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Abstract

Network data are increasingly available in various research fields, motivating statistical
analysis for populations of networks, where a network as a whole is viewed as a data point.
The study of how a network changes as a function of covariates is often of paramount
interest. However, due to the non-Euclidean nature of networks, basic statistical tools
available for scalar and vector data are no longer applicable. This motivates an extension
of the notion of regression to the case where responses are network data. Here we propose
to adopt conditional Fréchet means implemented as M-estimators that depend on weights
derived from both global and local least squares regression, extending the Fréchet regression
framework to networks that are quantified by their graph Laplacians. The challenge is to
characterize the space of graph Laplacians to justify the application of Fréchet regression.
This characterization then leads to asymptotic rates of convergence for the corresponding
M-estimators by applying empirical process methods. We demonstrate the usefulness and
good practical performance of the proposed framework with simulations and with network
data arising from resting-state fMRI in neuroimaging, as well as New York taxi records.

Keywords: Fréchet mean, graph Laplacian, neuroimaging, power metric, sample of
networks

1. Introduction

Advances in modern science have led to the increasing availability of large collections of
networks where a network is viewed as a fundamental unit of observation. Such data
are encountered, for example, in the analysis of brain connectivity (Fornito et al., 2016)
where interconnections among brain regions are collected for each patient under study, and
traffic mobility (Von Ferber et al., 2009), where volumes of traffic among transit stations are
recorded for each day. Several recent studies focus on the analysis of collections of networks.
For example, a geometric framework for inference concerning a population of networks
was introduced and complemented by asymptotic theory for network averages in Ginestet
et al. (2017) and Kolaczyk et al. (2020). A similar framework for studying populations of
networks, where the graph space is viewed as the quotient space of a Euclidean space with
respect to a finite group action, was studied in Calissano et al. (2020) and a flexible Bayesian
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nonparametric approach for modeling the population distribution of network-valued data in
Durante et al. (2017). Recently various distance-based methods for collections of networks
have also been proposed (Donnat and Holmes, 2018; Josephs et al., 2020; Wills and Meyer,
2020; Lunagómez et al., 2021).

A challenging and commonly encountered problem is to model the relationship between
network objects and one or more explanatory variables. Such regression problems arise,
for instance, when one is interested in varying patterns of brain connectivity networks
across covariates of interest, such as age and cognitive ability of subjects. As the elderly
population increases, an emerging research topic is brain aging and especially age-related
cognitive decline (Ferreira and Busatto, 2013; Sala-Llonch et al., 2014, 2015). With advances
in neuroimaging techniques, and specifically fMRI, one is able to model the human brain
as a network, where nodes correspond to anatomical regions and edges to the functional or
structural connections among them. Normal brain aging can then be studied by network-
response regression, where the brain connectivity network of a subject is the response and
the subject’s age the predictor. This setting is different from the time-series case where the
emphasis is on modeling a sequence of networks (Zhu et al., 2017; Kim et al., 2018; Jiang
et al., 2020; Dubey and Müller, 2021; Wang et al., 2021).

Although various approaches have been proposed for regression with non-Euclidean re-
sponses, such as Jain (2016), Cornea et al. (2017) or Dai and Müller (2018) among others,
there are only very few studies on network-response regression. Matrix representations of
networks, such as adjacency matrices and graph Laplacians, are commonly used characteri-
zations of the space of networks. Wang et al. (2017) proposed the Bayesian network-response
regression with a single scalar predictor by vectorizing adjacency matrices. This approach is
restricted to binary networks and is computationally intensive due to the MCMC procedure
involved in the posterior computation. Another approach for network-response regression is
the tensor-response regression model (Zhang et al., 2022; Chen and Fan, 2021), where one
models adjacency matrices locally by extending generalized linear models to the matrix case
and imposes low-rank and sparse assumptions on the coefficients. A general framework for
the statistical analysis of populations of networks was developed by embedding the space
of graph Laplacians in a Euclidean feature-space, where linear regression was applied using
extrinsic methods (Severn et al., 2022). Nonparametric network-response regression based
on the same framework was proposed subsequently by adopting Nadaraya-Watson kernel
estimators (Severn et al., 2021). However, embedding methods suffer from losing much of
the relational information due to the non-Euclidean structure of the space of networks and
assigning nonzero probability to points in the embedding space that do not represent net-
works. Another practical issue in this context is the need to estimate a covariance matrix
which has a very large number of parameters. Based on the adjacency matrix of a network,
Calissano et al. (2022) proposed a network-response regression model by implementing lin-
ear regression in the Euclidean space and then projecting back to the “graph space” through
a quotient map (Calissano et al., 2020). This model is widely applicable for various kinds
of unlabeled networks, but for the regression case there is no supporting theory and this
approach may not be suitable for labeled networks, which are prevalent in applications, for
example brain connectivity networks (Fornito et al., 2016).

To circumvent the problems of embedding methods and provide theoretical support
for network-response regression, we introduce a unifying intrinsic framework for network-
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Figure 1: A toy example where networks G1, G2, G3, G4, each with 3 nodes, are indepen-
dently observed, associated with one dimensional covariates X1 = 2, X2 = 4, X3 =
6, X4 = 8. The weight of each edge is marked beside the corresponding edge.

response regression, by viewing each network as a random object (Müller, 2016) lying in the
space of graph Laplacians and adopting conditional Fréchet means (Fréchet, 1948). Specifi-
cally, let G = (V,E) be a network with a set of nodes V and a set of edge weights E. Under
the assumption that G is labeled and simple (i.e., there are no self-loops or multi edges), one
can uniquely associate each network G with its graph Laplacian L. Consider random pairs
(X,L) ∼ F , where X takes values in Rp, L is a graph Laplacian and F indicates a suitable
probability law. We investigate the dependence of L on covariates of interest X by adopting
the general framework of Fréchet regression (Petersen and Müller, 2019; Chen and Müller,
2022). A toy example is introduced in Figure 1 to illustrate the idea more comprehensively.
The relationship between the observed networks and associated covariates in this toy exam-
ple will be investigated using the proposed network-response regression. The contributions
of this paper are as follows: First, we provide a precise characterization of the space of
graph Laplacians, laying a foundation for the analysis of populations of networks repre-
sented as graph Laplacians, where we adopt the power metric, with the Frobenius metric as
a special case. Second, we demonstrate that this characterization makes it possible to adopt
Fréchet regression for graph Laplacians. Third, the resulting network regression approach is
shown to be competitive in finite sample situations when compared with previous network
regression approaches (Severn et al., 2022, 2021; Zhang et al., 2022). Fourth, our methods
are supported by theory, including pointwise and uniform rates of convergence. Fifth, we
demonstrate the utility and flexibility of the proposed network-response regression model
with fMRI data obtained from the ADNI neuroimaging study and also with New York taxi
data.

The organization of this paper is as follows. In Section 2, we provide a precise charac-
terization of the space of graph Laplacians and discuss metrics for this space. The proposed
regression model for network responses and vector covariates is introduced in Section 3.
Pointwise and uniform rates of convergence for the estimators are established in Section
4. Computational details and simulation results for a sample of networks are presented in
Section 5. The proposed framework is illustrated in Section 6 using the New York yellow
taxi records and rs-fMRI data from the ADNI study. Finally, we conclude with a brief
discussion presented in Section 7. Detailed theoretical proofs and auxiliary results are in
the Appendix.
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2. Preliminaries

2.1 Characterization of the Space of Graph Laplacians

Let G = (V,E) be a network with a set of nodes V = {v1, . . . , vm} and a set of edge weights
E = {wij : wij ≥ 0, i, j = 1, . . . ,m}, where wij = 0 indicates vi and vj are unconnected.
Some basic and mild restrictions on the networks G we consider here are as follows.

(C1) G is simple, i.e., there are no self-loops or multi-edges.

(C2) G is weighted, undirected, and labeled.

(C3) The edge weights wij are bounded above by W ≥ 0, i.e., 0 ≤ wij ≤W .

Condition (C1) is required for the one-to-one correspondence between a network G and its
graph Laplacian, which is our central tool to represent networks. Condition (C2) guarantees
that the adjacency matrix A = (wij) is symmetric, i.e., wij = wji for all i, j. Condition (C3)
puts a limit on the maximum strength of the connection between two nodes and prevents
extremes. Any network satisfying Conditions (C1)–(C3) can be uniquely associated with
its graph Laplacian L = (lij),

lij =

{
−wij , i 6= j∑

k 6=iwik, i = j

for i, j = 1, . . . ,m, which motivates to characterize the space of networks through the
corresponding space of graph Laplacians given by

Lm = {L = (lij) : L = LT; L1m = 0m; −W ≤ lij ≤ 0 for i 6= j}, (1)

where 1m and 0m are the m-vectors of ones and zeroes, respectively. Another well-known
property of graph Laplacians is their positive semi-definiteness, xTLx ≥ 0 for all x ∈ Rm,
which immediately follows if L ∈ Lm, as any such L is diagonally dominant, i.e., lii =∑

j 6=i |lij | (De Klerk, 2006, p. 232).

A precise geometric characterization of the space of graph Laplacians with fixed rank
can be found in Ginestet et al. (2017). However, the fixed rank assumption is not prac-
ticable when considering network-response regression where the rank often will change in
dependence on predictor levels. This necessitates and motivates the study of the space of
graph Laplacians without rank restrictions.

Proposition 1 The space Lm, defined in (1), is a bounded, closed, and convex subset in
Rm2

of dimension m(m− 1)/2.

All proofs are given in Appendix B. The convexity and closedness of Lm as shown in
Proposition 1 ensures the existence and uniqueness of projections onto Lm (Deutsch, 2012,
chap. 3) that we will use in the proposed regression approach.
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2.2 Choice of Metrics

One can choose between several metrics for the space of graph Laplacians Lm. A common
choice is the Frobenius metric, defined as

dF (L1, L2) = ‖L1 − L2‖F = {tr[(L1 − L2)T(L1 − L2)]}1/2,

which corresponds to the usual Euclidean metric if the matrix is viewed as a vector of length
m2. While dF is the simplest of the possible metrics on the space of graph Laplacians, a
downside of dF is the swelling effect, notably for positive semi-definite matrices (Arsigny
et al., 2007; Lin, 2019).

Denote the space of real symmetric positive semi-definite m×m matrices by S+
m. Note

that the space of graph Laplacians Lm is a subset of S+
m. Let UΛUT be the usual spec-

tral decomposition of S ∈ S+
m, with U ∈ Om an orthogonal matrix and Λ diagonal with

nonnegative entries. Defining matrix power maps

Fα(S) = Sα = UΛαUT : S+
m 7→ S+

m, (2)

where the power α > 0 is a constant and noting that Fα is bijective with inverse F1/α, the
power metric (Dryden et al., 2009) between graph Laplacians is

dF,α(L1, L2) = dF [Fα(L1), Fα(L2)].

For α = 1, dF,α reduces to the Frobenius metric dF . For larger α, there is more emphasis
on larger entries of graph Laplacians, while for small α, large and small entries are treated
more evenly and there is less sensitivity to outliers. In particular, dF,α with 0 < α < 1 is
associated with a reduced swelling effect, while dF,α with α > 1 in contrast will amplify it
and thus often will be unfavorable. For α = 1/2 the square root metric dF,1/2 is a canonical
choice that has been widely studied (Dryden et al., 2009, 2010; Zhou et al., 2016; Severn
et al., 2022; Tavakoli et al., 2019). For example, Dryden et al. (2010) examined different
values of α in the context of diffusion tensor imaging and ended up with the choice α = 1/2
and Tavakoli et al. (2019) also demonstrated the advantages of using dF,1/2 when spatially
modeling linguistic object data. In our applications, we likewise focus on dF,1/2 due to its
promising properties and compare its performance with the Frobenius metric dF ; see also
Petersen and Müller (2016) regarding the choice of α.

3. Network Regression

Consider a random object Y ∼ FY taking values in a metric space (Ω, d). Under appropriate
conditions, the Fréchet mean and Fréchet variance of random objects in metric spaces
(Fréchet, 1948), as generalizations of usual notions of mean and variance, are defined as

ω⊕ = argmin
ω∈Ω

E[d2(Y, ω)], V⊕ = E[d2(Y, ω⊕)],

where the existence and uniqueness of the minimizer depends on structural properties of the
underlying metric space and is guaranteed for Hadamard spaces. A general approach for
regression of metric space-valued responses on Euclidean predictors is Fréchet regression,
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for which both linear and locally linear versions have been developed (Petersen and Müller,
2019; Chen and Müller, 2022), and which we adopt as a tool to model regression relationships
between responses which are Lm-valued, i.e., graph Laplacians of fixed dimension m, and
vectors of real-valued predictors. Equipped with a proper metric d, Lm becomes a metric
space (Lm, d), and an analysis of the properties of this space is key to establish theory for
the proposed network regression models.

Suppose (X,L) ∼ F is a random pair, where X and L take values in Rp and Lm ≡
(Lm, d), respectively, and F is the joint distribution of (X,L) on Rp × Lm. We denote the
marginal distributions of X and L as FX and FL, respectively, and assume that µ = E(X)
and Σ = var(X) exist, with Σ positive definite. The conditional distributions FX|L and
FL|X are also assumed to exist. The conditional Fréchet mean, which corresponds to the
regression function of L given X = x, is

m(x) = argmin
ω∈Lm

M(ω, x), M(·, x) = E[d2(L, ·) | X = x], (3)

where M(·, x) is referred to as the conditional Fréchet function. Observing that the con-
ventional conditional mean satisfies E(Y |X = x) = argminy∈RE[(Y − y)2|X = x] for real
valued responses Y , the conditional Fréchet mean can be viewed as a natural extension of
the notion of a conditional mean to network-valued and other metric space-valued responses,
where (Y − y)2 is replaced by d2(L, ω). Further suppose that (Xk, Lk) ∼ F, k = 1, . . . , n,
are independent and define

X̄ = n−1
n∑
k=1

Xk, Σ̂ = n−1
n∑
k=1

(Xk − X̄)(Xk − X̄)T.

The global and local network regression are generalizations of multiple linear regression
and local linear regression to network-valued responses. The key idea is to characterize the
original regression functions as minimizers of weighted least squares problems and then to
leverage the weights to define a weighted barycenter as an M-estimator, using the metric
that is adopted for the space of graph Laplacians.

The global network regression given X = x is defined as

mG(x) = argmin
ω∈Lm

MG(ω, x), MG(·, x) = E[sG(x)d2(L, ·)], (4)

where sG(x) = 1 + (X − µ)TΣ−1(x− µ). The corresponding sample version is

m̂G(x) = argmin
ω∈Lm

M̂G(ω, x), M̂G(·, x) =
1

n

n∑
k=1

skG(x)d2(Lk, ·), (5)

where skG(x) = 1 + (Xk − X̄)TΣ̂−1(x− X̄).
For local network regression, we present details only for the case of a scalar predictor

X ∈ R, where the extension to X ∈ Rp with p > 1 is straightforward but may be subject
to the curse of dimensionality. Consider a smoothing kernel K(·) corresponding to a one-
dimensional probability density and Kh(·) = h−1K(·/h) with h a bandwidth. The local
network regression given X = x is

mL,h(x) = argmin
ω∈Lm

ML,h(ω, x), ML,h(·, x) = E[sL(x, h)d2(L, ·)], (6)
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where sL(x, h) = Kh(X − x)[µ2 − µ1(X − x)]/σ2
0 with µj = E[Kh(X − x)(X − x)j ] for

j = 0, 1, 2 and σ2
0 = µ0µ2 − µ2

1. The corresponding sample version is

m̂L,n(x) = argmin
ω∈Lm

M̂L,n(ω, x), M̂L,n(·, x) =
1

n

n∑
k=1

skL(x, h)d2(Lk, ·). (7)

Here skL(x, h) = Kh(Xk−x)[µ̂2−µ̂1(Xk−x)]/σ̂2
0, where µ̂j = n−1

∑n
k=1Kh(Xk−x)(Xk−x)j

for j = 0, 1, 2 and σ̂2
0 = µ̂0µ̂2− µ̂2

1. The dependence on n is through the bandwidth sequence
h = hn.The local network regression estimate m̂L,n(x), similar to global network regression,
is an M-estimator that depends on the weights skL(x, h).

For the case where X ∈ Rp with p > 1, the weight function for local network regression
takes a slightly different form,

sL(x, h) =
1

µ0 − µT
1µ
−1
2 µ1

Kh(X − x)[1− µT
1µ
−1
2 (X − x)],

where µ0 = E[Kh(X − x)], µ1 = E[Kh(X − x)(X − x)], and µ2 = E[Kh(X − x)(X −
x)(X−x)T] is nondegenerate. The sample version skL(x, h) can be defined similarly. While
global network regression relies on stronger model assumptions, it does not require a tuning
parameter and is applicable for categorical predictors. Local network regression, by contrast,
is more flexible and may be preferable as long as the regression relation is smooth, the
covariate dimension is low and covariates are continuous.

Consider the toy example in Figure 1. In the case of global network regression, a simple
calculation shows that the weight function is skG(x) = 1+(2k−5)(x−5)/5 for k = 1, 2, 3, 4.
For local network regression, one can also obtain an explicit form of the weight function
skL(x, h) if a smoothing kernel K(·) and a bandwidth h are specified. Endowed with the
Frobenius metric dF , the global and local network regression estimates as per (5) and (7)
are

m̂G(x) =
1

4

4∑
k=1

skG(x)Lk, m̂L,n(x) =
1

4

4∑
k=1

skL(x, h)Lk.

Figure 2 shows the prediction networks at X = 5 using global and local network regression,
where the Epanechnikov kernel K(u) = 3

4(1− u2)1[−1,1] is used with a bandwidth h = 2.

4. Asymptotic Properties

We establish the consistency of both global and local network regression estimates as per
(5) and (7), using the metrics discussed in Section 2.2. Both pointwise and uniform rates
of convergence are obtained under the framework of M-estimation. For both Frobenius
metric dF and power metric dF,α with 0 < α < 1, the pointwise rates of convergence are
optimal for both global and local network regression in the sense that as generalizations
of multiple linear regression and local linear regression for the case of Euclidean responses,
they correspond to the known optimal rates for the Euclidean special case. These rates
are validated by simulations in Section 5.2, where we find that the empirical convergence
when sample size is increasing are entirely consistent with the theoretical predictions. We
first consider the case where Lm is endowed with the Frobenius metric dF . The convexity
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Figure 2: Prediction networks at X = 5 for the toy example as per Figure 1 using global
and local network regression with the Frobenius metric dF . The Epanechnikov
kernel and a bandwidth h = 2 are used in local network regression. The weight
of each edge is marked beside the corresponding edge.

and closedness of Lm implies that the minimizers m̂G(x) and m̂L,n(x) defined in (5) and
(7) exist and are unique for any x. The following result formalizes the consistency of the
proposed global network regression estimate and provides rates of convergence, where ‖ · ‖E
denotes the Euclidean norm in Rp.

Theorem 2 Adopting the space of graph Laplacians Lm endowed with the Frobenius metric
dF , for a fixed x ∈ Rp, it holds that for mG(x) and m̂G(x) as per (4) and (5) that

dF [mG(x), m̂G(x)] = Op(n
−1/2). (8)

Furthermore, for a given B > 0 and any given ε > 0,

sup
‖x‖E≤B

dF [mG(x), m̂G(x)] = Op(n
−1/[2(1+ε)]).

The pointwise rate of convergence for conventional multiple linear regression is well
known to be Op(n

−1/2). The pointwise rate of convergence in Theorem 2 is thus optimal in
the sense that it remains the same as the optimal rate of multiple linear regression. Anal-
ogous to the Euclidean case, with its well-known bias-variance trade-off for nonparametric
regression, the rate of convergence for the local network regression estimator depends both
on the metric equivalent of bias, which is dF [m(x),mL,h(x)], as well as on the stochas-
tic deviation dF [mL,h(x), m̂L,n(x)]; see the following result. The kernel and distributional
assumptions (A1)–(A4) in the Appendix are standard for local regression estimation.

Theorem 3 If the space of graph Laplacians Lm is endowed with the Frobenius metric dF
and Assumptions (A1), (A2) hold, then for a fixed x ∈ R and m(x),mL,h(x), and m̂L,n(x)
as per (3), (6), and (7),

dF [m(x),mL,h(x)] = O(h2),

dF [mL,h(x), m̂L,n(x)] = Op[(nh)−1/2],

and with h ∼ n−1/5,
dF [m(x), m̂L,n(x)] = Op(n

−2/5). (9)
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Under Assumptions (A3), (A4) for a closed interval T ⊂ R, if h→ 0, nh2(− log h)−1 →∞
as n→∞, then for any ε > 0,

sup
x∈T

dF [m(x),mL,h(x)] = O(h2),

sup
x∈T

dF [mL,h(x), m̂L,n(x)] = Op(max{(nh2)−1/(2+ε), [nh2(− log h)−1]−1/2}),

and with h ∼ n−1/(6+2ε),

sup
x∈T

dF [m(x), m̂L,n(x)] = Op(n
−1/(3+ε)).

The proofs of these results rely on the fact that Lm is convex, bounded, and of finite
dimension. We represent global and local network regressions as projections PLm onto Lm,

mG(x) = argmin
ω∈Lm

d2
F [BG(x), ω] = PLm [BG(x)],

mL,h(x) = argmin
ω∈Lm

d2
F [BL,h(x), ω] = PLm [BL,h(x)],

where BG(x) = E[sG(x)L] and BL,h(x) = E[sL(x, h)L]. The corresponding sample versions
are

m̂G(x) = argmin
ω∈Lm

d2
F [B̂G(x), ω] = PLm [B̂G(x)],

m̂L,n(x) = argmin
ω∈Lm

d2
F [B̂L,n(x), ω] = PLm [B̂L,n(x)],

where B̂G(x) = n−1
∑n

k=1 skG(x)Lk and B̂L,n(x) = n−1
∑n

k=1 skL(x, h)Lk.

Next considering the power metric dF,α, recall that the graph Laplacian L is centered and
the off-diagonal entries are bounded by W as per (1). By the equivalence of the Frobenius
norm and the l2-operator norm in Rm2

, it immediately follows that the largest eigenvalue
of L is bounded, say by D, a nonnegative constant depending on m and W . Define the
embedding space Mm as

Mm = {S ∈ S+
m : λ1(S) ≤ Dα}, (10)

where λ1(S) is the largest eigenvalue of S. The image of Lm under the matrix power
map Fα, i.e., Fα(Lm), is a subset of Mm as a consequence of the bound D on the largest
eigenvalue of each graph Laplacian. After applying the matrix power map Fα, the image
of Lm is embedded in Mm, where network regression is carried out using the Frobenius
metric dF . When transforming back from the embedding space Mm to Lm, we first apply
the inverse matrix power map F1/α and then a projection PLm onto Lm. The general idea
involving embedding, mapping and projections is shown schematically in Figure 3. The
global network regression in the embedding space Mm using the Frobenius metric dF also
uses the projection PMm onto Mm,

mα
G(x) = argmin

ω∈Mm

d2
F [Bα

G(x), ω] = PMm [Bα
G(x)], (11)

9
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Fα(Lm)

Mm

Fα

F1/α

F1/α(Mm)

Id

PLm

Figure 3: Schematic diagram for the power metric dF,α, where Lm andMm are the space of
graph Laplacians and the embedding space defined in (1) and (10), respectively.
Network regression is carried out using the Frobenius metric dF in the embedding
spaceMm. Here Fα is the matrix power map defined in (2) and F1/α its inverse,
while Fα(Lm) is the image of Lm under Fα and F1/α(Mm) is the image of Mm

under F1/α. The identity map Id embeds Fα(Lm) into Mm, where PLm is the
projection onto Lm.

where Bα
G(x) = E[sG(x)Fα(L)]. Then the global network regression in the space of graph

Laplacians Lm using the power metric dF,α is obtained by applying the inverse matrix power
map F1/α and projection PLm successively to mα

G(x), i.e.,

mG(x) = argmin
ω∈Lm

d2
F {F1/α[mα

G(x)], ω} = PLm{F1/α[mα
G(x)]}. (12)

The corresponding sample versions are

m̂α
G(x) = argmin

ω∈Mm

d2
F [B̂α

G(x), ω] = PMm [B̂α
G(x)],

m̂G(x) = argmin
ω∈Lm

d2
F {F1/α[m̂α

G(x)], ω} = PLm{F1/α[m̂α
G(x)]}, (13)

where B̂α
G(x) = n−1

∑n
k=1 skG(x)Fα(Lk). Similarly for the local network regression,

m(x) = PLm(F1/α{PMm [Bα(x)]}), (14)

mL,h(x) = PLm(F1/α{PMm [Bα
L,h(x)]}), (15)

m̂L,n(x) = PLm(F1/α{PMm [B̂α
L,n(x)]}), (16)

where Bα(x) = E[Fα(L) | X = x], Bα
L,h(x) = E[sL(x, h)Fα(L)] and

B̂α
L,n(x) = n−1

∑n
k=1 skL(x, h)Fα(Lk).

To obtain rates of convergence for power metrics dF,α, an auxiliary result on the Hölder
continuity of the matrix power map Fα is needed. For U a set in Rn1 , E a nonempty subset
of U and 0 < β ≤ 1, a function g : U 7→ Rn2 is uniformly Hölder continuous with order β
and coefficient H on E, i.e., (β,H)-Hölder continuous, if there exists H ≥ 0 such that

‖g(x)− g(y)‖F ≤ H‖x− y‖βF , for all x, y ∈ E.

For β = 1 the function g is said to be H-Lipschitz continuous on E.

10
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Proposition 4 For Em = {S ∈ S+
m : λ1(S) ≤ C}, where λ1(S) is the largest eigenvalue of

S and C ≥ 0 is a constant, the matrix power map Fα as per (2) is

(i) (α,m(1−α)/2)-Hölder continuous on S+
m for 0 < α < 1;

(ii) αCα−1-Lipschitz continuous on Em for α ≥ 1.

Proposition 4 leads to rate of convergence results for the global and local network regression
estimators defined in (13) and (16), where the population targets for the global and local
network regression under the power metric dF,α are defined in (12) and (14).

Theorem 5 If the space of graph Laplacians Lm is endowed with the power metric dF,α,
for any fixed x ∈ Rp, it holds for mG(x) and m̂G(x) as per (12) and (13) that

dF [mG(x), m̂G(x)] =

{
Op(n

−1/2) 0 < α ≤ 1

Op(n
−1/(2α)) α > 1

. (17)

Furthermore, for any B > 0 and any ε > 0

sup
‖x‖E≤B

dF [mG(x), m̂G(x)] =

{
Op(n

−1/[2(1+ε)]) 0 < α ≤ 1

Op(n
−1/[2(1+ε)α]) α > 1

.

Theorem 6 Suppose the space of graph Laplacians Lm is endowed with the power metric
dF,α. Under Assumptions (A1), (A2), for a fixed x ∈ R, it holds for m(x),mL,h(x), and
m̂L,n(x) as per (14), (15), and (16), respectively, that

dF [m(x),mL,h(x)] =

{
O(h2) 0 < α ≤ 1

O(h2/α) α > 1
,

dF [mL,h(x), m̂L,n(x)] =

{
Op[(nh)−1/2] 0 < α ≤ 1

Op[(nh)−1/(2α)] α > 1
,

and with h ∼ n−1/5,

dF [m(x), m̂L,n(x)] =

{
Op(n

−2/5) 0 < α ≤ 1

Op(n
−2/(5α)) α > 1

. (18)

If Assumptions (A3), (A4) hold for a given closed interval T ⊂ R and h→ 0, nh2(− log h)−1 →
∞ as n→∞, then for any ε > 0,

sup
x∈T

dF [m(x),mL,h(x)] =

{
O(h2) 0 < α ≤ 1

O(h2/α) α > 1
,

sup
x∈T

dF [mL,h(x), m̂L,n(x)] ={
Op(max{(nh2)−1/(2+ε), [nh2(− log h)−1]−1/2}) 0 < α ≤ 1

Op(max{(nh2)−1/[(2+ε)α], [nh2(− log h)−1]−1/(2α)}) α > 1
,

11
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and with h ∼ n−1/(6+2ε),

sup
x∈T

dF [m(x), m̂L,n(x)] =

{
Op(n

−1/(3+ε)) 0 < α ≤ 1

Op(n
−1/[(3+ε)α]) α > 1

.

For the power metric dF,α, rates of convergence for both the global and local network
regression depend on the choice of power α. Specifically, rates of convergence are the same
as those for the Frobenius metric dF if 0 < α < 1. When α > 1, we observe that rates of
convergence are sub-optimal as α appears as a denominator. Therefore, the power metric
dF,α with α > 1 is generally not recommended, while whether or not to use power metric
with 0 < α < 1 is not affecting the convergence and thus remains a matter of interpretation
and other application-specific considerations. The convexity of the target space is crucial
in the proof of existence and uniqueness for the minimizers in (3)–(7). Since uniqueness for
the minimizers in (3)–(7) cannot be guaranteed, we include the embedding Fα(Lm) inMm

as defined in (10), which ensures uniqueness for the minimizers in (3)–(7).

5. Implementation and Simulations

5.1 Implementation Details

Implementation of the proposed method involves two projections PLm and PMm as men-
tioned in Section 4. Due to the convexity and closedness of Lm and Mm, PLm and PMm

exist and are unique. To implement PLm(B) where B = (bij) is a constant m×m matrix,
one needs to solve

minimize f(L) = d2
F (B,L) =

m∑
i=1

m∑
j=1

(bij − lij)2

subject to lij − lji = 0, i, j = 1, . . . ,m,
m∑
j=1

lij = 0, i = 1, . . . ,m,

−W ≤ lij ≤ 0, i, j = 1, . . . ,m; i 6= j,

(19)

where L = (lij) is a graph Laplacian. The objective function f(L) is convex quadratic
since its Hessian 2Im2 is strictly positive definite. The three constraints, corresponding to
the definition of Lm in (1), are all linear so that (19) is a convex quadratic optimization
problem, for the practical solution of which we use the osqp (Stellato et al., 2020) package
in R (R Core Team, 2022).

Note that Mm is a bounded subset of the positive semi-definite cone S+
m. To imple-

ment PMm , we first project on S+
m and then truncate the eigenvalues to ensure that the

largest eigenvalue is less than or equal to Dα. The projection PS+m on S+
m is straightforward

and has been studied in Boyd et al. (2004, p. 399). The unique solution for PS+m(B) is∑m
i=1 max{0, λi}vivT

i , where B =
∑m

i=1 λiviv
T
i is the spectral decomposition of a constant

m×m symmetric matrix B.
R codes for the proposed regression models and numerical simulations are available at

https://github.com/yidongzhou/Network-Regression-with-Graph-Laplacians. The
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Figure 4: Run time of the proposed regression models in seconds for different number of
nodes m. GF, global network regression using the Frobenius metric; GS, global
network regression using the square root metric; LF1, local network regression
using the Frobenius metric with no pre-specified bandwidth; LS1, local network
regression using the square root metric with no pre-specified bandwidth; LF2,
local network regression using the Frobenius metric with pre-specified bandwidth;
LS2, local network regression using the square root metric with pre-specified
bandwidth.

run time of the proposed regression models for different number of nodes m using R version
4.2.0 (2022-04-22) running under Darwin on MacBook Pro M1 are summarized in Figure 4.

5.2 Simulation Assessing Rates of Convergence

To assess the performance of the global and local network regression estimates in (5) and (7)
through simulations, we need to devise a generative model. Denote the half vectorization
excluding the diagonal of a symmetric and centered matrix by vech, with inverse operation
vech−1. By the symmetry and centrality as per (1), every graph Laplacian L is fully deter-
mined by its upper (or lower) triangular part, which can be further vectorized into vech(L),
a vector of length d = m(m− 1)/2. We construct the conditional distributions FL|X by as-
signing an independent beta distribution to each element of vech(L). Specifically, a random
sample (β1, . . . , βd)

T is generated using beta distributions whose parameters depend on the
scalar predictor X and vary under different simulation scenarios. The random response L
is then generated conditional on X through an inverse half vectorization vech−1 applied to
(−β1, . . . ,−βd)T. We included four different simulation scenarios involving different types
of regression and metrics, which are summarized in Table 1. The space of graph Laplacians
Lm is not a vector space. Instead, it is a bounded, closed, and convex subset in Rm2

of
dimension m(m − 1)/2 as shown in Proposition 1. To ensure that the random response L
generated in simulations resides in Lm, the off-diagonal entries −βi, i = 1, . . . , d, need to be
nonpositive and bounded below as per (1). To this end, βi, i = 1, . . . , d are sampled from
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Type Metric Setting

I
global
network regression dF

m(x) = vech−1(−x, . . . ,−x),

L = vech−1(−β1, . . . ,−βd),
where βj

i.i.d.∼ Beta(X, 1−X)

II
global
network regression

dF,1/2

m(x) = PLm(F2{PMm [vech−1(−x, . . . ,−x)]}),
L = F2[vech−1(−β1, . . . ,−βd)],
where βj

i.i.d.∼ Beta(X, 1−X)

III
local
network regression dF

m(x) = vech−1[−sin(πx), . . . ,−sin(πx)],

L = vech−1(−β1, . . . ,−βd),
where βj

i.i.d.∼ Beta[sin(πX), 1− sin(πX)]

IV
local
network regression

dF,1/2

m(x) = PLm [F2(PMm{E[F1/2(L) | X = x]})],
L = vech−1(−β1, . . . ,−βd),
where βj

i.i.d.∼ Beta[sin(πX), 1− sin(πX)]

Table 1: Four different simulation scenarios, where m is the true regression function and
L represents the generated random response. The parameters for the beta distri-
butions of the random variables βj depend on the predictors X as indicated for
simulation scenarios I - IV.

beta distributions, which are defined on the interval (0, 1) and whose parameters depend
on the uniformly distributed predictor X.

The consistency of global network regression relies on the assumption that the true
regression function m(x) is equal to mG(x) as defined in (3) and (4), respectively. This
assumption is satisfied if each entry of the graph Laplacian L is conditionally linear in the
predictor X. For the global network regression under the square root metric dF,1/2, an extra
matrix square map F2 is required to ensure that the global network regression estimate in
the metric space (Mm, dF ) as per (11) with α = 1/2 is element-wise linear in X.

We investigated sample sizes n = 50, 100, 200, 500, 1000, with Q = 1000 Monte Carlo
runs for each simulation scenario. In each iteration, random samples of pairs (Xk, Lk),
k = 1, . . . , n were generated by sampling Xk ∼ U(0, 1), setting m = 10, and following the
above procedure. For the qth simulation of a particular sample size, with m̂q(x) denoting
the fitted regression function, the quality of the estimation was quantified by the integrated
squared error ISEq =

∫ 1
0 d

2
F [m(x), m̂q(x)]dx, where m(x) is the true regression function and

the average quality of the estimation over the Q = 1000 Monte Carlo runs was assessed by
the mean integrated squared error

MISE =
1

Q

Q∑
q=1

∫ 1

0
d2
F [m(x), m̂q(x)]dx. (20)

14



Network Regression with Graph Laplacians

Scenario III Scenario IV

Scenario I Scenario II

50 100 200 500 1000 50 100 200 500 1000

50 100 200 500 1000 50 100 200 500 1000
0

50

100

150

0

1

2

0.00

0.25

0.50

0.75

0

1

2

n

IS
E

Figure 5: Boxplots of integrated square errors (ISE) for five sample sizes under four simu-
lation scenarios.

Sample size I II III IV

50 0.465 68.63 1.404 1.738
100 0.235 34.36 0.786 0.983
200 0.119 16.82 0.502 0.566
500 0.047 6.87 0.226 0.275
1000 0.024 3.44 0.127 0.163

Table 2: Mean integrated squared errors (MISE) for five samples sizes under four simulation
scenarios.

The bandwidths for the local network regression in simulation scenarios III and IV were cho-
sen by leave-one-out cross-validation. The results are summarized in Figure 5 and Table 2.
With increasing sample size, ISE is seen to decrease for all scenarios, demonstrating the

convergence of network regression to the target. The empirical rate of convergence under
each simulation scenario was assessed by fitting a least squares regression line for logMISE
versus log n. The asymptotic rates of convergence under the four simulation scenarios are
Op(n

−1/2), Op(n
−1/2), Op(n

−2/5), and Op(n
−2/5), respectively, as per (8), (17), (9), and

(18) in Section 4. Since MISE in (20) approximates the square distance between the true
and fitted regression functions, theory predicts that the slopes of fitted least squares regres-
sion lines under the four simulation scenarios should be around −1, −1, −0.8, and −0.8,
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respectively, while the corresponding observed slopes were −0.99, −0.99, −0.8, and −0.8.
This remarkable agreement between theory and empirical behavior supports the relevance
of the theory.

5.3 Networks with Latent Block Structure

To examine the performance of global and local network regression estimates on networks
with latent block structure, we generate samples of networks from a weighted stochastic
block model (Aicher et al., 2015). Similar to Section 5.2, four different simulation scenarios
I - IV are considered, corresponding to global and local network regression using both the
Frobenius metric dF and the square root metric dF,1/2. Specifically, consider the weighted
stochastic block model with the vector of community membership z = (z1, z2)T where zi is
a vector of length mi with all elements equal to i and m1 + m2 = m. The existence of an
edge between nodes of each block is governed by the Bernoulli distribution, parameterized

by the corresponding entry in the matrix of edge probabilities θ =

(
p11 p12

p21 p22

)
. The weights

of existing edges are assumed to follow a beta distribution with shape parameters α = X
and β = 1−X for global network regression or α = sin(πX) and β = 1− sin(πX) for local
network regression. The associated graph Laplacian is then taken as the random response
L for the proposed regression models. For global network regression under the square root
metric, the random response is taken as F2(L) to ensure that the linearity assumption is
satisfied.

We investigated sample sizes n = 50, 100, 200, 500, 1000, with Q = 1000 Monte Carlo
runs for each simulation scenario. In each iteration, random samples of pairs (Xk, Lk), k =
1, . . . , n were generated by sampling Xk ∼ U(0, 1), setting m1 = m2 = 5, p11 = p22 = 0.5,
p12 = p21 = 0.2, and following the above procedure. The quality of the estimation for each
simulation run was quantified by the integrated squared error as defined in Section 5.2. The
bandwidths for the local network regression were chosen by leave-one-out cross-validation.

We also included comparisons with two alternative methods proposed by Severn et al.
(2022) and Severn et al. (2021). The integrated squared errors (ISE) for all simulation
runs and different sample sizes under different simulation scenarios using the proposed
methods and the two comparison methods are summarized in the boxplots in Figure 6.
The proposed network regression is seen to perform as well as the method of Severn et al.
(2022) under global scenarios and to achieve better performance compared to the methods
in Severn et al. (2022, 2021) under local scenarios, especially for simulation scenario III.
Additional simulations for comparisons between different types of regression and metrics,
and for networks generated from Erdős-Rényi random graph model (Erdős and Rényi, 1959)
are reported in Appendix C.

6. Data Applications

6.1 New York Yellow Taxi System After COVID-19 Outbreak

The yellow and green taxi trip records on pick-up and drop-off dates/times, pick-up and
drop-off locations, trip distances, itemized fares, rate types, payment types and driver-
reported passenger counts, collected by New York City Taxi and Limousine Commission
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Figure 6: Boxplots of integrated square errors (ISE) for networks with latent block structure
using the proposed methods (NRGL, red) and the methods of Severn et al. (2022,
2021) (blue and green).

(NYC TLC), are publicly available at https://www1.nyc.gov/site/tlc/about/tlc-tr
ip-record-data.page. Additionally, NYC Coronavirus Disease 2019 (COVID-19) data
are available at https://github.com/nychealth/coronavirus-data, where one can find
citywide and borough-specific daily counts of probable and confirmed COVID-19 cases in
New York City since February 29, 2020. This is the date at which according to the Health
Department the COVID-19 outbreak in NYC began. We aim to study the dependence of
transport networks constructed from taxi trip records on covariates of interest, including
COVID-19 new cases and a weekend indicator, as travel patterns are well known to differ
between weekdays and weekends.

We focused on yellow taxi trip records in the Manhattan area, which has the highest
taxi traffic, and grouped the 66 taxi zones (excluding islands) as delimited by NYC TLC
into 13 regions. Details about the zones and regions are in Appendix D. Not long after the
outbreak of COVID-19 in Manhattan, yellow taxi ridership, as measured by trips, began
a steep decline during the week of March 15, reaching a trough around April 12. This
motivated us to restrict our analysis to the time period comprising the 172 days from April
12, 2020 to September 30, 2020, during which yellow taxi ridership per day in Manhattan
increased steadily. The total yellow taxi ridership per day is shown in Figure 7(a), where we
observe a pronounced difference between weekends and weekdays. Even though the three
holidays Memorial Day (May 25), Independence Day (July 3), and Labor Day (September
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Figure 7: (a) Total yellow taxi ridership per day in Manhattan, New York in 2020, from
April 12 to September 30. Three holidays Memorial Day (May 25), Independence
Day (July 3), and Labor Day (September 7) are highlighted. (b) COVID-19 new
cases per day in Manhattan, New York in 2020, April 12 - September 30. (c)
MDS plot for taxi networks based on the Frobenius metric dF . (d) MDS plot for
taxi networks based on the square root metric dF,1/2.

7) are weekdays, they follow the same travel patterns as weekends, and consequently were
classified as weekends in the following analyses.

For each day, we constructed a daily undirected network with nodes corresponding to
the 13 regions and edge weights representing the number of people who traveled between
the regions connected by the edge on the specified day. Since the object of interest is the
connection between different regions, we removed self-loops in the networks. We thus have
observations that consist of a simple undirected weighted network for each of the 172 days
from April 12 to September 30. Each of these networks is uniquely associated with a 13×13
graph Laplacian. The covariates of interest include COVID-19 new cases for the day (see
Figure 7(b)) and an indicator that is 1 for weekends and 0 otherwise. The first two multi-
dimensional scaling (MDS) variables from a classical MDS analysis of the resulting graph
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Laplacians provide exploratory analysis and are shown in Figure 7(c) and 7(d). These MDS
plots indicate that irrespective of the chosen metric, there is a clear separation between
weekdays and weekends in MDS2 and also that the number of COVID-19 new cases plays
an important role in MDS1.

Since the weekend indicator is a binary predictor, we applied global network regres-
sion, using both the Frobenius metric dF and the square root metric dF,1/2. The estimated
mean squared prediction error (MSPE) was calculated for each metric using ten-fold cross
validation, averaged over 100 runs. A common baseline metric, for which we chose the
Frobenius metric dF , was used to calculate the MSPEs to make them comparable across
metrics. The MSPE for dF,1/2 was found to be 96.4% of that for dF , validating the util-
ity of the square root metric in real-world applications. Additionally, the Fréchet coeffi-
cient of determination R2

⊕ = 1 − E{d2[L,mG(x)]}/V⊕, an extension of the coefficient of
determination R2 for linear regression, can be similarly used to quantify the proportion
of response variation “explained” by the covariates. The corresponding sample version is
R̂2
⊕ = 1 −

∑
d2[Lk, m̂G(Xk)]/

∑
d2(Lk, ω̂⊕), where ω̂⊕ = argminω∈Lm

∑
d2(Lk, ω). We

found that R̂2
⊕ = 0.433 for dF and R̂2

⊕ = 0.453 for dF,1/2, which further lends support for
the use of dF,1/2 in this specific application. Also, we observe that the generalized tensor-
response regression of Zhang et al. (2022) can be applied to these data using a log link, as
the edge weights are counts. We compared this approach with the proposed global network
regression for the square root metric dF,1/2. The MSPE of the proposed network regression
averaged over 100 runs was substantially smaller by a factor 0.51 of that for tensor-response
regression, clearly favoring the proposed method.

True and fitted networks using the square root metric dF,1/2 for four selected days
are shown in Figure 8. From top left to bottom right, the four days were chosen to be
spaced evenly in the considered time period April 12 to September 30. For each day,
on the left is the observed and on the right the fitted network as obtained from network
regression. The size of the nodes indicates the volume of traffic in this region and the
thickness of the edges represents their weights. The fitted network regression model is seen
to capture both structure and weight information of the networks given relevant covariates,
and demonstrates trends that are in line with observations.

To further investigate the effects of COVID-19 new cases and weekends, predicted net-
works represented as heatmaps at 50, 200, and 400 COVID-19 new cases for weekdays or
weekends are shown in Figure 9. Edge weights are seen to decrease for increasing COVID-
19 new cases, reflecting the negative impact of the epidemic on travel. Heatmaps are
increasingly concentrated with increasing numbers of new cases of COVID-19, indicating a
narrowing of movements to limited areas. Weekend taxi traffic, with lighter and less essen-
tial traffic compared to weekdays, is more severely affected by COVID-19 and as new cases
approach 400 per day comes to a near stop. The regions with the heaviest traffic are areas
105, 106, 107, and 108, which are chiefly residential areas and include popular locations
such as Penn Station, Grand Central Terminal, and also the Metropolitan Museum of Art.

To further illustrate the effects of COVID-19 new cases and weekends versus weekdays on
network structure, Figure 10 shows the same predicted networks where now each heatmap
has its own color scale. This indicates that higher case numbers lead to bigger structural
changes in traffic patterns on weekends than on weekdays, likely because weekend travel
tends to be optional. Blocks involving regions 101, 102, 103 have declining traffic with
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Figure 8: True (left) and fitted (right) networks on May 2, Jun 25, Aug 4, and Sep 7,
2020 (from top left to bottom right). The corresponding days and the number of
COVID-19 new cases are in the headline of each subfigure.

increasing COVID-19 new cases on both weekdays and weekends; these regions are in lower
Manhattan, the central borough for business (see Appendix D), which includes the Financial
District and the World Trade Center. This likely reflects that more people work from home
with increasing case numbers and demonstrates the flexibility of the fits obtained from the
proposed network regression.

6.2 Dynamics of Networks in the Aging Brain

The increasing availability of neuroimaging data, such as functional magnetic resonance
imaging (fMRI) data, has facilitated the investigation of age-related changes in human
brain network organization. Resting-state fMRI (rs-fMRI), as an important modality of
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Figure 9: Predicted networks represented as heatmaps at different number of COVID-19
new cases on weekdays or weekends. The top, middle, and bottom rows show, re-
spectively, the predicted networks at 50, 200, and 400 COVID-19 new cases. The
left and right columns depict the predicted networks on weekdays and weekends,
respectively.
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Figure 10: Predicted networks represented as heatmaps at different number of COVID-
19 new cases on weekdays or weekends. Each heatmap has its own scale to
enhance visualization of structural changes in connections in dependence on daily
COVID-19 new cases. The top, middle, and bottom rows show, respectively, the
predicted networks at 50, 200, and 400 COVID-19 new cases. The left and right
columns depict the predicted networks on weekdays and weekends, respectively.
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fMRI data acquisition, has been widely used to study normal aging, which is known to be
associated with cognitive decline, even in individuals without any process of retrogressive
disorder (Ferreira and Busatto, 2013; Sala-Llonch et al., 2014, 2015).

FMRI measures brain activity by detecting changes in blood-oxygen-level-dependent
(BOLD) signals in the brain across time. During recordings of rs-fMRI subjects relax during
the sequential acquisition of fMRI scans. Spontaneous fluctuations in brain activity during
rest is reflected by low-frequency oscillations of the BOLD signal, recorded as voxel-specific
time series of activation strength. Network-based analyses of brain functional connectivity
at the subject level typically rely on a specific spatial parcellation of the brain into a set
of regions of interest (ROIs) (Bullmore and Sporns, 2009). Temporal coherence between
pairwise ROIs is usually measured by so-called temporal Pearson correlation coefficients
(PCC) of the fMRI time series, forming a m ×m correlation matrix when considering m
distinct ROIs. This correlation matrix assumes the role of observed functional connectivity
for each subject. Hard or soft thresholding (Schwarz and McGonigle, 2011) is customarily
applied to produce a binary or weighted functional connectivity network.

Data used in our study were obtained from the Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI) database (adni.loni.usc.edu), where n = 404 cognitively normal elderly
subjects with age ranging from 55.61 to 95.39 years participated in the study; one rs-fMRI
scan is randomly selected if multiple scans are available for a subject. We used the au-
tomated anatomical labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002) to parcellate the
whole brain into 90 ROIs, with 45 ROIs in each hemisphere. Details about the ROIs can
be found in Appendix D. Preprocessing was carried out in MATLAB using the Statistical
Parametric Mapping (SPM12, www.fil.ion.ucl.ac.uk/spm) and Resting-State fMRI
Data Analysis Toolkit V1.8 (REST1.8, http://restfmri.net/forum/?q=rest). Briefly,
this included the removal of any artifacts from head movement, correction for differences in
image acquisition time between slices, normalization to the standard space, spatial smooth-
ing and temporal filtering (bandpass filtering of 0.01-0.1 Hz). The mean time course of the
voxels within each ROI was then extracted for network construction. A PCC matrix was
calculated for all time course pairs for each subject. These matrices were then converted
into simple, undirected, weighted networks by setting diagonal entries to 0 and threshold-
ing the absolute values of the remaining correlations. We used density-based thresholding
(Fornito et al., 2016), where the threshold is allowed to vary from subject to subject to
achieve a desired, fixed connection density. Specifically, in our analyses the 15% strongest
connections were kept.

To investigate age-related changes in human brain network organization, we employed
local network regression using the Frobenius metric dF with graph Laplacians corresponding
to the networks constructed from PCC matrices as responses, with age (in years) as scalar-
valued covariate. The bandwidth for the predictor age was chosen to minimize the prediction
error using leave-one-out cross-validation, resulting in a bandwidth of h = 0.20. Prediction
was performed at four different ages: 65, 70, 75, and 80 (approximately the 20%, 40%, 60%,
and 80% quantiles of the age distribution of the 404 subjects). The predicted networks are
demonstrated in Figure 11, where the nodes were placed using the Fruchterman-Reingold
layout algorithm (Fruchterman and Reingold, 1991) for visualization. Spectral clustering
(Newman, 2006) was applied to detect the community structure in each network, where
different communities are distinguished by different colors. The number of communities for
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ages 65, 70, 75, and 80 was 10, 12, 12, and 16, respectively. The communities with no less
than 10 nodes are highlighted using colored polygons. These communities are found to be
associated with different anatomical regions of the brain (see Table 5 in Appendix D), where
a community is identified as the anatomical region to which the majority of nodes belong.
As can be seen in Figure 11, the communities associated with the central region, the parietal
lobe, and the limbic lobe disintegrate into several small communities with increasing age.
This finding suggests that higher age is associated with increased local interconnectivity and
cliquishness. High cliquishness is known to be associated with reduced capability to rapidly
combine specialized information from distributed brain regions, which may contribute to
cognitive decline for healthy elderly adults (Sala-Llonch et al., 2015).

7. Discussion

The proposed network regression models provide a novel technology for analyzing network
objects, with extensive applications in various areas including neuroimaging and social
sciences. We present theoretical justifications that include rates of convergence for both
global and local versions. The pointwise rates of convergence are optimal for both global
and local versions in the sense that they correspond to the known optimal rates in the special
case of Euclidean objects. In the proposed framework, the number of nodes m is assumed
to be fixed. If m → ∞, the theoretical results will no longer hold and the asymptotics for
this case would be a topic for future research.

Our framework can be easily extended to the case of directed networks. For a directed
network G, as long as G is simple, i.e., there are no self-loops or multi-edges, one has a one-
to-one correspondence between G and its graph Laplacian. Therefore we can still represent
networks using their corresponding graph Laplacians. The only difference is that the graph
Laplacian is no longer symmetric. As such, the space of graph Laplacians Lm is then of
dimension m(m−1), rather than m(m−1)/2. However, Lm is still convex and closed, which
ensures the existence and uniqueness of projections onto Lm, and asymptotic properties can
be derived by arguments that closely follow those provided in this paper.

For the case of a time series of networks, if one adopts an autoregressive model both the
response and the predictor are network objects; see for example Jiang et al. (2020). This
case is beyond the scope of the present paper. One potential approach is to use geodesics in
the space of graph Laplacians. The relationship between response and predictor networks
can then be studied by relating movements along geodesics (Zhu and Müller, 2021).
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Figure 11: Topological representation using spectral community detection for predicted
functional connectivity networks at different ages (in years). The communi-
ties comprising 10 or more ROIs are highlighted using colored polygons. These
communities are found to be associated with different anatomical regions of the
brain (see Table 5 in Appendix D).

Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI
(Department of Defense award number W81XWH-12-2-0012). This research was supported
in part by NSF grant DMS-2014626.

25



Zhou and Müller

Appendix A. Assumptions for Theorem 3 and Theorem 6

In the following, fX(·) and fX|L(·, ω) stand for the marginal density of X and the conditional
density of X given L = ω, respectively. T is a closed interval in R with interior T o.

(A1) The kernel K(·) is a probability density function, symmetric around zero. Further-
more, defining Kkj =

∫
RK

k(u)ujdu, |K14| and |K26| are both finite.

(A2) fX(·) and fX|L(·, ω) both exist and are twice continuously differentiable, the latter
for all ω ∈ Lm, and supx,ω |(∂2fX|L/∂x

2)(x, ω)| < ∞. Additionally, for any open set
U ⊂ Lm,

∫
U dFL|X(x, ω) is continuous as a function of x.

(A3) The kernel K(·) is a probability density function, symmetric around zero, and uni-
formly continuous on R. Furthermore, defining Kjk =

∫
RK(u)jukdu for j, k ∈ N,

|K14| and |K26| are both finite. The derivative K ′ exists and is bounded on the support
of K, i.e., supK(x)>0 |K ′(x)| <∞; additionally,

∫
R x

2|K ′(x)|(|x log |x||)1/2dx <∞.

(A4) fX(·) and fX|L(·, ω) both exist and are continuous on T and twice continuously dif-
ferentiable on T o, the latter for all ω ∈ Lm. The marginal density fX(·) is bounded
away from zero on T , infx∈T fX(x) > 0. The second-order derivative f ′′X is bounded,
supx∈T o |f ′′X(x)| < ∞. The second-order partial derivatives (∂2fX|L/∂x

2)(·, ω) are
uniformly bounded, supx∈T o,ω∈Lm |(∂

2fX|L/∂x
2)(x, ω)| < ∞. Additionally, for any

open set U ⊂ Lm,
∫
U dFL|X(x, ω) is continuous as a function of x; M(·, x) is equicon-

tinuous, i.e., for all x ∈ T ,

lim sup
z→x

sup
ω∈Lm

|M(ω, z)−M(ω, x)| = 0.

Appendix B. Proofs

B.1 Conditions

To obtain rates of convergence for the global and local network regression estimators, we
require the following conditions that parallel those in Petersen and Müller (2019) and Chen
and Müller (2022). For ease of presentation, we replace the graph Laplacian L in global and
local network regression by a general random object Y taking values in an arbitrary metric
space (Ω, d) and follow the same notations there. Consequently, the following conditions
apply to any random objects taking values in a metric space. We will verify that the two
metric spaces, (Lm, dF ) and (Mm, dF ), satisfy these conditions, so that we indeed can apply
these general conditions and ensuing results. This lays the foundation for the derivation of
rates of convergence for the corresponding estimators.

The following conditions are required to obtain consistency and rates of convergence of
m̂G(x). For a fixed x ∈ Rp:

(B1) The objects mG(x) and m̂G(x) exist and are unique, the latter almost surely, and, for
any ε > 0,

inf
d[mG(x),ω]>ε

MG(ω, x) > MG[mG(x), x].
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(B2) Let Bδ[mG(x)] ⊂ Ω be the ball of radius δ centered at mG(x) and N{ε,Bδ[mG(x)], d}
be its covering number using balls of size ε. Then∫ 1

0
(1 + logN{δε,Bδ[mG(x)], d})1/2dε = O(1) as δ → 0.

(B3) There exists η0 > 0, C0 > 0 and γ0 > 1, possibly depending on x, such that

inf
d[mG(x),ω]<η0

{MG(ω, x)−MG[mG(x), x]− C0d[mG(x), ω]γ0} ≥ 0.

Uniform convergence results require stronger versions of the above conditions. Let ‖ · ‖E be
the Euclidean norm on Rp and B > 0 a given constant.

(B4) Almost surely, for all ‖x‖E < B, the objects mG(x) and m̂G(x) exist and are unique.
Additionally, for any ε > 0,

inf
‖x‖E≤B

inf
d[mG(x),ω]>ε

{MG(ω, x)−MG[mG(x), x]} > 0

and there exists ζ = ζ(ε) > 0 such that

pr( inf
‖x‖E≤B

inf
d[m̂G(x),ω]>ε

{M̂G(ω, x)− M̂G[m̂G(x), x]} ≥ ζ)→ 1.

(B5) With Bδ[mG(x)] and N{ε,Bδ[mG(x)], d} as in Condition (B2),∫ 1

0
sup
‖x‖E≤B

(1 + logN{δε,Bδ[mG(x)], d})1/2dε = O(1) as δ → 0.

(B6) There exist τ0 > 0, D0 > 0, and ρ0 > 1, possibly depending on B, such that

inf
‖x‖E≤B

inf
d[mG(x),ω]<τ0

{MG(ω, x)−MG[mG(x), x]−D0d[mG(x), ω]ρ0} ≥ 0.

We require the following conditions to obtain pointwise rates of convergence for m̂L,n(x).
For simplicity, we assume that the marginal density fX(·) of X has unbounded support,
and consider x ∈ R with fX(x) > 0.

(B7) The minimizers m(x),mL,h(x) and m̂L,n(x) exist and are unique, the last almost
surely. Additionally, for any ε > 0,

inf
d[m(x),ω]>ε

{M(ω, x)−M [m(x), x]} > 0,

lim inf
h→0

inf
d[mL,h(x),ω]>ε

{ML,h(ω, x)−ML,h[mL,h(x), x]} > 0.
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(B8) Let Bδ[m(x)] ⊂ Ω be the ball of radius δ centered at m(x) and N{ε,Bδ[m(x)], d} be
its covering number using balls of size ε. Then∫ 1

0
(1 + logN{δε,Bδ[m(x)], d})1/2dε = O(1) as δ → 0.

(B9) There exists η1, η2 > 0, C1, C2 > 0 and γ1, γ2 > 1 such that

inf
d[m(x),ω]<η1

{M(ω, x)−M [m(x), x]− C1d[m(x), ω]γ1} ≥ 0,

lim inf
h→0

inf
d[mL,h(x),ω]<η2

{ML,h(ω, x)−ML,h[mL,h(x), x]− C2d[mL,h(x), ω]γ2} ≥ 0.

Obtaining uniform rates of convergence for local network regression is more involved and
requires stronger conditions. Suppose T is a closed interval in R. Denote the interior of T
by T o.

(B10) For all x ∈ T , the minimizers m(x),mL,h(x) and m̂L,n(x) exist and are unique, the
last almost surely. Additionally, for any ε > 0,

inf
x∈T

inf
d[m(x),ω]>ε

{M(ω, x)−M [m(x), x]} > 0,

lim inf
h→0

inf
x∈T

inf
d[mL,h(x),ω]>ε

{ML,h(ω, x)−ML,h[mL,h(x), x]} > 0,

and there exists ζ = ζ(ε) > 0 such that

pr( inf
x∈T

inf
d[m̂L,n(x),ω]>ε

{M̂L,n(ω, x)− M̂L,n[m̂L,n(x), x]} ≥ ζ)→ 1.

(B11) With Bδ[m(x)] ⊂ Ω and N{ε,Bδ[m(x)], d} as in Condition (B8),∫ 1

0
sup
x∈T

(1 + logN{δε,Bδ[m(x)], d})1/2dε = O(1) as δ → 0.

(B12) There exists τ1, τ2 > 0, D1, D2 > 0 and ρ1, ρ2 > 1 such that

inf
x∈T

inf
d[m(x),ω]<τ1

{M(ω, x)−M [m(x), x]−D1d[m(x), ω]ρ1} ≥ 0,

lim inf
h→0

inf
x∈T

inf
d[mL,h(x),ω]<τ2

{ML,h(ω, x)−ML,h[mL,h(x), x]−D2d[mL,h(x), ω]ρ2} ≥ 0.

28



Network Regression with Graph Laplacians

B.2 Proof of Proposition 1

Each L ∈ Lm has the following properties.

(P1) LT = L.

(P2) The entries in each row sum to 0, L1m = 0m.

(P3) The off-diagonal entries are nonpositive and bounded below, −W ≤ lij ≤ 0.

Properties (P1) and (P2) can be decomposed into m(m − 1)/2 and m constraints, respec-
tively. Thus, the dimension of the space of m×m matrices with Properties (P1) and (P2) is
m2−m(m−1)/2−m = m(m−1)/2, and any matrix satisfying Properties (P1) and (P2) is
fully determined by its upper (or lower) triangular submatrix. It is easy to verify that Prop-
erties (P1) and (P2) remain valid under matrix addition and scalar multiplication. Addi-
tionally, the matrix consisting of zeros satisfies Properties (P1) and (P2). Thus, the space of
m×m matrices with Properties (P1) and (P2) is a subspace of Rm2

of dimension m(m−1)/2
and Lm can be bijectively mapped to the hypercube {(x1, . . . , xm(m−1)/2) : −W ≤ xi ≤ 0},
which is bounded, closed, and convex. This proves that Lm is a bounded, closed, and convex
subset in Rm2

of dimension m(m− 1)/2.

B.3 Proof of Theorem 2 and Theorem 3

Substituting for the response object Y in Appendix B.1 the m × m graph Laplacian L,
which resides in Lm, endowed with the Frobenius metric dF , we show that the metric space
(Lm, dF ) satisfies Conditions (B1)–(B12). Let 〈·, ·〉F be the Frobenius inner product. Define

B(x) = E(L|X = x);

BG(x) = E[sG(x)L], B̂G(x) = n−1
n∑
k=1

skG(x)Lk;

BL,h(x) = E[sL(x, h)L], B̂L,n(x) = n−1
n∑
k=1

skL(x, h)Lk,

where the expectations and sums for graph Laplacians are element-wise. Since

M(ω, x) = E[d2
F (L, ω) | X = x]

= E{d2
F [L,B(x)] + d2

F [B(x), ω] + 2〈L−B(x), B(x)− ω〉F | X = x}
= M [B(x), x] + d2

F [B(x), ω] + 2E[〈L−B(x), B(x)− ω〉F | X = x]

and

E[〈L−B(x), B(x)− ω〉F | X = x] = 〈E(L | X = x)−B(x), B(x)− ω〉F
= 〈B(x)−B(x), B(x)− ω〉F
= 0,

one has
M(ω, x) = M [B(x), x] + d2

F [B(x), ω],
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whence
m(x) = argmin

ω∈Lm
M(ω, x) = argmin

ω∈Lm
d2
F [B(x), ω].

Additionally, in view of

E[sG(x)] = 1,
1

n

n∑
k=1

skG(x) = 1,

E[sL(x, h)] = 1,
1

n

n∑
k=1

skL(x, h) = 1,

one can similarly show that

mG(x) = argmin
ω∈Lm

MG(ω, x) = argmin
ω∈Lm

d2
F [BG(x), ω],

m̂G(x) = argmin
ω∈Lm

M̂G(ω, x) = argmin
ω∈Lm

d2
F [B̂G(x), ω],

mL,h(x) = argmin
ω∈Lm

ML,h(ω, x) = argmin
ω∈Lm

d2
F [BL,h(x), ω],

m̂L,n(x) = argmin
ω∈Lm

M̂L,n(ω, x) = argmin
ω∈Lm

d2
F [B̂L,n(x), ω].

Then by the convexity and closedness of Lm, all the minimizers m(x), mG(x), m̂G(x),
mL,h(x), and m̂L,n(x) exist and are unique for any x ∈ Rp (Deutsch, 2012, chap. 3). Hence
Conditions (B1), (B4) and (B7), (B10) are satisfied.

To prove that Conditions (B3), (B6) and (B9), (B12) hold, we note that m(x), viewed
as the best approximation of B(x) in Lm, is characterized by (Deutsch, 2012, chap. 4)

〈B(x)−m(x), ω −m(x)〉F ≤ 0, for all ω ∈ Lm.

It follows that

M(ω, x) = E[d2
F (L, ω) | X = x]

= M [m(x), x] + d2
F [m(x), ω] + 2E[〈L−m(x),m(x)− ω〉F | X = x]

= M [m(x), x] + d2
F [m(x), ω] + 2〈B(x)−m(x),m(x)− ω〉F

≥M [m(x), x] + d2
F [m(x), ω]

for all ω ∈ Lm. Similarly,

MG(ω, x) ≥MG[mG(x), x] + d2
F [mG(x), ω],

ML,h(ω, x) ≥ML,h[mL,h(x), x] + d2
F [mL,h(x), ω],

for all ω ∈ Lm. Consequently, we may select ηi and τi arbitrary, Ci = Di = 1 and γi = ρi = 2
for i = 0, 1, 2 in Conditions (B3), (B6), and (B9), (B12).

Next, we show that Condition (B5) holds, which then implies Condition (B2). Since Lm
is a subset of Rm2

, for any ω ∈ Lm we have

N [δε,Bδ(ω), dF ] = N [ε,B1(ω), dF ] ≤ (1 + 2/ε)m
2
.
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Thus, the integral in Condition (B5) is bounded by∫ 1

0
[1 +m2 log(1 + 2/ε)]1/2dε ≤ 1 +m

∫ 1

0
[log(1 + 2/ε)]1/2dε

≤ 1 +m

∫ 1

0
[log(3/ε)]1/2dε

= 1 + 3m

∫ ∞
log 3

y1/2e−ydy <∞,

using the substitution y = log(3/ε). Since this bound does not depend on δ, Condition (B5)
holds and thus Condition (B2) as well. Likewise we can show that Conditions (B11) and
(B8) also hold.

Theorem 2 in Petersen and Müller (2019) yields rates of convergence for the global net-
work regression estimator. For the local network regression estimator, rates of convergence
can be obtained using Corollary 1 in Petersen and Müller (2019) and Theorem 1 in Chen
and Müller (2022).

B.4 Proof of Proposition 4

Recall that the matrix power map Fα is

Fα(S) = Sα = UΛαUT : S+
m 7→ S+

m,

where UΛUT is the spectral decomposition of S. Specifically, denote the eigenvalues of S
by λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 0. Then Fα(S) = Udiag(λα1 , λ

α
2 , . . . , λ

α
m)UT. Note that the power

function f(x) = xα : [0,∞) 7→ [0,∞) is (α, 1)-Hölder continuous in [0,∞) for 0 < α < 1,
and is αCα−1-Lipschitz continuous in [0, C ] for α ≥ 1. Results follow directly from Theorem
1.1 in Wihler (2009) by choosing the scalar function as the power function f(x) = xα with
0 < α < 1 in [0,∞), and with α ≥ 1 in [0, C], respectively.

B.5 Proof of Theorem 5 and Theorem 6

Substituting for the response object Y in Appendix B.1 a m×m bounded symmetric positive
semi-definite matrix S, which resides in Mm, endowed with the Frobenius metric dF , one
can show that the metric space (Mm, dF ) satisfies Conditions (B1)–(B12) sinceMm, similar
to Lm, is a bounded, closed, and convex subset in Rm2

. According to Theorem 2 in Petersen
and Müller (2019), for the metric space (Mm, dF ) it holds for mα

G(x) and m̂α
G(x) that for a

fixed x ∈ Rp,
dF [mα

G(x), m̂α
G(x)] = Op(n

−1/2)

and for a given B > 0,

sup
‖x‖E≤B

dF [mα
G(x), m̂α

G(x)] = Op(n
−1/[2(1+ε)]),

for any ε > 0.
Next, we derive rates of convergence when applying the inverse matrix power map F1/α

and a projection PLm onto Lm. Here we consider two cases:
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1. Case 0 < α ≤ 1.

By Proposition 2,

‖F1/α(S1)− F1/α(S2)‖F ≤
1

α
(Dα)1/α−1‖S1 − S2‖F =

1

α
D1−α‖S1 − S2‖F

for any S1, S2 ∈Mm. Hence for a fixed x ∈ Rp

dF {F1/α[mα
G(x)], F1/α[m̂α

G(x)]} = Op(n
−1/2)

and for a given B > 0

sup
‖x‖E≤B

dF {F1/α[mα
G(x)], F1/α[m̂α

G(x)]} = Op(n
−1/[2(1+ε)]),

for any ε > 0.

As shown in the proof for Result 2 in Severn et al. (2022), the projection PLm does
not increase the distance between two matrices. That is

dF (PLm{F1/α[mα
G(x)]}, PLm{F1/α[m̂α

G(x)]}) ≤ dF {F1/α[mα
G(x)], F1/α[m̂α

G(x)]}.

Therefore, for mG(x) and m̂G(x) and a fixed x ∈ Rp,

dF [mG(x), m̂G(x)] = Op(n
−1/2)

and for a given B > 0,

sup
‖x‖E≤B

dF [mG(x), m̂G(x)] = Op(n
−1/[2(1+ε)]),

for any ε > 0.

2. Case α > 1.

By Proposition 2, it holds that

‖F1/α(S1)− F1/α(S2)‖F ≤ m(α−1)/(2α)‖S1 − S2‖1/αF

for any S1, S2 ∈Mm. Hence we have for a fixed x ∈ Rp,

dF {F1/α[mα
G(x)], F1/α[m̂α

G(x)]} = Op(n
−1/(2α))

and for a given B > 0,

sup
‖x‖E≤B

dF {F1/α[mα
G(x)], F1/α[m̂α

G(x)]} = Op(n
−1/[2(1+ε)α]),

for any ε > 0.
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Sample size I III

GF GS LF LS GF GS LF LS
50 0.467 4.025 7.116 1.348 81.295 87.481 1.557 2.227
100 0.233 3.741 3.621 0.981 83.612 88.966 0.860 1.458
200 0.117 3.664 2.261 0.732 84.327 89.215 0.486 0.998
500 0.047 3.588 1.090 0.542 84.938 89.539 0.230 0.644
1000 0.024 3.569 0.613 0.468 85.103 89.644 0.132 0.497

Table 3: Mean integrated squared errors for five sample sizes under simulation scenarios I
and III in Section 5 of the paper using the proposed methods (GF, global network
regression using the Frobenius metric; GS, global network regression using the
square root metric; LF, local network regression using the Frobenius metric; LS,
local network regression using the square root metric).

By the same argument as in the first case, at a fixed x ∈ Rp,

dF [mG(x), m̂G(x)] = Op(n
−1/(2α)),

and for a given B > 0,

sup
‖x‖E≤B

dF [mG(x), m̂G(x)] = Op(n
−1/[2(1+ε)α]),

for any ε > 0.

Similar arguments apply for the local network regression by combining Proposition 2, Corol-
lary 1 in Petersen and Müller (2019), and Theorem 1 in Chen and Müller (2022).

Appendix C. Additional Simulations

C.1 Comparisons Between Different Types of Regression and Metrics

We replicated simulation scenarios I and III in Section 5 of the paper, corresponding to
global and local settings, using both global and local network regression and both the
Frobenius and square root metrics. Specifically, for each simulation scenario, the following
four combinations were included: global network regression using the Frobenius metric
(GF), global network regression using the square root metric (GS), local network regression
using the Frobenius metric (LF) and local network regression using the square root metric
(LS). The corresponding mean integrated squared errors are summarized in Table 3. Under
simulation scenario I, where each entry of the graph Laplacian L is conditionally linear
in the predictor X, the global network regression using the Frobenius metric is seen to
perform best, validating the superiority of global approaches if the linear assumption holds.
In contrast, if there is an underlying nonlinear relationship as in simulation scenario III,
local network regression leads to much smaller errors, which is as expected. We also note
that the square root metric achieves better performance under simulation scenario I with
local linear regression.
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Figure 12: Boxplots of integrated square errors (ISE) for networks generated from Erdős-
Rényi random graph model.

C.2 Networks Generated from Erdős-Rényi Model

Here we assess the performance of global and local network regression estimates on networks
generated from Erdős-Rényi random graph model (Erdős and Rényi, 1959). Similar to
Section 5, four different simulation scenarios I - IV are considered, corresponding to global
and local network regression using both the Frobenius metric dF and the square root metric
dF,1/2. Specifically, consider the Erdős-Rényi random graph modelG(m,N), where networks
are sampled uniformly at random from the collection of all networks which have m nodes
and N edges. The probability of the presence of each edge is thus N/M where M =
m(m− 1)/2. The weights of existing edges are assumed to follow a beta distribution with
shape parameters α = X and β = 1 − X for global network regression or α = sin(πX)
and β = 1− sin(πX) for local network regression. The associated graph Laplacian is then
taken as the random response L for the proposed regression models. In particular for global
network regression under the square root metric, the random response is taken as F2(L) to
ensure that the linearity assumption is satisfied.

We investigated sample sizes n = 50, 100, 200, 500, 1000, with Q = 1000 Monte Carlo
runs for each simulation scenario. In each iteration, random samples of pairs (Xk, Lk),
k = 1, . . . , n were generated by samplingXk ∼ U(0, 1), settingm = 10, N = 9, and following
the above procedure. The quality of the estimation for each simulation run was quantified by
the integrated squared error as defined in Section 5. The bandwidths for the local network
regression were chosen by leave-one-out cross-validation. The integrated squared errors
(ISE) for Q = 1000 simulation runs and five sample sizes under four simulation scenarios
are summarized in the boxplots in Figure 12. With increasing sample size, the integrated
squared errors are seen to decrease, demonstrating the validity and utility of the proposed
network regression models for various network generative models.
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Figure 13: (a) TLC taxi zones in Manhattan, New York. (b) 13 regions in Manhattan, New
York.

Appendix D. Additional Materials

The yellow and green taxi trip records on pick-up and drop-off dates/times, pick-up and
drop-off locations, trip distances, itemized fares, rate types, payment types, and driver-
reported passenger counts, collected by the New York City Taxi and Limousine Commission
(NYC TLC), are publicly available at https://www1.nyc.gov/site/tlc/about/tlc-tr

ip-record-data.page. The taxi zone map for Manhattan (Figure 13(a)) available at
https://www1.nyc.gov/assets/tlc/images/content/pages/about/taxi zone map man

hattan.jpg represents the boundaries zones for taxi pick-ups and drop-offs as delimited by
the NYC TLC. We excluded the islands (103 Liberty Island, 104 Ellis Island, 105 Governor’s
Island) from our study. The remaining 66 zones in Manhattan can be grouped into 13 regions
as delimited in Figure 13(b) (source: https://communityprofiles.planning.nyc.gov).
For the composition of these 13 regions see Table 4.

The 45 regions in each hemisphere as delimited by the automated anatomical labeling
(AAL) atlas (Tzourio-Mazoyer et al., 2002) are listed in Table 5.
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Region Zones

101 12 Battery Park, 13 Battery Park City, 87 Financial District North, 88 Finan-
cial District South, 209 Seaport, 231 TriBeCa/Civic Center, 261 World Trade
Center

102 113 Greenwich Village North, 114 Greenwich Village South, 125 Hudson Sq,
144 Little Italy/NoLiTa, 158 Meatpacking/West Village West, 211 SoHo, 249
West Village

103 4 Alphabet City, 45 Chinatown, 79 East Village, 148 Lower East Side, 232 Two
Bridges/Seward Park

104 48 Clinton East, 50 Clinton West, 68 East Chelsea, 90 Flatiron, 246 West
Chelsea/Hudson Yards

105 100 Garment District, 161 Midtown Center, 163 Midtown North, 164 Midtown
South, 186 Penn Station/Madison Sq West, 230 Times Sq/Theatre District,
234 Union Sq

106 107 Gramercy, 137 Kips Bay, 162 Midtown East, 170 Murray Hill, 224
Stuy Town/Peter Cooper Village, 229 Sutton Place/Turtle Bay North, 233
UN/Turtle Bay South

107 24 Bloomingdale, 142 Lincoln Square East, 143 Lincoln Square West, 151 Man-
hattan Valley, 238 Upper West Side North, 239 Upper West Side South

108 140 Lenox Hill East, 141 Lenox Hill West, 202 Roosevelt Island, 236 Upper
East Side North, 237 Upper East Side South, 262 Yorkville East, 263 Yorkville
West

109 116 Hamilton Heights, 152 Manhattanville, 166 Morningside Heights

110 41 Central Harlem, 42 Central Harlem North

111 74 East Harlem North, 75 East Harlem South, 194 Randalls Island

112 120 Highbridge Park, 127 Inwood, 128 Inwood Hill Park, 153 Marble Hill, 243
Washington Heights North, 244 Washington Heights South

164 43 Central Park

Table 4: Details about 13 regions in Manhattan, New York.

ROI Lobe Label

Central region
1 Precentral gyrus PRE
2 Postcentral gyrus POST
3 Rolandric operculum RO

Frontal lobe
Lateral surface
4 Superior frontal gyrus, dorsolateral F1
5 Middle frontal gyrus F2
6 Inferior frontal gyrus, opercular part F3OP
7 Inferior frontal gyrus, triangular part F3T
Medial surface
8 Superior frontal gyrus, medial F1M
9 Supplementary motor area SMA
10 Paracentral lobule PCL
Orbital surface
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11 Superior frontal gyrus, orbital part F1O
12 Superior frontal gyrus, medial orbital F1MO
13 Middle frontal gyrus, orbital part F2O
14 Inferior frontal gyrus, orbital part F3O
15 Gyrus rectus GR
16 Olfactory cortex OC

Temporal lobe
Lateral surface
17 Superior temporal gyrus T1
18 Heschl gyrus HES
19 Middle temporal gyrus T2
20 Inferior temporal gyrus T3

Parietal lobe
Lateral surface
21 Superior parietal gyrus P1
22 Inferior parietal P2
23 Angular gyrus AG
24 Supramarginal gyrus SMG
Medial surface
25 Precuneus PQ

Occipital lobe
Lateral surface
26 Superior occipital gyrus O1
27 Middle occipital gyrus O2
28 Inferior occipital gyrus O3
Medial surface
29 Cuneus Q
30 Calcarine Fissure V1
31 Lingual gyrus LING
32 Fusiform gyrus FUSI

Limbic lobe
33 Temporal pole: superior temporal gyrus T1P
34 Temporal pole: middle temporal gyrus T2P
35 Anterior cingulate and paracingulate gyri ACIN
36 Median cingulate and paracingulate gyri MCIN
37 Posterior cingulate gyrus PCIN
38 Hippocampus HIP
39 Parahippocampal gyrus PHIP
40 Insula INS

Subcortical
41 Amygdala AMYG
42 Caudate nuclei CAU
43 Lenticular nucleus, putamen PUT
44 Lenticular nucleus, pallidum PAL
45 Thalamus THAL

Table 5: Anatomical regions of interest (ROIs) in each hemisphere for the AAL atlas.
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Bartrés-Faz. Changes in whole-brain functional networks and memory performance in
aging. Neurobiology of Aging, 35(10):2193–2202, 2014.

Roser Sala-Llonch, David Bartrés-Faz, and Carme Junqué. Reorganization of brain networks
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