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Abstract
Score-based generative modeling (SGM) has grown to be a hugely successful method for learning
to generate samples from complex data distributions such as that of images and audio. It is based
on evolving an SDE that transforms white noise into a sample from the learned distribution, using
estimates of the score function, or gradient log-pdf. Previous convergence analyses for these methods
have suffered either from strong assumptions on the data distribution or exponential dependencies,
and hence fail to give efficient guarantees for the multimodal and non-smooth distributions that
arise in practice and for which good empirical performance is observed. We consider a popular kind
of SGM—denoising diffusion models—and give polynomial convergence guarantees for general
data distributions, with no assumptions related to functional inequalities or smoothness. Assuming
L
2-accurate score estimates, we obtain Wasserstein distance guarantees for any distribution of

bounded support or sufficiently decaying tails, as well as TV guarantees for distributions with further
smoothness assumptions.
Keywords: Score-based generative modelling, diffusion model, reverse SDE

1. Introduction

Diffusion models have gained huge popularity in recent years in machine learning, as a method to
learn and generate new samples from a data distribution. Score-based generative modeling (SGM),
as a particular kind of diffusion model, uses learned score functions (gradients of the log-pdf) to
transform white noise to the data distribution through following a stochatic differential equation.
While SGM has achieved state-of-the-art performance for artificial image and audio generation (Song
and Ermon, 2019; Dathathri et al., 2019; Grathwohl et al., 2019; Song and Ermon, 2020; Song et al.,
2020; Meng et al., 2021; Song et al., 2021b,a; Jing et al., 2022), including being a key component of
text-to-image systems (Ramesh et al., 2022), our theoretical understanding of these models is still
nascent.

In particular, basic questions on the convergence of the generated distribution to the data distribu-
tion remain unanswered. Recent theoretical work on SGM has attempted to answer these questions
(De Bortoli et al., 2021; Lee et al., 2022; De Bortoli, 2022), but they either suffer from exponential
dependence on parameters or rely on strong assumptions on the data distribution such as functional
inequalities or smoothness, which are rarely satisfied in practical situations. For example, considering
the hallmark application of generating images from text, we expect the distribution of images to be
(a) multimodal, and hence not satisfying functional inequalities with reasonable constants, and (b)
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supported on lower-dimensional manifolds, and hence not smooth. However, SGM still performs
remarkably well in these settings. Indeed, this is one relative advantage to other approaches to
generative modeling such as generative adversarial networks, which can struggle to learn multimodal
distributions (Arora et al., 2018).

In this work, we aim to develop theoretical convergence guarantees with polynomial complexity
for SGM under minimal data assumptions.

1.1. Problem setting

Given samples from a data distribution Pdata, the problem of generative modeling is to learn the
distribution in a way that allows generation of new samples. A general framework for many score-
based generative models is where noise is injected into Pdata via a forward SDE (Song et al., 2020)

dext = f(ext, t) dt+ g(t) dwt, t 2 [0, T ], (1)

with ex0 ⇠ eP0 := Pdata. Here f and g are functions specified in section 2, and wt is a standard
Brownian Motion. Let ept denote the density of ext. Remarkably, ext also satisfies a reverse-time SDE,

dext = [f(ext, t)� g(t)2r ln ept(ext)] dt+ g(t) d ewt, t 2 [0, T ], (2)

where ewt is a backward Brownian motion (Anderson, 1982). Because the forward process transforms
the data distribution to noise, the hope is to use the backwards process to transform noise into
samples.

In practice, when we only have sample access to Pdata, the score function r ln ept is not available.
A key mechanism behind SGM is that the score function is learnable from data, through empirically
minimizing a de-noising objective evaluated at noisy samples ext (Vincent, 2011). The samples ext are
obtained by evolving the forward SDE starting from the data samples ex0, and the optimization is
done within an expressive function class such as neural networks. If the score function is successfully
approximated in this way, then the L

2-error Eept [kr ln ept(x)� s(x, t)k2] will be small. The natural
question is then the following:

Given L
2-error bounds of the score function, how close is the distribution generated by

(2) (with score estimate s(x, t) in place ofr ln ept, and appropriate discretization) to the
data distribution Pdata?

We note it is more realistic to consider L2 rather than L
1-error, and this makes the analysis more

challenging. Indeed, prior work on Langevin Monte Carlo (Erdogdu et al., 2021) and related sampling
algorithms only apply when the score function is known exactly, or with suitable modification, known
up to L

1-error. L2-error has a genuinely different effect from L
1-error, as it can cause the stationary

distribution for Langevin Monte Carlo to be arbitrarily diffferent (Lee et al., 2022), necessitating a
“medium-time” analysis.

In addition, we hope to obtain a result with as few structural assumptions as possible on Pdata, so
that it can be useful in realistic scenarios where SGM is applied.

1.2. Prior work on convergence guarantees

We highlight two recent works which make progress on this problem. Lee et al. (2022) are the first to
give polynomial convergence guarantees in TV distance under L2-accurate score for a reasonable
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family of distributions. They introduce a framework to reduce the analysis under L2-accurate score to
L
1-accurate score. However, they rely on the data distribution satisfying smoothness conditions and

a log-Sobolev inequality—a strong assumption which essentially limits the guarantees to unimodal
distributions.

De Bortoli (2022) instead make minimal data assumptions, giving convergence in Wasserstein
distance for distributions with bounded support M. In particular, this covers the case of distributions
supported on lower-dimensional manifolds, where guarantees in TV distance are unattainable.
However, for general distributions, their guarantees have exponential dependence on the diameter of
M and the inverse of the desired error (exp(O(diam(M)2/"))), and for smooth distributions, an
improved, but still exponential dependence on the growth rate of the Hessian r2 ln ept as the noise
approaches 0 (exp( eO(�)) for distributions with

��r2 ln ept
��  �/�2t ).

We note that other works also analyze the generalization error of a learned score estimate (Block
et al., 2020; De Bortoli, 2022). This is an important question because without further assumptions,
learning an L

2-accurate score estimate requires a number of samples exponential in the dimension.
As this is beyond the scope of our paper, we assume that an L

2-accurate score estimate is obtainable.

1.3. Our contributions

In this work, we analyze convergence in the most general setting of distributions of bounded support,
as in De Bortoli (2022). We give Wasserstein bounds for any distribution of bounded support (or
sufficiently decaying tails), and TV bounds for distributions under smoothness assumptions, that
are polynomial in all parameters, and do not rely on the data distribution satisfying any functional
inequality. This gives theoretical grounding to the empirical success of SGM on data distributions
that are often multimodal and non-smooth.

We streamline the �2-based analysis of Lee et al. (2022), with significant changes as to com-
pletely remove the use of functional inequalities. In particular, the biggest challenge—and our
key improvement—is to bound a certain KL-divergence without reliance on a global functional
inequality. For this, we prove a key lemma that distributions which are close in �2-divergence have
score functions that are close in L

2 (which may be of independent interest), and then a structural
result that the distributions arising from the diffusion process can be slightly modified as to satisfy the
desired inequality, through decomposition into distributions that do satisfy a log-Sobolev inequality.

Upon finishing our paper, we learned of a concurrent and independent work (Chen et al., 2022)
which obtained theoretical guarantees for score-based generative modeling under similarly general
assumptions on the data distribution. We note that although our bounds are obtained under similar
assumptions (with our assumption of the score estimate accuracy slightly weaker than theirs), our
proof techniques are quite different. Following the “bad set” idea from Lee et al. (2022), we derived
a change-of-measure inequality with Theorem 7.1, while the analysis in Chen et al. (2022) is based
on the Girsanov approach.

2. Main results

To state our results, we will consider a specific type of SGM called denoising diffusion probabilistic
modeling (DDPM) (Ho et al., 2020), where in the forward SDE (1), f(x, t) = �1

2g(t)
2
x for some

non-decreasing function g to be chosen. The forward process is an Ornstein-Uhlenbeck process with
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time rescaling: ext has the same distribution as

mtex0 + �tz, where

mt = exp


�1

2

Z t

0
g(s)2 ds

�
, �

2
t = 1� exp


�
Z t

0
g(s)2 ds

�
, and z ⇠ N(0, I). (3)

Given an estimate score function s(x, t) approximating r ln ept(x), we can simulate the reverse
process (reparameterizing t [ T � t and denoting pt := epT�t)

dxt =
1

2
g(T � t)2 (xt + 2r ln pt(xt)) dt+ g(T � t) dwt (4)

with the exponential integrator discretization (Zhang and Chen, 2022). Denoting this discretized
process by zt, and letting hk = tk+1 � tk and ⌘k+1 ⇠ N(0, Id).

ztk+1 = ztk + �1,k(ztk + 2s(T � tk, ztk)) +
p
�2,k · ⌘k+1, (5)

where �1,k = exp


1

2
Gtk,tk+1

�
� 1, �2,k = exp

⇥
Gtk,tk+1

⇤
� 1, andGt0,t :=

Z t

t0
g(T � s)2 ds.

(6)

We initialize z0 with a prior distribution that approximates p0 = epT for sufficiently large T :

z0 ⇠ q0 = pprior : = N(0,�2T Id) ⇡ N(0, Id). (7)

While we focus on DDPM, we note that the continuous process underlying DDPM is equivalent to
that of score-matching Langevin diffusion (SMLD) under reparameterization in time and space (see
(Lee et al., 2022, §C.2)). We will further take g ⌘ 1 for convenience in stating our results.

Our goal is to obtain a quantitative guarantee for the distance between the distribution qtK for ztK
(for appropriate tK ⇡ T ) and Pdata, under a L

2-score error guarantee. In the following, we assume a
sequence of discretization points 0 = t0 < t1 < · · · < tK  T has been chosen.

Assumption 1 (L2 score error) For any t 2 {T � t0, . . . , T � tK}, the error in the score estimate

is bounded in L
2(ept):

kr ln ept � s(·, t)k2L2(ept) = Eept [kr ln ept(x)� s(x, t)k2]  "2t :=
"
2
�

�4t

.

We note that the gradient r ln ept grows as 1
�2
t

as t ! 0, so this is a reasonable assumption, and
quantitatively weaker than a uniform bound over t.

Assumption 2 (Bounded support) Pdata is supported on BR(0) :=
�
x 2 Rd : kxk  R

 
.

For simplicity, we assume bounded support when stating our main theorems, but note that our results
generalize to distributions with sufficiently fast power decay. In the application of image generation,
pixel values are bounded, so Assumption 2 is satisfied with R typically on the order of

p
d.

These are the only assumptions we need to obtain a polynomial complexity guarantee. We also
consider the following stronger smoothness assumption, which is Assumption A.6 in De Bortoli
(2022) and will give better dependencies. Note that (De Bortoli, 2022, Theorem I.8) shows a
(nonuniform) version of Assumption 3 holds when p0 is a smooth density on a convex submanifold.
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Assumption 3 The following bound of the Hessian of the log-pdf holds for any t > 0 and x:

��r2 ln pt(x)
��  C

�2t

,

for some constant C > 0.

Finally, the following smoothness assumption on ep0 will allow us to obtain TV guarantees.

Assumption 4 Pdata admits a density ep0 / e
�V (x)

where V (x) is L-smooth.

We are now ready to state our main theorems.

Algorithm 1 DDPM with exponential integrator (Song et al., 2020; Zhang and Chen, 2022)
INPUT: Time T ; discretization points 0 = t0 < t1 < · · · < tN  T ; score estimates s(·, T � tk);
radius R; function g (default: g ⌘ 1)
Draw z0 ⇠ pprior from the prior distribution pprior given by (7).
for k from 1 to N do

Compute ztk from ztk�1 using (5).
end
Let bztN = m

�1
T�tN

ztN if ztN 2 BR(0); otherwise, let bztN = 0.

Theorem 2.1 (Wasserstein+TV error for distributions with bounded support) Suppose that As-

sumption 1 and 2 hold with R �
p
d. Then there is a sequence of discretization points 0 = t0 <

t1 < · · · < tN < T with N = O(poly(d,R, 1/"TV, 1/"W)) such that if "� = eO
⇣
"6.5TV"

5
W

R9d4.75

⌘
, then the

distribution of the scaled output m
�1
T�tN

ztN of DDPM is "TV-close in TV distance to a distribution

that is "W in W2-distance from Pdata. If in addition Assumption 3 holds with C � R
2
, it suffices for

"� = eO
⇣
"4TV
C2d

⌘
(note that the eO(·) hides logarithmic dependence on "W).

This result is perhaps surprising at first glance, as it is well known that for sampling algorithms
such as Langevin Monte Carlo, structural assumptions on the target distribution—such as a log-
Sobolev inequality—are required to obtain similar theoretical guarantees, even with the knowledge
of the exact score function. The key reason that we can do better is that we utilize a sequence of score
functions st along the reverse SDE, which is not available in standard sampling settings. Moreover,
we choose T large enough so that q0 = pprior is close to p0, and it suffices to track the evolution of
the true process (2), that is, maintain rather than decrease the error. To some extent, this result shows
the power of DDPM and other reverse SDE-based methods compared with generative modeling
based on standard Langevin Monte Carlo.

A statement with more precise dependencies, and which works for unbounded distributions with
sufficiently decaying tails, can be found as Theorem 7.2. We note that under the Hessian bound
(Assumption 3), up to logarithmic factors, the same score error bound suffices to obtain a fixed TV
distance to a distribution arbitrarily close in W2 distance. By truncating the resulting distribution, we
can also obtain purely Wasserstein error bounds.

Theorem 2.2 (Wasserstein error for distributions with bounded support) In the same setting

as Theorem 2.1, consider the distribution bqtN of the scaled and truncated output bxtN of DDPM. If
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Assumptions 1 and 2 hold with R �
p
d and "� = eO

⇣
"18W

R22d4.75

⌘
, then with appropriate (polynomial)

choice of parameters, W2(bqtK , Pdata)  "W. If in addition Assumption 3 holds with C � R
2
, then

"� = eO
⇣

"8W
C2R8d

⌘
suffices.

With an extra assumption on the smoothness of Pdata, we can also obtain purely TV error bounds:

Theorem 2.3 (TV error for distributions under smoothness assumption) Suppose that Assump-

tions 1 and 4 hold, Pdata is subexponential (with a fixed constant), and denote R = max
np

d,EPdata
kXk

o
.

Then there is a sequence of discretization points 0 = t0 < t1 < · · · < tN < T with N =

O(poly(d,R, 1/"TV)) such that if "� = eO
⇣

"11.5TV
R14d2.25L5

⌘
, then the distribution qtN of the output ztN

of DDPM satisfies TV(qtN , Pdata)  "TV. If in addition Assumption 3 holds with C � R
2
, then

"� = eO
⇣
"4TV
C2d

⌘
suffices.

A more precise statement can be found as Theorem 7.3, which also works more generally with
sufficient tail decay. We note that this result can be derived directly by combining Theorem 7.2 and a
TV error bound between Pdata and ptN (Lemma 6.4) depending on the smoothness of Pdata.

3. Notation and proof overview

We let ept denote the density of ext under the forward process (1). Note that x0 ⇠ eP0 may not admit a
density, but ext will for t > 0. For the reverse process, we use the notation pt = epT�t, xt = exT�t.
We defined mt and �t in (3),

mt = exp


�1

2

Z t

0
g(s)2 ds

�
, �

2
t = 1� exp


�
Z t

0
g(s)2 ds

�
,

and note that ept = (Mmt]
eP0)⇤'�2

t
, where Mm(x) = mx denotes multiplication by m, F]P denotes

the pushforward of the measure P by F , and '�2 is the density of N(0,�2Id). When g ⌘ 1, we note
the bound �2t  min{1, t} and �2t = ⇥(min{1, t}).

We will let zt denote the (interpolated) discrete process (see (13)) and let qt be the density of zt.
We define

�t(x) =
qt(x)

pt(x)
,  t(x) =

�t(x)

Ept�
2
t

, (8)

and note that qt t is a probability density. We defined Gt0,t =
R t
t0 g(T � s)2 ds in (6).

We denote the estimated score function by either s(x, t) and st(x) interchangeably.
A random variable X is subgaussian with constant C if

C = kXk 2
: = inf

�
t > 0 : E exp(X2

/t
2)  2

 
<1.

A Rd-valued random variable X is subgaussian with constant C if for all v 2 Sd�1, hX, vi is
subgaussian. We also define

kXk2, 2
: = kkXk2k 2

.
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Given a probability measure P on Rd with density p, the associated Dirichlet form is

Ep(f, g) :=

Z

Rd
hrf,rgi P (dx) =

Z

Rd
hrf,rgi p(x) dx; (9)

denote Ep(f) = Ep(f, f). we say that a log-Sobolev inequality (LSI) holds with constant CLS if for
any probability density q,

KL(q||p)  CLS

2
Ep

✓
q

p
, ln

q

p

◆
=

CLS

2

Z

Rd

����r ln
q(x)

p(x)

����
2

q(x) dx. (10)

Note
R
Rd

���r ln q(x)
p(x)

���
2
q(x) dx is also known as the Fisher information of q with respect to p. Alter-

natively, defining the entropy by Entp(f) = Epf(x) ln f(x)� Epf(x) lnEpf(x), for any f � 0,

Entp(f) 
CLS

2
Ep (f, ln f) =

CLS

2

Z

Rd
kr ln f(x)k2 f(x)p(x)dx. (11)

3.1. Proof overview

Our proof uses the framework by Lee et al. (2022) to convert guarantees under L1-accurate score
function to under L2-accurate score function. For the analysis under L1-accurate score function, we
interpolate the discrete process with estimated score, zt ⇠ qt, and derive a differential inequality

d

dt
�
2(qt||pt) = �g(T � t)2Ept

✓
qt

pt

◆
+ 2E

⌧
g(T � t)2(s(ztk , T � tk)�r ln pt(zt),r

qt(x)

pt(x)

��
.

We bound resulting error terms, making ample use of the Donsker-Varadhan variational principle to
convert expectations to be under pt. Under small enough step sizes, this shows that �2(qt||pt) grows
slowly (Theorem 4.10), which suffices as �2-divergence decays exponentially in the forward process.

The most challenging error term to deal with is the KL divergence term KL(qt t||pt). Our main
innovation over the analysis of Lee et al. (2022) is bounding this term without a global log-Sobolev
inequality for pt. We note that it suffices for pt to be a mixture of distributions each satisfying a
log-Sobolev inequality, with the logarithm of the minimum mixture weight bounded below, and in
Lemma 5.2, we show that we can decompose any distribution of bounded support in this manner if
we move a small amount of its mass.

In Section 6, we show that this does not significantly affect the estimate of the score function, by
interpreting the score function as solving a Bayesian inference problem: that of de-noising a noised
data point. More precisely, we show in Lemma 6.5 that the difference between the score functions of
two different distributions can be bounded in L

2 in terms of their �2-divergence, which may be of
independent interest.

Finally, we reduce from the L
2 to L

1 setting by bounding the probabilities of hitting a bad set
where the score error is large, and carefully choose parameters (Section 7). This gives a TV error
bound to ep�—the forward distribution at small positive time. Finally, we can bound the Wasserstein
distance of ep� to eP0 (in the general case) or the TV distance (under additional smoothness of eP0.)

In Section A we show that the Hessian is always bounded by O

⇣
d
�2
t

⌘
with high probability (cf.

Assumption 3). We speculate that a high-probability rather than uniform bound on the Hessian (as in
Lemma 4.13) can be used to obtain better dependencies, and leave this as an open problem.
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4. DDPM with L1-accurate score estimate

We consider the error between the exact backwards SDE (4) and the exponential integrator with
estimated score (5). In this section, we bound the error assuming that the score estimate s is accurate
in L

1.

Assumption 5 (L1 score error) For any t 2 {T � t0, . . . , T � tK}, the error in the score estimate

is bounded:

kr ln ept � s(·, t)k1 = sup
x2Rd

kr ln ept(x)� s(x, t)k  "21,t (12)

for some non-decreasing function "
2
1,t.

In Section 7, we will relax this condition to score function being accurate in L
2.

First, we construct the following continuous-time process which interpolates the discrete-time
process (5), for t 2 [tk, tk+1]:

dzt = g(T � t)2
✓
1

2
zt + s(ztk , T � tk)

◆
dt+ g(T � t) dwt. (13)

Integration gives that

zt � ztk =

✓
exp

✓
1

2
Gtk,t

◆
� 1

◆
(ztk + 2s(ztk , T � tk))

+

Z t

tk

exp

 
1

2

Z t0

tk

g(T � t
00)2 dt00

!
g(t0) dwt0 , (14)

where Gt0,t is defined in (6).
Letting qt be the distribution of zt and pt be the distribution of xt, we have by (Lee et al., 2022,

Lemma A.2) that

d

dt
�
2(qt||pt) = �g(T � t)2Ept

✓
qt

pt

◆
+ 2E

⌧
g(T � t)2(s(ztk , T � tk)�r ln pt(zt)),r

qt(zt)

pt(zt)

��
.

(15)

(Note that in our case, bf also depends on zt rather than just ztk , but this does not change the
calculation.) Define �t, t as in (8): �t(x) =

qt(x)
pt(x)

,  t(x) =
�t(x)
Ept�

2
t
.

To bound (15), we use the following lemma.

Lemma 4.1 (cf. (Erdogdu et al., 2021, Lemma 1), (Lee et al., 2022, Lemma A.3)) For any C >

0 and any Rd
-valued random variable u, we have

E
⌧

u,r qt(zt)

pt(zt)

��
 C · (�2(qt||pt) + 1) · E

h
kuk2  t(zt)

i
+

1

4C
Ept

✓
qt

pt

◆
.
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Proof By Young’s inequality,

E
⌧

u,r qt(zt)

pt(zt)

��
= E

"*
u

s
qt(zt)

pt(zt)
,

s
pt(zt)

qt(zt)
r qt(zt)

pt(zt)

+#

 CE

kuk2 qt(zt)

pt(zt)

�
+

1

4C
Ept

"����r
qt(x)

pt(x)

����
2
#

= CEpt�
2
t · E

h
kuk2  t(zt)

i
+

1

4C
Ept

✓
qt

pt

◆

= C(�2(qt||pt) + 1) · E
h
kuk2  t(zt)

i
+

1

4C
Ept

✓
qt

pt

◆
.

Lemma 4.2 Suppose that (12) holds for t = T � tk, r ln ptk(x) is LT�tk -Lipschitz, g is non-

decreasing, and that hk  1
20LT�tk

g(T�tk)2
. Then we have for t 2 [tk, tk+1] that

d

dt
�
2(qt||pt)  �

1

2
g(T � t)2Ept

✓
qt

pt

◆
+ 12g(T � t)2(�2(qt||pt) + 1)·

"
"
2
1,T�tk + 16G2

tk,tL
2
T�tk

h
E[ t(zt) kztk2] + 16E[ t(zt) kr ln pt(xt)k2]

i

+ 64Gtk,tL
2
T�tk(8KL( tqt||pt) + 2d+ 16 ln 2) + E

h
kr ln ptk(zt)�r ln pt(zt)k2  t(zt)

i #
.

Proof We bound the second term on the RHS of (15). By Lemma 4.1,

E
⌧

s(ztk , T � tk)�r ln pt(zt),r
qt(zt)

pt(zt)

��

 (�2(qt||pt) + 1)E
h
ks(ztk , T � tk)�r ln pt(zt)k2  t(zt)

i
+

1

4
Ept

✓
qt

pt

◆
. (16)

Now

ks(ztk , T � tk)�r ln pt(zt)k2

 3
h
ks(ztk , T � tk)�r ln ptk(ztk)k

2 + kr ln ptk(ztk)�r ln ptk(zt)k
2 + kr ln ptk(zt)�r ln pt(zt)k2

i

 3
h
ks(ztk , T � tk)�r ln ptk(ztk)k

2 + L
2
T�tk kztk � ztk2 + kr ln ptk(zt)�r ln pt(zt)k2

i

and

E
h
ks(ztk , T � tk)�r ln ptk(ztk)k

2
 t(zt)

i
 "21,T�tk

9



CONVERGENCE OF SCORE-BASED GENERATIVE MODELING FOR GENERAL DATA DISTRIBUTIONS

by definition of "1,t, so by Lemma 4.3,

E
h
ks(ztk , T � tk)�r ln pt(zt)k2  t(zt)

i

 3
h
"
2
1,T�tk + L

2
T�tkE

h
kzt � ztkk

2
 t(zt)

i
+ E

h
kr ln ptk(zt)�r ln pt(zt)k2  t(zt)

ii

 3

"
"
2
1,T�tk + 16G2

tk,tL
2
T�tk

h
E[ t(zt) kztk2] + 4E[ t(zt) ks(ztk , T � tk)�r ln pt(zt)k2]

+ 16E[ t(zt) kr ln pt(xt)k2]
i
+ 64Gtk,tL

2
T�tk(8KL( tqt||pt) + 2d+ 16 ln 2)

+ E
h
kr ln ptk(zt)�r ln pt(zt)k2  t(zt)

i #

The condition on hk and the fact that g is non-decreasing implies 192G2
tk,tL

2
T�tk

 1
2 . Rearranging

gives

E
h
ks(ztk , T � tk)�r ln pt(zt)k2  t(zt)

i

 6

"
"
2
1,T�tk + 16G2

tk,tL
2
T�tk

h
E[ t(zt) kztk2] + 16E[ t(zt) kr ln pt(xt)k2

i

+ 64Gtk,tL
2
T�tk(8KL( tqt||pt) + 2d+ 16 ln 2) + E

h
kr ln ptk(zt)�r ln pt(zt)k2  t(zt)

i #

Substituting into (16) and that inequality into (15) give the conclusion.

Lemma 4.3 Suppose that hk  1
2g(T�tk)2

. Then for t 2 [tk+1, tk],

E
h
kzt � ztkk

2
 t(zt)

i
 16G2

tk,t

h
E[ t(zt) kztk2] + 4E[ t(zt) ks(ztk , T � tk)�r ln pt(zt)k2]

+ 16E[ t(zt) kr ln pt(zt)k2]
i
+ 64Gtk,t(8KL( tqt||pt) + 2d+ 16 ln 2).

Proof Consider (14). The assumption on hk implies Gtk,t  Gtk,tk+1  1
2 , so exp

�
1
2Gtk,t

�
� 1 

Gtk,t. Let Y denote the last term of (14). Then

kzt � ztkk  Gtk,t [kztkk+ 2 ks(ztk , T � tk)k] + kY k
 Gtk,t [kztk+ kztk � ztk+ 2 ks(ztk , T � tk)�r ln pt(zt)k+ 2 kr ln pt(zt)k] + kY k .

Again using Gtk,t  1
2 , rearranging gives

kzt � ztkk  2Gtk,t [kztk+ 2 ks(ztk , T � tk)�r ln pt(zt)k+ 4 kr ln pt(zt)k] + 2 kY k ,

and

E
h
kzt � ztkk

2
 t(zt)

i
 16G2

tk,t

h
E[ t(zt) kztk2] + 4E[ t(zt) ks(ztk , T � tk)�r ln pt(zt)k2]

+ 16E[ t(zt) kr ln pt(xt)k2]
i
+ 16E[ t(zt) kY k2].

10
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By Lemma 4.4,

E[ t(zt) kY k2]  4Gtk,t(8KL( tqt||pt) + 2d+ 16 ln 2).

The lemma follows.

Lemma 4.4 For t 2 [tk, tk+1],

E

2

4 t(zt)

�����

Z t

tk

exp

 
1

2

Z t0

tk

g(T � t
00)2 dt00

!
g(t0) dwt0

�����

2
3

5

 2(exp(Gtk,t)� 1)
�
8KL( tqt||pt) + 2d+ 16 ln 2

�
.

Proof Note that Y :=
R t
tk
exp

⇣
1
2

R t0

tk
g(T � t

00)2 dt00
⌘
g(t0) dwt0 is a Gaussian random vector with

variance
Z t

tk

exp

 Z t0

tk

g(T � t
00)2 dt00

!
g(t0)2 dt0 · Id = exp

 Z t0

tk

g(T � t
00)2 dt00

!���
t0=t

t0=tk
· Id

= (exp(Gtk,t)� 1) · Id.

(Note that this calculation shows that the continuous-time process (13) does agree with the discrete-
time process (5) at t = tk+1.) Using the Donsker-Varadhan variational principle, for any random
variable X ,

ẼX  KL(P̃||P) + lnE expX.

Applying this to X = c (kY k � E kY k)2 for a constant c > 0 to be chosen later, and eP such that
deP
dP(zt) =  t(zt), we can bound

Ẽ kY k2  2E
h
kY k2

i
+ 2eE

⇥
(Y � E kY k)2

⇤

 2E
h
kY k2

i
+

2

c

h
KL(P̃||P) + lnE exp

⇣
c (kY k � E kY k)2

⌘i
(17)

 2d(exp(Gtk,t)� 1) +
2

c

h
KL(P̃||P) + lnE exp

⇣
c (kY k � E kY k)2

⌘i
. (18)

Now following (Chewi et al., 2021, Theorem 4), we set c = 1
8(exp(Gtk,t)�1) , so that

E

(kY k � E kY k)2
8(exp(Gtk,t)� 1)

�
 2.

Next, we have

KL(P̃||P) = E tqt ln t = E tqt ln
�t

Ept�
2
t

=
1

2
E tqt ln

�
2
t

(Ept�
2
t )

2

=
1

2


E tqt ln

�
2
t

Ept�
2
t

� lnEpt�
2
t

�
=

1

2


E tqt ln

 tqt

pt
� lnEpt�

2
t

�
.

11
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Noting that Ept�
2
t = �

2(qt||pt) + 1 � 1, we have that

KL(P̃||P)  1

2
KL( tqt||pt).

Substituting everything into (18) gives the desired inequality.

Let

Kz = E
h
 t(zt) kztk2

i
(19)

KV = E
h
 t(zt) kr ln pt(zt)k2

i
(20)

K�V = E
h
 t(zt) kr ln ptk(zt)�r ln pt(zt)k2

i
(21)

K = KL( tqt||pt). (22)

In order to bound the RHS in Lemma 4.2, we need to bound all four of these quantities, which we do
in Lemma 4.5, 4.6, 4.8, and Section 5, respectively. The main innovation in our analysis compared
to Lee et al. (2022) is a new way to bound K, which we present in a separate section.

First we bound Kz . Recall the norm

kXk2, 2
= inf

⇢
L > 0 : Ee

kXk22
L2  2

�
.

(In other words, this is the usual Orlicz norm applied to kXk2.)

Lemma 4.5 For t 2 [tk, tk+1],

E
h
 t(zt) kztk2

i
 kxtk22, 2

· [KL( tqt||pt) + ln 2] .

Proof By the Donsker-Varadhan variational principle,

E
h
 t(zt) kztk2

i
=

2

s
E tqt

h
s

2
kxk2

i
 2

s

h
KL( tqt||pt) + lnEpt

h
e

s
2kxk

2
ii

for any s > 0. Choosing s = 2 kxtk�2
2, 2

, we have Ept

h
e

s
2kxk

2
i
 2, which gives the desired

inequality.

The following bounds KV ; note that the proof does not depend on the definition of qt, only that
it is a probability density.

Lemma 4.6 ((Lee et al., 2022, Corollary C.7), (Chewi et al., 2021, Lemma 16))

E
h
 t(zt) kr ln pt(zt)k2

i
 4

�2(qt||pt) + 1
· Ept

✓
qt

pt

◆
+ 2dL.

We use the following lemma to bound K�V in Lemma 4.8.

12
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Lemma 4.7 ((Lee et al., 2022, Lemma C.12)) Suppose that p(x) / e
�V (x)

is a probability density

on Rd
, where V (x) is L-smooth. Let p↵(x) = ↵

d
p(↵x) and '�2(x) denote the density function of

N(0,�2Id). Then for �
2  1

2↵2L ,

����r ln
p(x)

(p↵ ⇤ '�2)(x)

����  6↵2
L�d

1/2+(↵+2↵3
L�

2)(↵�1)L kxk+(↵�1+2↵3
L�

2) krV (x)k .

Lemma 4.8 Suppose that hk  1
4Lg(T�tk)2

where r ln pt is LT�t-smooth (LT�t � 1) and L =

maxt2[tk,tk+1] LT�t. For t 2 [tk, tk+1],

E
h
 t(zt) kr ln ptk(zt)�r ln pt(zt)k2

i

 25L2
T�t

⇣
8Gtk,td+G

2
tk,tE

h
 t(zt) kztk2

i⌘
+ 100L2

T�tG
2
tk,tE

h
 t(zt) kr ln pt(zt)k2

i

Proof We have the following relationship for t 2 [tk, tk+1]:

ptk = (pt)↵ ⇤ '�2 .

where p↵(x) = ↵
d
p(↵x), ↵ = e

1
2

R t
tk

g(T�s)2 ds and �2 = 1 � e
�

R t
tk

g(T�s)2 ds. Observe that since
hk  1

4g(T�tk)2
,

↵  1 +

Z t

tk

g(T � s)2ds  1 + hkg(T � tk)
2  1 +

1

4

�
2 = 1� e

�
R t
tk

g(T�s)2ds 
Z t

tk

g(T � s)2ds  hkg(T � tk)
2  1

4
.

We note that

�
2  hkg(T � tk)

2  1

4Lt
 1

2↵2Lt

so the hypothesis of Lemma 4.7 is satisfied. Using Lemma 4.7, we obtain

E
h
 t(zt) kr ln ptk(zt)�r ln pt(zt)k2

i

 72↵4
L
2
T�t�

2
d+ 4(↵+ 2↵3

LT�t�
2)2(↵� 1)2L2

T�tE
h
 (zt) kztk2

i

+ 4(↵� 1 + 2↵3
LT�t�

2)2E
h
 t(zt) kr ln pt(zt)k2

i

 72(5/4)4L2
T�tGtk,td+ 4(2↵)2G2

tk,tL
2
T�tE

h
 (zt) kztk2

i

+ 4(Gtk,t + 4LT�tGtk,t)
2E
h
 t(zt) kr ln pt(zt)k2

i

 200L2
T�tdGtk,t + 25L2

T�tG
2
tk,tE

h
 (zt) kztk2

i
+ 100L2

T�tG
2
tk,tE

h
 t(zt) kr ln pt(zt)k2

i
.

13
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Now we put everything together. Write Gt = Gtk,t for short. Suppose Lt is non-increasing. By
Lemma 4.2,

d

dt
�
2(qt||pt)  �

1

2
g(T � t)2Ept

✓
qt

pt

◆
+ 12g(T � t)2(�2(qt||pt) + 1) · E

where E  16G2
tL

2
T�tk(Kz + 16KV ) + 64GtL

2
T�tk(8K + 2d+ 16 ln 2) + "

2
1,T�tk +K�V .

By Lemma 4.8, K�V  25L2
T�t(8Gtd+G

2
tKz) + 100L2

T�tG
2
tKV , so

E  41G2
tL

2
T�tKz + 356G2

tL
2
T�tKV + 64GtL

2
T�t(8K + 6d+ 16 ln 2) + "

2
1,T�tk .

By Lemma 4.5, Kz  kxtk22, 2
(K+ln 2), and by Corollary 4.6, KV  4

�2(qt||pt)+1 ·Ept

⇣
qt
pt

⌘
+2dL,

so

E  41G2
tL

2
T�t

⇣
kxtk22, 2

(K + ln 2)
⌘
+ 356G2

tL
2
T�t

✓
4

�2(qt||pt) + 1
· Ept

✓
qt

pt

◆
+ 2dL

◆

+ 64GtL
2
T�t(8K + 6d+ 16 ln 2) + "

2
1,T�tk .

Now, if hk 
"0hk

20g(T�tk)2LT�tk+1
, then

E  "0hk

2

kxtk22, 2

(K + ln 2) +

✓
4

�2(qt||pt) + 1
· Ept

✓
qt

pt

◆
+ 2dLT�t

◆�

+ 4"0hk
LT�t(8K + 2d+ 16 ln 2) + "

2
1,T�tk .

Let MT�t := kxtk22, 2
. Assume that K  AT�t

�2(qt||pt)+1 +BT�t. Then we obtain

12g(T � t)2(�2(qt||pt) + 1) · E

 12g(T � t)2
h
Ept

✓
qt

pt

◆
("0hk

2 · (AT�tMT�t + 4) + "
0
hk

· 32LT�tAT�t)

+ (�2(qt||pt) + 1)("0hk

2 · ((BT�t + ln 2)MT�t + 2dL)

+ "
0
hk

· LT�t(8BT�t + 6d+ 16 ln 2)) + "
2
1,T�tk

i
.

If "0hk
 min

⇢
1p

48(AT�tMT�t+4)
,

1
128LT�tAT�t

�
, then

d

dt
�
2(qt||pt)  12g(T � t)2

h
(�2(qt||pt) + 1)("0hk

2 · ((BT�t + ln 2)MT�t + 2dLT�t)

+ "
0
hk

· LT�t(8BT�t + 6d+ 16 ln 2)) + "
2
1,T�tk

i
.

If "0hk
 min

⇢ p
"0

g(T�t)
p

24(T�tk)((BT�t+ln 2)MT�t+2dLT�t)
,

"0

24g(T�t)2(T�t)LT�t(8BT�t+6d+16 ln 2)

�
,

we get

d

dt
�
2(qt||pt) 

"
0

T � t
(�2(qt||pt) + 1) + "

2
1,T�tkg(T � t)2.

14
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Integration gives

�
2(qtk ||ptk)  e

"0
R tk
0

1
T�t dt(�2(q0||p0) + 1) +

Z tk

0
e

R tk
t

"0
T�s ds

"
2
T�tg(T � t)2 dt


✓

T

T � tk

◆"0
�
2(q0||p0) +

 ✓
T

T � tk

◆"0
� 1

!
+

Z tk

0

✓
T � t

T � tk

◆"0
"
2
T�tg(T � t)2 dt.

Taking "
0 = "

ln
⇣

T
T�tN

⌘ then gives the following Theorem 4.10. We first introduce a technical

assumption.

Definition 4.9 Let f : R>0 ! R>0. We say that f has at most power growth and decay (with some

constant c > 0) if maxu2[ t2 ,t]
f(u) 2

h
f(t)
c , cf(t)

i
.

Theorem 4.10 Suppose that the following hold.

1. Assumption 5 holds for "1,t.

2. kextk22, 2
Mt.

3. The KL bound KL( tqt||pt)  AT�t

�2(qt||pt)+1 +BT�t holds for any density qt and t < tN , where

 t(x) =
qt(x)/pt(x)
�2(qt||pt)+1 .

4. g(t), At, Bt, Lt,Mt have at most polynomial growth and decay (with some constant c).

Then there is some constant c
0

(depending on c) such that if the step sizes satisfy

hk  min

(
T � tk

2
,

c
0
"
0
hk

g(T � tk)2LT�tk

)
,

where "
0
hk

= min

(
1p

AT�tkMT�tk + 1
,

1

LT�tkAT�tk
,

r
"/ ln

⇣
T

T�tN

⌘

g(T � tk)
p

(T � tk)((BT�tk + 1)MT�tk + dLT�tk)
,

"/ ln
⇣

T
T�tN

⌘

g(T � tk)2(T � tk)LT�tk(BT�tk + d)

)
,

then for 0  k  N ,

�
2(qtk ||ptk)  e

"
�
2(q0||p0) + (e" � 1) + e

"
Z tk

0
"
2
1,T�tg(T � t)2 dt.

Proof This follows from the above calculations and the observation that if we replace F (T � t)
by F (T � tk), for some F satisfying the power growth and decay assumption, then we change the
bound by at most a constant factor, because the step size satisfies hk = tk+1 � tk  T�tk

2 .
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We specialize this theorem in the case of distributions with bounded support. Note that although
not every initial distribution ept may satisfy a KL inequality as required by condition 3 of Theorem 31,
Lemma 5.2 will give the existence of a distribution that does, and is close in TV-error. Later in
Section 6, we show that this will have a small effect on the score function, and hence allow us to
prove our main theorems.

Corollary 4.11 Suppose that Assumptions 5 and 2 hold, R
2 � d, g ⌘ 1, and that eP0 is such that the

KL inequality (31) holds. Let � = T�tN . If 0 < �, " <
1
2 , hk = O

 
"

max{T�tk,(T�tk)�3}R4d ln(T
� ) ln

⇣
R
�"K

⌘

!
,

then for any 0  k  N ,

�
2(qtk ||ptk)  e

"
�
2(q0||p0) + "+ e

"
Z tk

0
"
2
1,T�t dt.

Proof For g ⌘ 1, note that �2T�t = ⇥(min{T � t, 1}). From Lemma 4.13, we can choose

Lt =
R

2

�4t

= O

✓
R

2

min{(T � t)2, 1}

◆
.

From Lemma 4.15, we can choose

Mt = max{R2
, d}.

The KL inequality (31) gives us

At = 6(e+ 1)�2t = O(min{T � t, 1})

Bt = ln

✓
1

"

◆
+ d ln

✓
1 +O

✓
Rp

T � tN

◆◆

We now check the requirements on hk. We need

"
0
hk

= O

 
1p

AT�tkMT�tk + 1

!
(= "

0
hk

= O

✓
1

max{R,
p
d}

◆

(23)

"
0
hk

= O

✓
1

LT�tkAT�tk

◆
(= "

0
hk

= O

✓
T � tk

R2

◆
(24)

"
0
hk

= O

0

@

q
"/ ln

�
T
�

�

p
(T � tk)((BT�tk + 1)MT�tk + dLT�tk)

1

A . (25)

For T � tk  1, (25) is implied by

"
0
hk

= O

0

BB@

q
"/ ln

�
T
�

�

r
(T � tk)

⇣
ln
⇣

1
"K

⌘
+ d ln

�
R
�

�⌘
max{R2, d}+ dR2

T�tk

1

CCA

(= "
0
hk

= O

0

B@

vuut
"(T � tk)

dmax{R2, d} ln
�
T
�

�
ln
⇣

R
�"K

⌘

1

CA ,

16
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and for T � tk > 1,

"
0
hk

= O

0

@

q
"/ ln

�
T
�

�

q
T
�
ln
�
1
"

�
+ d ln

�
R
�

��
max{R2, d}+ dR2

1

A

(= "
0
hk

= O

0

@
s

"

Tdmax{R2, d} ln
�
T
�

�
ln
⇣

R
�"K

⌘

1

A .

Finally, the last requirement is

"
0
hk

= O

 
"/ ln

�
T
�

�

(T � tk)LT�tk(BT�tk + d)

!

(= "
0
hk

= O

0

@ "

R2max{T � tk, (T � tk)�1}d ln
�
T
�

�
ln
⇣

R
�"K

⌘

1

A .

As long as R
2 = ⌦(d) and " < 1, the last equation implies all the others. Plugging this into

Theorem 4.10 gives the result.

Above, we use the Hessian bound
��r2 ln pt(x)

��  R2

�4
t

given in Lemma 4.13. Under the stronger
smoothness assumption given by Assumption 3, we can take the step sizes to be larger.

Corollary 4.12 Suppose that Assumptions 5, 2, 3 hold, C � R
2 � d, g ⌘ 1, and that eP0 is

such that the KL inequality (31) holds. Let � = T � tN . If 0 < �, ep <
1
2 and " < 1/

p
T ,

hk = O

 
"

max{T�tk,(T�tk)�1}C2d ln(T
� ) ln

⇣
R
�"K

⌘

!
, then for any 0  k  N ,

�
2(qtk ||ptk)  e

"
�
2(q0||p0) + "+ e

"
Z tk

0
"
2
1,T�t dt.

Proof We instead have the bound Lt = C
�2
t

. The requirement (23) stays the same, while (24) is
implied by "0hk

= O(1/C). Inequality (25), for T � tk  1, is implied by

"
0
hk

= O

0

B@

vuut
1

dmax{C,R2} ln
�
T
�

�
ln
⇣

R
�"K

⌘

1

CA .

and for T � tk > 1,

"
0
hk

= O

0

@
s

"

Tdmax{C,R2} ln
�
T
�

�
ln
⇣

R
�"K

⌘

1

A .
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Finally, the last requirement is implied by

"
0
hk

= O

0

@ "

Cd ln
�
T
�

�
ln
⇣

R
�"K

⌘

1

A ,

and for C � R
2, "  1/

p
T , implies all the others.

4.1. Auxiliary bounds

In this section we give bounds on the Hessian (Lt, Lemma 4.13), initial �2 divergence �2(q0||p0)
(Lemma 4.14), and Orlicz norm (Mt, Lemma 4.15).

Lemma 4.13 (Hessian bound) Suppose that µ is a probability measure supported on a bounded

set M ⇢ Rd
with radius R. Then letting '�2 denote the density of N(0,�2Id),

��r2 ln(µ ⇤ '�2(x))
��  max

⇢
R

2

�4
,
1

�2

�
. (26)

Therefore, for eP0 supported on BR(0), R � 1, we have

��r2 ln ept(x)
��  R

2

�4t

. (27)

Proof Let µx,�2 denote the density µ(du) weighted with the gaussian '�2(u�x), that is, µx,�2(du) =

e
�kx�uk2

2�2 µ(du)

R
Rd e

�kx�uk2
2�2 µ(du)

. We note the following calculations:

r ln(µ ⇤ '�2(x)) =
r
R
Rd e

� kx�uk2

2�2 µ(du)
R
Rd e

� kx�uk2
2�2 µ(du)

=

R
Rd �x�u

�2 e
� kx�uk2

2�2 µ(du)
R
Rd e

� kx�uk2
2�2 µ(du)

= � 1

�2
Eµx,�2

(x� u)

(28)

r2 ln(µ ⇤ '�2(x)) =
1

�4
Covµx,�2

(x� u)� 1

�2
Id =

1

�4
Covµx,�2

(u)� 1

�2
Id. (29)

The covariance of a distribution supported on a set of radius R is bounded by R
2 in operator

norm. Inequality (26) then follows from (29).
For (27), note that ept = Mmt]

eP0 ⇤'�2
t
, where mt is given by (3) and Mm denotes multiplication

by m. Since Mmt]
eP0 is supported on BmtR(0) ⇢ BR(0) and �t  1, the result follows.

Lemma 4.14 (Bound on initial �2-divergence) Suppose that eP0 is supported on BR(0). Let

pprior = N(0, (1� e
G0,t)Id). Then

�
2(pprior||epT )  exp


R

2 exp(�G0,T )

1� exp(�G0,T )

�

and for 0 < " <
1
2 and G0,T � ln

⇣
4R2

"2

⌘
_ 1, we have �

2(pprior||epT )  "2.
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Proof We have for x0 ⇠ eP0 that

�
2

✓
N(0, (1� e

�G0,T )Id)||N(x0 exp

✓
�1

2
G0,T

◆
, (1� exp(�G0,T ))Id)

◆

 exp

"
kx0k2 exp(�G0,T )

1� exp(�G0,T )

#
 exp

✓
R

2 exp(�G0,T )

1� exp(�G0,T )

◆

Using convexity of �2-divergence then gives the result. For G0,T � ln
⇣
4R2

"2

⌘
_ 1, we have

exp


R

2 exp(�G0,T )

1� exp(�G0,T )

�
 exp


"
2
/4

1/2

�
 "2.

Lemma 4.15 (Subgaussian bound) Suppose eP0 is supported on BR(0). Then for X ⇠ ept,

kXk2, 2

r

e

ln 2
·
⇣
4mtR+ 6C1�t

p
d

⌘
= O(max{R,

p
d}),

where mt,�t are as in (3) and C1 is an absolute constant.

Proof Let Y ⇠ eP0 s.t. X = mtY + �t⇠ for some ⇠ ⇠ N(0, Id) independent of Y . Define

U = kXk2 :=
⇣Pd

i=1X
2
i

⌘1/2
, then for p � 1,

E|U |p = E kXkp2  E (kmtY k2 + k�t⇠k2)
p

 2p�1E [kmtY kp2 + k�t⇠k
p
2]

 2p�1


(mtR)p + �

p
t · 2p/2

�((d+ p)/2)

�(d/2)

�

 2p�1
h
(mtR)p + C1(

p
2�t)

p ·
⇣
d
p/2 + p

p/2
⌘i

where � is the commonly used gamma function and C1 is an absolute constant. Therefore

(E|U |p)1/p  2mtR+
p
2C1�t(

p
d+
p
p)  K

p
p,

where K = 2mtR + 3C1�t

p
d. Now consider V = U/K, then for some � > 0 small enough, by

Taylor expansion,

E
h
e
�2V 2

i
= E

2

41 +
1X

p=1

�
�
2
V

2
�p

p!

3

5 = 1 +
1X

p=1

�
2pE

⇥
V

2p
⇤

p!
.

Note that E
⇥
V

2p
⇤
 (2p)p, while Stirling’s approximation yields p! � (p/e)p. Substituting these

two bounds, we get

Ee�2V 2  1 +
1X

p=1

✓
2�2p

p/e

◆
=

1X

p=0

(2e�2)p =
1

1� 2e�2
,
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provided that 2e�2 < 1, in which case the geometric series above converges. To bound this quantity
further, we can use the numeric inequality 1/(1�x)  e

2x which is valid for x 2 [0, 1/2]. It follows
that

Ee�2V 2  e
4e�2 for all � satisfying |�|  1/2

p
e.

Now set 4e�2 = ln 2, then

E
h
e

ln 2
4eK2 kXk22

i
 2,

which implies that

kXk2, 2

r

4e

ln 2
K =

r
e

ln 2
·
⇣
4mtR+ 6C1�t

p
d

⌘
.

5. Bounding the KL divergence

In this section, we bound the quantity K = KL( tqt||pt), where  t is as in (8). While pt is defined
by the DDPM process, in this section we do not assume qt is the density of the discretized process;
rather, it is any density for which Ept

⇣
qt
pt

⌘
and �2(qt||pt) are finite.

Lemma 5.1 Suppose that eP0 is a probability measure on Rd
such that

eP0 =
mX

j=1

wj
ePj,0, (30)

where wj > 0,
Pm

j=1wj = 1, and each ePj,0 is a probability measure. For t > 0, let ept and epj,t
be the densities obtained by running the forward DDPM process (1) for time t, and pt = epT�t,

pj,t = epj,T�t. Let wmin = min1jmwj and suppose all the ePj,t satisfy a log-Sobolev constant with

constant Ct. Then for any qt, where  t is as in (8)

KL( tqt||pt) 
2CT�t

�2(qt||pt) + 1
· Ept

✓
qt

pt

◆
+ ln

✓
1

wmin

◆
.

While we need pt to satisfy a log-Sobolev inequality to get a bound of the form C
�2(qt||pt)+1Ept

⇣
qt
pt

⌘

((Lee et al., 2022, Lemma C.8)), we note that if we allow additive slack, it suffices for pt to be a
mixture of distributions satisfying a log-Sobolev inequality, with the logarithm of the minimum
mixture weight bounded below. In Lemma 5.2 we will see that we can almost decompose any
distribution of bounded support in this manner, if we move a small amount of the mass.
Proof Let f t : [m]! R be the function

f t(j) =

Z

Rd

 t(x)qt(x)

pt(x)
Pj,t(x) dx.
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By decomposition of entropy and the fact that each Pi,t satisfies LSI with constant CT�t,

KL( tqt||pt)  Entpt

✓
 tqt

pt

◆

=
mX

i=1

Z

Rd
wi EntPi,t

✓
 tqt

pt

◆
+ Entw(f t)

 Ct

2

mX

i=1

wiEPi,t

✓
ln
 tqt

pt
,
 tqt

pt

◆
+ Entw(f t)

 Ct

2
Ept

✓
ln
 tqt

pt
,
 tqt

pt

◆
+ Entw(f t)

=
Ct

2

Z

Rd

����r ln
 t(x)qt(x)

pt(x)

����
2

 t(x)qt(x) dx+ Entw(f t)

= 2Ct

Z

Rd

����r ln
qt(x)

pt(x)

����
2

 t(x)qt(x) dx+ Entw(f t)

= 2Ct

Z

Rd

����r
qt(x)

pt(x)

����
2
 t(x)pt(x)2

qt(x)
dx+ Entw(f t)

=
2Ct

�2(qt||pt) + 1
·
Z ����r

qt(x)

pt(x)

����
2

pt(x) dx+ Entw(f t)

 2Ct

�2(qt||pt) + 1
· Ept

✓
qt

pt

◆
+ ln

✓
1

wmin

◆
,

where the last inequality follows from noting wjf t(j) is a probability mass function on [m], so that
f t(j)  1

wj
and

Entw(f t) =
mX

j=1

wjf t(j) ln(f t(j)) 
mX

j=1

wjf t(j) ln

✓
1

wmin

◆
= ln

✓
1

wmin

◆
.

Lemma 5.2 Suppose 0 < "K <
1
2 , and that P 0 is a probability measure such that P 0(M) � 1� "K

8 .

Let N
�
M,

�t
2

�
denote the covering number of M with balls of radius �t. Given � > 0, there exists

a distribution eP0 such that �
2( eP0||P 0)  "K and considering the DDPM process started with eP0,

for all 0  t  T � �,

KL( tqt||pt) 
 
6(1 + e)�2T�t

�2(qt||pt) + 1
Ept

✓
qt

pt

◆
+ ln

✓
N (M,��/2)

"K

◆!
.

In particular, for M = BR(0) in Rd
,

KL( tqt||pt) 
 
6(1 + e)�2T�t

�2(qt||pt) + 1
Ept

✓
qt

pt

◆
+ ln

✓
1

"K

◆
+ d ln

✓
1 +

4R

��

◆!
. (31)
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Proof Partition M into disjoint subsets Mj , 1  j  N := N (M,��/2) of diameter at most ��,
and decompose

P 0 = w⇤P⇤ +
nX

j=1

wj
ePj,0

where pj is supported on Mj and P⇤ = P 0(·|Mc). We will zero out the coefficients of all small
components: let Z =

P
j:wj�

"K
8N

wj and

wj =

(
wj

Z , j 2 [n], wj � "K
8N

0, otherwise,

and define

eP0 =
nX

j=1

wj
ePj,0.

Note that Z � 1� "K
8 �

P
j:wj

"K
8N
� 1� "K

4 . As probability distributions on [m] [ {⇤},

�
2(w||w) 

✓
1

1� "K
4

◆2

� 1  "K ,

and hence the same bound holds for �2( eP0||P 0). Note each Mmt]
ePj,0 is supported on a set of

diameter mt�  �. By Theorem 1 of Chen et al. (2021), noting that

�
2(N(µ2,⌃)||N(µ1,⌃)) = exp

h
(µ2 � µ1)

>⌃�1(µ2 � µ1)
i
 e

when ⌃ = �
2
I and kµ2 � µ1k  �, ePj,t = (Mmt]

ePj,0) ⇤'�2 satisfies a log-Sobolev inequality with
constant 6(1 + e)�2t . The result then follows from Lemma 5.1. For M = BR(0), we use the bound

N (BR(0),��/2) 
⇣
1 + 4R

��

⌘d
(Vershynin, 2018, Corollary 4.2.13).

In the next section, we show that we can move a small amount of mass " without significantly
affecting the score function. This is necessary, as our guarantees on the score estimate are for the
original distribution and not the perturbed one in Lemma 5.2.

6. The effect of perturbing the data distribution on the score function

In this section we consider the effect of perturbing the data distribution on the score function. The
key observation is that the score function can be interpreted as the solution to an inference problem,
that of recovering the original data point from a noisy sample, with data distribution as the given
prior distribution. We show through a coupling argument that we can bound the difference between
the score functions in terms of the distance between the two data distributions. This will allow us to
“massage” the data distribution in order to optimally bound KL( tqt||pt) in Section 5.
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6.1. Perturbation under �2 error and truncation

We first give a general lemma on denoising error from a mismatched prior.

Lemma 6.1 (Denoising error from mismatched prior) Let ' be a probability density on Rd
, and

P0,x, P1,x be measures on Rd
. For i = 0, 1, let Pi denote the joint distribution of xi ⇠ Pi,x and

yi = xi + ⇠i where ⇠i ⇠ ', and let Pi,y denote the marginal distribution of y. Let

m
(k)(") : = sup

0f1,
R
Rd f' dx"

Z

Rd
f(x) kxkk '(x) dx.

Let "TV = TV(P0,x, P1,x) and "
2
� = �

2(P0,x||P1,x). Then

Z

Rd
P0,y(dy0)

����
Z

Rd
x0P0(dx0|y0)�

Z

Rd
x1P1(dx1|y0)

����
2

 8m(2)("TV) + "�

q
m(4)("TV)

For ' = '�2 , the upper bound is O

⇣
�
2
"�

⇣
d+ ln

⇣
1
"TV

⌘⌘⌘
.

Note the tricky part of the proof is to deal with P1(dx1|y0), which can be thought of as inferring x

assuming the incorrect prior P1,x, rather than the actual prior P0,x.
Proof For notational clarity, we will denote draws from the conditional distribution as bx0 and bx1,
for example P0(dbx0|y0). Let ri(y) =

R
Rd(bxi � y)Pi(dbxi|y). Let P0,1 be a coupling of (x0, y0 =

x0 + ⇠0, x1, y1 = y1 + ⇠1) such that x0 = x1 with probability 1� "TV and ⇠0 = ⇠1 with probability
1. We have

Z

Rd
P0,y(dy0) kr0(y0)� r1(y0)k2 =

Z

{y0=y1}
P0,1,y(dy0, dy1) kr0(y0)� r1(y0)k2

| {z }
(I)

+

Z

{y0 6=y1}
P0,1,y(dy0, dy1) kr0(y0)� r1(y0)k2

| {z }
(II)

.

Define a measure Q (not necessarily a probability measure) on Rd by

Q(A) := P0,1(y0 2 A and y0 = y1).

Note that

Q(A)  min{P0,y(A), P1,y(A)},

so Q is absolutely continuous with respect to P0,y and P1,y, and by assumption on the coupling,

Q(Rd) � 1� "TV. (32)
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Under P0,1, when y0 = y1, we can couple P0(dbx0|y0) and P1(dbx1|y0) so that x0 = x1 with
probability min

n
dQ

dP0,y
,

dQ
dP1,y

o
. Let bP (dbx0, dbx1|y0) denote this coupled distribution. Then as in

Lemma 6.5,

(I) 
Z

{y0=y1}
P0,1,y(dy0, dy1)

�����

Z

{bx0 6=bx1}
((bx0 � y0)� (bx1 � y0)) bP (dbx0, dbx1|y0)

�����

2

 2

Z

Rd
P0,1,y(dy0, dy1)

 Z

{bx0 6=bx1}
k⇠0k2 bP (dbx0, dbx1|y0) +

Z

{bx0 6=bx1}
k⇠1k2 bP (dbx0, dbx1|y1)

!

We bound this by first bounding
Z

Rd
P0,1,y(dy1, dy2) bP (bx0 6= bx1) 

Z

Rd
P0,y(dy)max

⇢
1� dQ

dP0,y
, 1� dQ

dP1,y

�
 2"TV, (33)

which follows from the two inequalities (using (32))
Z

Rd
P0,y(dy)

✓
1� dQ

dP0,y

◆
= 1�Q(Rd)  "TV

Z

Rd
P0,y(dy)

✓
1� dQ

dP1,y

◆

Z

Rd
P1,y(dy)

✓
1� dQ

dP1,y

◆
+TV(P0,y, P1,y)

 (1�Q(Rd)) + "TV  2"TV.

From (33), and the fact that the distribution of (xi, yi) is the same as (bxi, yi) by Nishimori’s identity,
we obtain

(I)  2(m(2)(2"TV) +m
(2)(2"TV)) = 4m(2)("TV).

Now for the second term (II),

(II)  2

Z

{y0 6=y1}
P0,1,y(dy0, dy1)(kr0(y0)k2 + kr1(y0)k2).

The first term satisfies
R
{y0 6=y1} P0,1,y(dy0, dy1) kr0(y0)k2  m

(2)("TV). For the second term, we
note that Cauchy-Schwarz gives for any measures P and Q that

Z

⌦
f(x)P (dx) 

Z

⌦
f(x)Q(dx) +

Z

⌦

✓
dP

dQ
� 1

◆
f(x)Q(dx)


Z

⌦
f(x)Q(dx) +

s

�2(P ||Q)

Z

⌦
f(x)2Q(dx)

to switch from the measure P0,y to P1,y:
Z

{y0 6=y1}
P0,1,y(dy0) kr1(y0)k2 =

Z

Rn
P0,y(dy0)P0,1,y(y0 6= y1|y0) kr1(y0)k2


Z

Rn
P1,y(dy0)P0,1,y(y0 6= y1|y0) kr1(y0)k2 +

s

�2(P0,y||P1,y)

Z
P1,y(dy0)P0,1,y(y0 6= y1|y0) kr1(y0)k4
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(Note that intentionally, the measure is P1,y, though we use y0 for the variable.) Hence,
Z

Rn
P1,y(dy0)P0,1,y(y0 6= y1|y0)  TV(P0,y, P1,y) +

Z

Rn
P0,y(dy0)P0,1,y(y0 6= y1|y0)  2"TV

so
Z

{y0 6=y1}
P0,1,y(dy0) kr1(y0)k2  m

(2)(2"TV) +
q
�2(P0,x||P1,x)m(4)(2"TV),

where we used the data processing inequality.
For ' = '�2 , we obtain by Lemma 6.6 that the bound is

O

✓
�
2("TV + "�"

1/2
TV)

✓
d+ ln

✓
1

"TV

◆◆◆
= O

✓
�
2
"�

✓
d+ ln

✓
1

"TV

◆◆◆
.

We use this lemma to obtain a bound on the L
2 score error under perturbation of the distribution,

by interpreting the score as the solution to a de-noising problem.

Lemma 6.2 (L2 score error under perturbation) Let eP (0) = eP (0)
0 and eP (1) = eP (1)

0 be two prob-

ability distributions on Rd
such that �

2( eP (1)|| eP (0))  "2�  1.

1. For any � > 0,

Z ���r ln( eP (0) ⇤ '�2)(x)�r ln( eP (1) ⇤ '�2)(x)
���
2
( eP (1)⇤'�2)(dx) = O

0

@
"�

⇣
d+ ln

⇣
1
"�

⌘⌘

�2

1

A .

2. Let ep(i)t be the density resulting from running (1) starting from eP (i)
, and let �t be as in (3).

Then for any t > 0,

Z ���r ln ep(0)t (x)�r ln ep(1)t (x)
���
2
ep(1)t (x) dx = O

0

@
"�

⇣
d+ ln

⇣
1
"�

⌘⌘

�2t

1

A .

Proof For part 1, note by (28) that

r ln( eP (i) ⇤ '�2)(y) =
1

�2
E eP (i)

y,�2
(x� y),

where eP (i)
y,�2 is the “tilted” probability distribution defined by

d eP (i)
y,�2

d eP (i)
(x) / e

� kx�yk2

2�2 .
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By Bayes’s rule, this can be viewed as the conditional probability that x0 = x given xt = y, where
x0 ⇠ eP (i) and y = x0 + �⇠, ⇠ ⇠ N(0, Id). Hence this fits in the framework of Lemma 6.1 and

Z ���r ln( eP (0) ⇤ '�2)(y)�r ln( eP (1) ⇤ '�2)(y)
���
2
( eP (1) ⇤ '�2)(dy)

=
1

�4

Z

Rd

����E eP (0)
y,t

[x]� E eP (1)
y,t

[x]

����
2

( eP (1) ⇤ '�2)(dy)

= O

✓
1

�4
�
2
"�

✓
d+ ln

✓
1

"TV

◆◆◆
,

giving the result.
For part 2, note that ep(i)t = (Mmt]

eP (i)) ⇤ '�2
t
. Applying part 1 with eP (i)  [ Mmt]

eP (i) (which
preserves �2-divergence) and � = �t gives the result.

Finally, we argue that a score estimate that is accurate with respect to ep(1)t will still be accurate
with respect to ep(0)t , with high probability. When using this lemma, we will substitute in the bound
from Lemma 6.2.

Lemma 6.3 Let eP (0)
0 and eP (1)

0 be two probability distributions on Rd
with TV distance ". Suppose

the estimated score function st(x) satisfies

���r ln ep(0)t � st

���
2

L2(ep(0)t )
= Eep(0)t

���r ln ep(0)t (x)� st(x)
���
2
�
 "2t

for t 2 (0, T ], and r ln ep(0)t is Lt-Lipschitz. Then for t 2 (0, T ] and any "1 > 0,

Pep(1)t

⇣���st �r ln ep(1)t

��� � "1
⌘
 "+ 4

"21
·

"
2
t +

Z ���r ln ep(1)t (x)�r ln ep(0)t (x)
���
2
ep(1)t (x) dx

�
.

Proof We have

Pep(1)t

⇣���st �r ln ep(1)t

��� � "1
⌘

 Pep(1)t

⇣���st �r ln ep(0)t

��� � "1/2
⌘
+ Pep(1)t

⇣���r ln ep(0)t �r ln ep(1)t

��� � "1/2
⌘

 TV(ep(0)t , ep(1)t ) + Pep(0)t

⇣���st �r ln ep(0)t

��� � "1/2
⌘
+ Pep(1)t

⇣���r ln ep(0)t �r ln ep(1)t

��� � "1/2
⌘
.

The first term is bounded by TV( eP (0)
, eP (1))  ". For the second term, by Chebyshev’s Inequality,

Pep(0)t

⇣���st �r ln ep(0)t

��� � "1/2
⌘
 4

"21
Eep(0)t

���st �r ln ep(0)t

���
2
�
 4"2t
"21

;

For the last term, again by Chebyshev’s Inequality,

Pep(1)t

⇣���r ln ep(0)t �r ln ep(1)t

��� � "1/2
⌘
 4

"21

Z ���r ln ep(1)t (x)�r ln ep(0)t (x)
���
2
ep(1)t (x)dx.

We conclude the proof by combining the these three inequalities.

Finally, we will need the following to obtain a TV error bound to ep0 in Theorem 2.3.
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Lemma 6.4 Suppose that ep0 / e
�V (x)

is a probability density on Rd
with bounded first moment

Eep0 kXk, and V is L-smooth. Then for t > 0 such that ↵t�t  1
2L , we have

TV(ept, ep0)  2 (↵t � 1) ·
�
LEep0 kXk+ d

�
+

3

2
dL↵t�t.

Here ↵t = 1/mt and �t are defined in (3). In particular, TV (ep�, ep0)  "TV if � = O(
"2TV
R2L2 ) and

R = max
np

d,Eep0 kXk
o

.

Proof Without loss of generality, we assume that ep0(x) = e
�V (x). Note that ept(x) =

R
↵
d
t ep0(↵ty)'�2

t
(x�

y) dy. Let eqt(x) := ↵
d
t ep0(↵tx), which is also a probability density on Rd. Then by the triangle

inequality,

TV(ept, ep0)  TV(ept, eqt) + TV(eqt, ep0).

For the second term,

|eqt(x)� ep0(x)| =
���↵d

t ep0(↵tx)� ep0(x)
���

=
���e�V (↵tx)+d ln↵t � e

�V (x)
���

 max
n
e
�V (x)

, e
�V (↵tx)+d ln↵t

o
·
⇣
1� e

�|V (x)�V (↵tx)+d ln↵t|
⌘

 (ep0(x) + eqt(x)) · (|V (x)� V (↵tx)|+ d ln↵t)

 (ep0(x) + eqt(x)) · [L kxk (↵t � 1) + d ln↵t] ,

where in the second inequality, we use the fact that 1� e
x  |x| for all x  0. Thus

TV(eqt(x), ep0(x)) =
1

2

Z
|eqt(x)� ep0(x)| dx


Z

[L (↵t � 1) kxk+ d ln↵t] ep0(x) dx+

Z
[L (↵t � 1) kxk+ d ln↵t] eqt(x) dx

 L(↵t � 1)

✓Z
kxk ep0(x)dx+

Z
kxk eqt(x)dx

◆
+ 2d ln↵t

 2L(↵t � 1)

Z
kxk ep0(x)dx+ 2d ln↵t.

Now for the first term,

ept(x)� eqt(x) =
Z
eqt(x� y)'�2

t
(y) dy � eqt(x) =

Z
(eqt(x� �ty)� eqt(x))'(y)dy,
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where '(y) is the density of the d-dimensional standard Gaussian distribution. Apply Minkowski’s
inequality for integrals:

Z
|ept(x)� eqt(x)| dx =

Z ����
Z

(eqt(x� �ty)� eqt(x))'(y)dy
���� dx


Z Z

|eqt(x� �ty)� eqt(x)| dx
�
'(y) dy


Z Z ⇣

e
Lk↵t�tyk � 1

⌘
eqt(x)dx

�
'(y) dy

=

Z ⇣
e
Lk↵t�tyk � 1

⌘
'(y) dy

= (2⇡)�d/2
Z

e
L↵t�tkyk� kyk2

2 dy � 1

 (2⇡)�d/2
Z

e
[� 1

2+(L↵t�t)
2]kyk2

dy + L↵t�t

Z
kyk'(y) dy � 1




1

1� 2 (L↵t�t)
2

�d/2
+
p
dL↵t�t � 1

 e
2d(L↵t�t)

2

� 1 +
p
dL↵t�t

 4d (L↵t�t)
2 +
p
dL↵t�t,

where in the third inequality, we use the elementary inequality e
x  x + e

x2 , which is valid for
all x 2 R, and in the fifth inequality, we use 1

1�2x  e
4x, which holds for x 2 [0, 1/3]. Hence if

L↵t�t  1/2, we have

TV(ept, eqt) 
1

2

Z
|ept(x)� eqt(x)| dx 

3

2
dL↵t�t.

Now we conclude the proof by combining the bounds for TV(ept, eqt) and TV(ep0, eqt):

TV(ept, ep0)  TV(ept, eqt) + TV(eqt, ep0)

 2L(↵t � 1)

Z
kxk ep0(x)dx+ 2d ln↵t +

3

2
dL↵t�t

 2 (↵t � 1) ·
�
LEep0 kXk+ d

�
+

3

2
dL↵t�t,

where we use the fact that lnx  x�1 for all x � 1. Recall that ↵t = 1/mt = e
t/2 and �2t = 1�e�t

when g ⌘ 1. It suffices for

max

⇢
2
�
LEep0 kXk+ d

�
(↵� � 1) ,

3

2
dL↵���

�
 "TV

2
,

which is implied by

� - min

⇢
"TV

LEep0 kXk+ d
,
"
2
TV

d2L2

�
⇣ "

2
TV

R2L2
,

for appropriate constants, as R � max
np

d,Eep0 kXk
o

.
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6.2. Perturbation under TV error

Although we will not need it in our proof, we note that we can derive a similar perturbation result
under TV error, which might be of independent interest.

Lemma 6.5 Let K(x, dy) be a probability kernel on Rd
, let P0,x, P1,x be measures on Rd

. Let

Pi denote the joint distribution of xi ⇠ Pi,x and yi ⇠ K(xi, ·), and let Pi,y denote the marginal

distribution of y. Suppose there is a coupling P0,1 of (x0, y0) ⇠ P0 and (x1, y1) ⇠ P1 such that

• x0 = x1 with probability 1� ",

• x0 = x1 implies y0 = y1, and

• E[ky0 � y1k2]  "2W.

Define the tail error by

mi(") : = sup
0f1,

R
Rd f' dx"

Z

Rd
f(x) kxk2 Pi( dx).

Let ri(y) =
R
Rd xiPi(dxi|y), and suppose that r1(y) =

R
Rd x1P1(dx1|y) is L1-Lipschitz. Then

Z

Rd
P0,y(dy0)

����
Z

Rd
x0P0(dx0|y0)�

Z

Rd
x1P1(dx1|y0)

����
2

 4(m0(2") +m0(") +m1(2") +m1(")) + 2L2
1"

2
W

 4(m0(2") +m1(2")) + 4(1 + L
2
1)(m0(") +m1(")).

Proof For notational clarity, we will denote draws from the conditional distribution as bx0 and bx1, for
example P0(dbx0|y0). We have

Z

Rd
P0,y(dy0) kr0(y0)� r1(y0)k2  2

Z

Rd⇥Rd
P0,1,y(dy0, dy1) kr0(y0)� r1(y1)k2

| {z }
(I)

+ 2

Z

Rd⇥Rd
P0,1,y(dy0, dy1) kr1(y1)� r1(y0)k2

| {z }
(II)

.

For the first term (I), we split it as

(I) 
Z

{y0=y1}
P0,1,y(dy0, dy1) kr0(y0)� r1(y0)k2

| {z }
(i)

+

Z

{y0 6=y1}
P0,1,y(dy0, dy1) kr0(y0)� r1(y1)k2

| {z }
(ii)

.

Define the measure Q on Rd by

Q(A) : = P0,1(y0 2 A and y0 = y1).
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As in Lemma 6.2, under P0,1, when y0 = y1, we can couple P0(dbx0|y0) and P1(dbx1|y0) so that
x0 = x1 with probability min

n
dQ

dP0,y
,

dQ
dP1,y

o
. Let bP (dbx0, dbx1|y0) denote this coupled distribution.

Then

(i) 
Z

{y0=y1}
P0,1,y(dy0, dy1)

�����

Z

{bx0 6=bx1}
(bx0 � bx1) bP (dbx0, dbx1|y0)

�����

2

 2

Z

Rd
P0,1,y(dy0, dy1)

 Z

{bx0 6=bx1}
kbx0k2 bP (dbx0, dbx1|y0) +

Z

{bx0 6=bx1}
kbx1k2 bP (dbx0, dbx1|y1)

!

 2(m0(2") +m1(2"))

as in Lemma 6.2. Now

(ii)  2

Z

{y0 6=y1}
P0,1,y(dy0, dy1)(kr0(y0)k2 + kr1(y1)k2)  2(m0(") +m1(")).

Finally, for the second term (II), we use the fact that r1 is L1 Lipschitz and the coupling to
conclude

(II) 
Z

Rd
P0,1,y(dy0, dy1)L

2
1 ky0 � y1k2  L

2
1"

2
W.

We conclude the proof by combining the inequalities for (i), (ii), and (II).
For the second upper bound, we note that

E[ky0 � y1k2]  2(E[ky0k2] + E[ky1k2])  2(m0(") +m1(")).

6.3. Gaussian tail calculation

We use the following Gaussian tail calculation in the proof of Lemma 6.2.

Lemma 6.6 Let µ be the standard Gaussian measure on N(0, Id). Then

sup
µ(A)"

Z

A
kxk2 µ(dx)  "

✓
2d+ 3 ln

✓
1

"

◆
+ 3

◆
= O

✓
"

✓
d+ ln

✓
1

"

◆◆◆

sup
µ(A)"

Z

A
kxk4 µ(dx)  "

✓
2d+ 3 ln

✓
1

"

◆◆2

+ 3"

✓
2d+ 3 ln

✓
1

"

◆◆
+ 9" = O

 
"

 
d
2 + ln

✓
1

"

◆2
!!

.

Proof By the �2 tail bound in Laurent and Massart (2000), for t � 0,

µ(kXk2 � 2d+ 3t)  P(kXk2 � d+ 2
p
dt+ 2t)  e

�t
, (34)

so kXk2 is stochastically dominated by a random variable with cdf F (y) = 1� e
� y�2d

3 . Then letting
PY be the measure corresponding to F ,

sup
µ(A)"

Z

A
kxk2 µ(dx)  sup

PY (A)"

Z

A
yPY (dy) =

Z 1

2d+3 ln( 1
" )

ydF (y)

= "

✓
2d+ 3 ln

✓
1

"

◆◆
+

Z 1

2d+3 ln( 1
" )

e
� y�2d

3 dy = "

✓
2d+ 3 ln

✓
1

"

◆◆
+ 3"
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and

sup
µ(A)"

Z

A
kxk4 µ(dx)  sup

PY (A)"

Z

A
y
2
PY (dy) =

Z 1

2d+3 ln( 1
" )

y
2
dF (y)

= "

✓
2d+ 3 ln

✓
1

"

◆◆2

+

Z 1

2d+3 ln( 1
" )

2ye�
y�2d

3 dy

= "

✓
2d+ 3 ln

✓
1

"

◆◆2

�
h
3ye�

y�2d
3

i ���
1

2d+3 ln( 1
" )

+

Z 1

2d+3 ln( 1
" )

3e�
y�2d

3 dy

= "

✓
2d+ 3 ln

✓
1

"

◆◆2

+ 3"

✓
2d+ 3 ln

✓
1

"

◆◆
+ 9".

7. Guarantees under L2-accurate score estimate

We will state our results under a more general tail bound assumption.

Assumption 6 (Tail bound) R : [0, 1]! [0,1) is a function such that Pdata(BR(")(0)) � 1� ".

Our result will require R(") to grow at most as a sufficiently small power of "�1 as " ! 0; in
particular, this holds for subexponential distributions. By taking R to be a constant function, this
contains the assumption of bounded support (Assumption 2) as a special case.

7.1. TV error guarantees

We follow the framework of Lee et al. (2022) to convert guarantees under L1-accurate score estimate,
to guarantees under L2-accurate score estimate.

Theorem 7.1 ((Lee et al., 2022, Theorem 4.1)) Let (⌦,F ,P) be a probability space and {Fn} be

a filtration of the sigma field F . Suppose Xn ⇠ pn, Zn ⇠ qn, and Zn ⇠ qn are Fn-adapted random

processes taking values in ⌦, and Bn ✓ ⌦ are sets such that the following hold for every n 2 N0.

1. If Zk 2 B
c
k for all 0  k  n� 1, then Zn = Zn.

2. �
2(qn||pn)  D

2
n.

3. P(Xn 2 Bn)  �n.

Then the following hold.

TV(qn, qn) 
n�1X

k=0

(D2
k + 1)1/2�1/2k TV(pn, qn)  Dn +

n�1X

k=0

(D2
k + 1)1/2�1/2k (35)

Theorem 7.2 (DDPM with L
2-accurate score estimate) Let 0 < "�, "TV, � <

1
2 . Suppose that

Assumption 6 for a sufficiently small value of c that R0 is such that R

⇣
c"3TV�

6"12�
R19

0 d5

⌘
 R0, and

R
2
0 � d. Suppose one of the following cases holds.
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1. Let Pdata, s(·, t) be such that Assumption 1 holds, with R
2
0 � d. Suppose that

"� = O

 
"TV�

5/2
"
11/2
�

B9/4

!
,

where B = R
4
0d ln

�
T
�

�
ln
⇣

R0d
�"TV"�

⌘
, and we run (5) starting from pprior for time T =

ln
⇣
16R2

0
"2�

⌘
, N = O

 
B
⇣
T+ 1

�2

⌘

"2�

!
steps with step sizes satisfying hk = O

⇣
"2�

Bmax{T�tk,(T�tk)�3}

⌘
.

2. Let Pdata, s(·, t) be such that Assumptions 1 and 3 hold, with C � R
2
0. Suppose

"� = O

 
"TV"

3
�

T 5/2B

!
,

where B = C
2
d ln

�
T
�

�
ln
⇣

R0d
�"TV"�

⌘
, and we run (5) starting from pprior for time T =

ln
⇣
16R2

0
"2�

⌘
, N = O

✓
B(T+ln( 1

� ))
"2�

◆
steps with step sizes satisfying hk = O

⇣
"2�

Bmax{T�tk,(T�tk)�1}

⌘
.

Then the resulting distribution qtN is such that qtN is "TV-far in TV distance from a distribution qtN ,

where qtN satisfies �
2(qtN ||ptN )  "

2
�. In particular, taking "� = "TV, we have TV(qT , Pdata) 

2"TV.

Note that the condition on R can be satisfied if R(") = o(R�1/19) (no effort has been made to
optimize the exponent).
Proof We invoke Lemma 5.2 for a "K to be chosen, to obtain a distribution eP0 on BR0(0), where
R0 � R("K/8). Let B = R

4
0d ln

�
T
�

�
ln
⇣

R0
�"K

⌘
and B = C

2
d ln

�
T
�

�
ln
⇣

R0
�"K

⌘
in case 1 and case

2, respectively; our choice of "K = O

⇣
"2TV�

6

n2R6
0

⌘
will give the definition of B in the theorem statement.

In the following, we define ept with eP0, rather than Pdata, as the initial distribution. Note that since
TV(Pdata, eP0) 

p
"K = o("TV) (and the same holds for their evolutions under (1)), it suffices to

consider convergence to ep�.
We first define the bad sets where the error in the score estimate is large,

Bt : = {kr ln ept(x)� s(x, t)k > "1,t} (36)

for some "1,t to be chosen.
Given t � 0, let t� = tk where k is such that t 2 [tk, tk+1). Given bad sets Bt, define the

interpolated process on [tk, tk+1) by

dzt = g(T � t)2
✓
1

2
zt + b(z�, T � t�)

◆
dt+ g(T � t) dwt (37)

where b(z, t) =

(
s(z, t), z 62 Bt

r ln ept(z), z 2 Bt
.

In other words, simulate the reverse SDE using the score estimate as long as the point is in the good
set at the previous discretization timepoint tk, and otherwise use the actual gradient r ln pt. Let
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qt denote the distribution of zt when z0 ⇠ q0. Note that this process is defined only for purposes
of analysis, as we do not have access to r ln pt. As before, we let denote qt the distribution of zt
defined by (13).

We can couple this process with the exponential integrator (5) using s so that as long as xtm 62
BT�tm , the processes agree, thus satisfying condition 1 of Theorem 7.1.

Then by Lemma 6.3, substituting the bound of Lemma 6.2 for the L
2 score error,

eP (0)
t (Bt) = "K +

4

"21,t

0

@"2t +O

0

@
"K

⇣
d+ ln

⇣
1
"K

⌘⌘

�2t

1

A

1

A ,

Then by choice of hk and either Corollary 4.11 or 4.12, when
R tn
0 "

2
t dt = O(1),

�
2(qtk ||ptk) = e

"
�
2(q0||p0) + "+ e

"
Z tn

0
"
2
1,T�t dt (38)

 2�2(q0||p0) +O(1),

where " = "2�
4 . For �2(qtk ||ptk) to be bounded by "2�, it suffices for the terms in (38) to be bounded

by "2�
2 ,

"2�
4 ,

"2�
4 ; this is implied by

T = ln

✓
16R2

"2�

◆
by Lemma 4.14

Z tn

0
"
2
1,T�t dt = O("2�). (39)

By Theorem 7.1,

TV(qtn , qtn) 
n�1X

k=0

(1 + �
2(qtk ||ptk))

1/2
P (Btk)

1/2


n�1X

k=0

⇣
2�2(q0||p0)1/2 +O(1)

⌘
�
1/2
t (40)

= O

 
n�1X

k=0

"tk

"1,tk
+
p
"K

 
1 +

p
d+ ln(1/"K)

"1,tk�T�tk

!!
. (41)

For this to be bounded by "TV, it suffices for
n�1X

k=0

"t

"1,t
= O("TV) (42)

"K = O

 
mink "2tk�

2
T�tk

d+ ln(1/"K)

!
. (43)

We bound (43) crudely, as the dependence on "K will be logarithmic. Using "2tk = "
2
�/�

4
tk , it suffices

that

"K = O

✓
"
2
�

d+ ln(1/"K)

◆
. (44)
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We will return to this after deriving a condition on "�. It remains to bound (39) and (42). We break
up the timepoints depending on whether T � t > 1. Let

(t0, t1, . . . , tN ) = (t0, . . . , tncoarse�1, t
0
0, . . . , t

0
nfine)

and uk = T � t
0
k, where tncoarse�1  T � 1  t

0
1. Let h0k = t

0
k+1 � t

0
k. Note the “fine” timepoints

will be closer together than the “coarse” timepoints. We break up the integral (39) and the sum (42)
into the parts involving the coarse and fine timepoints. For (39), it suffices to have

(39), coarse:
Z t00

0
"
2
1,T�t dt  T max

0kncoarse
"
2
1,T�tk = O("2�)

so it suffices to take "21,T�tk
⇣ "2�

T . Let ↵ = 3 in case 1 and ↵ = 1 in case 2. For the fine part,
recalling our choice of h0k, it suffices to have (note we can redefine "t = "tk when t 2 [tk, tk+1)
without any harm)

(39), fine:
Z t0

nfine

t00

"
2
1,T�t dt =

nfine�1X

k=0

h
0
k"

2
1,T�t0k

= O("2�)

(=
nfine�1X

k=0

"
2
�u

↵
k

B
"
2
1,uk

= O("2�)

(=
nfine�1X

k=0

u
↵
k "

2
1,uk

B
= O(1). (45)

For (42), it suffices to have

(42), coarse:
ncoarse�1X

k=0

"T�tk

"1,T�tk
⇣ n

coarse "�

"�/
p
T

= O("TV)

(= "� = O

✓
"TV"�

ncoarse
p
T

◆
(46)

and

(42), fine:
nfine�1X

k=0

"uk

"1,uk

⇣
nfine�1X

k=0

"�

uk"1,uk

= O("TV). (47)

Note that in light of the required step sizes, we can take n
coarse ⇣ T 2B

"2�
. Considering the equality

case of Hölder’s inequality on (45)1/3(47)2/3 suggests that we take

"� ⇣
"TVB

1/2

⇣Pnfine�1
k=0 uk

↵�2
3

⌘3/2 (48)

"1,uk ⇣
B

1/2

uk
↵+1
3

⇣Pnfine�1
k=0 uk

↵�2
3

⌘1/2 (49)
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Note that the number of steps needed in the fine part is O
⇣

B
"2��

2

⌘
in the first case and O

⇣
B
"2�

⌘
ln
�
1
�

�

in the second case. We can check that (48) and (49) make (45) and (47) satisfied.
Finally, we calculate the denominator for "�. In case 1, note that starting from T � t

0
0 = O(1)

and taking steps of size h
0
k ⇣

"2�
B(T�t0k)

3 , it takes nfine = ⇥
⇣

B
"2��

2

⌘
steps to reach T � t = �.

uk = T � t
0
k =

 
1 +⇥

 
k"

2
�

B

!!� 1
2

nfine�1X

k=0

u
1/3
k ⇣

nfine�1X

k=0

 
1 +⇥

 
k"

2
�

B

!!� 1
6

⇣ B

"2�
(nfine)

5
6 ⇣

✓
B

"2�

◆11/6 1

�5/3
.

Then we obtain

"� ⇣ "TVB
1/2 "

11/2
�

B11/4
�
5/2 =

"TV�
5/2
"
11/2
�

B9/4
.

In case 1, our requirement is

"� ⇣ O

 
"TV�

5/2
"
11/2
�

B9/4
^
"TV"

3
�

T 5/2B

!
,

but note that the first bound is more stringent. Now, returning to (44), we see that it suffices to take

"K = O

 
1
d

✓
"TV�5/2"

11/2
�

R9
0d

9/4

◆2+�
!

for any � > 0 (this will “solve” the log(1/"K) appearing in B.)

In case 2, we have instead uk = exp
⇣
�⇥

⇣
"2�
B k

⌘⌘
so

"� ⇣ "TVB
1/2

 
"
2
�

B

!3/2

=
"TV"

3
�

B
.

Theorem 7.3 (TV error for DDPM with L
2-accurate score estimate and smoothness) Let 0 <

"TV <
1
2 . Suppose that Assumption 4 and 6 for a sufficiently small value of c that R0 is such that

R

⇣
c"15TV

R31
0 d5L12

⌘
 R0, and R

2
0 � max

n
d,EPdata

h
kXk2

io
, and one of the following cases holds.

1. Let Pdata, s(·, t) be such that Assumption 1 holds. Suppose that

"� = O

✓
"
11.5
TV

B9/4R5
0L

5

◆
,

where B = R
4
0d ln

⇣
TR2

0L
2

"2TV

⌘
ln
⇣
R3

0dL
2

"3TV"�

⌘
, and we run (5) starting from pprior for time T =

ln
⇣
16R2

0
"2TV

⌘
, N = O

0

@
B

✓
T+

⇣
R0L
"TV

⌘4
◆

"2TV

1

A steps with step sizes satisfying hk = O

⇣
"2�

Bmax{T�tk,(T�tk)�3}

⌘
.

35



CONVERGENCE OF SCORE-BASED GENERATIVE MODELING FOR GENERAL DATA DISTRIBUTIONS

2. Let Pdata, s(·, t) be such that Assumptions 1 and 3 hold, with C � R
2
0. Suppose

"� = O

✓
"
4
TV

T 5/2B

◆
,

where B = C
2
d ln

⇣
TR2

0L
2

"2TV

⌘
ln
⇣
R3

0dL
2

"4TV

⌘
, and we run (5) starting from pprior for time T =

ln
⇣
16R2

0
"2TV

⌘
, N = O

 
B
⇣
T+ln

⇣
R0L
"TV

⌘⌘

"2TV

!
steps with step sizes satisfying hk = O

⇣
"2�

Bmax{T�tk,(T�tk)�1}

⌘
.

Then the resulting distribution qtN is such that qtN is "TV-far in TV distance from the data distribution

Pdata.

Proof With the result of Theorem 7.2, we see that TV(qtN , ptN )  2"TV. Now by Lemma 6.4, if
we further assume

� = O

✓
"
2
TV

R2
0L

2

◆
,

then TV(ptN , Pdata)  "TV. We conclude the proof by triangle inequality and replacing the �-
dependence with O(

"2TV
R2

0L
2 ) in the previous theorem.

Proof [Proof of Theorem 2.3] If Pdata is subexponential with a fixed constant, note that Assumption 6
holds with R(") = O

�
ln
�
1
"

��
and hence R0 is logarithmic in all parameters.

7.2. Wasserstein error guarantees

Proof [Proof of Theorem 2.1] Suppose T � tN = �. Note by (3) that Mm�1
� #ep� has the same

distribution as ex0 + m
�1
� ��z, where ex0 ⇠ eP0 and z ⇠ N(0, Id). Then W2(ep0,Mm�1

� ]ep�) 

m
�1
� ��

p
d 
p
e� � 1 

p
2�d (for �  1). Choosing � = "2W

2d , we see by Theorem 7.2 it suffices to
take

"� = O

0

B@
"
13/2
TV ("2W/d)5/2

⇣
R4d ln

�
T
�

�
ln
⇣
RN
�"W

⌘⌘9/4

1

CA .

Simplifying gives "� = eo
⇣
"6.5TV"

5
W

R9d4.75

⌘
. If Assumption 3 also holds, then it suffices to take

"� = O

0

@ "
4
TV

T 5/2C2d ln
�
T
�

�
ln
⇣
RN
�"W

⌘

1

A .

Simplifying gives "� = eo
⇣
"4TV
C2d

⌘
.
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Proof [Proof of Theorem 2.2] To obtain purely Wasserstein error guarantees, we include an extra
step of replacing any sample ztN ⇠ qtN falling outside BR(0) by 0. Suppose T � tN = �. Let bqtN
be the resulting distribution. Then as above,

W2(ep0, bqtN ) W2(ep0, ep�) +W2(ep�, bqtN )


p
2�d+W2(ep�, bqtN ).

We choose � = "2W
8d so the first term is  "W

2 . It suffices to bound the second term W2(ep�, bqtN ) also
by "W

2 . We bound it in terms of TV(ep�, bqtN ) using the fact that bqtN is supported on BR(0) and using
a Gaussian tail calculation for ep�. Consider a coupling of xtN = ex� ⇠ ep� and bztN ⇠ bqtN such that
x� 6= bztN with probability "TV. Express ex� = m�ex0 + ��⇠ where ex0 ⇠ ep0. Now

E[kex� � bztN k
2]  sup

P (A)"TV

2
⇣
E[km�ex0 � ztN k

2
A] + �

2
�E[k⇠k

2
A]
⌘

= 2

✓
4R2

"TV + �
2
�"TV ·O

✓
d+ ln

✓
1

"TV

◆◆◆
,

where the bound on the second term uses Lemma 6.6. Using R
2 � d, we see that it suffices to choose

"TV = O

⇣
"2W
R2

⌘
for appropriate choice of constants. By Theorem 7.2, it suffices to take

"� = O

0

B@
("2W/R

2)13/2
�
"
2
W/d

�5/2
⇣
R4d ln

�
T
�

�
ln
⇣
RN
�"W

⌘⌘9/4

1

CA .

Simplifying gives eo
⇣

"18W
R22d4.75

⌘
.

In case 2, it suffices to take

"� = O

0

@ ("2W/R
2)4

T 5/2(C2d ln
�
T
�

�
ln
⇣
RN
�"W

⌘
)

1

A .

Simplifying gives "� = eo
⇣

"8W
C2R8d

⌘
.
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Appendix A. High-probability bound on the Hessian

In this section we obtain a high-probability bound on the Hessian of ln ept, i.e., the Jacobian of the
score function.

To see why we expect Hessian to usually be smaller than the worst-case bound given by
Lemma 4.13, note that we can express (28) and (29) as

r ln(µ ⇤ '�2(y)) = � 1

�2
E[Y �X|Y = y] (50)

r2 ln(µ ⇤ '�2(y)) =
1

�4
Cov[Y �X|Y = y]� 1

�2
Id (51)

where X ⇠ µ and Y = X + �⇠, ⇠ ⇠ N(0, Id). We expect that the random variable Y � X is
distributed as N(0,�2Id), which suggests that the covariance (51) may be bounded by 1

�2 rather
than 1

� with high probability. Indeed, we can easily construct an example where the worst case of
Lemma 4.13 is attained—for example, µ = 1

2(��v + �v) for kvk2 = R, at x = 0—but this point has
exponentially small probability density under µ ⇤ '�2 .

The following lemma uses a "-net argument to bound the operator norm of the variance of a
conditional distribution, with high probability.

Lemma A.1 Suppose X is a Rd
-valued random variable over the probability space (⌦,G, P ), and

F ✓ G is a �-subalgebra. If X is subgaussian, then

P
✓
E
h���XX

>
��� |F

i
� 2 kXk2 2

ln

✓
2 · 5d

"

◆◆
 ".
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Proof By Jensen’s inequality and Markov’s inequality, for any v 2 Sd�1,

P
⇣
E[v>XX

>
v|F ] � �2

⌘
= P

⇣
e
E[v>XX>v|F ]/c2 � e

�2/c2
⌘

 P
⇣
E
h
e
hX,vi2/c2 |F

i
� e

�2/c2
⌘


E
h
E[ehX,vi2/c2 |F ]

i

e�
2/c2

=
E
h
e
hX,vi2/c2

i

e�
2/c2

 2e��
2/kXk 2 ,

where the last inequality follows from taking c = kXk 2
. Now take a 1

2 -net N of Sd�1 of size  5d

(Vershynin, 2018, Cor. 4.2.13). By a union bound,

P
⇣
9v 2 N : E[v>XX

>
v|F ] � �2

⌘
 5d · 2 · e��

2/kXk2 2 = "

when we take � = kXk 2

r
ln
⇣
2·5d
"

⌘
. By (Vershynin, 2018, Lemma 4.4.1), the operator norm can

be bounded by the norm on an "-net,

kAk  2 sup
v2A
khA, vik = 2 sup

v2A
|v>Av|.

where the second inequality holds when A is symmetric. The result follows from applying this to
E[v>XX

>
v|F ].

From this we obtain the desired high-probability bound.

Lemma A.2 There is a universal constant C such that the following holds. For any starting

distribution eP0, letting ePt be the law of the DDPM process (1) at time t, we have

ePt

 
��r2 ln ept(x)

�� 
C(d+ ln

�
1
"

�
)

�2t

!
� 1� ".

Note that there is no dependence on the radius.
Proof Apply (51) with µ = Mmt]

eP0 to obtain r2 ln ept. Noting that Y � X ⇠ N(0,�2Id) is
subgaussian with kY �Xk 2

 C2� for some universal constant C2, the result follows from
Lemma A.1.
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