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ABSTRACT

Einstein beams are coherent optical beams generated by the conditions of gravitational lensing. In the ray
picture, Einstein beams are formed by the intersection of light rays deflected by a lensing mass, similar to non-
diffracting Bessel beams, but with the difference that adjacent rays diverge slightly. When accounting for the
wave properties of light, they form beam-like diffraction patterns that preserve their shape but expand as the light
propagates. The addition of a topological charge to the light, leads to more complex patterns carrying orbital
angular momentum. For symmetric lensing conditions, Einstein beams carry modes described by confluent
hypergeometric functions, which can be approximated by Bessel functions. A theoretical analysis of this is
presented here. In astrophysical observations, many of these features can only be inferred because conditions
of coherence and alignment make them difficult to observe. Studies of Einstein beams in the laboratory can be
used to inform astrophysical observations and discover new non-astrophysical laboratory applications.
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1. INTRODUCTION

Light lensed by gravity recombines producing a diffraction pattern. This situation has been investigated since
the early days of gravitational lensing.1,2 Interest in this phenomenon has been thwarted by many challenges in
astrophysical lensing observations, such as lack of alignment of the object, lensing mass and Earth; the spatial
extent of the source; and fringe averaging over the telescope aperture.3 Recently we have been able to reproduce
all the observable aspects of gravitational lensing in the laboratory.4 Reproducing lensing in the laboratory was
accomplished by deflection of a coherent laser beam with a spatial phase modulator (SLM). The laboratory setup
can avoid the challenges of astrophysical observations, coherence, alignment and imaging due to the control that
is afforded by laboratory tools. Thus, we were able to observe the diffraction effects of lensing predicted by
previous works.

In addition, it has been predicted and measured that lensing from a rotating (Kerr) black hole imparts orbital
angular momentum (OAM) to the lensed light.5,6 This effect has not been included in previous treatments of
diffractive lensing effects. In this work we present a theoretical analysis of the diffractive beam bearing OAM.

In Sec. 2 we present the analytical derivation of the Einstein-beam modes bearing OAM, and in Sec. 3 we
present images and graphs analyzing the predictions of the theory. Concluding remarks are given in Sec. 4

2. MATHEMATICAL MODEL

We want to find a mathematical model that describes how the optical waves evolve as they propagate in space
due to gravitational lensing. In strong lensing the distance between objects is much larger than the range over
which the light is deflected. For example, for far-away objects at distances of the order of billions of light years,
the light is deflected over a distance of the order of thousand of light years.7 Because of this, we can approximate
the deflection to occur instantaneously on a plane. In the same sense, given that observations are carried out
very far away from the source and lensing object, we can use the Fresnel approximation8 in the diffraction of
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Figure 1. (a) Geometry of the gravitational lensing situation; with the left side not to scale, but representing a far away
point source whose rays are nearly parallel by the time they reach the lens plane. (b) The phase phase that is encoded
onto the SLM for ` = 0 (left) and ` = 3 (right), with the gray level representing the phase modulo 2π.

waves. Figure 1(a) shows a schematic of the system to model. The lens confined to a plane deflects the light
in the way shown by non-parallel rays and corresponding wavefronts. In polar coordinates, given an initial field
U0(r, θ) at the lens plane, after some distance z (at the observation plane) the field will be

U(ρ, ϕ) =
eikz

iλz
ei

k
2z ρ

2

∫ ∞
0
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rU0(r, θ)ei
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where λ is the wavelength, k = 2π/λ the wavenumber and (r, θ) and (ρ, ϕ) the coordinates at the lens and
observation planes, respectively. Crucially, z must be strictly greater than zero so the conditions for the Fresnel
approximation are fulfilled.

Let’s now focus on the lens plane. Light will be deflected depending on the impact parameter r (the radial
coordinate) at an angle7

α =
2rS
r
, (2)

where rS = 2GM/c2 is the Schwarzchild radius, with G the gravitational constant, M the mass of the deflecting
object and c the speed of light. This deflection of the light can be interpreted as phase shifts imparted to the
field at the lens plane following9

φ = −2krS ln

(
r

r0

)
, (3)

where r0 is a reference value where φ = 0. A generalization of this equation is to include the possibility of a
azimuthal phase variation of 2π` around the origin, and where ` is an integer known as the topological charge.
This type of situation can occur when the lensing object is rotating. In this case, the phase change at the lens
plane is

φ = −2krS ln

(
r

r0

)
− `θ . (4)

Figure 1b shows examples of the phase shift introduced by two gravitational lenses, one with no angular mo-
mentum (` = 0) to the left and another with (` = 3). The effect of ` on the phase in clearly seen as the pattern
changes from concentric circles to logarithmic spirals.

For phase shifts of the form of Eq. 4 the field just after the lens plane, is given by

U0 = eiφ = e−i`θe
−i2krS ln

(
r
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)
, (5)

where we have assumed a constant unitary field impinging on the lens plane (i.e., a plane wave). Using the
natural logarithm properties this equation can be rewritten as,

U0 = ri2krS0 r−i2krSe−i`θ , (6)

which is the optical field we want to propagate. Following Eq. 1, the field at a distance z is thus
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The problem then reduces to solving this integral. We first rearrange the two integrals as
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where
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Making the change of variable β = θ − ϕ− π
2 and defining s = kρr

z , Eq. 10 becomes
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whose solution is10
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where J`(·) is the Bessel function of the first kind of order `. The propagated field (Eq.8) is therefore
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which we solved in two different ways, as we describe in detail in the following subsections.

2.1 The exact solution
In this section we find the propagated field Eq. 14 by solving the integral exactly. For doing so, we define the
parameters

µ = 1− i2krS , γ = −i k
2z
, b =
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so that the integral is rewritten as
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whose solution is10
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where Γ(·) and 1F1(a; b; c) represent the Gamma and confluent hypergeometric functions, respectively. In terms
of the original parameters the previous equation becomes
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The propagated field is thus
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The final field given by Eq. 19 has the azimuthal phase in the term exp[−i`ϕ], and thus carry OAM. The term
ρ` forces the center of the pattern to be dark, consistent with containing a phase singularity: a phase vortex of
order `. The confluent hypergeometric function is an oscillating function with an amplitude decreasing with ρ.

The corresponding intensity profile is proportional to
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∣∣∣∣ρ`z2 1F1
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which describes the energy distribution when the field propagates.

2.2 The asymptotic solution
The integral in Eq. 14 is of the form of a generalized Fourier integral

I =
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where a, b, x, f(r) and g(r) must be real, and that can be solved using the method of the Stationary phase11–13
when x→∞. In our case, k plays the role of x,
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and the solution of I is called the asymptotic approximation. In order to find the latter, we first determine the
stationary points, this is, the points r0 for which the phase g(r) varies slowly. We do this by solving g′(r)|r0 = 0,
which in our particular case yields r20 = 2rSz, that since r can take only positive values reduces to r0 = +
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The integral then can be approximated by
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where to define certain constants we have made use of g′′(r)|r0 > 0. Following this equation we obtain
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therefore the propagated field in the asymptotic approximation becomes
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whose intensity is proportional to
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which describes the energy distribution in the asymptotic approximation when the field propagates.

This solution is expressed in terms of the more familiar Bessel function. This calls for a comparison with
non-diffracting Bessel beams, as presented next.

3. RESULTS AND DISCUSSION
In the next subsections we present comparisons of the calculation of the diffraction pattern carried by Einstein
beams done with the exact expression, in terms of confluent hypergeometric functions, and the asymptotic
expression, in terms of Bessel functions. We do several comparisons for different lensing masses, expressed in
terms of the Schwarzchild radius, as a function of the propagation direction, and as a function of the wavelength
of the light. We also show our results for different values of the topological charge for beams bearing OAM.



3.1 Schwarzchild radius dependence
Figure 2 is a comparison of images of the Einstein modes for the two types of solutions: the exact one (Eq. 20),
in terms of confluent hypergeometric functions, and the approximate asymptotic in terms of Bessel functions
(Eq. 25). There are four images for each solution, with the exact solution shown in row (a) and the approximate
shown in row (b). They are shown for different values of the Schwarzchild radius while keeping the wavelength
constant. Row (c) shows a cut of the intensity across a line that passes through the center of the mode. We
can see that there is a small difference in the height of the central peak, with the asymptotic solution always
slightly higher. The asymptotic regime sets in when rS � 1/k, where k is the wavenumber of the light. In our
case k = 107, so the asymptotic regime is not quite set in with rS ∼ 10−6. Yet, the Bessel function is an easy
one to use when describing the beam.

(a)

(b)

(c)

Figure 2. Einstein-beam images calculated via the exact solution (a), asymptotic solution (b) for different values of the
Schwarzchild radius of the lensing mass in µm. (c) Comparison of cuts of the intensity of the patterns through their
center.

The figure also shows what may not be so intuitive, that as the mass of the lensing object increases, and
consequently the Schwarzchild radius, the pattern shrinks. This can be understood simply in terms of the ray
picture, shown in Fig. 5(a): because the deflection angle increases with rS (cf. Eq. 2), the deflection angle
increases with the lensing mass, compressing the pattern.

3.2 Propagation distance dependence
In Fig. 3 we show the dependence of the pattern with the propagation distance z. This is shown in different
ways in parts (a) and (b) of the figure. As z increases, the pattern increases in size. This is in contrast to
non-diffracting Bessel beams, where the size of the pattern remains constant. However, the ideal Bessel beams
are infinite because they are produced by infinite plane waves. Laboratory-based Bessel beams occur over a finite
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Figure 3. The divergence of the Einstein beam as a function of z is shown in different ways: images (a), transverse intensity
profiles (b), and radius of the first minimum (c).

span over the propagation distance due to the finite size of the beam.14 In contrast, the Einstein beam continues
for much longer owing to the deflection angle decreasing with impact-parameter value, as shown in Fig. 5(a). Its
expansion depends on

√
z. We can see this by considering the argument of the Bessel beam in the asymptotic

solution corresponding to the first zero, where

ρ1 =
2.405λ

2π

√
z

2rS
, (27)

and shown in Fig. 3(c). The angular divergence of the beam decreases as z increases, in contrast to Gaussian
beams where the divergence angle reaches a constant value.

3.3 Wavelength dependence
The size of the Einstein beam increases linearly with wavelength, as seen in Eq. 27 by means of the radius of
the first zero. In Fig. 4 we show the wavelength dependence in various ways. In 4(a) we show the pattern for
3 different wavelengths: blue (442 nm), green (532 nm) and red (633 nm). We show a transverse cut of the
intensity for each wavelength in (c), and a graph of the radius of the first zero as a function of the wavelength
in (d).

In the color version of Fig. 4(b) we see the superposition of the patterns with the three wavelengths, showing
the dispersion caused by the diffraction of the light.

3.4 Orbital angular momentum dependence
One of the main objectives of this work is to study the effect of orbital angular momentum on gravitational
diffraction. In Figs. 5(a) and (b) we show the effect of adding orbital angular momentum to the lensed light. In
the asymptotic limit this pattern is well explained by a Bessel function of order equal to the topological charge
`. For ` 6= 0 the center of the pattern is a minimum, with the radius of the rings increasing as ` increases. The
figure shows the monochrome and color versions of the patterns.

The composite patterns show that the patterns with different topological charge disperse the light in different
degrees. The patterns use the 3 wavelengths used used in Fig. 4. While the three wavelengths appear to overlap
for low values of `, they clearly show significant dispersion for higher values of `.
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Figure 4. The variation of the Einstein beam pattern with wavelength is shown by the pattern at 3 different wavelengths
(a): 442 nm, 532 nm and 633 nm. A superposition of these patterns in (b), and a cut of the intensity as a function of the
transverse dimension (c). The radius of the first minimum as a function of the wavelength is shown in (d).

(a)

(b)

Figure 5. Einstein-beam patterns for different values of the topological charge ` for a fixed wavelength (a). The images in
(b) show the composite images using 3 different wavelengths: 442 nm, 532 nm and 633 nm.

4. CONCLUSIONS
In summary, we present an analysis of the effect of OAM on the diffraction patterns of gravitational lensing. This
type of optical angular momentum is introduced in the laboratory via an azimuthal phase encoded onto the SLM.
We present the theoretical analysis of the diffracted beam by propagating the Fresnel integral, which incorporates
the azimuthal phase. The resulting Einstein beams indeed show the characteristics of other types of laboratory
optical beams that carry OAM, featuring a central dark region containing an optical vortex corresponding to the
topological charge of the OAM. In the asymptotic solution, the pattern is described by a Bessel beam of order
equal to the topological charge. This is very similar to non-diffracting Bessel beams. The remarkable difference
between Einstein beams and Bessel beams is that while Bessel beams have a finite extent due to the finite extent



of the beam diameter, Einstein beams continue to expand as the light propagates. The expansion rate is smaller
than the expansion of Gaussian beams, making Einstein beams suitable for other non-astrophysical applications,
such as imaging and communications.
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