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Abstract

Score-based generative modeling (SGM) has grown to be a hugely successful method for learning
to generate samples from complex data distributions such as that of images and audio. It is based
on evolving an SDE that transforms white noise into a sample from the learned distribution, using
estimates of the score function, or gradient log-pdf. Previous convergence analyses for these methods
have suffered either from strong assumptions on the data distribution or exponential dependencies,
and hence fail to give efficient guarantees for the multimodal and non-smooth distributions that
arise in practice and for which good empirical performance is observed. We consider a popular kind
of SGM—denoising diffusion models—and give polynomial convergence guarantees for general
data distributions, with no assumptions related to functional inequalities or smoothness. Assuming
L2-accurate score estimates, we obtain Wasserstein distance guarantees for any distribution of
bounded support or sufficiently decaying tails, as well as TV guarantees for distributions with further
smoothness assumptions.

Keywords: Score-based generative modelling, diffusion model, reverse SDE

1. Introduction

Diffusion models have gained huge popularity in recent years in machine learning, as a method to
learn and generate new samples from a data distribution. Score-based generative modeling (SGM),
as a particular kind of diffusion model, uses learned score functions (gradients of the log-pdf) to
transform white noise to the data distribution through following a stochatic differential equation.
While SGM has achieved state-of-the-art performance for artificial image and audio generation (Song
and Ermon, 2019; Dathathri et al., 2019; Grathwohl et al., 2019; Song and Ermon, 2020; Song et al.,
2020; Meng et al., 2021; Song et al., 2021b,a; Jing et al., 2022), including being a key component of
text-to-image systems (Ramesh et al., 2022), our theoretical understanding of these models is still
nascent.

In particular, basic questions on the convergence of the generated distribution to the data distribu-
tion remain unanswered. Recent theoretical work on SGM has attempted to answer these questions
(De Bortoli et al., 2021; Lee et al., 2022; De Bortoli, 2022), but they either suffer from exponential
dependence on parameters or rely on strong assumptions on the data distribution such as functional
inequalities or smoothness, which are rarely satisfied in practical situations. For example, considering
the hallmark application of generating images from text, we expect the distribution of images to be
(a) multimodal, and hence not satisfying functional inequalities with reasonable constants, and (b)
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supported on lower-dimensional manifolds, and hence not smooth. However, SGM still performs
remarkably well in these settings. Indeed, this is one relative advantage to other approaches to
generative modeling such as generative adversarial networks, which can struggle to learn multimodal
distributions (Arora et al., 2018).

In this work, we aim to develop theoretical convergence guarantees with polynomial complexity
for SGM under minimal data assumptions.

1.1. Problem setting

Given samples from a data distribution Py,,, the problem of generative modeling is to learn the
distribution in a way that allows generation of new samples. A general framework for many score-
based generative models is where noise is injected into Py, via a forward SDE (Song et al., 2020)

d:ft = f(%ta t) dt + g(t) dwt7 te [Oa T]a (1)

with 7g ~ ]50 := Pyaa. Here f and g are functions specified in section 2, and wy is a standard
Brownian Motion. Let p; denote the density of z;. Remarkably, Z; also satisfies a reverse-time SDE,

dft = [f(.%t, t) — g(t)QVIHﬁt(@)] dt + g(t) d’&}t, t e [0, T], (2)

where w; is a backward Brownian motion (Anderson, 1982). Because the forward process transforms
the data distribution to noise, the hope is to use the backwards process to transform noise into
samples.

In practice, when we only have sample access to Py,e, the score function V In p; is not available.
A key mechanism behind SGM is that the score function is learnable from data, through empirically
minimizing a de-noising objective evaluated at noisy samples x; (Vincent, 2011). The samples z; are
obtained by evolving the forward SDE starting from the data samples z, and the optimization is
done within an expressive function class such as neural networks. If the score function is successfully
approximated in this way, then the L?-error E5, [||V Inpy(z) — s(z, t) [|?] will be small. The natural
question is then the following:

Given L2-error bounds of the score function, how close is the distribution generated by
(2) (with score estimate s(x, t) in place of V In p;, and appropriate discretization) to the
data distribution Py, ?

We note it is more realistic to consider L? rather than L>-error, and this makes the analysis more
challenging. Indeed, prior work on Langevin Monte Carlo (Erdogdu et al., 2021) and related sampling
algorithms only apply when the score function is known exactly, or with suitable modification, known
up to L>-error. L?-error has a genuinely different effect from L°-error, as it can cause the stationary
distribution for Langevin Monte Carlo to be arbitrarily diffferent (Lee et al., 2022), necessitating a
“medium-time” analysis.

In addition, we hope to obtain a result with as few structural assumptions as possible on Pya,, SO
that it can be useful in realistic scenarios where SGM is applied.

1.2. Prior work on convergence guarantees

We highlight two recent works which make progress on this problem. Lee et al. (2022) are the first to
give polynomial convergence guarantees in TV distance under L?-accurate score for a reasonable
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family of distributions. They introduce a framework to reduce the analysis under L?-accurate score to
L°-accurate score. However, they rely on the data distribution satisfying smoothness conditions and
a log-Sobolev inequality—a strong assumption which essentially limits the guarantees to unimodal
distributions.

De Bortoli (2022) instead make minimal data assumptions, giving convergence in Wasserstein
distance for distributions with bounded support M. In particular, this covers the case of distributions
supported on lower-dimensional manifolds, where guarantees in TV distance are unattainable.
However, for general distributions, their guarantees have exponential dependence on the diameter of
M and the inverse of the desired error (exp(O(diam(M)?/¢))), and for smooth distributions, an
improved, but still exponential dependence on the growth rate of the Hessian V2 In p; as the noise
approaches 0 (exp(O(I")) for distributions with HV2 In p; H <T/o).

We note that other works also analyze the generalization error of a learned score estimate (Block
et al., 2020; De Bortoli, 2022). This is an important question because without further assumptions,
learning an L?-accurate score estimate requires a number of samples exponential in the dimension.
As this is beyond the scope of our paper, we assume that an L?-accurate score estimate is obtainable.

1.3. Our contributions

In this work, we analyze convergence in the most general setting of distributions of bounded support,
as in De Bortoli (2022). We give Wasserstein bounds for any distribution of bounded support (or
sufficiently decaying tails), and TV bounds for distributions under smoothness assumptions, that
are polynomial in all parameters, and do not rely on the data distribution satisfying any functional
inequality. This gives theoretical grounding to the empirical success of SGM on data distributions
that are often multimodal and non-smooth.

We streamline the y2-based analysis of Lee et al. (2022), with significant changes as to com-
pletely remove the use of functional inequalities. In particular, the biggest challenge—and our
key improvement—is to bound a certain KL-divergence without reliance on a global functional
inequality. For this, we prove a key lemma that distributions which are close in x?-divergence have
score functions that are close in L? (which may be of independent interest), and then a structural
result that the distributions arising from the diffusion process can be slightly modified as to satisfy the
desired inequality, through decomposition into distributions that do satisfy a log-Sobolev inequality.

Upon finishing our paper, we learned of a concurrent and independent work (Chen et al., 2022)
which obtained theoretical guarantees for score-based generative modeling under similarly general
assumptions on the data distribution. We note that although our bounds are obtained under similar
assumptions (with our assumption of the score estimate accuracy slightly weaker than theirs), our
proof techniques are quite different. Following the “bad set” idea from Lee et al. (2022), we derived
a change-of-measure inequality with Theorem 7.1, while the analysis in Chen et al. (2022) is based
on the Girsanov approach.

2. Main results

To state our results, we will consider a specific type of SGM called denoising diffusion probabilistic
modeling (DDPM) (Ho et al., 2020), where in the forward SDE (1), f(z,t) = —% g(t)%x for some
non-decreasing function g to be chosen. The forward process is an Ornstein-Uhlenbeck process with
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time rescaling: Z; has the same distribution as

muZo + o4z, where

¢ t
my = exp [_;/0 g(s)? ds] ,o2=1—exp [—/O g(s)? ds] ,and z ~ N(0,1). 3)

Given an estimate score function s(z,t) approximating V In p;(z), we can simulate the reverse
process (reparameterizing ¢t <~ T — t and denoting p; := pr_4)

1
dry = §g(T — t)2 (¢ +2Vinpy(zy)) dt + g(T —t) dwy (G

with the exponential integrator discretization (Zhang and Chen, 2022). Denoting this discretized
process by z;, and letting hy, = tx11 — tg and ng1q ~ N(0, Iy).

Ztk+1 = Ztk + Vl,k(ztk + 2S(T - tka Ztk-)) + \V ’YZJC *Me+1, (5)
1 t
where 71 , = exp |:2Gtk7tk+1:| — 1, y2 = exp [Gtk,tk+1] —1, and Gy 4 := /t/ g(T — 3)2 ds.
(6)

We initialize zo with a prior distribution that approximates py = pr for sufficiently large 7"
20 ™~ 4o = Pprior * = N(O7 U%Id> ~ N((), Id)- @)

While we focus on DDPM, we note that the continuous process underlying DDPM is equivalent to
that of score-matching Langevin diffusion (SMLD) under reparameterization in time and space (see
(Lee et al., 2022, §C.2)). We will further take g = 1 for convenience in stating our results.

Our goal is to obtain a quantitative guarantee for the distance between the distribution gy, for z; .
(for appropriate t ¢ ~ T') and Pyy,, under a L2-score error guarantee. In the following, we assume a
sequence of discretization points 0 = tg < t; < --- < tx < T has been chosen.

Assumption 1 (L? score error) Foranyt € {T —to,...,T —ti}, the error in the score estimate
is bounded in L?(py):

IV I3 — s, 0)l120 = B IV InBe(e) — s(a,0)]?) < & o=

q*q“; ‘ Qmw

1
o7
quantitatively weaker than a uniform bound over ¢.

We note that the gradient V In p; grows as =5 as t — 0, so this is a reasonable assumption, and

Assumption 2 (Bounded support) Py, is supported on Br(0) := {ZE eRe: ||z|| < R}.

For simplicity, we assume bounded support when stating our main theorems, but note that our results
generalize to distributions with sufficiently fast power decay. In the application of image generation,
pixel values are bounded, so Assumption 2 is satisfied with R typically on the order of v/d.

These are the only assumptions we need to obtain a polynomial complexity guarantee. We also
consider the following stronger smoothness assumption, which is Assumption A.6 in De Bortoli
(2022) and will give better dependencies. Note that (De Bortoli, 2022, Theorem 1.8) shows a
(nonuniform) version of Assumption 3 holds when pg is a smooth density on a convex submanifold.
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Assumption 3 The following bound of the Hessian of the log-pdf holds for any t > 0 and x:
C

IV* ()| < —.
0t

for some constant C' > 0.

Finally, the following smoothness assumption on py will allow us to obtain TV guarantees.

Assumption 4 Py, admits a density py < e~V &) where V(x) is L-smooth.

We are now ready to state our main theorems.

Algorithm 1 DDPM with exponential integrator (Song et al., 2020; Zhang and Chen, 2022)
INPUT: Time T'; discretization points 0 = to < t; < --- < tn < T'; score estimates s(-, T — t1);
radius R; function g (default: g = 1)
Draw zg ~ pprior from the prior distribution ppior given by (7).
for k from 1 to N do

\ Compute z;, from z;, , using (5).
end

Let z;, = m;ithtN if z:,, € Bgr(0); otherwise, let z;,, = 0.

Theorem 2.1 (Wasserstein+TV error for distributions with bounded support) Suppose that As-
sumption 1 and 2 hold with R > /d. Then there is a sequence of discretization points 0 = ty <

ty < --- <ty < Twith N = O(poly(d, R, 1/epv, 1/ew)) such that ife, = O (%), then the

distribution of the scaled output m;itN 2t of DDPM is e1v-close in TV distance to a distribution

that is ey in Wao-distance from Pyy,. If in addition Assumption 3 holds with C' > R? it suffices for
~ 4 ~

ee =0 (%) (note that the O(-) hides logarithmic dependence on ew).

This result is perhaps surprising at first glance, as it is well known that for sampling algorithms
such as Langevin Monte Carlo, structural assumptions on the target distribution—such as a log-
Sobolev inequality—are required to obtain similar theoretical guarantees, even with the knowledge
of the exact score function. The key reason that we can do better is that we utilize a sequence of score
functions s; along the reverse SDE, which is not available in standard sampling settings. Moreover,
we choose T' large enough so that gy = pprior 18 close to po, and it suffices to track the evolution of
the true process (2), that is, maintain rather than decrease the error. To some extent, this result shows
the power of DDPM and other reverse SDE-based methods compared with generative modeling
based on standard Langevin Monte Carlo.

A statement with more precise dependencies, and which works for unbounded distributions with
sufficiently decaying tails, can be found as Theorem 7.2. We note that under the Hessian bound
(Assumption 3), up to logarithmic factors, the same score error bound suffices to obtain a fixed TV
distance to a distribution arbitrarily close in W5 distance. By truncating the resulting distribution, we
can also obtain purely Wasserstein error bounds.

Theorem 2.2 (Wasserstein error for distributions with bounded support) In the same setting
as Theorem 2.1, consider the distribution G;, of the scaled and truncated output T+, of DDPM. If
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~ 18
Assumptions 1 and 2 hold with R > \/d and e, = O (%), then with appropriate (polynomial)
choice of parameters, Wo(Qiy , Paaa) < ew. If in addition Assumption 3 holds with C' > R?, then
8

g, =0 (%) suffices.

With an extra assumption on the smoothness of Pyu,, We can also obtain purely TV error bounds:

Theorem 2.3 (TV error for distributions under smoothness assumption) Suppose that Assump-
tions 1 and 4 hold, Py, is subexponential (with a fixed constant), and denote R, = max {\/&, Ep,. 1 X]l }
Then there is a sequence of discretization points 0 = tg < t; < --- < ty < T with N =
~ 11.5
O(poly(d, R, 1/eTv)) such that if e, = O <%), then the distribution q,, of the output z
of DDPM satisfies TV (qi , Paa) < e1v. If in addition Assumption 3 holds with C > R?, then
A (v
€, =0 (m) suffices.

A more precise statement can be found as Theorem 7.3, which also works more generally with
sufficient tail decay. We note that this result can be derived directly by combining Theorem 7.2 and a
TV error bound between Py, and p;,, (Lemma 6.4) depending on the smoothness of Pygg,.

3. Notation and proof overview

We let p; denote the density of z; under the forward process (1). Note that zg ~ ]50 may not admit a
density, but z; will for ¢ > 0. For the reverse process, we use the notation p; = pr_¢, T = Tp_¢.
We defined m; and oy in (3),

1 t t
m¢ = exp [—2/0 g(s)? ds} , 02 =1—exp {—/0 g(s)? ds] ,

and note that p; = (Mmtﬁﬁo) * P42, where M, (2) = ma denotes multiplication by m, Fy P denotes
the pushforward of the measure P by F, and ,2 is the density of N (0, 02I;). When g = 1, we note
the bound 07 < min{1,¢} and 07 = ©(min{1,t}).

We will let z; denote the (interpolated) discrete process (see (13)) and let ¢; be the density of z;.
We define

Gel(w) = 218 () = f;;(xzz’ 8)

and note that g1 is a probability density. We defined Gy ; = ftt, g(T — 5)% ds in (6).
We denote the estimated score function by either s(x, t) and s;(z) interchangeably.
A random variable X is subgaussian with constant C' if

C =Xy, : =inf {t>0:Eexp(X*/t?) <2} < cc.

A R-valued random variable X is subgaussian with constant C' if for all v € S, (X, ) is
subgaussian. We also define

[ X2, = = X2y, -
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Given a probability measure P on R¢ with density p, the associated Dirichlet form is

§4.9) = [ (V1.Va) Plda) = [ (V1.Va)pa)d ©

denote &,(f) = &,(f, f). we say that a log-Sobolev inequality (LSI) holds with constant Cf s if for
any probability density g,

KL(alp) < 6, (L) = e
b p

2
Yo q(z)
2 Rd

‘ q(x) dx. (10)

p(z)

2
Note fRd Vin % q(x) dx is also known as the Fisher information of ¢ with respect to p. Alter-

natively, defining the entropy by Ent,,(f) = E, f(z)In f(z) — E, f(z) InE, f(z), for any f > 0,

CLS CLS

Enty(f) € 56 (fInf) = == | IVInf@)* f(@)p(e)da. (11)

3.1. Proof overview

Our proof uses the framework by Lee et al. (2022) to convert guarantees under L°°-accurate score
function to under L?-accurate score function. For the analysis under L>-accurate score function, we
interpolate the discrete process with estimated score, z; ~ ¢, and derive a differential inequality

Clalln) =T~ 178 (%) 428 | (o = %600, T ) ~ i), VI
Dt pe(z)

We bound resulting error terms, making ample use of the Donsker-Varadhan variational principle to

convert expectations to be under p;. Under small enough step sizes, this shows that x?(q;||p¢) grows

slowly (Theorem 4.10), which suffices as y2-divergence decays exponentially in the forward process.

The most challenging error term to deal with is the KL divergence term KL (g ||p¢). Our main
innovation over the analysis of Lee et al. (2022) is bounding this term without a global log-Sobolev
inequality for p;. We note that it suffices for p; to be a mixture of distributions each satisfying a
log-Sobolev inequality, with the logarithm of the minimum mixture weight bounded below, and in
Lemma 5.2, we show that we can decompose any distribution of bounded support in this manner if
we move a small amount of its mass.

In Section 6, we show that this does not significantly affect the estimate of the score function, by
interpreting the score function as solving a Bayesian inference problem: that of de-noising a noised
data point. More precisely, we show in Lemma 6.5 that the difference between the score functions of
two different distributions can be bounded in L? in terms of their y2-divergence, which may be of
independent interest.

Finally, we reduce from the L? to L™ setting by bounding the probabilities of hitting a bad set
where the score error is large, and carefully choose parameters (Section 7). This gives a TV error
bound to ps—the forward distribution at small positive time. Finally, we can bound the Wasserstein
distance of ps to Po (in the general case) or the TV distance (under additional smoothness of Po )

dt

In Section A we show that the Hessian is always bounded by O < ) with high probability (cf.

Assumption 3). We speculate that a high-probability rather than unlform bound on the Hessian (as in
Lemma 4.13) can be used to obtain better dependencies, and leave this as an open problem.
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4. DDPM with [*°-accurate score estimate

We consider the error between the exact backwards SDE (4) and the exponential integrator with
estimated score (5). In this section, we bound the error assuming that the score estimate s is accurate
in L.

Assumption 5 (L> score error) Foranyt € {T —ty,...,T —tg}, the error in the score estimate
is bounded.:
IVInpy = s( )l = sup [[VInpy(2) — s(z, )] < €% (12)
zeR

2

for some non-decreasing function €2 .
)

In Section 7, we will relax this condition to score function being accurate in L?.
First, we construct the following continuous-time process which interpolates the discrete-time
process (5), for t € [ty, tri1]:

1
dz = g(T — t)Q <22t + (24, T — tk)) dt + g(T — t) dw. (13)

Integration gives that

1
2 — 2y, = <exp (2Gtk,t> — 1> (2, + 25(21,, T — tg))
t 1 t
—I—/ exp / g(T —t"2at" | g(t') dwy, (14)
tr 2 tr
where G ; is defined in (6).

Letting ¢, be the distribution of z; and p; be the distribution of x;, we have by (Lee et al., 2022,
Lemma A.2) that

%xQ(thpt) = —g(T — )26, <Zz> +2E Kg(:r —1)2(s(ze,, T — t) — Vinpy(2)), VZZEZ; >} .

5)

(Note that in our case, f also depends on z; rather than just z;,, but this does not change the

calculation.) Define ¢, ; as in (8): ¢¢(z) = Zi%g Pi(z) = g;t(ziz

To bound (15), we use the following lemma.

Lemma 4.1 (cf. (Erdogdu et al., 2021, Lemma 1), (Lee et al., 2022, Lemma A.3)) Forany C >
0 and any Re-valued random variable u, we have

B | (0 VI <0 0l + 1B [l wte)] + 16 (L))

Dt (Zt) Dt
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Proof By Young’s inequality,

8 |(n V)]

< \/ \/pt<zt)v%(zt) >]
WV @(z) (=)
< CE [H I nt ” + 1CEpt quig ﬂ

~ By 2B [l (a0 + g6 (£)
bt

= C0C(allp) +1) - E [HUH @/’t(“)} 410‘”@’” (>

Lemma 4.2 Suppose that (12) holds fort = T — ty, Vnpy, (x) is Ly_4, -Lipschitz, g is non-

A 1
decreasing, and that hy, < WLy T 1) Then we have for t € [ty, ti11] that

Sallp) < 30T~ 078, (L) + 12007 = 020l + 1)

leio,T_tk +16G7, Ly, [E[wt(%) l=el1) + 16E e (ze) |V Inpe (o) ]
+ 64Gtk,tL%ftk (8 KL(ththt) + 2d + 161n 2) + E HVIIlptk (Zt) - VIDpt(Zt)”Q 1/}t(22t):| ] .

Proof We bound the second term on the RHS of (15). By Lemma 4.1,

R ———"

< (¥ allp) + DB [lste0. T - 0) ~ VGl ] + 36, (%) a9

Now

Is(z0, T = t) = VInpi(2)||
< 3{ls(et T = t1) = VInpy oI + 1V Ity (21,) = Ve (20) |+ [V I (2) = ¥ npe(z0)

<3 {lls(zt, T = ti) = Vg (20 )P + Loy, o, = 20l + 9 Iy (20) = Vinpa(0) ]
and

E ||[s(zt,, T = te) — Vinpy, (ze) 1> ¢e(z0) | < ey,
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by definition of e ¢, so by Lemma 4.3,
E |5z, T = te) = VInpy(z)|” vi(21)|

<3| rs, + D E [l — 207 10| + B IV Inpe, () — VInpu(z) | z0) |

< 3|edo oy, +16GE Lt tk[ [e(2) 12e1] + 4B [br(20) | s(2e, T — ti) — VInpy(z0)[|°]
+ 16E[¢(2) |V In pe () 1\2]} +64G), (L3, (SKL(v1q|p) + 2d + 161n2)

+E [V Inpr, (1) = VInpa(z0) | 1(20)] ]

The condition on hj, and the fact that g is non-decreasing implies 192Gt2k7tL% o < % Rearranging
gives

E [llsCz10, T = te) = VInpe(e) | vn()|

= 6[ €207t T 16GF L tk[ [e(z2) l|2e]1%) + 16E[the(2) |V Inpe () ||*

+64Gy, L3, (SKL(vq|[pr) + 2d + 161n2) + E [||v Inpy, (2) — VIn (1) Q,Z)t(zt)}

Substituting into (16) and that inequality into (15) give the conclusion.

Lemma 4.3 Suppose that hy, < m. Then fort € [tgi1, k],

B |ll2t — 2, I Yelz0)| < 1662, o [Elwe(z0) 12)°) + 4E[Wr(20) l1s(zt,, T = 1) = VInpe(z0)|)
+ 16E [t (20) ||V Inpe (2e)|*]| + 64Gy, ¢ (SKL(eqs||pe) + 2d + 161n 2).

Proof Consider (14). The assumption on hy, implies Gy, ¢ < Gy, 1, < % SO exp (thk, )

1<
Gy, - Let Y denote the last term of (14). Then

120 = 26|l < Gyt (26l + 2[5 (2o, T = ) 1] + Y]

< G lzell + Mz = 2ell + 2820, T = th) = VInpe(z) | + 2|V Inpe(z0)[[] + [[Y]] -

Again using Gy, ¢ < %, rearranging gives
2 — 20| < 2Gu 0 [zl +2 1s(z2,, T — 1) —

Vinpe(ze)l| +4[|VInp(20)[[] + 2 Y]],
and

E [ll2e — 20, Y120)] <1663, ,[Blwa(z0) I2]1°) + 4B[wn(20) N1z T = tr) = Vi)

+ L6E[: (1) IIVlnpt(ﬂﬁt)llz]] + 16E[yy(z0) 1Y ]°]

10
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By Lemma 4.4,
B[ (z) |Y))?] < 4G, (S KL(3eqs]|pe) + 2d 4 16 1n 2).

The lemma follows. [ ]

Lemma 4.4 Fort € [tg,tgi1],

2

E | (2)

t 1 t
/ exp (2 / g(T —t")? dt”) g(t") dwy
tr tr

< 2(exp(Gyyt) — 1) (BKL(¢sqy|[pt) + 2d + 161In 2).

Proof Note that Y := fttk exp (% ftt,: g(T —t")? dt” ) g(t') dwy is a Gaussian random vector with
variance

t t Y v
/ P / g(T —t")?dt" | g(t)? dt’ - Ig = exp / g(T — ") at” Iy
= (eXp(Gtk,t) - 1) . Id.

(Note that this calculation shows that the continuous-time process (13) does agree with the discrete-
time process (5) at ¢ = tx41.) Using the Donsker-Varadhan variational principle, for any random
variable X,

EX < KL(P|[P) + InEexp X.

Applying this to X = ¢ ([[Y]| - E |Y]])? for a constant ¢ > 0 to be chosen later, and P such that
% (21) = 11(21), we can bound

E(Y]? < 2 [|YIP] + 2 [(v —E|Y])?]
< 28 [|V]P] + 2 [KLEI[E) + mEexp (e (Y] - B[V])?)] (17)
< 2d(exp(Gyq) — 1) + % [KL(EDHP) +InEexp (c(uyu ~E HYW)} .38

1

Now following (Chewi et al., 2021, Theorem 4), we set ¢ = Sep(Gr=1)° 3° that
k>
Y| -E|Y])?
E{(H |-E YD) } .
8(exp(Gye) — 1)
Next, we have
- N 1 o
KL(P||P) = Ey,q, Inty = Ey, In =—— = =E In ————=
Viqe Yiqt Eptqf 9 Yiqt (Ept¢?)2
1 o 9 1 Yeqy 2
= 5 [Etht ln m — 1nEPt¢t:| = 5 |:E'l/1tlh ln ? — 1nEPt¢t .

11
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Noting that B, ¢7 = x?(¢||p:) +1 > 1, we have that

KL(P||P) < %KL(%%H%)-

Substituting everything into (18) gives the desired inequality. |
Let

K. = [du(z0) 2] 19)

Ky =E [4(z0) |V Inpi(z0) ] 20)

Kav =E [6u(z0) |V Inpr, () = VInpi(z0)| @)

K = KL(¢1qt||pt)- (22)

In order to bound the RHS in Lemma 4.2, we need to bound all four of these quantities, which we do
in Lemma 4.5, 4.6, 4.8, and Section 5, respectively. The main innovation in our analysis compared
to Lee et al. (2022) is a new way to bound K, which we present in a separate section.

First we bound K. Recall the norm

1x13
X 15,4, —1nf{L>0 Ee 17 <2}

(In other words, this is the usual Orlicz norm applied to || X||,.)

Lemma 4.5 Fort € [tg, tgi1),

£ [%(Zt) Hzt”ﬂ = - [KL(¢vqe||pe) +1n2].

Proof By the Donsker-Varadhan variational principle,

2 S 2 s 2
E [01(0) 12°] = “Eu |3 21°] < = [KL@oearl lpe) + I, [e3171°]
for any s > 0. Choosing s = 2 H%‘/H;ZQ’ we have E,, [e%IIwH?] < 2, which gives the desired
inequality. |

The following bounds Ky-; note that the proof does not depend on the definition of ¢;, only that
it is a probability density.

Lemma 4.6 ((Lee et al., 2022, Corollary C.7), (Chewi et al., 2021, Lemma 16))

4 qt
E | (2) ||V Inpe(2) || §-£t<>+2dL.
) IV ol] < s 6 )

We use the following lemma to bound KAy in Lemma 4.8.

12
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Lemma 4.7 ((Lee et al., 2022, Lemma C.12)) Suppose that p(z) < e~V ®) is a probability density
on RY, where V() is L-smooth. Let p,(x) = a’p(ax) and p,2(x) denote the density function of
N(0,0%1y). Then for 0% <

H““ v

202 L’

< 6a’Lod? + (a+20°Lo?)(a—1)L |z + (a—14+2a°La?) | VV (z)]| .

m where V Inp; is Lp_-smooth (Ly_y > 1) and L =

maxte[twkﬂ} LT—t- Fort € [tk, tk+1],

Lemma 4.8 Suppose that hy, <

E [11(z) [V Inpy, (20) = V Inp (o)

< 2513, (8Gued + GE /B [u(z) | 22]°] ) + 100L3_, G2 LB [6u(20) 1V In pe(z0)]?]
Proof We have the following relationship for ¢ € [tg, tg11]:

Pt = (Dt)a * Po2.

g(T—s)? ds

1t _rt _o\2
where p,(7) = ap(azx), a = €2 Jo and 02 = 1 — ¢ 97799 Opserve that since

e < e

t
1
a§1—|—/ g(T—s)2d5§1—|—hkg(T—tk)2§1+1
tg
t

_rt _ 1
0_2 —1l—¢ ftk g(T—s)2%ds < / g(T— S)2d8 < hkg(T . tk)Z < 1
2%

‘We note that

1
2 < (T —t)2 < — < ——
7= kg( k) _4Lt _2042Lt

so the hypothesis of Lemma 4.7 is satisfied. Using Lemma 4.7, we obtain
E [61(20) IV Inpy, (20) = ¥ Inpy(z0)|]
< 720 L3070 + (o + 20° Ly 10?) (0 = 1P L3 [ (z1) |
+ 4o = 14207 L 10®)E [da(2) |V Inpr(20)]]
< T2(5/4) Lh_ Gy ad + 4(20)2GE, (L3 [(z) )]
4Gt + ALr1Goy ) E [1(20) 1V I py(2) ]
< 20013 _dGry o + 25L3_ GE B [0(z0) 12| +100L3 G2, B w1(z0) |V Inpeae) 2]

13
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Now we put everything together. Write G; = GY, ; for short. Suppose L; is non-increasing. By
Lemma 4.2,

d 1 q
X (allp) < —9(T 1?6, <pi> +129(T — )2 (P (allpr) +1) - E

where E < 16G7 L%, (K. + 16Kv) + 64G, L%, (8K +2d 4+ 161n2) + 2, 1, + Kav.
By Lemma 4.8, KAy < 25L%_t(8th + G?K,) + IOOL%_tG%Kv, SO

E <41GL7_ K. + 356G LT Ky + 64G¢ L7 (8K +6d + 161n2) + &2 1, -

2 4
By Lemma 4.5, K, < [[z¢5,, (K +1In2), and by Corollary 4.6, Ky < W@@pt <;17’;> +2dL,
SO

4 qt
E < 41G2L2_ (x 2 K+ln2)+356G2L2_ (5 <>+2dL>
t~T—t || tHQ,qu( ) t~T—t X2(Qt|‘pt)+1 Dt D

+64G LT (8K +6d +161n2) + 2 1, .

!/

. €h
if by, < L hen
Now. if hi < o550 Ly, 1

4 at
B < [l (K +2)+ (s 6 (%) 4200 )|
(el (D gy Oy ) 200

+4e, Ly (8K +2d + 16In2) + €2 1, .

ATy

o+ T Br_;. Then we obtain

Let Mp_y := ||xt\|§7¢2. Assume that K <

129(T = t)*(xX*(@|lpe) + 1) - E

S 129(T - t)z |:(oﬁpt (Zt) (8,}Lk2 : (AT—tMT—t + 4) + €Ihk . 32LT—tAT—t)
t

+ O (aellpe) + 1(En, 2 - (Broy + In2)Myp_ + 2dL)
+&h, - Lr—¢t(8Br_y +6d 4+ 161n2)) + 2 14 |-

/ : 1 1
<
If €, < mln{ o) TSl }, then

d
£X2(Qtht) < 12¢(T —t)? [(XQ(QtHPt) +1)(eh, 2 (Br—t +In2) My + 2dL7_y)

thy Lroi(8Br_y +6d +162)) + Xy, .

/ : Ve e
If hy, S min { g(T—t)\/24(T—t3,) (Br—¢+In2) My +2dLr ;) 249(T—)*(T—t) Lr— (8 By —++6d+161n 2) }
we get
d o g 2 2 2
X (qellpe) < T t(X (@tllpe) +1) + 5 s, 9(T — )"

14
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Integration gives

tr /

/ot 1 bk e
(@i |lpey) < e 0" T (3% (qolpo) + 1) + / el T2 (T — )2 dt
0

T 5’ 2 T El tk T_t E/ 2 2
< ~1 T —t)? dt.
< (72¢) X(QO!\P0)+<(T_tk> )+/ (7=1) sar-o

Taking ¢’ = ﬁ then gives the following Theorem 4.10. We first introduce a technical
N 7=y

assumption.
Definition 4.9 Let f : Ry — Rsg. We say that f has at most power growth and decay (with some
constant ¢ > 0) iff max, [+ f(u) € [@, cf(t)}
Theorem 4.10 Suppose that the following hold.
1. Assumption 5 holds for € .

~ 112
2. |3, < M.

3. The KL bound KL(tqi|ps) < it

(qt|lpt)+1
ot B

+ Br_ holds for any density q; and t < ty, where

4. g(t), Ay, By, Ly, My have at most polynomial growth and decay (with some constant c).

Then there is some constant ¢’ (depending on c) such that if the step sizes satisfy

T -t de},
hr < min , b ;
ko= { 2 g(T — tk)QLT_tk
1 1
\/AT_tk MT_tk, + 17 LT—tk.AT—tk. ’

e/In (T_TtN)

9(T — tx)\/(T — tx) (Br—t, + )My, +dLpy,)’

e/1n (T_TtN> }

/ _ .
where €}, = min {

9(T — t3)2(T — ty) Lr—4, (Br—¢,, +d)

then for) < k < N,

ty
X (a | 1pe) < € xP(qollpo) + (€5 — 1) + €° /0 20 r_19(T — )% dt.

Proof This follows from the above calculations and the observation that if we replace F'(T' — t)
by F(T — ty), for some F satisfying the power growth and decay assumption, then we change the

bound by at most a constant factor, because the step size satisfies hy = tx11 — tx < T;t’“. |

15
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We specialize this theorem in the case of distributions with bounded support. Note that although
not every initial distribution p; may satisfy a KL inequality as required by condition 3 of Theorem 31,
Lemma 5.2 will give the existence of a distribution that does, and is close in TV-error. Later in
Section 6, we show that this will have a small effect on the score function, and hence allow us to
prove our main theorems.

Corollary 4.11 Suppose that Assumptions 5 and 2 hold, R*> > d, g = 1, and that ]30 is such that the

KLi ity (31 .Let§ = T—tn. I Ly = £
inequality (31) holds. Let § tn. If0<d,e <35, h =0 maX{Ttk,(Ttk)—3}R4dln(§)ln<§fK)>’

then forany 0 < k < N,

tg
2 1p) < X (aollpo) + & + € / 2 dt.
0

Proof For g = 1, note that 0 _, = ©(min{7T" — ¢,1}). From Lemma 4.13, we can choose
L = m_ ) i
P o T T \min{(T —0)2,1} )

From Lemma 4.15, we can choose

M; = max{R? d}.
The KL inequality (31) gives us
Ay = 6(e+1)o? = O(min{T —t,1})

(1) cam (10 ()

We now check the requirements on hj. We need

g =0 L = =0 (1)
& \/AT—tk MT—tk. +1 i max{R, \/&}
(23)
/ 1 / T —t
—o(—" - 24
i = O <LT—tkAT—tk> =em =0 ( R? @Y
e/In (%
& =0 ) . (25)

\/(T - tk‘)((BT*tk + ]‘)MT*tk + dLT*tk)

For T' — t;, <1, (25) is implied by

e/In (L
o i
2
\/(T — tx) (ln (i) +dln (%)) max{R?, d} + ,ﬁik
=g, =0 el - tl;) - :
dmax{R?,d}In (%) In (E)

16
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and for T — ¢, > 1,

e/In (%)
\/T (In (1) + dIn (£)) max{R2,d} + dR2

€p, = O

K

—z¢e, =0 c
" \/Tdmax{RQ,d} n (5)m (52)

Finally, the last requirement is

e/ (%) )

e, =0
i ((T — tg) Ly, (Br—y, +d)

£

BT @ s ()

¢, =0
As long as R? = Q(d) and € < 1, the last equation implies all the others. Plugging this into
Theorem 4.10 gives the result. |

Above, we use the Hessian bound HV2 In py(x) H < f—j given in Lemma 4.13. Under the stronger
t
smoothness assumption given by Assumption 3, we can take the step sizes to be larger.

Corollary 4.12 Suppose that Assumptions 5, 2, 3 hold, C > R?> > d, g = 1, and that 150 is
such that the KL inequality (31) holds. Let 6 = T —tn. If0 < d,ep < % and e < 1/\/?,

— 3] < <
hk‘ O <max{Ttk,(Ttk)_l}cgdln(§)1n<R>>’ thenfor any 0 < k < N,

dep

tx
f@mmuééfMMme+f/ e2 o dt.
0

Proof We instead have the bound L; = g% The requirement (23) stays the same, while (24) is
t
implied by ¢}, = O(1/C). Inequality (25), for T' — ¢, < 1, is implied by

1
dmax{C, R2}In (%) In (i)

Ep, = O

0K

and for T' — t;, > 1,

e, =0 <
" \/Td max{C, R} In (§) In ()

17
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Finally, the last requirement is implied by

/o
Shk =0
0eK

Cdln (%) In (i) 7

and for C > R?, ¢ < 1/+/T, implies all the others. [ |

4.1. Auxiliary bounds

In this section we give bounds on the Hessian (L;, Lemma 4.13), initial x? divergence x2(qol|po)
(Lemma 4.14), and Orlicz norm (M}, Lemma 4.15).

Lemma 4.13 (Hessian bound) Suppose that i is a probability measure supported on a bounded
set M C R% with radius R. Then letting 2 denote the density of N (0, 0%1),

2 R 1
[V* In(p % @y2())|| < max 5 (- (26)
ot o
Therefore, for Py supported on Bg(0), R > 1, we have
~ R?
[V?In ()] < g (27)
t

Proof Let 11, > denote the density 1 (du) weighted with the gaussian @2 (u—x), thatis, pi, ,2(du) =
llz—ull®
e 202 p(du)

lz—ul?

. We note the following calculations:

fRd € 202 pu(du)

flz—u|? flo—u|?

- 2 _TmU LT 502
VIH(M % P2 (I)) _ Vv fRd € ”1_2:”2 ,u(du) — fRd o2 ”ez_u‘; :u(du) — _%Eﬂm’(ﬂ (l‘ - U)
Joo S ) fpee T p(dw)
(28)
V2 In(p * g2 (x)) = L Cov (r —u)— iId _ L Cov (u) — iId. (29)
o ol Hy o2 o2 ol Py o2 o2

The covariance of a distribution supported on a set of radius R is bounded by R? in operator
norm. Inequality (26) then follows from (29).
For (27), note that p; = M, 4 Po * ¢ o2 where m; is given by (3) and M,,, denotes multiplication

by m. Since Mmtﬁf’o is supported on B,,,,z(0) C Br(0) and oy < 1, the result follows. [ |

Lemma 4.14 (Bound on initial y?-divergence) Suppose that ﬁo is supported on Br(0). Let
Pprior = N(O, (1 - €G0’t)Id). Then

R2 exp(—G()’T) :|

200 115 <
X" (Pprior|[PT) < exp | 1— exp(—Gor)

and for 0 < e < % and Gy > In (%) V 1, we have XQ(PpriorHﬁT) < e

18
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Proof We have for ¢ ~ ﬁo that

- 1
¢ (N0, (- ) 1 [N ey (56 ) (1 = exp(~Gor)a)
2 _
§ exp ( R exp( GO,T) )
1 —exp(—Go,r)
Using convexity of y2-divergence then gives the result. For G T >1n ( ) V 1, we have

o [{nam] <o ] <

zo||* exp(—Go.r)
1 —exp(—Gor)

Lemma 4.15 (Subgaussian bound) Suppose Pyis supported on Br(0). Then for X ~ py,

HXHQ’wQ < A/ é ' (4mtR + 601075\/&) = O(max{R, \/8}),

where my, oy are as in (3) and C1 is an absolute constant.

Proof Let Y ~ Py st. X = myY + oy for some & ~ N(0,1;) independent of Y. Define
1/2
U= X[y = (S0, X2) " thenforp > 1,

E[U" =E[IX|; < E((lmeYlly + llo€ll,)?
< 2R [|meY |5 + [lo:€]15)

<ot ey + of -T2

<27t [(mR) + O (V2o - (&2 + 7))
where [ is the commonly used gamma function and C is an absolute constant. Therefore
(B|UP)'? < 2mi R+ V2C10:(Vd + \/b) < K \/p,

where K = 2m; R + 3C’10t\/g. Now consider V' = U/ K, then for some A > 0 small enough, by
Taylor expansion,

NE | V2p}

E || =E |1+ i (Azz)p Z
p=1 ' p=1

Note that E [V?P] < (2p)?, while Stirling’s approximation yields p! > (p/e)?. Substituting these
two bounds, we get

o0

2 222p 1
AV <1+Z< ) D (2eN?y = = T3

p=0

19
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provided that 2eA? < 1, in which case the geometric series above converges. To bound this quantity
further, we can use the numeric inequality 1/(1 — ) < e?* which is valid for = € [0, 1/2]. It follows
that

EeMV” < e*Y for all A satisfying |A| < 1/2v/e.

Now set 4eA2 = In 2, then

In2 2
]:E |:€4€K2 ||X||2:| S 2’

4e e
< _— = —_— .
1X15,, < \/;K \/; <4mtR—i— 601@\/&)

which implies that

5. Bounding the KL divergence

In this section, we bound the quantity X = KL(t.q||p;), where v, is as in (8). While p; is defined
by the DDPM process, in this section we do not assume ¢, is the density of the discretized process;

rather, it is any density for which &, (%) and x2(q¢||p:) are finite.

Lemma 5.1 Suppose that ﬁo is a probability measure on R such that
~ m ~
Py=>) w;Pjo, (30)
j=1

where wj > 0, Z;"Zl w; = 1, and each ﬁj,o is a probability measure. Fort > 0, let p; and 17j,t
be the densities obtained by running the forward DDPM process (1) for time t, and p; = pr—,
Pjt = DjT—t- Let Wmin = miny<;<,, w;j and suppose all the P;; satisfy a log-Sobolev constant with
constant Cy. Then for any q;, where 1 is as in (8)

20T <Qt> < 1 )
KL <27t e L)+ .
(vt |[pe) X2(qllpe) +1 7 \ py Wmin

While we need p; to satisfy a log-Sobolev inequality to get a bound of the form mé"pt <Z—i>
((Lee et al., 2022, Lemma C.8)), we note that if we allow additive slack, it suffices for p; to be a
mixture of distributions satisfying a log-Sobolev inequality, with the logarithm of the minimum
mixture weight bounded below. In Lemma 5.2 we will see that we can almost decompose any
distribution of bounded support in this manner, if we move a small amount of the mass.

Proof Let f, : [m] — R be the function

Yi(z)qe(v)

Jild) = re  Di(T)

Pji(x) dx.

20
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By decomposition of entropy and the fact that each P; ; satisfies LSI with constant C7_,

KL (1] |pi) < Ent,, (wft)
Z/ w; Entp,, (ift) + Ento(F,)

Ch o Vg g
S;; gp( tde tt>+Et(f)

Pt bt
<5 (i ) < Bt
-4 [ V1n¢t;x)( 2)go(x) da + Ent., (F,)
:2Ct/Rd 'VlnptE ; (2)qi(z) dz + Enty, (f;)
-2 [ || e e

_ 2% a(z) ||* _
- W ' vat(x) pi(x) dz + Enty (f,)

1 () o ()
<t e ()i ,
2aellpe) +1 P \ py Winin

where the last inequality follows from noting w; f,(j) is a probability mass function on [m], so that
£ < and

Ent,, ijft In(f,(j Zwat (wl‘ >:ln <w1. )

Lemma 5.2 Suppose 0 < e < % and that Py is a probability measure such that Po(M) > 1—K
Let N (M, %) denote the covering number of M with balls of radius oy. Given § > 0, there exists

a distribution Py such that x*(P,||Po) < ex and considering the DDPM process started with Py,
forall0 <t <T -9,

61+c)od, . (@), (NMos/2)
KL(Ysq:|pe) < <X2(Qt‘|pt) n 1gpt <pt> +1 < e )) :

In particular, for M = Br(0) in RY,

6(L+e)oty , (@ 1 AR
KL (t1qs||pr) < (XQ(MZ%)H@@M (Pt) +1In <5K> +dln <1 + 05> . 31D

21



CONVERGENCE OF SCORE-BASED GENERATIVE MODELING FOR GENERAL DATA DISTRIBUTIONS

Proof Partition M into disjoint subsets M, 1 < j < N := N(M, 05/2) of diameter at most o,
and decompose

n
P{J = w, P, + ijpj’o
j=1

where p; is supported on M, and P, = Py(:|M*). We will zero out the coefficients of all small

components: let Z = ) jawy > S Wi and

W, . _
w70 JEML W25y
I 0, otherwise,

and define
~ n ~
PO = Z ijj,g.
j=1

Note that Z > 1 — £ — 3 < 21— =i As probability distributions on [m] U {*},

K
8N

_ 1 \?
4

and hence the same bound holds for X2(ﬁ0HF0)- Note each Mmtﬁlsjp is supported on a set of
diameter m;o < o. By Theorem 1 of Chen et al. (2021), noting that

X2 (N (p2, B)[|N (111, %)) = exp [(Mz — ) S e — )| <e

when ¥ = 0?1 and ||po — p1|| < o, ﬁjﬂf = (Mmtﬁﬁj,o) % @2 satisfies a log-Sobolev inequality with
constant 6(1 + €)o?. The result then follows from Lemma 5.1. For M = Bg(0), we use the bound

d
N(Bg(0),05/2) < (1 + %) (Vershynin, 2018, Corollary 4.2.13). |

In the next section, we show that we can move a small amount of mass € without significantly
affecting the score function. This is necessary, as our guarantees on the score estimate are for the
original distribution and not the perturbed one in Lemma 5.2.

6. The effect of perturbing the data distribution on the score function

In this section we consider the effect of perturbing the data distribution on the score function. The
key observation is that the score function can be interpreted as the solution to an inference problem,
that of recovering the original data point from a noisy sample, with data distribution as the given
prior distribution. We show through a coupling argument that we can bound the difference between
the score functions in terms of the distance between the two data distributions. This will allow us to
“massage” the data distribution in order to optimally bound KL(¢:¢:||p:) in Section 5.
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6.1. Perturbation under Y error and truncation

We first give a general lemma on denoising error from a mismatched prior.

Lemma 6.1 (Denoising error from mismatched prior) Let o be a probability density on R?, and
Py, P1x be measures on Re, Fori = 0,1, let P; denote the joint distribution of x; ~ P; , and
yi = x; + & where & ~ ¢, and let P; , denote the marginal distribution of y. Let

m® ()= sup /R I el p(a) da

0<f<1, fa fopda<e

Let ety = TV(Pyy, P1a) and €2 = x*(Poo||Piz). Then

/ Py y(dyo) ‘/ xopo(dxolyo)—/ x1Pr(dz1]yo)
Rd Rd Rd

< 8m? (eTv) + Ex\/ m) (eTv)

For ¢ = @2, the upper bound is O <025X (d + In (L)>>

2

ETV

Note the tricky part of the proof is to deal with P (dx1|yo), which can be thought of as inferring
assuming the incorrect prior P ., rather than the actual prior F ;.

Proof For notational clarity, we will denote draws from the conditional distribution as Zy and 'y,
for example Py(dZo|yo). Let 75(y) = [pa(Ts — y)Pi(dZ;|y). Let Py be a coupling of (zo,y0 =
xo + &0, 71,1 = y1 + &1) such that zp = 1 with probability 1 — epy and £y = &; with probability
1. We have

/ Po,y(dyo) lIro(yo) — 71 (o) 1> = / Po,1.y(dyo, dyr) lIro(yo) — r1(yo)|I”
R4 {yo=v1}

(I)
+ / Po.vy(dyo, dyn) [7o(wo) — 1 ()|
{yo#y1}

(1)
Define a measure (Q (not necessarily a probability measure) on R by
Q(A) :== Po1(yo € Aand yo = y1).
Note that
Q(A) < min{Fy y(A), Pry(A)},
so @ is absolutely continuous with respect to ), and P ,, and by assumption on the coupling,

Q(Rd) Z 1-— ETV. (32)
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Under Py, when yo = yi, we can couple Py(dZo|yo) and P;(dZ;|yo) so that g = x; with
probability min { d%Q , d;lDQ } Let P(dZ, d#1|yo) denote this coupled distribution. Then as in
Lemma 6.5,

2

(1) < / Po.1,y(dyo, dyr) / (o — yo) — (&1 — y0)) P(dZo, dZ1 |yo)
{yo=w1} {Zo#Z1}

SQ/ Po.1,y(dyo, dyr) / €0l ﬁ(dfo,dfl\yo)-i-/ 111> P(dZo, dZ1 1)
R4 {Zo#Z1} {Zo#21}

We bound this by first bounding

aQ | dQ
db,’~  dPi,

/ Po1,y(dy1,dy) P P(To #71) < /d Py,y(dy) max {1 - } <2y, (33)
R

which follows from the two inequalities (using (32))

From (33), and the fact that the distribution of (z;, y;) is the same as (Z;, y;) by Nishimori’s identity,
we obtain

(I) < Q(m(2)(2€Tv) + m(2)(2€Tv)) = 4m(2) (5TV>-

Now for the second term (II),
(1) < 2/ Po1y(dyo, dy1)([[ro(wo) 1> + 71 (w0) I1)-
{vo#y1

The first term satisfies f{yo#yl} Po.1,4(dyo, dy1) 7o (yo) || < m® (epy). For the second term, we
note that Cauchy-Schwarz gives for any measures P and () that

)P < [ fmean + [ (L -1) j@)eu)
i i (i
<[ f(w>Q(dw)+\/x2(PHQ) [ rarQus)

to switch from the measure P ,, to P :

2)2Q(dx

/ Pox(dyo) 171 (30)] /Po,y o) Po.o (0 # 11l90) IIr1 (o) I
{yo#n1

< /R Py (dyo) Po.1y(yo # y1lyo) |71 (o) |I” + \/x2(Po,y||P1,y)/Pl,y(dyo)Po,l,y(yo £ y1lyo) Ir1(vo) | *
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(Note that intentionally, the measure is P; ,,, though we use y for the variable.) Hence,

/ Py (dyo)Po,1,y(yo 7 y1lyo) < TV (P, Ply) +/ Poy(dyo)Po,1,y(yo # y1lyo) < 2eTv
n Rn

SO

/{ , Fona) )l < m® @) + VR (Poal[PLo)m (2ery),
Yo7FY1

where we used the data processing inequality.
For ¢ = ¢,2, we obtain by Lemma 6.6 that the bound is

o (sers ey (a1 (L)) =0 (s (a1 (1))

We use this lemma to obtain a bound on the L? score error under perturbation of the distribution,
by interpreting the score as the solution to a de-noising problem.

Lemma 6.2 (L2 score error under perturbation) Let P(O) = ﬁo(o) and P = ﬁo(l) be two prob-
ability distributions on R such that XZ(P(I) | ]P(O)) < Ei <1

1. For any o > 0,

J710 o2} (@) = Vin(BV s ) @) PV ) = O o (a4 (2))

o2

2. Let ﬁgi) be the density resulting from running (1) starting from PO, and let ot be as in (3).
Then for any t > 0,

[t - vt @] # @ =0 [ = (d“j(ei»

g%
Proof For part 1, note by (28) that

Vln(ﬁ(l)*gpog)( ) O'ZEP (.’L’—y),

where ]?’y(?72 is the “tilted” probability distribution defined by

dP(Z) |2
d;f; (33) ~e I 2(TyQH
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By Bayes’s rule, this can be viewed as the conditional probability that 2o = x given x; = y, where
xg ~ PWandy = 2o + o€, € ~ N(0, 1;). Hence this fits in the framework of Lemma 6.1 and

J71P 021w~ VPO s ) )| (PO 5 2) )

2
_0'4/Rd

(PW % p,2) (dy)

ok (een 1)

giving the result.
For part 2, note that p ~( ) = (M3 PO % @q2- Applying part 1 with P i M3 PO (which
preserves y2-divergence) and o = oy gives the result.

Es0 (2] — Eo[z]

yt yt

Finally, we argue that a score estimate that is accurate with respect to f)ﬁl) will still be accurate

with respect to ﬁ ), with high probability. When using this lemma, we will substitute in the bound

from Lemma 6.2.

Lemma 6.3 Let ﬁéo) and 150(1) be two probability distributions on R® with TV distance . Suppose
the estimated score function s;(x) satisfies

ot o, =5 om0 et <

fort e (0,T), and V lnf)ﬁo) is Ly-Lipschitz. Then for t € (0,T] and any e, > 0,
2
Pﬁu) (Hst—Vlnﬁgl)H 2500> <6+—- [at /HV]n~(1) Vlnfo{to)(:n)H ﬁgl)(:c)dac} .
t OO
Proof We have
Pﬁﬁl) (HSt — Vlnﬁil)H > €Oo>
<Py (Hst - v1n15§°)H > 500/2) + P (va@ﬁo) - vmfaﬁ”H > 500/2)
e Py

< TV 5 + o (Hst — Vg )+ Py (vaﬁﬁ‘)) - vm;aﬁ”H > £0o/2)

The first term is bounded by TV(ﬁ(O), ﬁ(l)) < e. For the second term, by Chebyshev’s Inequality,

4 4
Hst—Vln H ] < gt

PN(O) <H5t VIDpt H > 81/2) < 71[‘3.(0)

For the last term, again by Chebyshev’s Inequality,
4
Pﬁu) (HV]H@O)—VInﬁ?)H 2500/2) SQ/HVlnﬁﬁ (x) — Vlnpt H ﬁ(l z)d.
t 81
We conclude the proof by combining the these three inequalities. |

Finally, we will need the following to obtain a TV error bound to pp in Theorem 2.3.
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Lemma 6.4 Suppose that py < e~V @) is a probability density on R with bounded first moment

,and V is L-smooth. Then for t > 0 such that cyoy < ﬁ, we have

Ez |
- 3
TV(pt,p()) <2 (Oét - 1) ) (L]Eﬁo HXH + d) + §dLOét0't.
Here oy = 1/my and oy are defined in (3). In particular, TV (ps, po) < erv if 6 = (RQLZ) and

R = max {ﬁ, g, HXH}.

Proof Without loss of generality, we assume that py(z) = e~V (#). Note that () = [ afpo (ary)po2(z—

y)dy. Let g;(z) := afpo(asz), which is also a probability density on R Then by the triangle
inequality,

TV(pt,po) < TV(pr, @) +TV(qe, po)-

For the second term,

@) = Po(@)| = |afpo(as) - fo(a)

_ ‘e—\/(aw)—&—dlnat o e—V(x)

< maX{er(x)7e*V(atx)+dlnat} , (1 _ 67|V(m)7V(atx)+d1nat|>

(Po(2) + ¢e(x)) - (V(z) = V(auw)| + dInay)
< (po(@) + @:(x)) - [L ]| (ar — 1) + dIn o],

VANVAN

where in the second inequality, we use the fact that 1 — e* < |z| for all z < 0. Thus

TV(gt(x) /’% )| dx
< /[L (g — 1) ||z]| + d1In ay] po(x) dx + / [L(ay — 1) ||z|| + dInoy) ¢ () dz
< Loy —1) </ x| po(x)dx + / IEd] @(x)dw) + 2d1In oy
<2L(ay — 1) / ||| po(x)dx + 2d1n oy.

Now for the first term,

Pi(x) — () = / G(x — y)pn(y) dy — Gula) = / @z — o) — @(@)) ¢ (y)dy,
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where ((y) is the density of the d-dimensional standard Gaussian distribution. Apply Minkowski’s
inequality for integrals:

[ 1) -l o= [ | [ @t - ow) - ) o)ty
< [ | [1ate = o - @t as] ot ay
< / [ / <6LHat0tyH 1)@(33)6135] o(y) dy
= / (eL”““’ty” - 1) (y) dy

— (2m)" 2 / eLaalyl-142 0

< (Qﬂ_)d/2/6[—§+(Latat)Q]y|2dy + LOétO't/ Hy” go(y) dy —1

dx

1 /2
<l yi| Vatee -
1-2 (LO[tO't)

< e2d(LoztUt)2 — 1+ \/&Latct
< 4d (Lowor)? + VdLoyor,

where in the third inequality, we use the elementary inequality e* < z + €” * which is valid for
all z € R, and in the fifth inequality, we use =5 < e**, which holds for z € [0, 1/3]. Hence if
Layoy < 1/2, we have

VGG < 5 [ o)~ o) de < SdLason
Now we conclude the proof by combining the bounds for TV (p;, ¢:) and TV (po, ¢:):
TV(pt; o) < TV(pe, @) + TV(a, po)
_ 3
< 2L(coy — 1) / ||| po(x)dx + 2dIn oy + §dLatot
3
<2 (Oét — 1) . (LEﬁD ”X” + d) + §dLOét0't,

where we use the fact that Inz < z—1 forall z > 1. Recall that a; = 1/m; = e/ and0? = 1—¢~*

when g = 1. It suffices for

3 £
max{ ( Do ||X|| +d) (aé - 1) 5 QdLOé(;O'(S} S %,

which is implied by
9 = min TV , v = €ty ,
~ LE; | X[ +d &L% [ ~ R?L?
for appropriate constants, as R > max {\/g, Es, |1 X|| } [
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6.2. Perturbation under TV error

Although we will not need it in our proof, we note that we can derive a similar perturbation result
under TV error, which might be of independent interest.

Lemma 6.5 Let K(x,dy) be a probability kernel on RY, let Py, P1x be measures on R? Let
P; denote the joint distribution of x; ~ P;, and y; ~ K(x;,-), and let P;, denote the marginal
distribution of y. Suppose there is a coupling Py 1 of (zo,yo) ~ Py and (x1,y1) ~ Py such that

* 19 = x1 with probability 1 — ¢,

* xo = x1 implies yo = y1, and
2

* Elllyo —u1ll"] < e

Define the tail error by

mi(e) 1 = sup f(@) ||=]* Pi( dx).
0<f<1, fya fi du<e JRE

Let vi(y) = [pa xiPi(dx;i|y), and suppose that v1(y) = [pa 1 P1(dz1]y) is Ly-Lipschitz. Then
2
/]Rd Poy(dyo) /Rd zoPo(dzolyo) — /Rd x1 P (dz1]yo)
< 4(mo(2¢) + mo(e) + my(2e) + my(e)) + 2L3e%
< 4(mo(22) + 1 (26)) + A(1 + L) (mo(e) + ma ().

Proof For notational clarity, we will denote draws from the conditional distribution as Z( and 71, for
example Py (dZo|yo). We have

[ Postaso) Irotuo) =)l <2 [ Pyl du) Iraloo) = ra (o)

RIxR

()

42 / Po.vy(dyo, dyr) |71 (y1) — 1 (o) ||
R xRd

(1)

For the first term (I), we split it as

() < / Pouy(dyo. dyn) [Iro(o) — r1(yo)|I? + / Poay(dyo. dyn) [Iro(yo) — 1)1
{yo=y1} {yo#y1}

(%) (47)
Define the measure Q on R? by

Q(A) : = Poi(yo € Aand yo = y1).
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As in Lemma 6.2, under Py ;, when yo = y;, we can couple Py(dZo|yo) and P;(dZ1|yo) so that
2o = x1 with probability min { ddPQ _dQ } Let ﬁ(dio, dZ1|yo) denote this coupled distribution.

) dPy,
Then
2

(i) < / Po.1y(dyo, dy) / (o — 1) P(dZo, d71|yo)
{yo=u1} {To#Z1}

<9 / Py (dyo, dy) / 1Zoll? B0, d71 |yo) + / 13112 P(dzo, da[y)
R4 {Zo#71} {Zo#71}
< 2(mo(2¢) + m1(2¢))
as in Lemma 6.2. Now

(i1) < 2A # Po,1,(dyo. dy1)([lro(yo) I + [l (y1)I*) < 2(mo(e) +ma(e)).

Finally, for the second term (II), we use the fact that r; is L; Lipschitz and the coupling to
conclude

(I11) / Po1y(dyo, dy1) L3 ||lyo — yi||* < Liey,.

We conclude the proof by combining the inequalities for (i), (ii), and (II).
For the second upper bound, we note that

Elllyo — 9111%] < 2(Elllyoll") + Elllyall")) < 2(mo(e) +ma(e)).

6.3. Gaussian tail calculation
We use the following Gaussian tail calculation in the proof of Lemma 6.2.

Lemma 6.6 Let 1 be the standard Gaussian measure on N (0, 1;). Then

s;)gs/ | ,uda;)<a<2d—i—31n (i>+3> —o<g <d+ln (i)))
SX)I;/ Izl ,udx)<5<2d+3ln<i>>2+36 <2d+31n<i>>+95=0<5 <d2+ln<i>2>>.

Proof By the X tail bound in Laurent and Massart (2000), for t > 0,
p(|X|1? > 2d + 3t) <P(|X]]? > d + 2vVdt + 2t) < e, (34)

s0 || X|? is stochastically dominated by a random variable with cdf F(y) = 1 — e~ Then letting
Py be the measure corresponding to F',

s / ol u(de) < sup / yPy(dy) = / ydF (y)
<eJA

Py (A)< 2d+31n( 1)
1 o0 _y—2d 1
:5<2d+3ln<)>+/ e 3 = (2d+3ln<>>+36
€ 2d+31In(1) €
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P / ol ulde) < sup / y2 Py (dy) = / y2dF(y)
Py (A)<e 0l+31nl

E

1 y—2d
=c <2d +3In <>> 2ye” 3 dy
d+31n )
:€<2d+31n <>> y32d] ‘Oo —l—/oo 367'1!_3% dy
2d+31n(é) 2d+31n(é)
1 1
:5<2d—|—3ln<)> + 3¢ <2d—|—3ln<€)>+9e.

)

—_

™

)

7. Guarantees under L>-accurate score estimate
We will state our results under a more general tail bound assumption.
Assumption 6 (Tail bound) R :[0,1] — [0, 00) is a function such that Psaa(Br()(0)) > 1 —e.

Our result will require R(¢) to grow at most as a sufficiently small power of e~! as ¢ — 0; in
particular, this holds for subexponential distributions. By taking R to be a constant function, this
contains the assumption of bounded support (Assumption 2) as a special case.

7.1. TV error guarantees

We follow the framework of Lee et al. (2022) to convert guarantees under L°°-accurate score estimate,
to guarantees under L?-accurate score estimate.

Theorem 7.1 ((Lee et al., 2022, Theorem 4.1)) Let (2, F,P) be a probability space and {Fn} be
a filtration of the sigma field F. Suppose Xy, ~ pyn, Zn ~ qn, and Z,, ~ §,, are F,-adapted random
processes taking values in ), and B,, C ) are sets such that the following hold for every n € Nj.

1. If Zy, € By forall0 <k <n—1, then Z,, = Z,,.

2. x*(@yllpn) < D2

3. P(X, € By) < 6p.

Then the following hold.
n—1 n—1
TV(gn,G,) < O (D} + D262 TV(pn,qa) < Do+ > (DF+1)Y25/2  (35)
k=0 k=0

Theorem 7.2 (DDPM with L?-accurate score estimate) Let 0 < Ex,ETV,0 < % Suppose that

3 6,12
ey ey’

Assumption 6 for a sufficiently small value of c that Ry is such that R ( ROT ) < Ry, and
0

R% > d. Suppose one of the following cases holds.
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1. Let Pya, 5(+, t) be such that Assumption 1 holds, with R% > d. Suppose that

11/2
Eg = @) <6TV65/25X / ) )
B9/4

where B = Rédln (%) ln( Rod ) and we run (5) starting from pyior for time T =

6€T\/€X

B(T+% x
X

€3< Bmax{T—tg,(T—t) 3}
2. Let Pypa, (-, t) be such that Assumptions 1 and 3 hold, with C' > R%. Suppose
3
. ET\/EX
g =0 <T5/2B> )
where B = C?dIn (%) n( eRfi_ ) and we run (5) starting from pyior for time T =
In ( 16R0) N=0 B(T
X

Then the resulting distribution q, is such that g is epy-far in TV distance from a distribution q,  ,

where G, satisfies X*(qy Pty ) < €3. In particular, taking ey, = etv, we have TV (qr, Pyaa) <
QET\/.

2

0
1
52(6))> steps with step sizes satisfying hy, = O ( " - >
X

Bmax{T—t,(T—tr)~ '}

Note that the condition on R can be satisfied if R(¢) = o(R~Y'9) (no effort has been made to
optimize the exponent). B
Proof We invoke Lemma 5.2 for a € to be chosen, to obtain a distribution Py on Bg,(0), where

Ry > R(ek/8). Let B = Rédln( ) In ( R?() and B = C’2dln( ) In ( Ro ) in case 1 and case

2
2, respectively; our choice of e = O ( 732‘;56 ) will give the definition of B in the theorem statement.
0

In the following, we define p; with ]30, rather than Py,,, as the initial distribution. Note that since
TV (Pyata, 150) < ek = o(erv) (and the same holds for their evolutions under (1)), it suffices to
consider convergence to ps.

We first define the bad sets where the error in the score estimate is large,

By : = {[|VInfiu(x) — s(a,t)]| > oo} (36)

for some €4, ¢ to be chosen.
Given t > 0, let t_ = t;, where k is such that t € [ty,t;11). Given bad sets By, define the
interpolated process on [t tx11) by

dz; = g(T — t)* (;zt +b(z—, T — t_)> dt + g(T —t) dwy (37)

s(z,t), 2 & By

where b(z,t) = .
(Z ) {Vlnﬁt(z), ZEBt

In other words, simulate the reverse SDE using the score estimate as long as the point is in the good
set at the previous discretization timepoint ¢, and otherwise use the actual gradient V Inp;. Let
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q, denote the distribution of Z; when Zp ~ go. Note that this process is defined only for purposes
of analysis, as we do not have access to V In p;. As before, we let denote ¢, the distribution of z;
defined by (13).

We can couple this process with the exponential integrator (5) using s so that as long as x;,, &
Br_.,,, the processes agree, thus satisfying condition 1 of Theorem 7.1.

Then by Lemma 6.3, substituting the bound of Lemma 6.2 for the L? score error,

1
B 4 e (d +In (—))
BOB) =ex+—— |2+0 —~ K :
oo,t t

Then by choice of hy, and either Corollary 4.11 or 4.12, when |, g2 dt = 0(1),

tn
X2 (@, |Ipe) = €5 (aolIpo) + € + €7 / €201 dt (38)
0
< 2x*(qollpo) + O(1),

2
where ¢ = TX For x*(q;, ||pt,.) to be bounded by &2, it suffices for the terms in (38) to be bounded

2 2 2

by %X, =4 TX this is implied by
16R?
T = ln( 3 ) by Lemma 4.14
€
X
tn
/ E2or_tdt = O(£2). (39)
0

By Theorem 7.1,

—_

3

Tv(qtnaQtn) < Z(l + XQ(qtkHptk))1/2P(Btk)1/2

k=0
n—1
1/2
<> (2¢@llp) 2 +0(1) 8/ (40)
k=0
n—1
d+In(1
el = F +In(l/ex) ) ) (41)
k=0 Eoo,tk EOO,tkO—T—tk
For this to be bounded by eTv, it suffices for
n—1 c
— = O(erv) (42)
pent
o222
ming £, 07,
=0 —F~-—E]. 43
K <d+ln(1/eK)> “43)
We bound (43) crudely, as the dependence on € g will be logarithmic. Using s?k =e2/ crfk, it suffices
that
&2
=0|—2—). 44
2 (d+ln(1/5K)) (44
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We will return to this after deriving a condition on &,. It remains to bound (39) and (42). We break
up the timepoints depending on whether 7' — ¢ > 1. Let

(tO; t]_, . ,tN) = (to7 e ,tncoarse_l,t67 e ,t;lﬁnc)

and uy, = T — t},, where tyeome_1 < T —1 < ¢{. Let h) = t}, 41 — t}.. Note the “fine” timepoints
will be closer together than the “coarse” timepoints. We break up the integral (39) and the sum (42)
into the parts involving the coarse and fine timepoints. For (39), it suffices to have
tl

39), coarse: dt <T max = 0(?

(39), /0 €50, T—t o< e oo,Tflt;c (e%)
so it suffices to take 5§0 Tt = %" Let @« = 3 in case 1 and o = 1 in case 2. For the fine part,
recalling our choice of i, it suffices to have (note we can redefine ¢, = ¢;, when t € [ty,t541)
without any harm)

ﬁne —1

tfnﬁne
(39), fine: /t 2o i dt = Z hipe2 iy = O(e})

0

B Uk X
k=0
nﬁne_l uo‘ 2
— ) b 2 =0(1). (45)
k=0
For (42), it suffices to have
peoarse __ | . .
T—t o
(42), coarse: ——k e pfoase__7 _ — O(etv
kzzo Eoo,T—ts, ex/\/T (erv)
. ETVEY
= =0 <ncoarse\/T) (46)
and
nﬁne_l . nﬁne_l .
(42), fine: Z U —2 = O(ev). (47)
k—0 Eoo,up k—0 UKE oo, uy,

Note that in light of the required step sizes, we can take n°%® =< Z—QB. Considering the equality
X

case of Holder’s inequality on (45)1/3(47)?/3 suggests that we take

Bl/2
€5 =X cIv (48)
nfine _1 a—2 3/2
(S )
B1/2
Eoo,up X 49)
’ atl pine_q  a—2)1/2
U 3 ( k=0 Uk 3 )
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Note that the number of steps needed in the fine part is O ( 5 62) in the first case and O <

)i (})
in the second case. We can check that (48) and (49) make (45) and (47) satisfied.
Finally, we calculate the denominator for ,. In case 1, note that starting from 7" — ¢;, = O(1)

2
W, it takes nfi"* = © (Ei%) steps toreach T — ¢t = 4.

1
k‘2 T2
up =T —t), = (1+@<;">>

nfine_1 nfine_1 2 11/6
ke - 5 B 1
1/3 Z ner 5
uk/ = (1 © ( BX)) = e2 (nh )o = <52> §5/3°

k=0 k=0

X

and taking steps of size hj, =

o=
Sy

Then we obtain

5/2 _ €TV

12 &
eq = ervBP g0t = e —

In case 1, our requirement is

-0 ey /2 A eTvey
€o = BY/A 7525 |’

but note that the first bound is more stringent. Now, returning to (44), we see that it suffices to take

11/2
ervd5/2e /

248
ex =0 <(11 <R8d9/‘i(> ) for any 5 > 0 (this will “solve” the log(1/ex) appearing in B.)

2
In case 2, we have instead u; = exp <—@ (%‘k)) SO

82 3/2 ET\/€3
Eo X ET\/BI/2 <g> = TX

Theorem 7.3 (TV error for DDPM with L2-accurate score estimate and smoothness) Ler 0 <
ety < 1 Suppose that Assumption 4 and 6 for a sufficiently small value of c that Ry is such that

R (%) < Ry, and R} > max {d Ep,. [HXH } }, and one of the following cases holds.

1. Let Pyy, S(+, t) be such that Assumption 1 holds. Suppose that

8115
50:0( 9/4TV5 5)7
BYARSL

where B = R4dln (TR2L2> <R3dL ) and we run (5) starting from ppior for time T' =

ety ETvex
RoL\*
I (1683 N — ( +(ETV> ) teps with step sizes satisfying hy, = O it
2 ) 2y sieps w P SIZ S 8k = Bmax{T—t,(T—t;)~3}
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2. Let Py, s(-, t) be such that Assumptions 1 and 3 hold, with C > R3. Suppose

4
—of f1v
o (T5/2B>7
RZL? R3dL?
) (%

TV

where B = C?dIn ( ), and we run (5) starting from pyrior for time T' =

TV

€rv €rv

B(T+1n( Bk 2
In <I6R°> N=0 ((r;(ETV))> steps with step sizes satisfying hy, = O ( °X

Then the resulting distribution q;, is such that q; , is erv-far in TV distance from the data distribution
Pdata-

Proof With the result of Theorem 7.2, we see that TV (g, pt,) < 2eTy. Now by Lemma 6.4, if

we further assume
2
€
0=0(—=5 )
<R3L2)

then TV (p:,, Paata) < ery. We conclude the proof by triangle inequality and replacing the -

dependence with O( in the previous theorem. |

R2L2)

Proof [Proof of Theorem 2.3] If Py,, is subexponential with a fixed constant, note that Assumption 6
holds with R(¢) = O (ln (%)) and hence IRy is logarithmic in all parameters. |

7.2. Wasserstein error guarantees
Proof [Proof of Theorem 2.1] Suppose T' — ty = 4. Note by (3) that M, N #ﬁg has the same
distribution as 7y + mgla(;z, where 7y ~ 150 and z ~ N(0,I;). Then Wz(po, 71ﬁp5) <

2
mgla(;\/ﬁ < +ved —1 < +/25d (for § < 1). Choosing § = 52%, we see by Theorem 7.2 it suffices to
take

_of e (&
(

(rann (2

Simplifying gives €, = 0 ( ;g;fgg ) . If Assumption 3 also holds, then it suffices to take

e =0 v
52020 (5) n ()

4
Simplifying gives €, = 0 <CT—V> |
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Proof [Proof of Theorem 2.2] To obtain purely Wasserstein error guarantees, we include an extra
step of replacing any sample z;,, ~ ¢, falling outside Br(0) by 0. Suppose T" — ty = J. Let ¢,
be the resulting distribution. Then as above,

WQ(ﬁO; /q\tN) S W2(507ﬁ5) + WQ(ﬁ(sv Eth)
< V26d + Wa(ps, G )-

2
We choose § = Z—d so the first term is < SY. It suffices to bound the second term Wa(ps, Gy, ) also
by 5%. We bound it in terms of TV (ps, Gz, ) using the fact that g, is supported on Br(0) and using
a Gaussian tail calculation for ps. Consider a coupling of z;,, = Z5 ~ ps and 2, ~ G, such that
x§ # zt, with probability eTv. Express z5 = mszo + 05 where Tg ~ pg. Now

Bl — 2’1 < sup 2 (Ellms@o — 21y > 1] + o3ElE] 14])
P(A)<erv

1
=2 <4R2€TV + O'(%ETV -0 <d +In <>>> R
ETV

where the bound on the second term uses Lemma 6.6. Using R? > d, we see that it suffices to choose
2
ety = 0O (%) for appropriate choice of constants. By Theorem 7.2, it suffices to take

(/B (/)"

7O (a5 (12))

18
Simplifying gives o (% .

In case 2, it suffices to take
(et /R*)*
T5/2(C2dn (§) In (X))

8
Simplifying gives e, = 0 (%) u
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Appendix A. High-probability bound on the Hessian

In this section we obtain a high-probability bound on the Hessian of In p, i.e., the Jacobian of the
score function.

To see why we expect Hessian to usually be smaller than the worst-case bound given by
Lemma 4.13, note that we can express (28) and (29) as

1

Vin(p* g2(y)) = -5 EY - XY =y (50)
1 1

V2 In(p * py2(y)) = — Covly = XY =y] - — 14 (51)

where X ~ pandY = X + 0§, § ~ N(0,1;). We expect that the random variable Y — X is
distributed as N (0, 021;), which suggests that the covariance (51) may be bounded by % rather
than % with high probability. Indeed, we can easily construct an example where the worst case of
Lemma 4.13 is attained—for example, pu = 3(5_,, + &) for ||v|, = R, at z = O—but this point has
exponentially small probability density under p * ¢ 2.

The following lemma uses a e-net argument to bound the operator norm of the variance of a
conditional distribution, with high probability.

Lemma A.1 Suppose X is a R%valued random variable over the probability space (Q,G, P), and
F C Gisao-subalgebra. If X is subgaussian, then

P <IE [HXXTH F] =202, (2 '€5d>> <e.
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Proof By Jensen’s inequality and Markov’s inequality, for any v € S%~1,
P (E[UTXXTUW > v) _p (eE[vTXwa]/cz > e>\2/02)
< B (E [0 F] > )

E [E[eX)/¢|F)| B [e)/]

— —22/1IX
< e/\z/CQ - 6)‘2/02 S 2e 2,

where the last inequality follows from taking ¢ = || X[ ,,. Now take a $-net \ of S%~1 of size < 5¢
(Vershynin, 2018, Cor. 4.2.13). By a union bound,

P (31} eN Ep' XX v|F] > )\2> <5l.g. o IXI,

when we take A = [[ X, 1/In (26—5d) By (Vershynin, 2018, Lemma 4.4.1), the operator norm can
be bounded by the norm on an e-net,

|A]l < 2sup|[(A, v)|| = 2sup v " Avl.
vEA vEA

where the second inequality holds when A is symmetric. The result follows from applying this to
Elv" X X Tv|F]. [ |

From this we obtain the desired high-probability bound.

Lemma A.2 There is a universal constant C' such that the following holds. For any starting
distribution Py, letting P; be the law of the DDPM process (1) at time t, we have

0(l
B <HV21nﬁt($)H < CW) Sl

g%
Note that there is no dependence on the radius.
Proof Apply (51) with g = M,,,; P to obtain VZInp;. Noting that Y — X ~ N(0,021,) is
subgaussian with [|Y" — X{|,,, < Czo for some universal constant Cs, the result follows from
Lemma A.1. |
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