
Algorithmica (2022) 84:2667–2701
https://doi.org/10.1007/s00453-022-00983-3

�p-NormMultiway Cut

Karthekeyan Chandrasekaran1 ·Weihang Wang1

Received: 27 October 2021 / Accepted: 28 April 2022 / Published online: 23 May 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
We introduce and study �p-norm-multiway-cut: the input here is an undirected
graph with non-negative edge weights along with k terminals and the goal is to find
a partition of the vertex set into k parts each containing exactly one terminal so as to
minimize the �p-norm of the cut values of the parts. This is a unified generalization
of min-sum multiway cut (when p = 1) and min–max multiway cut (when p = ∞),
both of which are well-studied classic problems in the graph partitioning literature.We
show that �p-norm-multiway-cut isNP-hard for constant number of terminals and is
NP-hard in planar graphs. On the algorithmic side, we design an O(log1.5 n log0.5 k)-
approximation for all p ≥ 1. We also show an integrality gap of �(k1−1/p) for
a natural convex program and an O(k1−1/p−ε)-inapproximability for any constant
ε > 0 assuming the small set expansion hypothesis.

Keywords Multiway cut · Approximation algorithms

1 Introduction

multiway-cut is a fundamental problem in combinatorial optimization with both
theoretical as well as practical motivations. The input here is an undirected graph G =
(V , E)with non-negative edge weightsw : E → Q+ along with k specified terminals
T = {t1, t2, . . . , tk} ⊆ V . The goal is to find a partition P = (P1, P2, . . . , Pk) of the
vertex set with ti ∈ Pi for each i ∈ [k] so as to minimize the sum of the cut values of
the parts, i.e., the objective is to minimize

∑k
i=1 w(δ(Pi)), where δ(Pi) denotes the

set of edges with exactly one end-vertex in Pi and w(δ(Pi)) := ∑
e∈δ(Pi) w(e). On

Supported in part by NSF Grants CCF-1814613 and CCF-1907937. A preliminary version of this work
appeared at European Symposium on Algorithms (ESA), 2021.

B Weihang Wang
weihang3@illinois.edu

Karthekeyan Chandrasekaran
karthe@illinois.edu

1 University of Illinois, Urbana-Champaign, Champaign, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-022-00983-3&domain=pdf
http://orcid.org/0000-0002-0628-5532

2668 Algorithmica (2022) 84:2667–2701

the practical side, multiway-cut has been used to model file-storage in networks as
well as partitioning circuit elements among chips—see [13, 22]. On the theoretical
side, multiway-cut generalizes the min (s, t)-cut problem which is polynomial-
time solvable. In contrast to min (s, t)-cut, multiway-cut is NP-hard for k ≥ 3
terminals [13]. The algorithmic study of multiway-cut has led to groundbreaking
rounding techniques and integrality gap constructions in the field of approximation
algorithms [2, 4–7, 11, 16, 17, 21] and novel graph structural techniques in the field
of fixed-parameter algorithms [18]. It is known that multiway-cut does not admit
a (1.20016 − ε)-approximation for any constant ε > 0 assuming the Unique Games
Conjecture [4] and the current best upper bound on the approximation factor is 1.2965
[21].

Motivated by its connections to partitioning and clustering, Svitkina andTardos [22]
introduced a local part-wise min–max objective for multiway-cut—we will denote
this problem as min-max-multiway-cut: The input here is the same as multiway-
cut while the goal is to find a partition P = (P1, P2, . . . , Pk) of the vertex set with
ti ∈ Pi for each i ∈ [k] so as to minimize maxki=1 w(δ(Pi)). We note that multiway-
cut andmin-max-multiway-cut differ only in the objective function—the objective
function in multiway-cut is to minimize the sum of the cut values of the parts while
the objective function in min-max-multiway-cut is to minimize the max of the cut
values of the parts. min-max-multiway-cut can be viewed as a fairness inducing
multiway cut as it aims to ensure that no part pays too much in cut value. Svitkina and
Tardos showed thatmin-max-multiway-cut is NP-hard for k ≥ 4 terminals and also
that it admits anO(log3 n)-approximation.1 Bansal, Feige,Krauthgamer,Makarychev,
Nagarajan, Naor, and Schwartz subsequently improved the approximation factor to
O(

√
log n log k) (which is O(log n)) [3].

In this work, we study a unified generalization of multiway-cut and min-max-
multiway-cut that we term as �p-norm-multiway-cut: In this problem, the input
is the same as multiway-cut, i.e., we are given an undirected graph G = (V , E)

with non-negative edge weightsw : E → Q+ along with k specified terminal vertices
T = {t1, t2, . . . , tk} ⊆ V . The goal is to find a partition P = (P1, P2, . . . , Pk) of the
vertex set with ti ∈ Pi for each i ∈ [k] so as to minimize the �p-norm of the cut values
of the k parts—formally, we would like to minimize

⎛

⎝
k∑

i=1

⎛

⎝
∑

e∈δ(Pi)

w(e)

⎞

⎠

p⎞

⎠

1
p

.

Throughout, we will consider p ≥ 1. We note that �p-norm-multiway-cut for
p = 1 corresponds to multiway-cut and for p = ∞ corresponds to min-max-
multiway-cut. We emphasize that �p-norm-multiway-cut could also be viewed
as a multiway cut that aims for a stronger notion of fairness than multiway-cut
but a weaker notion of fairness than min-max-multiway-cut. For k = 2 terminals,

1 Throughout this work, all NP-hardness results are strong NP-hardness results and all logarithms are to
the base 2.

123

Algorithmica (2022) 84:2667–2701 2669

Fig. 1 An example where the unique optimum partition for �p-norm-multiway-cut for k = 5 induces
a disconnected part for every p > 1. The edge weights are as shown with a := �8p/(p−1)	 and the set of
terminals is {u1, v1, v2, v3, v4}. We only need to decide the terminal with which u2 needs to be grouped. It
is cheaper to group u2 with u1 than with v1, v2, v3 or v4 even though u1 and u2 are not adjacent: a partition
that puts u2 with one of the terminals in {v1, v2, v3, v4} (and isolates the remaining terminals) has �p-norm
objective value ((3a + 3)p + 3(3a + 2)p + 4p)1/p and the partition that puts u2 with u1 (and isolates the
remaining terminals) has �p-norm objective value (4(3a + 2)p + 8p)1/p . To see that the latter is cheaper
than the former, we note that the inequality ((3a + 3)p + 3(3a + 2)p + 4p)1/p > (4(3a + 2)p + 8p)1/p

is equivalent to (3a + 3)p − (3a + 2)p > 8p − 4p . The latter is true due to Mean Value Theorem: we have
(3a + 3)p − (3a + 2)p ≥ p(3a + 2)p−1 ≥ 8p > 8p − 4p for a = �8p/(p−1)	

�p-norm-multiway-cut reduces to min (s, t)-cut for all p ≥ 1 and hence, can be
solved in polynomial time.

1.1 Our Results

We begin by remarking that there is a fundamental structural difference between
multiway-cut and �p-norm-multiway-cut for p > 1 (i.e., between p = 1 and
p > 1). The optimal partition to multiway-cut satisfies a nice structural property:
assuming that the input graph is connected, every part in an optimal partition for
multiway-cut will induce a connected subgraph. Consequently, multiway-cut
is also phrased as the problem of deleting a least weight subset of edges so that
the resulting graph contains k connected components with exactly one terminal in
each component. However, this nice structural property does not hold for �p-norm-
multiway-cut for p > 1 as illustrated by the example in Fig. 1. We remark that
Svitkina and Tardos made a similar observation suggesting that the nice structural
property fails formin-max-multiway-cut, i.e., for p = ∞—incontrast, our example
in Fig. 1 shows that the nice structural property fails to hold for every p > 1.

We now discuss our hardness results for �p-norm-multiway-cut. All NP-
hardness results that we mention in this work refer to strong NP-hardness.

Theorem 1.1 We have the following hardness results for �p-norm-multiway-cut.

123

2670 Algorithmica (2022) 84:2667–2701

1. �p-norm-multiway-cut is NP-hard for every p > 1 and every k ≥ 4.
2. �p-norm-multiway-cut in planar graphs is NP-hard for every p > 1.

We note that the case of p = 1 and p = ∞ are already known to be hard:
multiway-cut is NP-hard for k = 3 terminals and is NP-hard in planar graphs when
k is arbitrary (i.e., when k is not a fixed constant) [13]; min-max-multiway-cut is
NP-hard for k = 4 terminals and is NP-hard in trees when k is arbitrary [22]. Our
NP-hardness in planar graphs result also requires k to be arbitrary.

Given that the problem is NP-hard, we focus on designing approximation algo-
rithms. We show the following result:

Theorem 1.2 There exists a polynomial-time O(log1.5 n log0.5 k)-approximation for
�p-norm-multiway-cut for every p ≥ 1, where n is the number of vertices and k is
the number of terminals in the input instance.

Our algorithm to prove Theorem 1.2 is randomized and succeeds with high proba-
bility. We note that our approximation factor is O(log2 n) since k ≤ n. While it might
be tempting to design an approximation algorithm by solving a convex programming
relaxation for �p-norm-multiway-cut and rounding it, we rule out this approach:
the natural convex programming relaxation has an integrality gap of �(k1−1/p)—see
Sect. 5. Hence, our approach for the approximation algorithm is not based on a convex
program but instead based on combinatorial techniques.

For comparison, we state the currently best known approximation factors for p = 1
and p = ∞: multiway-cut admits a 1.2965-approximation via an LP-based algo-
rithm [21] and min-max-multiway-cut admits an O(

√
log n log k)-approximation

based on a bicriteria approximation for the small-set expansion problem [3].
As a final result, we show that removing the dependence on the number n of vertices

in the approximation factor of �p-norm-multiway-cut is hard assuming the small
set expansion hypothesis [20]—see Sect. 6. In particular, we show that achieving
a (k1−1/p−ε)-approximation for any constant ε > 0 is hard. We note that there is a
trivial (k p−1+1)1/p-approximation for �p-norm-multiway-cut via the well-known
isolating cut approach (see Sect. 6.1).

We summarize our results along with known results for multiway-cut and min-
max-multiway-cut for the sake of comparison in Table 1.

1.2 Outline of Techniques

We briefly outline the techniques underlying our results.

1.2.1 Hardness Results

We show hardness of �p-norm-multiway-cut for k = 4 terminals by a reduction
from the graph bisection problem (see Sect. 4.1 for a description of this problem).
Our main tool to control the �p-norm objective in our hardness reduction is the Mean
Value Theorem and its consequences (see Propositions 4.1 and 4.2). In order to show
NP-hardness of �p-norm-multiway-cut in planar graphs, we reduce from the 3-
partition problem (see Sect. 4.2 for a description of this problem). We do a gadget

123

Algorithmica (2022) 84:2667–2701 2671

Ta
bl
e
1

Su
m
m
ar
y
of

re
su
lts

�
p
-n
o
rm

-m
u
lt
iw

a
y
-c
u
t

m
in
-m

a
x
-m

u
lt
iw

a
y
-c
u
t

m
u
lt
iw

a
y
-c
u
t

N
P-
ha
rd
ne
ss

k
≥

4
an
d
on

pl
an
ar

gr
ap
hs

(T
he
or
em

1.
1)

k
≥

4
an
d
on

tr
ee
s
[2
2]

k
≥

3
[1
3]

A
pp

ro
xi
m
at
io
n
fa
ct
or

O
(√

lo
g3

n
lo
g
k)

(T
he
or
em

1.
2)

O
(√ lo

g
n
lo
g
k)

[3
]

1.
29

65
[2
1]

In
te
gr
al
ity

ga
p
lo
w
er

bo
un
d

k1
−1

/
p

2
(S
ec
t.
5)

k 2
[3
]

1.
20

01
6
[4
,7
]

In
ap
pr
ox
im

ab
ili
ty

N
o

O
(k

1−
1/

p−
ε
)-
ap
pr
ox

im
at
io
n

un
de
r
SS

E
H
(S
ec
t.
6)

N
o

O
(k

1−
ε
)-
ap
pr
ox

im
at
io
n

un
de
r

SS
E
H
[3
]

N
o

(1
.2
00

16
−

ε
)-
ap
pr
ox

im
at
io
n

un
de
r
U
G
C
[4
]

A
pp

ro
xi
m
at
io
n
fa
ct
or

of
is
ol
at
in
g
cu
t

ap
pr
oa
ch

(k
p−

1
+

1)
1 p
(S
ec
t.
6.
1)

2k
2
[1
3]

H
er
e,
n
re
fe
rs
to

th
e
nu

m
be
ro

f
ve
rt
ic
es

in
th
e
in
pu

tg
ra
ph

,ε
is
an
y
ar
bi
tr
ar
y
co
ns
ta
nt
,U

G
C
re
fe
rs
to

th
e
un
iq
ue

ga
m
es

co
nj
ec
tu
re
,a
nd

SS
E
H
re
fe
rs
to

th
e
sm

al
ls
et
ex
pa
ns
io
n

hy
po
th
es
is

123

2672 Algorithmica (2022) 84:2667–2701

based reduction where the gadget is planar. We note that the number of terminals
in this reduction is not a constant and is �(n), where n is the number of vertices.
Once again, we rely on the Mean Value Theorem and its consequences to control
the �p-norm objective in the reduction. We mention that the starting problems in our
hardness reductions are inspired by the hardness results shown by Svitkina and Tardos
formin-max-multiway-cut: they showed thatmin-max-multiway-cut is NP-hard
for k = 4 terminals by a reduction from the graph bisection problem and that min-
max-multiway-cut is NP-hard in trees by a reduction from the 3-partition problem.
We also use these same starting problems, but our reductions are more involved owing
to the �p-norm nature of the objective.

1.2.2 Approximation Algorithm

By scalingwemay assume that all edgeweights are at least one. For the purposes of the
algorithm, we will assume knowledge of the optimum value, say OPT—such a value
can be guessed within a factor of 2 via binary search. We would run our algorithm for
each guess of OPT in the set {1, 2, 22, 23, . . . , 2log (|E |maxe∈E we)}. One of the guesses
will be within a factor 2 of the true optimum value and our algorithm would achieve
the approximation factor for that guess. The overhead in run-time to account for the
guess is polynomial in the input size.

Our approximation algorithm proceeds in three steps: (I) cover, (II) uncross, and
(III) aggregate. We describe these three steps now.

In the first step of the algorithm—that we term as the cover step, we obtain a
collection S of subsets of the vertex set satisfying four properties:

(1) Each set S in the collection S has at most one terminal,
(2) The �p-norm of the cut values of the sets in the collection raised to the pth power

is small, i.e.,
∑

S∈S w(δ(S))p = (β p log n)OPTp where β = O(
√
log n log k),

(3) The number of sets in the collection S is O(k log n), and
(4) The union of the sets in the collection S is V .

We emphasize that condition (4) is the main reason for calling this step as the cover
step. We perform this cover step via a multiplicative updates method. For this, we use
a bicriteria approximation algorithm for the unbalanced terminal cut problem which
was given by Bansal et al. [3] (see Sect. 2 for a description of the unbalanced terminal
cut problem and the bicriteria approximation).

Although property (2) above gives a bound on the �p-norm of the cut values of
the sets in the collection S relative to the optimum, the collection S does not cor-
respond to a feasible multiway cut: recall that a feasible multiway cut is a partition
P = (P1, . . . , Pk) of the vertex set where each Pi contains exactly one terminal. The
objective of the next two steps is to refine the collectionS to achieve feasibility without
blowing up the �p-norm of the cut values of the parts.

In the second step of the algorithm—that we term as the uncross step, we uncross
the sets in the collection S to obtain a partition Q without increasing the cut values
of the sets. We crucially exploit the posimodularity property of the graph cut function
to achieve this: posimodularity states that for all subsets A, B ⊆ V of vertices, either

123

Algorithmica (2022) 84:2667–2701 2673

w(δ(A)) ≥ w(δ(A − B)) or w(δ(B)) ≥ w(δ(B − A)). We iteratively consider
all pairs of crossing subsets A, B in the collection S and replace A with A − B if
w(δ(A)) ≥ w(δ(A − B)) or replace B with B − A if w(δ(B)) ≥ w(δ(B − A)). The
outcome of this step is a partition Q of the vertex set V satisfying three properties:

(i) Each part Q in the partition Q has at most one terminal,
(ii) The �p-norm of the cut values of the parts in the partition Q raised to the pth

power is still small, i.e.,
∑

Q∈Q w(δ(Q))p = (β p log n)OPTp, and
(iii) The number of parts in the partition Q is O(k log n).

We encourage the reader to note the similarity between conditions (1), (2), (3), and (4)
at the end of the cover step and conditions (i), (ii), and (iii) at the end of the uncross
step.

Once again, we observe that the partitionQ at the end of the uncross step may not
correspond to a feasible multiway cut: we could have more than k parts in Q with
some of the parts having no terminals. We address this issue in the third step by a
careful aggregation.

We term the third step of the algorithm as the aggregate step. For the aggregate
step, let Qi be the part in the partition Q that contains terminal ti—we have k such
parts by property (i)—and let R1, . . . , Rt be the remaining parts in Q that contain no
terminals. We will aggregate the remaining parts of Q into the k parts Q1, . . . , Qk

without blowing up the �p-norm of the cut value of the parts. By property (iii), the
number of remaining parts t = O(k log n). We create k disjoint buckets B1, . . . , Bk

where Bi contains the union of O(log n) many parts among R1, . . . , Rt . Finally, we
merge Bi with Qi . This results in a partition P = (Q1 ∪ B1, . . . , Qk ∪ Bk) of V with
terminal ti being in the i th part Qi ∪ Bi . The key now is to control the blow-up in
the pth power of the �p-norm of the cut values of the parts in P: we bound this by a
O(logp−1 n)-factor relative to the pth power of the �p-norm of the cut values of the
parts inQ via Jensen’s inequality; while using Jensen’s inequality, we exploit the fact
that each bucket contained O(log n) many parts. Consequently, using property (ii),
the �p-norm objective value of the cut values of the parts in the partition P raised to
the pth power is still small—we show that

∑
P∈P w(δ(P))p = β p logp nOPTp and

hence, we obtain an approximation factor of O(β log n).
The first step of our algorithm is inspired by the O(log n)-approximation algorithm

for min-max-multiway-cut due to Bansal et al. [3]—we modify the multiplicative
weights update method and adapt it for �p-norm-multiway-cut. Our second and
third steps differ from that of Bansal et al. We mention that the second and third
steps of our algorithm can be adapted to achieve an O(β log n)-approximation factor
for �p-norm-multiway-cut for p = ∞, but the resulting approximation factor is
only O(log2 n) which is weaker than the O(log n)-factor achieved by Bansal et al.
The additional loss of log n-factor in our algorithm comes from the third step (i.e.,
the aggregate step). The aggregate step designed in [3] is randomized and saves the
log n-factor in expectation, but it does not generalize to �p-norm-multiway-cut.
As mentioned before, the second step of our algorithm relies on posimodularity. The
posimodularity property of the graph cut function has been used in previous works for
min-max-multiway-cut in an implicit fashion by a careful and somewhat tedious

123

2674 Algorithmica (2022) 84:2667–2701

edge counting argument [3, 22]. We circumvent the edge counting argument here
by the clean posimodularity abstraction. Moreover, the posimodularity abstraction
makes the counting considerably easier for our more general problem of �p-norm-
multiway-cut.

1.3 RelatedWork

�p-norm-multiway-cut can be viewed as a fairness inducing objective in the con-
text of multiway partitioning problems. Recent works have proposed and studied
various fairness inducing objectives for graph cuts and partitioning that are different
from �p-norm-multiway-cut. We briefly discuss these works here. All of the works
mentioned in this subsection consider a more general problem known as correlation
clustering—we discuss these works by specializing to cut and partitioning problems
since these specializations are the ones related to our work.

Puleo and Milenkovic [19] introduced a local vertex-wise min–max objective for
min (s, t)-cut—here, the goal is to partition the vertex set V of the given edge-weighted
undirected graph into two parts (S, V \ S) each containing exactly one of the terminals
in {s, t} so as tominimizemaxv∈V w(δ(v)∩δ(S)). Themotivation behind this objective
is that the cut should be fair to every vertex in the graph, i.e., no vertex should pay
a lot for the edges in the cut. A result of Chvátal [12] implies that this problem is
(2− ε)-inapproximable for every constant ε > 0. Charikar et al. [9] gave an O(

√
n)-

approximation for this problem. Reducing the approximability vs inapproximability
gap for this problem remains an intriguing open problem. Kalhan et al. [15] considered
an �p-norm version of the objective where the goal is to minimize (

∑
v∈V w(δ(v) ∩

δ(S))p)1/p and gave an O(n
1
2− 1

2p log
1
2− 1

2p n)-approximation, thus interpolating the
best upper bound results for p = 1 and p = ∞.

Ahmadi et al. [1] introduced amin–max version of multicut: the input consists of an
undirected graphG = (V , E)with edgeweightsw : E → Q+ alongwith source-sink
terminal pairs (s1, t1), . . . , (sk, tk). The goal is to find a partition P = (P1, . . . , Pr)
of the vertex set with all source-sink pairs separated by the partition so as to minimize
maxi∈[r] w(δ(Pi)). We emphasize that the number of parts here—namely, r—is not
constrained by the input and hence, could be arbitrary. Ahmadi, Khuller, and Saha
gave an O(

√
log nmax{log k, log T })-approximation for this problem, where T is the

number of parts in the optimal solution. Kalhan et al. [15] improved the approximation
factor to 2 + ε.

1.3.1 Organization

We begin with preliminaries in Sect. 2. We present the complete details of our approx-
imation algorithm and prove Theorem 1.2 in Sect. 3. We show the hardness results
and prove Theorem 1.1 in Sect. 4. We discuss a convex program and its integrality
gap in Sect. 5. We discuss the inapproximability and present a trivial O(k1−1/p)-
approximation in Sect. 6. We conclude with a few open problems in Sect. 7.

123

Algorithmica (2022) 84:2667–2701 2675

2 Preliminaries

We start with notations that will be used throughout. LetG = (V , E) be an undirected
graph with edge weight function w : E → Q+ and vertex weight function y : V →
Q+. For every subset S ⊆ V , we use δG(S) to denote the set of edges that have
exactly one end-vertex in S (we will drop the subscript G when the graph is clear from
context), and we writew(δ(S)) := ∑

e∈δ(S) w(e). Moreover, we will use y(S) to refer
to
∑

v∈S y(v). We will denote an instance of �p-norm-multiway-cut by (G, w, T),
where G = (V , E) is the input graph, w : E → Q+ is the edge weight function, and
T ⊆ V is the set of terminal vertices. We will call a partition P̃ = (P1, . . . , Pr) of
the vertex set to be a multiway cut if r = k and ti ∈ Pi for each i ∈ [k] and denote
the �p-norm of the cut values of the parts (i.e., (

∑k
i=1 w(δ(Pi))p)1/p) as the �p-norm

objective value of the multiway cut P̃ .
We note that the function μ : R → R defined by μ(x) := x p is convex for every

p ≥ 1.Wewill use Jensen’s inequality as stated below in our approximation algorithm
as well as our hardness reductions.

Lemma 2.1 (Jensen) Let μ : R → R be a convex function. For arbitrary x1, . . . , xt ∈
R, we have

μ

(
1

t

t∑

i=1

xi

)

≤ 1

t

t∑

i=1

μ(xi).

Our algorithm relies on the graph cut function being symmetric and submodular.
We recall that the graph cut function f : 2V → R+ is given by f (S) := w(δ(S))

for all S ⊆ V . Let f : 2V → R+ be a set function. The function f is symmetric if
f (S) = f (V \ S) for all S ⊆ V , submodular if f (A)+ f (B) ≥ f (A∩B)+ f (A∪B)

for all A, B ⊆ V , and posimodular if f (A) + f (B) ≥ f (A − B) + f (B − A) for all
A, B ⊆ V . Symmetric submodular functions are also posimodular (see Proposition
2.1)—this fact has been used implicitly [3, 22] and explicitly [8, 10] before.

Proposition 2.1 Symmetric submodular functions are posimodular.

Proof Let f : 2V → R be a symmetric submodular set function on a set V , and let
A, B ⊆ V be two arbitrary subsets. Then, we have

f (A) + f (B) = f (V − A) + f (B) ≥ f ((V − A) ∪ B) + f ((V − A) ∩ B)

= f (V − (A − B)) + f (B − A) = f (A − B) + f (B − A).

In the above, the first and last equations follow by symmetry and the inequality follows
by submodularity.
�

Our algorithm for �p-norm-multiway-cut relies on an intermediate problem,
namely the Unbalanced Terminal Cut problem that we introduce now. In Unbalanced
Terminal Cut (UTC), the input (G, w, y, τ, T) consists of an undirected graph G =

123

2676 Algorithmica (2022) 84:2667–2701

(V , E), an edgeweight functionw : E → Q+, a vertex weight function y : V → Q+,
a real value τ ∈ [0, 1], and a set T ⊆ V of terminal vertices. The goal is to compute

UTC(G, w, y, τ, T) := min {w(δ(S)) : S ⊆ V , y(S) ≥ τ · y(V), |S ∩ T | ≤ 1} .

In words, the goal is to find a vertex subset S ⊆ V with minimum cut value such that
the total vertex weight of S is at least a τ -fraction of the total vertex weight of V and
S contains at most one terminal vertex. Bansal et al. gave a bicriteria approximation
for UTC that is summarized in the theorem below.

Theorem 2.1 [3] There exists a randomized algorithm UTC-BICRIT-ALGO that takes
as input (G, w, y, τ, T) consisting of an undirected graph G = (V , E), an edge
weight function w : E → Q+, a vertex weight function y : V → Q+, a number
τ ∈ [0, 1], and a set T ⊆ V of terminal vertices and runs in polynomial time to return
a set S ⊆ V satisfying the following three conditions with high probability:

1. |S ∩ T | ≤ 1,
2. y(S) = �(τ)y(V), and
3. w(δ(S)) ≤ αUTC(G, w, y, τ, T), where α ≤ C

√
log n log(1/τ) for some con-

stant C and n = |V |.

3 Approximation Algorithm

In this section, we prove Theorem 1.2. We restate the theorem below for the sake of
completeness.

Theorem 1.2 There exists a polynomial-time O(log1.5 n log0.5 k)-approximation for
�p-norm-multiway-cut for every p ≥ 1, where n is the number of vertices and k is
the number of terminals in the input instance.

Let OPT be the optimal �p-norm objective value of a multiway cut in the given
instance. For the purposes of the algorithm, we will assume knowledge of a value D
such that D ≥ OPTp—such a value can be guessed via binary search.

We prove Theorem 1.2 via a three step algorithm. In the first step of the algorithm
termed as the cover step, we will obtain a collection S of O(k log n) sets whose union
is the vertex set V such that each set in the collection has at most one terminal, the cut
value of each set is not too large relative to D, and the �p-norm of the cut values of the
sets in the collection is within a polylog(n) factor of D (see Lemma 3.1). Although
the collection S has low �p-norm value relative to D, the collection S may not be a
feasible multiway cut. In the second step of the algorithm termed as the uncross step,
we uncross the sets in the collectionS without increasing the �p-norm of the cut values
of the sets in the collection (see Lemma 3.2). After uncrossing, we obtain a partition,
but we could have more than k sets. We address this in our third step termed as the
aggregate step, where we aggregate parts to ensure that we obtain exactly k parts (see
Lemma 3.3). We rely on Jensen’s inequality to ensure that the aggregation does not
blow-up the �p-norm of the cut values of the sets in the partition.

123

Algorithmica (2022) 84:2667–2701 2677

3.1 Cover Step

We begin with the cover step of the algorithm in Lemma 3.1.

Lemma 3.1 There exists a randomized algorithm that takes as input an undirected
graph G = (V , E), an edge weight function w : E → Q+, k distinct terminal
vertices T := {t1, . . . , tk} ⊆ V and a value D > 0 such that there exists a partition
(P∗

1 , . . . , P∗
k) of V with ti ∈ P∗

i for all i ∈ [k] and∑k
i=1 w(δ(P∗

i))p ≤ D, and runs
in polynomial time to return a collection of sets S ⊆ 2V satisfying the following three
conditions with high probability:

1. |S ∩ T | ≤ 1 and w(δ(S)) ≤ β(2D)1/p for every S ∈ S,
2.

∑
S∈S w(δ(S))p = O(β p log n)D, and

3. |S| = O(k log n) and |{S ∈ S : v ∈ S}| ≥ log n for each v ∈ V ,

where β = C
√
log n log(2k) (with C being the constant that appears in Theorem 2.1).

Proof We will use Algorithm 1 to obtain the desired collection S. The correctness of
Algorithm 1 is based on Claims 3.1, 3.2 and 3.3.

Algorithm 1 Cover via multiplicative weights update

Initialize t ← 1, S ← ∅, y1(v) = 1 for each v ∈ V , Y 1 = ∑
v∈V y1(v) and β = O(

√
log n log k)

while Y t > 1
n do

for i = 1, 2, . . . , log(2k) do
Execute UTC-BICRIT-ALGO(G, w, yt , 2−i , T) to obtain a subset St (i) ⊆ V
if w(δ(St (i))) ≤ β(4D

2i
)1/p then

Set St = St (i) and BREAK
end if

end for
S ← S ∪ {St }.
for v ∈ V do

Set yt+1(v) =
{
yt (v)/2 if v ∈ St ,

yt (v) if v ∈ V \ St .
end for
Set Y t+1 = ∑

v∈V yt+1(v).
Set t ← t + 1.

end while
Return S

Our first claim will help in showing that the set St added in each iteration of the
while loop satisfies certain nice properties.

Claim 3.1 For every iteration t of the while loop of Algorithm 1, there exists i ∈
{1, 2, . . . , log(2k)} such that the set St (i) satisfies the following conditions:

1. |St (i) ∩ T | ≤ 1,
2. yt (St (i)) = �(Y

t

2i
), and

3. w(δ(St (i))) ≤ β(4D
2i

)1/p.

123

2678 Algorithmica (2022) 84:2667–2701

Proof We have that
∑k

i=1 y
t (P∗

i) = yt (V) and

k∑

i=1

w(δ(P∗
i))p ≤ D.

Let L be the subset of indices of parts for which the cut value is relatively low:

L :=
{

j ∈ [k] : w(δ(P∗
j))

p ≤ 2yt (P∗
j)

Y t
· D

}

.

It follows that

∑

j∈[k]\L
yt (P∗

j) <
∑

j∈[k]\L

w(δ(P∗
j))

pY t

2D
≤ Y t

2

and hence,

∑

j∈L
yt (P∗

j) = Y t −
∑

j∈[k]\L
yt (P∗

j) > Y t − Y t

2
= Y t

2
.

Since |L| ≤ k, there exists an index q ∈ L such that yt (P∗
q) > Y t/(2k). Let

us fix i0 to be an integer such that yt (P∗
q) ∈ (Y t · 2−i0 ,Y t · 2−i0+1]. Then, we

must have i0 ≤ log(2k). We note that the set P∗
q satisfies |P∗

q ∩ T | = 1 and
yt (P∗

q) > Y t/(2k) = yt (V)/(2k). This implies P∗
q is feasible to the UTC problem

on input (G, w, yt , 1/2i0 , T). Therefore, according to Theorem 2.1, the set St (i0)
has the following properties: Firstly, |St (i0) ∩ T | ≤ 1. Secondly, yt (St (i0)) =
�(1/2i0)yt (V) = �(Y t/2i0). Finally,

w(δ(St (i0))) ≤ C
√
log n log(2k) · UTC

(

G, w, yt ,
1

2i0
, T

)

≤ β · w(δ(P∗
q)) (1a)

≤ β ·
(
2yt (P∗

q)

Y t
· D

) 1
p

(1b)

≤ β ·
(
2 · Y t · 2−i0+1

Y t
·
)

= β ·
(
4D

2i0

) 1
p

. (1c)

Inequality (1a) follows from the fact that P∗
q is feasible to UTC(G, w, yt , 1/2i0 , T),

Inequality (1b) follows from the fact that q ∈ L , and Inequality (1c) follows from the
choice of i0. This completes the proof of Claim 3.1.
�

123

Algorithmica (2022) 84:2667–2701 2679

For the rest of the proof, we will use the following notation: In the t’th iteration of
the while loop of Algorithm 1, we will fix it ∈ {1, 2, . . . , log(2k)} to be the integer
such that St = St (it). We will use � to denote the total number of iterations of the
while loop. For each v ∈ V , we define Nv := |{t ∈ [�] : v ∈ St }| to be the number of
sets in the collection S that contain the vertex v.

We observe that for each v ∈ V , we have y�+1(v) = 2−Nv . Claim 3.1 and Theorem
2.1 together imply that the t’th iteration of the while loop leads to a set St being added
to the collection S such that the following three properties hold:

1. |St ∩ T | ≤ 1,
2. yt (St) = �(Y

t

2it
), and

3. w(δ(St)) ≤ β(4D
2it

)1/p.

Our next claim shows that the number of iterations of the while loop executed in
Algorithm 1 is small. Moreover, the union of the sets in the collection S is the vertex
set V .

Claim 3.2 The number of iterations � of the while loop satisfies � = O(k log n).
Moreover, Nv ≥ log n for each v ∈ V .

Proof Upon termination of Algorithm 1, we must have Y �+1 ≤ 1/n. Combining with
the earlier observation that y�+1(v) = 2−Nv for every v ∈ V , we have that

2−Nv = y�+1(v) ≤ Y �+1 ≤ 1

n
,

which implies that Nv ≥ log n for every v ∈ V .
It remains to show that � = O(k log n). Consider the t th iteration of the while

loop for an arbitrary t ∈ [�]. By property 2 of the set St stated above, we have that
yt (St) ≥ cY t/2it ≥ cY t/(2k) for some constant c > 0. Consequently,

Y t+1 = Y t − yt (St)

2
≤ Y t − cY t

4k
=
(
1 − c

4k

)
Y t .

Due to the termination condition of the while loop, we know that Y � > 1/n. Hence,

1

n
< Y � ≤

(
1 − c

4k

)�−1
Y 1 =

(
1 − c

4k

)�−1
n ≤ exp

(

−c(� − 1)

4k

)

n.

Therefore, c(�−1)
4k = O(log n) which implies that � = O(k log n). This completes the

proof of Claim 3.2.
�
The next claim bounds the �p-norm of the cut values of the sets in the collection S.

Claim 3.3 The collection S returned by Algorithm 1 satisfies
∑

S∈S w(δ(S))p =
O(β p log n) · D.

123

2680 Algorithmica (2022) 84:2667–2701

Proof Consider the t th iteration of the while loop for an arbitrary t ∈ [�]. By property
3 of the set St stated above, we have thatw(δ(St)) ≤ β(4D/2it)1/p and consequently,
2it ≤ 4Dβ p ·w(δ(St))−p. Moreover, by property 2 of the set St stated above, we have
that yt (St) ≥ cY t/2it for some constant c > 0. Hence,

yt (St) ≥ cY t

2it
≥ cY t · w(δ(St))p

β p · 4D .

Therefore,

Y t+1 = Y t − yt (St)

2
≤
(

1 − c · w(δ(St))p

β p · 8D
)

Y t .

Using the fact that Y � > 1/n, we observe that

1

n
< Y � ≤ Y 1 ·

�−1∏

t=1

(

1 − c · w(δ(St))p

β p · 8D
)

= n ·
�−1∏

t=1

(

1 − c · w(δ(St))p

β p · 8D
)

≤ n ·
�−1∏

i=1

exp

(

−c · w(δ(St))p

β p · 8D
)

= n · exp
(

−c ·∑�−1
i=1 w(δ(St))p

β p · 8D

)

.

This implies that
c·∑�−1

i=1 w(δ(St))p

β p ·8D = O(log n), and hence
∑�−1

i=1 w(δ(St))p =
O(β p log n) · D.

In the �’th iteration of the while loop, we have w(δ(S�)) ≤ β(4D/2i�)1/p by
property 3 of the set St stated above and hencew(δ(S�))p ≤ β p ·4D/2i� ≤ O(β pD).
Consequently,

∑�
i=1 w(δ(St))p = O(β p log n)·D. This completes the proof of Claim

3.3.
�

We now show correctness of our algorithm to complete the proof of Lemma 3.1.
Firstly, we note that every S ∈ S satisfies |S ∩ T | ≤ 1 by property 1 of the set
St stated above. Moreover, there exists i ∈ {1, 2, . . . , log(2k)} such that w(δ(S)) ≤
β(4D/2i)1/p ≤ β(2D)1/p, which implies Conclusion 1 of Lemma 3.1. Secondly,
Conclusion 2 of Lemma 3.1 is implied by Claim 3.3. Finally, Conclusion 3 of Lemma
3.1 is implied by Claim 3.2 because each iteration of the while loop adds exactly one
new set to the collection S.

We now bound the run time of Algorithm 1. Each iteration of the while loop takes
polynomial time due to Theorem 2.1, and the number of iterations of the while loop
is O(k log n). This implies that the total run time of Algorithm 1 is indeed polynomial
in the size of the input.
�

We note that the our algorithm to prove Lemma 3.1 is randomized only because of
the use of the randomized algorithm given in Theorem 2.1.

123

Algorithmica (2022) 84:2667–2701 2681

3.2 Uncross Step

The collection S that we obtain in Lemma 3.1 may not be a partition. Our next lemma
will uncross the collection S obtained from Lemma 3.1 to obtain a partition without
increasing the cut values of the sets.

Lemma 3.2 There exists an algorithm that takes as input a collection S ⊆ 2V of
subsets of vertices satisfying the conclusions in Lemma 3.1 and runs in polynomial
time to return a partition Q̃ of V such that

1. |Q ∩ T | ≤ 1 for each Q ∈ Q̃,
2.

∑
Q∈Q̃ w(δ(Q))p ≤ ∑

S∈S w(δ(S))p, and

3. the number of parts in Q̃ is O(k log n).

Proof For convenience, we will define f : 2V → R+ by f (S) := w(δ(S)) for all
S ⊆ V . We will use Algorithm 2 to obtain the desired partition Q̃ of V .

Algorithm 2 Uncross via posimodularity

Initialize Q̃ ← S
while there exist distinct sets A, B ∈ Q̃ such that A ∩ B �= ∅ do

if f (A) ≥ f (A − B) then
Set A ← A − B

else
Set B ← B − A

end if
end while
Return Q̃

Wenowprove the correctness ofAlgorithm2.Webegin byobserving thatAlgorithm
2 indeed outputs a partition of the vertex set: Firstly, the while loop enforces that the
output Q̃ satisfies A∩B = ∅ for all distinct A, B ∈ Q̃. Secondly, during each iteration
of the while loop, the set

⋃
Q∈Q̃ Q remains unchanged: In the iteration of the while

loop that uncrosses A, B ∈ Q̃, let A′ and B ′ denote the updated sets at the end of the
while loop, respectively. Then we must have A′ ∪ B ′ = (A − B) ∪ B = A ∪ B or
A′∪B ′ = A∪(B−A) = A∪B. In either case, since A′∪B ′ = A∪B, the set

⋃
Q∈Q̃ Q

remains unchanged after the update. Therefore, we have
⋃

Q∈Q̃ Q = ⋃
S∈S S. We

recall that
⋃

S∈S S = V by conclusion 3 of Lemma 3.1. Hence, Q̃ is indeed a partition
of V .

Furthermore, each set Q in the output Q̃ is a subset of some set S ∈ S. This implies
|Q ∩ T | ≤ |S ∩ T | ≤ 1, thus proving the first conclusion.

To prove the second conclusion,we use posimodularity of f as shown inProposition
2.1. Namely, for every A, B ⊆ V ,

f (A) + f (B) ≥ f (A − B) + f (B − A).

123

2682 Algorithmica (2022) 84:2667–2701

Therefore, at least one of the following two hold: either f (A) ≥ f (A− B) or f (B) ≥
f (B − A). This implies that, by the choice of the algorithm,

∑
Q∈Q̃ f (Q)p does not

increase.
To see the third conclusion,wenote that after each iterationof thewhile loop, the size

of Q̃ is unchanged. Therefore, at the endAlgorithm2,we have |Q̃| = |S| = O(k log n)

by Lemma 3.1.
Finally, we bound the run time as follows. At initialization, there are O((k log n)2)

pairs (A, B) ∈ Q̃2 such that A ∩ B �= ∅. After each iteration of the while loop, the
number of such pairs decreases by at least 1. Therefore, the total number of iterations
of the while loop is O((k log n)2). Hence, Algorithm 2 indeed runs in polynomial
time.
�

3.3 Aggregation Step

The partition Q̃ that we obtain in Lemma 3.2 may contain more than k parts and hence,
some of the parts may not contain any terminals. Our next lemma will aggregate the
parts in Q̃ from Lemma 3.2 to obtain a k-partition that contains exactly one terminal
in each part while controlling the increase in the �p-norm of the cut value of the parts.

Lemma 3.3 There exists an algorithm that takes as input a partition Q̃ of V satisfy-
ing the conclusions in Lemma 3.2 and runs in polynomial time to return a partition
(P1, P2, . . . , Pk) of V such that

1. ti ∈ Pi for each i ∈ [k], and
2.

∑k
i=1 w(δ(Pi))p = O((β log n)p) · D,

where β = C
√
log n log(2k) (with C being the constant that appears in Theorem 2.1).

Proof We will use Algorithm 3 on input P̃ to obtain the desired partition.

Algorithm 3 Aggregate via bucketing
Let F = {Q ∈ Q̃ : Q ∩ T = ∅}
Let P ′ = {Q ∈ Q̃ : Q ∩ T �= ∅} = {Q′

1, . . . , Q
′
k }, where ti ∈ Q′

i for each i ∈ [k]
Partition the sets in F into k buckets B1, . . . , Bk such that |Bi | = O(log n) for each i ∈ [k] (arbitrarily)
for i = 1, 2, . . . , k do

Set Pi ← Q′
i ∪

(⋃
A∈Bi A

)

end for
Return (P1, . . . , Pk)

The run time of Algorithm 3 is linear in its input size.We now argue the correctness.
We note that the third step in Algorithm 3 is possible because |F | ≤ |Q̃| = O(k log n).

Since |Q ∩ T | ≤ 1 for each Q ∈ Q̃, the tuple (P1, . . . , Pk) returned by Algorithm
3 is indeed a partition of V satisfying ti ∈ Pi for all i ∈ [k]. We will now bound∑k

i=1 f (Pi)p, where f : 2V → R+ is given by f (S) := w(δ(S)) for all S ⊆ V . We
have that

123

Algorithmica (2022) 84:2667–2701 2683

k∑

i=1

f (Pi)
p =

k∑

i=1

f

⎛

⎝Q′
i ∪

⎛

⎝
⋃

A∈Bi
A

⎞

⎠

⎞

⎠

p

≤
k∑

i=1

⎛

⎝ f (Q′
i) +

∑

A∈Bi
f (A)

⎞

⎠

p

.

Since the number of sets in Bi is O(log n), we have the following using Jensen’s
inequality (Lemma 2.1) for each i ∈ [k]:

⎛

⎝ f (Q′
i) +

∑

A∈Bi
f (A)

⎞

⎠

p

≤ (|Bi | + 1)p−1

⎛

⎝ f (Q′
i)

p +
∑

A∈Bi
f (A)p

⎞

⎠

= O(logp−1 n)

⎛

⎝ f (Q′
i)

p +
∑

A∈Bi
f (A)p

⎞

⎠ .

Hence,

k∑

i=1

f (Pi)
p =

k∑

i=1

O(logp−1 n)

⎛

⎝ f (Q′
i)

p +
∑

A∈Bi
f (A)p

⎞

⎠

= O(logp−1 n)
∑

Q∈Q̃
f (Q)p

= O(logp−1 n)
∑

S∈S
f (S)p = β pO(logp n)D.

The last but one equality above is due to Conclusion 2 of Lemma 3.2 and the last equal-
ity is due to Conclusion 2 of Lemma 3.1. Hence,

∑k
i=1 w(δ(Pi))p = ∑k

i=1 f (Pi)p =
O((β log n)p)D.
�

3.4 Proof of Theorem 1.2

Lemmas 3.1, 3.2, and 3.3 together lead to an algorithm that takes as input an undirected
graph G = (V , E), an edge weight functionw : E → R+, k distinct terminal vertices
T := {t1, . . . , tk} ⊆ V , and a value D > 0 with the property that there exists a
partition (P∗

1 , . . . , P∗
k) of V with ti ∈ P∗

i for all i ∈ [k] and∑k
i=1 w(δ(P∗

i))p ≤ D.
This algorithm runs in polynomial time to return a multiway cut P = (P1, . . . , Pk)
such that

(
k∑

i=1

w(δ(Pi))
p

) 1
p

= (
O((β log n)p)D

) 1
p = O(β log n)D

1
p

= O(log1.5 n log0.5 k)D
1
p .

In order to prove Theorem 1.2, we may use binary search to guess D ∈
[OPTp, (2OPT)p] and run the above algorithm to obtain a multiway cut P =
(P1, . . . , Pk) such that

123

2684 Algorithmica (2022) 84:2667–2701

(
k∑

i=1

w(δ(Pi))
p

) 1
p

= O(log1.5 n log0.5 k)D
1
p = O(log1.5 n log0.5 k)OPT.

This completes the proof of Theorem 1.2.

4 NP-Hardness

In this section, we show NP-hardness results for �p-norm-multiway-cut thereby
proving Theorem 1.1. In Sect. 4.1, we show that �p-norm-multiway-cut is NP-hard
for k = 4 terminals for every p > 1 by a reduction from graph bisection. In Sect. 4.2,
we show that �p-norm-multiway-cut is NP-hard in planar graphs for every p > 1
by a reduction from 3-partition. In our reductions, we will frequently use the following
two consequences of the Mean Value Theorem.We recall that the functionμ(x) = x p

is differentiable.

Proposition 4.1 For a differentiable function μ : [0,∞) → R, and two real values
0 < x ≤ y, we have

(y − x) inf
z∈[x,y] μ

′(z) ≤ μ(x) − μ(y) ≤ (y − x) sup
z∈[x,y]

μ′(z).

Proposition 4.2 For p ≥ 1 and real values 0 < x1 ≤ x2 ≤ x3 ≤ x4 such that
x2 + x3 = x1 + x4, we have x

p
2 + x p

3 ≤ x p
1 + x p

4 .

Proof We have

x p
4 − x p

3 ≥ p(x4 − x3)x
p−1
3 = p(x2 − x1)x

p−1
3 ≥ p(x2 − x1)x

p−1
2 ≥ x p

2 − x p
1 .

The first and last inequalities above are by Proposition 4.1.
�

4.1 NP-Hardness for Constant Number of Terminals

The following is the main result of this section.

Theorem 4.1 �p-norm-multiway-cut is NP-hard for every p ≥ 1 and k ≥ 4.

Proof We note that when p = 1, �p-norm-multiway-cut corresponds to multi-
way-cut and is known to be NP-hard for every k ≥ 3 [13]. For the rest of our proof,
we will fix p > 1.

Our hardness reduction is from bisection which is known to be NP-complete.
bisection is defined as follows: Given an undirected graphG = (V , E)where |V | =:
n is even and an integer C , the goal is to decide if there exists a subset S ⊆ V such
that |S| = n/2 and |δG(S)| ≤ C .

Given an instance (G = (V , E),C) of bisection, we construct an instance
(G ′, w′, T) of �p-norm-multiway-cut consisting of a graph G ′ = (V ′, E ′), an
edge weight function w′ : E ′ → R+, and a set T ⊆ V ′ of 4 terminals vertices as
follows:

123

Algorithmica (2022) 84:2667–2701 2685

Fig. 2 An example showing the construction of G′ from G that is used in the proof of Theorem 4.1. The
graph G is a 3-cycle, and the graph G′ is shown on the right hand side. The solid black edges are each of
weight 1, the solid grey edges are each of weight a, and the dashed grey edge is of weight b

V ′ := V ∪ {u, d, �, r},
E ′ := E ∪ {ud} ∪ {vu, vd, v�, vr : v ∈ V },
T := {u, d, �, r},

w′(e) :=

⎧
⎪⎨

⎪⎩

1 if e ∈ E

a if e ∈ {vu, vd, v�, vr : v ∈ V }
b if e = ud

,

where the parameters a and b are given by

a := max

{

1,

⌈
8n3

p − 1

⌉

, 2C + 1

}

, b := 1 + max
{
1,
⌈
(2an + C)

p
p−1

⌉
, 3an

}
.

We show an example construction of G ′ from G in Fig. 2.
We note that for every fixed p > 1, the size of (G ′, w′, T) is polynomial in the size

of (G,C). The following lemma completes the proof of the theorem.
�
Lemma 4.1 There exists a subset S ⊆ V such that |S| = n/2 and |δG(S)| ≤ C if and
only if (G ′, w′, T) has a multiway cut whose �p-norm objective value is at most

(
2(b + an)p + 2(2an + C)p

) 1
p .

Proof We start by showing the forward direction.

Claim 4.1 If there exists a subset S ⊆ V such that |S| = n/2 and |δG(S)| ≤ C,
then (G ′, w′, T) has a multiway cut whose �p-norm objective value is at most
(2(b + an)p + 2(2an + C)p)1/p.

123

2686 Algorithmica (2022) 84:2667–2701

Proof Let S ⊆ V satisfy |S| = n/2 and |δG(S)| ≤ C . Then the �p-norm objective
value of the multiway cut ({u}, {d}, S ∪ {�}, (V \S) ∪ {r}) raised to the pth power is
at most

(b + an)p + (b + an)p + (3a|S| + a|V \S| + C)p + (3a|V \S| + a|S| + C)p

= 2(b + an)p + 2(2an + C)p.

�
In order to show the reverse direction, we need the following structural result on

multiway cuts of (G ′, w′, T) with cheap �p-norm objective value.

Claim 4.2 If G ′ has a multiway cut P whose �p-norm objective value is at most
(2(b + an)p + 2(2an + C)p)1/p, then the parts of P containing u and d are sin-
gletons.

Proof Let P = (U ∪ {u}, D ∪ {d}, L ∪ {�}, R ∪ {r}) be a multiway cut of G ′ whose
�p-norm objective value raised to pth power is at most 2(b + an)p + 2(2an + C)p,
whereU ∪ D ∪ L ∪ R = V . Without loss of generality, suppose thatU is non-empty.
Then we have

w′(δ(U ∪ {u})) ≥ b + 3a|U | + a(n − |U |) = b + 2a|U | + an ≥ b + 2a + an,

w′(δ(D ∪ {d})) ≥ b + 3a|D| + a(n − |D|) = b + 2a|D| + an ≥ b + an.

This implies that the �p-norm objective value of P raised to the pth power is at least
(b+ 2a+ an)p + (b+ an)p. By assumption, the �p-norm objective value of P raised
to the pth power is at most 2(b + an)p + 2(2an + C)p. Thus,

0 ≥ (b + 2a + an)p + (b + an)p − (2(b + an)p + 2(2an + C)p)

= (b + 2a + an)p − (b + an)p − 2(2an + C)p

Setting μ(z) = z p, x = b + an and y = b + 2a + an in Proposition 4.1, we observe
that

(b + 2a + an)p − (b + an)p ≥ 2a · inf
z∈[b+an,b+2a+an] pz

p−1 = 2ap(b + an)p−1.

Therefore,
0 ≥ (b + 2a + an)p − (b + an)p − 2(2an + C)p

≥ 2ap(b + an)p−1 − 2(2an + C)p

> 2ap
(
(2an + C)

p
p−1 + an

)p−1 − 2(2an + C)p

≥ 2ap
(
(2an + C)

p
p−1

)p−1 − 2(2an + C)p

= 2ap(2an + C)p − 2(2an + C)p

≥ 0.

123

Algorithmica (2022) 84:2667–2701 2687

Here the strict inequality follows from our choice of b > (2an + C)p/(p−1) and the
last inequality follows from a ≥ 1 and p > 1. This is a contradiction since one of the
inequalities in the above sequence is strict. Hence, we must have U = D = ∅.
�

The following claim proves the reverse direction of the lemma by showing that a
multiway cut of (G ′, w′, T) that is cheap in �p-norm objective value can be used to
recover a cheap bisection.

Claim 4.3 If a multiway cutP = (U∪{u}, D∪{d}, L∪{�}, R∪{r}) of (G ′, w′, T) has
�p-norm objective value at most (2(b + an)p + 2(2an + C)p)1/p, then L ∪ R = V ,
|L| = |R| = n/2, and |δG(L)| ≤ C.

Proof By Claim 4.2, we know that U = D = ∅, and hence L ∪ R = V . We note that
in this case, we have

w′(δ(U ∪ {u})) = w′(δ(D ∪ {d})) = b + an,

w′(δ(L ∪ {�})) ≥ 3a|L| + a(n − |L|) = 2a|L| + an,

w′(δ(R ∪ {r})) ≥ 3a|R| + a(n − |R|) = 2a|R| + an.

This implies that the �p-norm objective value of P raised to the pth power is at least
2(b+an)p + (2a|L|+an)p + (2a|R|+an)p. By assumption, the �p-norm objective
value of P raised to the pth power at most 2(b + an)p + 2(2an + C)p. Hence,

0 ≥ 2(b + an)p + (2a|L| + an)p + (2a|R| + an)p − (2(b + an)p + 2(2an + C)p)

= (2a|L| + an)p + (2a|R| + an)p − 2(2an + C)p. (2)

For the sake of contradiction, suppose that |L| �= n/2. Without loss of generality, let
|L| ≥ n/2+1 and |R| ≤ n/2−1.We note that |L|+|R| = n = (n/2−1)+(n/2+1).

In Proposition 4.2, by setting

x1 = 2a|R| + an, x2 = 2a
(n

2
− 1

)
+ an, x3 = 2a

(n

2
+ 1

)
+ an, x4 = 2a|L| + an,

we get

(2a|L| + an)p + (2a|R| + an)p ≥
(
2a

(n

2
+ 1

)
+ an

)p +
(
2a

(n

2
− 1

)
+ an

)p
.

Substituting this in inequality (2), we get that

0 ≥ (2a|L| + an)p + (2a|R| + an)p − 2(2an + C)p

≥
(
2a

(n

2
+ 1

)
+ an

)p +
(
2a

(n

2
− 1

)
+ an

)p − 2(2an + C)p

= (2an + 2a)p + (2an − 2a)p − 2(2an + C)p

= ((2an + 2a)p − (2an + a)p) + ((2an + a)p − (2an + C)p)

− ((2an + C)p − (2an)p) − ((2an)p − (2an − 2a)p) (3)

123

2688 Algorithmica (2022) 84:2667–2701

By applying Proposition 4.1 four times, we get that

(2an + 2a)p − (2an + a)p ≥ ap(2an + a)p−1,

(2an + a)p − (2an + C)p ≥ (a − C)p(2an + C)p−1,

(2an + C)p − (2an)p ≤ Cp(2an + C)p−1,

(2an)p − (2an − 2a)p ≤ 2ap(2an)p−1.

Substituting these in inequality (3), we get that

0 ≥ ap(2an + a)p−1 + (a − C)p(2an + C)p−1 − Cp(2an + C)p−1 − 2ap(2an)p−1

= ap(2an + a)p−1 + (a − 2C)p(2an + C)p−1 − 2ap(2an)p−1

≥ ap(2an + a)p−1 + (a − 2C)p(2an)p−1 − 2ap(2an)p−1.

Let ε := (p − 1)/(8n). Since a ≥ 8n3/(p − 1), we have that 2C < n2 ≤ εa. This
implies

0 ≥ ap(2an + a)p−1 + (a − 2C)p(2an)p−1 − 2ap(2an)p−1

> ap(2an + a)p−1 + (1 − ε)ap(2an)p−1 − 2ap(2an)p−1.

This inequality is equivalent to

0 > (2n + 1)p−1 + (1 − ε)(2n)p−1 − 2(2n)p−1 = (2n + 1)p−1 − (1 + ε)(2n)p−1,

which further implies

ε >

(

1 + 1

2n

)p−1

− 1.

Applying Proposition 4.1 again, we get

ε >

(

1 + 1

2n

)p−1

− 1 ≥ 1

2n
· inf
z∈[1,1+ 1

2n]
(p − 1)z p−2 = p − 1

2n
inf

z∈[1,1+ 1
2n]

z p−2.

If p ≥ 2, the infimum z p−2 for z ∈ [1, 1+1/(2n)] is attained at z = 1, and thus z p−2 ≥
1 for all z ∈ [1, 1+1/(2n)]. If p ∈ (1, 2), the infimum of z p−2 for z ∈ [1, 1+1/(2n)]
is attained at z = 1 + 1/(2n), and thus z p−2 ≥ (1 + 1/(2n))p−2 > 2p−2 > 1/2 for
all z ∈ [1, 1 + 1/(2n)]. Hence,

ε >
p − 1

2n
· inf
z∈[1,1+ 1

2n]
z p−2 >

p − 1

2n
· 1
2

>
p − 1

8n
= ε.

This leads to a contradiction since one of the inequalities in the above sequence is
strict. Hence, we must have |L| = |R| = n/2. Finally, we prove the last conclusion

123

Algorithmica (2022) 84:2667–2701 2689

that |δG(L)| ≤ C : since |L| = |R| = n/2, the four parts of P are {u}, {d}, L, and R.
Consequently, the �p-norm objective value of P raised to pth power is

2(b + an)p + 2(2an + |δG(L)|)p

which is known to be at most 2(b + an)p + 2(2an + C)p. Hence, |δG(L)| ≤ C as
claimed.
�

4.2 NP-Hardness in Planar Graphs

The following is the main result of this section.

Theorem 4.2 �p-norm-multiway-cut in planar graphs is NP-hard for every p ≥ 1.

Proof We note that when p = 1, �p-norm-multiway-cut corrresponds to multi-
way-cut and is known to be NP-hard in planar graphs [13]. For the rest of our proof,
we will fix p > 1.

Our hardness reduction is from 3- partition which is known to be NP-hard [14].
3- partition is defined as follows: Given a set S = [3m], a sequence of weights
a1, a2, . . . , a3m , and a bound B satisfying

∑3m
i=1 ai = mB and B/4 < ai < B/2 for

all i ∈ [3m], the goal is to decide whether there exists a partition of S into m subsets
S1, S2, . . . , Sm such that

∑
i∈S j ai = B for every j ∈ [m]. Due to the constraints on

a1, a2, . . . , a3m , we note that a feasible partition S1, S2, . . . , Sm would have exactly 3
elements in each subset Si .

Given an instance of 3- partition by a set S = [3m], weights a1, a2, . . . , a3m ,
and bound B, we construct an instance (G, w, T) of �p-norm-multiway-cut as
follows: we start with an empty graph G, and for each i ∈ [3m], we add to G a
subgraph as shown in Fig. 3. The edge weights are labelled near the corresponding

edges, where d := ⌈
(12m + 12)

1
p−1

⌉
. These 3m subgraphs are disjoint from each

other. Finally, we add m isolated vertices t1, . . . , tm to G. The terminal set T is given
by {xri : i ∈ [3m], r ∈ [3]} ∪ {t1, . . . , tm}. We observe that the graph G constructed
this way is planar. We note that the size of (G, w, T) is polynomial in the size of the
3- partition instance and the edge weights are polynomial inm, B, and a1, . . . , a3m .
We emphasize that the number of terminals in this reduction is not a constant. The
following lemma completes the proof of Theorem 4.2.
�
Lemma 4.2 There exists a partition of S into S1, . . . , Sm such that

∑
i∈S j ai = B for

each j ∈ [m] if and only if (G, w, T) has a multiway cut whose �p-norm objective
value is at most

(9m(2dB)p + mBp)
1
p .

Proof We start by showing the forward direction.

Claim 4.4 If S can be partitioned into S1, . . . , Sm such that
∑

i∈S j ai = B for each
j ∈ [m], then G has a multiway cut whose �p-norm objective value is (9m(2dB)p +
mBp)1/p.

123

2690 Algorithmica (2022) 84:2667–2701

Fig. 3 The i th subgraph in the reduction from 3- partition

Proof Consider the multiway cut of G defined by

{{xri } : i ∈ [3m], r ∈ [3]} ∪ {{t j } ∪ {vi : i ∈ S j } : j ∈ [m]}.

The pth power of the �p-norm objective value of this multiway cut is

3m · 3 · (2dB)p +
∑

j∈[m]

⎛

⎝
∑

i∈S j

ai
3

· 3
⎞

⎠

p

= 9m(2dB)p +
∑

j∈[m]
B p = 9m(2dB)p + mBp.

Therefore, we have a multiway cut with �p-norm objective value (9m(2dB)p +
mBp)1/p, completing the proof of the claim.
�

For the backward direction, we will start with a structural property regarding multi-
way cuts of (G, w, T) with cheap �p-norm objective value: each non-terminal vertex
vi will not be contained in a part that contains any of the xri terminals.

Claim 4.5 Let P be a multiway cut in (G, w, T) with �p-norm objective value at most
(9m(2dB)p +mBp)1/p. Then, for every i ∈ [3m], the vertex vi will be in a part of P
that contains terminal t j for some j ∈ [m].

Proof We will use Xr
i to denote the part in P containing xri for each i ∈ [3m] and

r ∈ [3], and Tj to denote the part in P containing t j for each j ∈ [m]. Let I :={
i ∈ [3m] : vi ∈ ⋃

i ′∈[3m],r∈[3] Xr
i ′
}
be the indices of vertices vi that are contained in

some part that contains an xri terminal. Suppose for the sake of contradiction that
I �= ∅.

123

Algorithmica (2022) 84:2667–2701 2691

Let i ∈ [3m], r ∈ [3]. Then, we have

w(δ(Xr
i)) ≥ 2dB +

∑

i ′∈[3m]:vi ′ ∈Xr
i

ai ′

3
. (4)

For an arbitrarily fixed Xr
i such that |Xr

i | ≥ 3, let Xr
i = {xri , vi1 , vi2 , . . . , vi�} for some

i1, . . . , i� ∈ [3m], where � ≥ 2. In Proposition 4.2, if we choose

x1 = 2dB, x4 = 2dB +
�∑

q=1

aiq
3

,

x2 = min

⎧
⎨

⎩
2dB + ai�

3
, 2dB +

�−1∑

q=1

aiq
3

⎫
⎬

⎭
,

x3 = max

⎧
⎨

⎩
2dB + ai�

3
, 2dB +

�−1∑

q=1

aiq
3

⎫
⎬

⎭
,

then we have

⎛

⎝2dB +
�∑

q=1

aiq
3

⎞

⎠

p

+ (2dB)p ≥
⎛

⎝2dB +
�−1∑

q=1

aiq
3

⎞

⎠

p

+
(
2dB + ai�

3

)p
.

By applying this argument � − 1 times, we get

⎛

⎝2dB +
�∑

q=1

aiq
3

⎞

⎠

p

+ (� − 1)(2dB)p

≥
⎛

⎝2dB +
�−1∑

q=1

aiq
3

⎞

⎠

p

+
(
2dB + ai�

3

)p + (� − 2)(2dB)p

≥ . . .

≥
⎛

⎝2dB +
2∑

q=1

aiq
3

⎞

⎠

p

+
(
2dB + ai3

3

)p + · · · +
(
2dB + ai�

3

)p + (2dB)p

≥
�∑

q=1

(

2dB + aiq
3

)p

. (5)

We will divide parts Xr
i into three categories by defining

X1 := {
Xr
i : i ∈ [3m], r ∈ [3], |Xr

i | = 1
}
,

X2 := {
Xr
i : i ∈ [3m], r ∈ [3], |Xr

i | = 2
}
,

123

2692 Algorithmica (2022) 84:2667–2701

X3 := {
Xr
i : i ∈ [3m], r ∈ [3], |Xr

i | ≥ 3
}
.

Moreover, let us define two subsets of I by

I2 :=
⎧
⎨

⎩
i ′ ∈ I : vi ′ ∈

⋃

Xr
i ∈X2

Xr
i

⎫
⎬

⎭
, I3 :=

⎧
⎨

⎩
i ′ ∈ I : vi ′ ∈

⋃

Xr
i ∈X3

Xr
i

⎫
⎬

⎭
.

We note that (I2, I3) form a partition of I , |I2| = |X2|, and |X1| + |X2| + |X3| = 9m.
Then the contribution of sets Xr

i to the pth power of the �p-norm objective value
is given by

∑

i∈[3m],r∈[3]
w(δ(Xr

i))
p =

∑

Xr
i ∈X1

w(δ(Xr
i))

p +
∑

Xr
i ∈X2

w(δ(Xr
i))

p +
∑

Xr
i ∈X3

w(δ(Xr
i))

p

= |X1|(2dB)p +
∑

Xr
i ∈X2

w(δ(Xr
i))

p +
∑

Xr
i ∈X3

w(δ(Xr
i))

p.

(6)

By applying (4) and (5) to members of X3, we get

∑

Xr
i ∈X3

w(δ(Xr
i))

p ≥
∑

Xr
i ∈X3

⎛

⎝2dB +
∑

i ′∈[3m]:vi ′ ∈Xr
i

ai ′

3

⎞

⎠

p

(by(4))

=
∑

Xr
i ∈X3

⎛

⎝

⎛

⎝2dB +
∑

i ′∈[3m]:vi ′ ∈Xr
i

ai ′

3

⎞

⎠

p

+ (|Xr
i | − 2)(2dB)p

⎞

⎠

−
∑

Xr
i ∈X3

(|Xr
i | − 2)(2dB)p

≥
∑

Xr
i ∈X3

∑

i ′∈[3m]:vi ′ ∈Xr
i

(
2dB + ai ′

3

)p −
∑

Xr
i ∈X3

(|Xr
i | − 2)(2dB)p (by(5))

=
∑

i ′∈I3

(
2dB + ai ′

3

)p −
∑

Xr
i ∈X3

(|Xr
i | − 1)(2dB)p + |X3|(2dB)p

=
∑

i ′∈I3

(
2dB + ai ′

3

)p − |I3|(2dB)p + |X3|(2dB)p.

Moreover, we observe that by Eq. (4) and definition of I2,

∑

Xr
i ∈X2

w(δ(Xr
i))

p ≥
∑

Xr
i ∈X2

⎛

⎝2dB +
∑

i ′∈[3m]:vi ′ ∈Xr
i

ai ′

3

⎞

⎠

p

=
∑

i ′∈I2

(
2dB + ai ′

3

)p
.

123

Algorithmica (2022) 84:2667–2701 2693

Therefore, (6) implies that

∑

i∈[3m],r∈[3]
w(δ(Xr

i))
p

= |X1|(2dB)p +
∑

Xr
i ∈X2

w(δ(Xr
i))

p +
∑

Xr
i ∈X3

w(δ(Xr
i))

p

≥ |X1|(2dB)p +
∑

i ′∈I2

(
2dB + ai ′

3

)p

+
∑

i ′∈I3

(
2dB + ai ′

3

)p − |I3|(2dB)p + |X3|(2dB)p

= |X1|(2dB)p +
∑

i ′∈I

(
2dB + ai ′

3

)p − |I3|(2dB)p + |X3|(2dB)p

=
∑

i ′∈I

(
2dB + ai ′

3

)p + (|X1| + |X3|)(2dB)p − |I3|(2dB)p

=
∑

i ′∈I

(
2dB + ai ′

3

)p + (9m − |X2|)(2dB)p − |I3|(2dB)p

=
∑

i ′∈I

(
2dB + ai ′

3

)p + (9m − |I2|)(2dB)p − |I3|(2dB)p

=
∑

i ′∈I

(
2dB + ai ′

3

)p + (9m − |I |)(2dB)p

≥
∑

i ′∈I

(

2dB + B

12

)p

+ (9m − |I |)(2dB)p (since ai ′ ≥ B

4
∀i ′ ∈ [3m])

= |I |
(

2d + 1

12

)p

B p + (9m − |I |)(2dB)p.

Assuming I �= ∅, the pth power of the �p-norm objective value of this multiway
cut is

∑

i∈[3m],r∈[3]
w(δ(Xr

i))
p +

m∑

j=1

w(δ(Tj))
p

≥ |I |
(

2d + 1

12

)p

B p + (9m − |I |)(2dB)p +
∑

i /∈I
w(δ(vi))

p

= |I |
(

2d + 1

12

)p

B p + (9m − |I |)(2dB)p +
∑

i /∈I
a p
i

≥ |I |
(

2d + 1

12

)p

B p + (9m − |I |)(2dB)p + (3m − |I |)
(
B

4

)p

= |I |
((

2d + 1

12

)p

− (2d)p −
(
1

4

)p)

B p + 9m(2d)p B p + 3m

(
1

4

)p

B p.

123

2694 Algorithmica (2022) 84:2667–2701

Since we assumed that the �p-norm objective value of this multiway cut is at most
(9m(2dB)p + mBp)1/p, we have

0 ≥
⎛

⎝
∑

i∈[3m],r∈[3]
w(δ(Xr

i))
p +

m∑

j=1

w(δ(Tj))
p − (9m(2dB)p + mBp)

⎞

⎠ B−p

≥ |I |
((

2d + 1

12

)p

− (2d)p −
(
1

4

)p)

+ 3m

(
1

4

)p

− m

> |I |
((

2d + 1

12

)p

− (2d)p −
(
1

4

)p)

− m.

We note that due to Proposition 4.1, we have

(

2d + 1

12

)p

− (2d)p ≥ p(2d)p−1

12
≥ 2p−1 · p(m + 1).

This implies

0 > |I |
(

2p−1 · p(m + 1) −
(
1

4

)p)

− m ≥ 2p−1 · p(m + 1) −
(
1

4

)p

− m ≥ 0,

yielding a contradiction since one of the inequalities in the sequence is strict. Therefore,
we must have I = ∅.
�

We complete the proof of the backward direction by showing the following claim
which derives a YES certificate for 3-partition from an optimal multiway cut whose
�p-norm objective value is at most (9m(2dB)p + mBp)1/p.
�
Claim 4.6 Given a multiway cut P of (G, w, T) whose �p-norm objective value is at
most (9m(2dB)p +mBp)1/p, let S j := {i ∈ [3m] : vi is in the same part as t j in P}
for each j ∈ [m]. Then (S1, S2, . . . , Sm) is a partition of S = [3m] such that∑

i∈S j ai = B for each j ∈ [m].
Proof By Claim 4.5, we know that S1, . . . , S j must form a partition of S. This also
implies that for each i ∈ [3m], r ∈ [3], the set {xri } is a part in the multiway cut P .
Therefore, the �p-norm objective value of P is at least

∑

i∈[3m],r∈[3]
(2dB)p +

m∑

j=1

w(δ(S j))
p = 9m(2dB)p +

m∑

j=1

w(δ(S j))
p.

Since we know that the �p-norm objective value of P is at most 9m(2dB)p + mBp,
it follows that

∑m
j=1 w(δ(S j))

p ≤ mBp. By Jensen’s inequality, we observe that

mBp ≥
m∑

j=1

w(δ(S j))
p =

m∑

j=1

⎛

⎝
∑

i∈S j
ai

⎞

⎠

p

≥ m ·
⎛

⎝ 1

m

m∑

j=1

∑

i∈S j
ai

⎞

⎠

p

= mBp.

123

Algorithmica (2022) 84:2667–2701 2695

Hence, all inequalities above should be equations. This happens onlywhen
∑

i∈S j ai =
B for all j ∈ [m].
�

5 Convex Program and Integrality Gap

The following is a natural convex programming relaxation for �p-norm-multiway-
cut on instance (G, w, T) where T = {t1, . . . , tk} are the terminal vertices (the
objective function can be convexified by introducing additional variables and con-
straints):

Minimize

(
k∑

i=1

(
∑

uv∈E
w(uv) · |x(u, i) − x(v, i)|

)p)1/p

subject to

k∑

i=1

x(v, i) = 1 ∀v ∈ V ,

x(ti , i) = 1 ∀i ∈ [k],
x(v, i) ≥ 0 ∀v ∈ V , ∀i ∈ [k]. (7)

The above convex program is inspired by the formulation given by Călinescu et al.
[7] for the case of p = 1. We note that determining the precise integrality gap of the
formulation for p = 1 is still an open problem.

Lemma 5.1 The convex program in (7) has an integrality gap of at least k1−1/p/2.

Proof Consider the star graph that has k leaves {t1, . . . , tk} and a center vertex v with
all edge weights being 1. Let the terminal vertices be the k leaves. The optimum
�p-norm objective value of a multiway cut is

((k − 1)p + k − 1)
1
p ,

and it corresponds to the partition ({t1, v}, {t2}, {t3}, . . . , {tk}). A feasible solution to
the convexprogram (7) is given by x(v, i) = 1/k for all i ∈ [k] and x(ti , j) = 1[i = j]
for all i, j ∈ [k], which yields an objective of

(

k ·
(
k − 1

k
+ (k − 1) · 1

k

)p) 1
p

= 2k − 2

k
· k 1

p .

This results in an integrality gap of at least

((k − 1)p + k − 1)
1
p

2k−2
k · k 1

p

≥ k − 1

2k−2
k · k 1

p

= k1−
1
p

2
.

�

123

2696 Algorithmica (2022) 84:2667–2701

Bansal et al. give an SDP relaxation formin-max-multiway-cut and show that the
star graph has an integrality gap of �(k) for this SDP relaxation. This SDP relaxation
can be generalized in a natural fashion to �p-norm-multiway-cut. The star graph
still exhibits an integrality gap of �(k1−1/p) for the generalized SDP relaxation for
�p-norm-multiway-cut.

6 Inapproximability

In this section, we show that �p-norm-multiway-cut does not admit a k1−1/p−ε-
approximation assuming the small set expansion hypothesis. In contrast, there is a
trivial O(k1−1/p)-approximation (see Sect. 6.1). We mention that the inapproxima-
bility result in this section is similar to the result of Bansal et al. [3] who showed that
min-max-multiway-cut does not admit a k1−ε-approximation assuming the small
set expansion hypothesis. We adapt the same ideas for �p-norm-multiway-cut.

To prove our results, we consider min-sum-equi-k-partitioning: the input to this
problem is a graph G = (V , E) (where n := |V |), an edge weight function w : E →
Q+, and an integer k ≤ n such that k divides n. The goal is to partition V into k sets
P1, . . . , Pk such that |Pi | = n/k for all i ∈ [k] so as to minimize

∑k
i=1 w(δ(Pi)). We

will use λ to denote the optimum objective value of min-sum-equi-k-partitioning.
A partition (P1, . . . , Pk) of V is an (α, β)-bicriteria approximation for min-sum-
equi-k-partitioning if

∑k
i=1 w(δ(Pi)) ≤ αλ and |Pi | ≤ β(n/k) for all i ∈ [k].

For a sufficiently large constant k, it is known that a (α, β)-bicriteria approximation
for min-sum-equi-k-partitioning where α is a constant that could depend on k and
β is an absolute constant is at least as hard as small set expansion [20]. We show
the following result which implies that a k1−1/p−ε-approximation is unlikely for �p-
norm-multiway-cut (by setting k = k(ε) to be a large constant):

Theorem 6.1 If�p-norm-multiway-cutadmits an efficient k1−1/p−ε-approximation
algorithm for some constant ε > 0, then for k ≥ 92/ε min-sum-equi-k-partitioning
admits a (O(k2−1/p), 34/ε)-bicriteria approximation.

Our proof of Theorem 6.1 proceeds via the following lemma (which is the coun-
terpart to Lemma 5.1 of [3], but for �p-norm-multiway-cut).

Lemma 6.1 If �p-norm-multiway-cut has a polynomial-time γ -approximation
algorithm, then min-sum-equi-k-partitioning has an efficient (5kγ, 9γ k1/p)-
bicriteria approximation algorithm.

Proof We will follow the reduction designed by Bansal et al in Lemma 5.1 of [3].
Let (G, w, k) be an instance of min-sum-equi-k-partitioning, and let λ refer to the
optimum objective value of min-sum-equi-k-partitioning on instance (G, w, k).
We will assume knowledge of a value B ∈ [λ, 2λ] by binary search. We construct an
instance (G ′ = (V ′, E ′), w′, T) of �p-norm-multiway-cut as follows.

V ′ := V ∪ {t1, . . . , tk},
E ′ := E ∪ {tiv : v ∈ V },

123

Algorithmica (2022) 84:2667–2701 2697

T := {t1, . . . , tk},

w′(e) :=
{

w(e) if e ∈ E,
B
n if e ∈ E ′ \ E .

We will use OPT to refer to the optimum �p-norm objective value of �p-norm-
multiway-cut on instance (G ′, w′, T). The following claim completes the proof of
Lemma 6.1.
�
Claim 6.1 If P ′ = (P ′

1, . . . , P
′
k) is a multiway cut on instance (G ′, w′, T) with �p-

norm objective value at most γ · OPT, then the partition P = (P1, . . . , Pk) of V
defined by Pi = P ′

i ∩ V for all i ∈ [k] is a (5kγ, 9γ k1/p)-bicriteria approximate
optimum to min-sum-equi-k-partitioning.

Proof Let Q = (Q1, . . . , Qk) be an optimum solution to min-sum-equi-k-
partitioning on instance (G, w, k), and let Q′ = (Q′

1, . . . , Q
′
k) be a partition of

V (G ′) obtained by Q′
i := Qi ∪ {ti } for each i ∈ [k]. Then, Q′ is a multiway cut for

(G ′, w′, T) and the �p-norm objective value of Q′ raised to pth power is

k∑

i=1

w′(δG ′(Q′
i))

p =
k∑

i=1

(

w(δG(Qi)) + n

k
· (k − 1) · B

n
+ n

k
· (k − 1) · B

n

)p

=
k∑

i=1

(

w(δG(Qi)) + k − 1

k
· 2B

)p

≥ OPTp, (8)

where the first (n/k)(k − 1)(B/n) term represents the cost of edges between Qi and
T −{ti }, and the second (n/k)(k−1)(B/n) term represents the cost of edges between
V − Qi and ti . We recall that OPT refers to the optimum �p-norm objective value of
�p-norm-multiway-cut on instance (G ′, w′, T).

Since P ′ is a γ -approximate optimum solution to �p-norm-multiway-cut, we
have

γ p · OPTp ≥
k∑

i=1

w′(δG ′(P ′
i))

p

=
k∑

i=1

(

w(δG(Pi)) + |Pi |(k − 1)
B

n
+ (n − |Pi |) B

n

)p

=
k∑

i=1

(

w(δG(Pi)) + B + (k − 2)|Pi | B
n

)p

≥ k1−p

(
k∑

i=1

w(δG(Pi)) + (2k − 2)B

)p

. (by Jensen’s inequality)

(9)

123

2698 Algorithmica (2022) 84:2667–2701

Hence,

k1−p

(
k∑

i=1

w(δG(Pi)) + (2k − 2)B

)p

≤ γ p · OPTp

≤ γ p
k∑

i=1

(

w(δG(Qi)) + k − 1

k
· 2B

)p

(by(8))

≤ γ p
k∑

i=1

(

λ + k − 1

k
· 2B

)p

= γ pk

(

λ + k − 1

k
· 2B

)p

. (10)

This inequality is equivalent to

k∑

i=1

w(δG(Pi)) + (2k − 2)B ≤ kγ

(

λ + k − 1

k
· 2B

)

.

Using the assumption that B ∈ [λ, 2λ], we have
k∑

i=1

w(δG(Pi)) ≤ kγ

(

λ + k − 1

k
· 2B

)

< kγ (λ + 2B) ≤ 5kγ λ.

Inequalities (9) and (10) also imply that for every j ∈ [k],
(

(k − 2)|Pj | B
n

)p

≤
k∑

i=1

(

w(δG(Pi)) + B + (k − 2)|Pi | B
n

)p

≤ γ p · OPTp (by(9))

≤ γ p · k
(

λ + k − 1

k
· 2B

)p

(by(10))

≤ γ p · k(3B)p.

This implies that

|Pj | ≤ 3γ k
1
p

n

k − 2
≤ 9γ k

1
p
n

k
.

�
We will use the following lemma from [3] to prove Theorem 6.1.

123

Algorithmica (2022) 84:2667–2701 2699

Lemma 6.2 [3] If min-sum-equi-k-partitioninghas an efficient (α, k1−ε)-bicriteria
approximation algorithm for some ε > 0, then min-sum-equi-k-partitioning also
has an efficient (α log log k, 32/ε)-bicriteria approximation algorithm.

We now prove Theorem 6.1.

Proof of Theorem 6.1 If �p-norm-multiway-cut has an efficient k1−1/p−ε-
approximation algorithm for some ε > 0, then Lemma 6.1 implies that min-sum-
equi-k-partitioning has an efficient (5k2−1/p−ε, 9k1−ε)-bicriteria approximation
algorithm. For k ≥ 92/ε , we have 9k1−ε ≤ k1−ε/2. Then, Lemma 6.2 implies that min-
sum-equi-k-partitioning has a (O(k2−1/p), 34/ε)-bicriteria approximation. This
completes the proof of Theorem 6.1.
�

6.1 A TrivialO(k1−1/p)-Approximation via Isolating Cuts

In this section, we show a trivial approximation algorithm for �p-norm-multiway-
cut that achieves an approximation factor of (k p−1 + 1)1/p. Our algorithm follows
a high-level 3-step recipe similar to the one in Sect. 3—namely, (I) isolate terminals,
(II) uncross, and (III) aggregate. Given an instance (G, w, T) of �p-norm-multiway-
cut, let the set T of terminals be {t1, . . . , tk}. For each i ∈ [k], we compute aminimum
(ti , T − ti)-cut, say (Si , V − Si). The sets S1, . . . , Sk can be uncrossed via posimodu-
larity to ensure that each (Si , V − Si) is still a minimum (ti , T −Ti)-cut and moreover
Si ∩ S j = ∅ for all distinct i, j ∈ [k]. Let R := V − ∪k

i=1Si , and we assume
without loss of generality that w(δ(S1)) = maxi∈[k] w(δ(Si)). We will show that the
multiway cut (S1∪R, S2, S3, . . . , Sk) is a (k p−1+1)1/p-approximation for �p-norm-
multiway-cut. We note that this same algorithm achieves a 2-approximation factor
for multiway-cut [13].

Let (P1, . . . , Pk) denote an optimum solution for �p-norm-multiway-cut. Since
(Si , V − Si) is a min (ti , T − ti)-cut, we have that w(δ(Si)) ≤ w(δ(Pi)). We also note
that w(δ(S1 ∪ R)) = w(δ(∪k

i=2Si)) ≤ ∑k
i=2 w(δ(Si)). Let us consider the pth power

of the �p-norm objective value of (S1 ∪ R, S2, . . . , Sk):

w(δ(S1 ∪ R))p +
k∑

i=2

w(δ(Si))
p

≤
(

k∑

i=2

w(δ(Si))

)p

+
k∑

i=2

w(δ(Si))
p

≤ (k − 1)p−1

(
k∑

i=2

w(δ(Si))
p

)

+
k∑

i=2

w(δ(Si))
p (by Jensen)

= ((k − 1)p−1 + 1)
k∑

i=2

w(δ(Si))
p

≤ ((k − 1)p−1 + 1)

(

1 − 1

k

) k∑

i=1

w(δ(Si))
p (by choice ofS1)

123

2700 Algorithmica (2022) 84:2667–2701

≤ (k p−1 + 1)
k∑

i=1

w(δ(Pi))
p.

Hence, the �p-norm objective value of (S1 ∪ R, S2, . . . , Sk) is within a (k p−1 +1)1/p-
factor of the optimum �p-norm objective value.

7 Conclusion

In this work, we introduced �p-norm-multiway-cut for p ≥ 1 as a unified
generalization of multiway-cut and min-max-multiway-cut. We showed that �p-
norm-multiway-cut is NP-hard for constant number of terminals or in planar graphs
for every p ≥ 1. The natural convex program for �p-norm-multiway-cut has an
integrality gap of �(k1−1/p) and the problem is (k1−1/p−ε)-inapproximable for any
constant ε > 0 and k > k(ε) assuming the small set expansion hypothesis, where k is
the number of terminals in the input instance. The inapproximability result suggests
that a dependence on n in the approximation factor is unavoidable if we would like
to obtain an approximation factor that is better than the trivial O(k1−1/p)-factor. On
the algorithmic side, we gave an O(

√
log3 n log k)-approximation (i.e., an O(log2 n)-

approximation), where n is the number of vertices in the input graph. Our results
suggest that the approximability behaviour of �p-norm-multiway-cut exhibits a
sharp transition from p = 1 to p > 1. Our work raises several open questions. We
mention a couple of them:

1. Can we achieve an O(log n)-approximation for �p-norm-multiway-cut for
every p ≥ 1? We recall that when p = ∞, the current best approximation factor
is indeed O(log n) [3].

2. Is there a polynomial-time algorithm for �p-norm-multiway-cut for any given
p that achieves an approximation factor that smoothly interpolates between the
best upper bounds on the approximation factors for p = 1 and p = ∞—e.g., is
there an O(log1−1/p n)-approximation?

Acknowledgements Karthik would like to thank Ali Bibak for initial discussions on parts of this work.

References

1. Ahmadi, S., Khuller, S., Saha, B.: Min–Max Correlation Clustering via Multicut, pp. 13–26. Integer
Programming and Combinatorial Optimization, IPCO, Atlanta (2019)

2. Angelidakis, H., Makarychev, Y., Manurangsi, P.: An Improved Integrality Gap for the Călinescu–
Karloff–Rabani Relaxation for Multiway Cut, pp. 39–50. Integer Programming and Combinatorial
Optimization, IPCO, Atlanta (2017)

3. Bansal, N., Feige, U., Krauthgamer, R., Makarychev, K., Nagarajan, V., Naor, J., Schwartz, R.: Min–
max graph partitioning and small set expansion. SIAM J. Comput. 43(2), 872–904 (2014)

4. Bérczi, K., Chandrasekaran, K., Király, T., Madan, V.: Improving the integrality gap for multiway cut.
Math. Program. 183, 171–193 (2020)

5. Buchbinder, N., Naor, J., Schwartz, R.: Simplex partitioning via exponential clocks and the multiway
cut problem. In: Proceedings of the Forty-Fifth Annual ACM Symposium on Theory of Computing,
STOC, pp. 535–544 (2013)

123

Algorithmica (2022) 84:2667–2701 2701

6. Buchbinder,N., Schwartz, R.,Weizman,B.: Simplex transformations and themultiway cut problem. In:
Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA,
pp. 2400–2410 (2017)

7. Călinescu, G., Karloff, H., Rabani, Y.: An improved approximation algorithm for multiway cut. J.
Comput. Syst. Sci. 60(3), 564–574 (2000)

8. Chandrasekaran, K., Chekuri, C.: Min–max partitioning of hypergraphs and symmetric submodular
functions. In: Proceedings of the Thirty-Second Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA, pp. 1026–1038 (2021)

9. Charikar, M., Gupta, N., Schwartz, R.: Local Guarantees in Graph Cuts and Clustering, pp. 136–147.
Integer Programming and Combinatorial Optimization, IPCO, Atlanta (2017)

10. Chekuri, C., Ene, A.: Submodular cost allocation problem and applications. In: International Collo-
quium on Automata, Languages and Programming, ICALP, pp. 354–366 (2011)

11. Cheung, K., Cunningham, W., Tang, L.: Optimal 3-terminal cuts and linear programming. Math.
Program. 106(1), 1–23 (2006)

12. Chvátal, V.: Recognizing decomposable graphs. J. Graph Theory 8, 51–53 (1984)
13. Dahlhaus, E., Johnson, D., Papadimitriou, C., Seymour, P., Yannakakis, M.: The complexity of multi-

terminal cuts. SIAM J. Comput. 23(4), 864–894 (1994)
14. Garey,M.R., Johnson, D.S.: Computers and Intractability: AGuide to the Theory of NP-Completeness.

Series of Books in the Mathematical Sciences, W.H. Freeman, San Francisco (1979)
15. Kalhan, S., Makarychev, K., Zhou, T.: Correlation clustering with local objectives. Adv. Neural Inf.

Process. Syst. 32, 9346–9355 (2019)
16. Karger, D., Klein, P., Stein, C., Thorup,M.,Young,N.: Rounding algorithms for a geometric embedding

of minimum multiway cut. Math. Oper. Res. 29(3), 436–461 (2004)
17. Manokaran, R., Naor, J., Raghavendra, P., Schwartz, R.: SDP gaps and UGC hardness for multiway

cut, 0-extension, and metric labeling. In: Proceedings of the Fortieth Annual ACM Symposium on
Theory of Computing, STOC, pp. 11–20 (2008)

18. Marx, D.: Parameterized graph separation problems. Theor. Comput. Sci. 351(3), 394–406 (2006)
19. Puleo, G., Milenkovic, O.: Correlation clustering and biclustering with locally bounded errors. IEEE

Trans. Inf. Theory 64, 4105–4119 (2018)
20. Raghavendra, P., Steurer, D., Tulsiani, M.: Reductions between expansion problems. In: IEEE Con-

ference on Computational Complexity, CCC, pp. 64–73 (2012)
21. Sharma, A., Vondrák, J.:Multiway cut, pairwise realizable distributions, and descending thresholds. In:

Proceedings of the Forty-Sixth Annual ACM Symposium on Theory of Computing, STOC, pp. 724–
733 (2014)

22. Svitkina, Z., Tardos, É.: Min–max multiway cut. In: Approximation, Randomization, and Combinato-
rial Optimization. Algorithms and Techniques, APPROX, pp. 207–218 (2004)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	ellp-Norm Multiway Cut
	Abstract
	1 Introduction
	1.1 Our Results
	1.2 Outline of Techniques
	1.2.1 Hardness Results
	1.2.2 Approximation Algorithm

	1.3 Related Work
	1.3.1 Organization

	2 Preliminaries
	3 Approximation Algorithm
	3.1 Cover Step
	3.2 Uncross Step
	3.3 Aggregation Step
	3.4 Proof of Theorem 1.2

	4 NP-Hardness
	4.1 NP-Hardness for Constant Number of Terminals
	4.2 NP-Hardness in Planar Graphs

	5 Convex Program and Integrality Gap
	6 Inapproximability
	6.1 A Trivial O(k1-1/p)-Approximation via Isolating Cuts

	7 Conclusion
	Acknowledgements
	References

