences without mistakes on any target named
entities, whereas Awesome-align only projected 94
sentences and caused 4 entity projection errors. Ac-
cording to our manual analysis, EasyProject is less
likely to introduce errors than the word alignment-
based method because the use of special markers
encourages full-span projection.

We found that most errors are caused by partial
or missed alignments, which often occur when a
span contains multiple words, a sentence contains
many spans, or when both a Chinese transliteration
and the original English name occur together in
the translated sentence, which is a correct way to
translate but poses challenges for label projection.
More examples of alignment errors can be found
in Table 19 in Appendix.
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G.3 Translation Speed

Additional special markers added to the source sen-
tence will affect the translation speed. In Table 20,
we show the number of tokens in the input and
translation output. We use the CoNLL-2002/2003
NER English training set as the source sentences,
and translate them into German. All sentences are
tokenized by the NLLB tokenizer. We also show
the translation time per sentence and per entity on
an A40 GPU with a batch size of 32.

We estimate using XML tags takes 1.2 time
compared to translating the original sentences, and
EasyProject takes 1.3 time as it requires the ad-
ditional translation of each entity span, for identi-
fying the label correspondence.



NLLB+Word Aligner NLLB+Markers GMT+Word Aligner GMT+Markers
QAalign Awesome. Awesomer; XML EProj. QAalign  Awesome. Awesomer; XML EProj.
NER # Sents 18,486(5) 18,274 18,587 13,959 19,470 19,187(5) 19,003 19,408 20,000 20,000
Proj. Rate 92.4(5) 91.4 92.9 69.8 97.4 96.0(5) 94.8 98.2 100 100
Event # Sents 15,491 14,840 15,857 7,308 16,846 16,264 16,631 16,903 19,185 19,185
Proj. Rate 80.6 77.2 82.5 38.0 817.7 90.4 92.6 93.6 99.9 99.9
QA # Sents - 3,613 3,654 1,573 3,564 - 3,623 3,649 3,695 3,695
Proj. Rate - 97.8 98.9 42.6 96.4 - 97.8 99.1 100 100

Table 21: Diagnosis analysis of projected data based on two metrics: number of sentences and the percentage of the
projected annotations (Proj. Rate). For QA-align in NER, we show 5 languages {arde,frja,zh}.

Lang. XLM-Ryarge +EasyProject mTSage +EasyProject mT5x. +EasyProject ~ mT5xxi. +EasyProject
af 78.6 79.2 (+0.6) 79.2 81.0 (+1.8) 772 19.6 (+2.4) - -

ar 485  [1563(+78) | 531 57.4 62.2 66.1 (+3.9)
bg 82.1 80.6 (-1.5) 585 615 -

bn 751 [ 80958 | 573 65.7 - -

de 79.4 80.2 (+0.8) 75.6 77.9 (+2.3) 759 | 716 (+1.7) 765 77.3 (+0.8)
el 79.3 75.0 (-4.3) 61.6 [UBI6(H200) 794  772(22) - -

es 74.8 75.6 (+0.8) 85.7 87.0 (+1.2) 863 853(-1.0) 85.6 86.4 (+0.8)
et 79.6 80.1 (+0.5) 71.8 72.8 (+1.0) 717 732(+14) - -

eu 63.6 64.0 68.0 (+4.0) 64.0 -

fa 64.3 470 [675G205) 46.1 -

fi 80.6 803 (-0.3) 74.6 78.0 (+3.4) 735 - -

fr 80.1 80.8 (+0.7) 84.6 84.9 (+0.3) 838 842 (+04) 834 84.2 (+0.8)
he 56.0 533 579 66182 | - -

hi 69.5 - 70.1 748 711(+22) 76.0 76.4 (+0.4)
hu 81.0 80.7 (-0.3) 76.0 765 | 80.0(+3.5) - -

id 524 53.9 (+1.5) 77.6 77.9 (+0.3) 822 823 (+0.1) - -

it 813 80.9 (-0.4) 86.2 86.4 (+0.1) 864  855(-1.0) -

ja 180 %3 WESSEION 5 [3B0GEN :

v 62.3 724 75.7 (+3.2) 729 723(-0.6) -

ka 68.8 60.6 67.1 - -

kk 53.5 54.2 (+0.7) 327 26.1 - -

ko 57.9 61.9 (+4.0) 337 30.6 - -

ml 63.5 64.3 (+0.8) 421 425 - -

mr 63.9 67.1 (+3.2) 49.6 539 556 (+1.8) - -

ms 64.1 79.3 79.6 (+0.3) 80.5 794 (L) - -

my 53.5 35.0 38.7 (+3.7) 319 33.0(+L1) - -

nl 84.1 83.1(-1.0) 842 85.5 (+1.3) 835 84.1(+05) - -

pt 82.0 80.1 (-1.9) 83.0  82.9(+0.0) 835 827(-0.8) - -

ru 711 68.2 (-2.9) 553 [OBIEEN 59.8 65.6

sw 68.5 70.7 (+2.2) 65.9 66.4 (+0.5) 66.8 -

ta 58.8 49.5 526 -

te 55.6 57.4 (+1.8) 474 513 -

th 0.7 2.0 3.8 (+1.8) 2.0 - -

il 73.0 80.6 81.6 (+1.0) 819 | 832(+13) - -

o 803 79.6 (-0.7) 68.8 69.7 (+1.0) 714 68.8(2.6) -

ur 63.6 514 569 | 67.0(+10.1) - -

vi 74.2 76.0 (+1.8) 814 83.0 (+1.6) 817 820 (+0.4) 824 79.6 (-2.8)
yo 37.1 757 755 784 (+3.0) - -

zh 27.1 311 3.6 | 398(+82) | 363 [432(x69)
AVG 64.3 68.9 (+4.6) 612 [T685 (74 629 [T6BEE*ST | 710 73.3 (+2.3)

Table 22: Cross-lingual NER F; on WikiANN for mT5 and XLM-RoBERTay,.

Due to the computing limit,

we run the largest mT5xx;. model on 8 languages which were chosen following Yarmohammadi et al. (2021).
The performance is averaged over 3 runs for XLM-Ryrge and mT5;,e models, and 1 run for mT5x;. and mTS5xx;.
models. Models are fine-tuned on a combination of English and EasyProject data with Google Translation.
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