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Abstract

As deep convolutional neural networks (DNNs) are

widely used in various fields of computer vision, leveraging

the overfitting ability of the DNN to achieve video resolu-

tion upscaling has become a new trend in the modern video

delivery system. By dividing videos into chunks and over-

fitting each chunk with a super-resolution model, the server

encodes videos before transmitting them to the clients, thus

achieving better video quality and transmission efficiency.

However, a large number of chunks are expected to ensure

good overfitting quality, which substantially increases the

storage and consumes more bandwidth resources for data

transmission. On the other hand, decreasing the number of

chunks through training optimization techniques usually re-

quires high model capacity, which significantly slows down

execution speed. To reconcile such, we propose a novel

method for high-quality and efficient video resolution up-

scaling tasks, which leverages the spatial-temporal infor-

mation to accurately divide video into chunks, thus keep-

ing the number of chunks as well as the model size to min-

imum. Additionally, we advance our method into a sin-

gle overfitting model by a data-aware joint training tech-

nique, which further reduces the storage requirement with

negligible quality drop. We deploy our models on an off-

the-shelf mobile phone, and experimental results show that

our method achieves real-time video super-resolution with

high video quality. Compared with the state-of-the-art, our

method achieves 28 fps streaming speed with 41.6 PSNR,

which is 14× faster and 2.29 dB better in the live video

resolution upscaling tasks. Code available in https://

github.com/coulsonlee/STDO-CVPR2023.git.

1. Introduction

Being praised by its high image quality performance

and wide application scenarios, deep learning-based super-

resolution (SR) becomes the core enabler of many incred-

† Equal Contribution.
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Figure 1. Patch PSNR heatmap of two frames in a 15s video

when super-resolved by a general WDSR model. A clear bound-

ary shows that PSNR is strongly related to video content.

ible, cutting-edge applications in the field of image/video

reparation [10, 11, 39, 40], surveillance system enhance-

ment [9], medical image processing [35], and high-quality

video live streaming [20]. Distinct from the traditional

methods that adopt classic interpolation algorithms [15, 45]

to improve the image/video quality, the deep learning-based

approaches [10, 11, 21, 24, 28, 40, 44, 47, 57, 60] exploit

the advantages of learning a mapping function from low-

resolution (LR) to high-resolution (HR) using external data,

thus achieving better performance due to better generaliza-

tion ability when meeting new data.

Such benefits have driven numerous interests in design-

ing new methods [5, 17, 50] to deliver high-quality video

stream to users in the real-time fashion, especially in the

context of massive online video and live streaming avail-

able. Among this huge family, an emerging representa-

tive [13,16,31,38] studies the prospect of utilizing SR model

to upscale the resolution of the LR video in lieu of transmit-

ting the HR video directly, which in many cases, consumes

tremendous bandwidth between servers and clients [19].

One practical method is to deploy a pretrained SR model

on the devices of the end users [25, 54], and perform res-

olution upscaling for the transmitted LR videos, thus ob-

taining HR videos without causing bandwidth congestion.

However, the deployed SR model that is trained with lim-

ited data usually suffers from limited generalization abil-
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Figure 2. Overview of the proposed STDO method. Each video frame is sliced into patches, and all patches across time dimension are

divided and grouped into chunks. Here we set the number of chunks to 2 for clear illustration. Then each chunk is overfitted by independent

SR models, and delivered to end-user for video super-resolution.

ity, and may not achieve good performance at the presence

of new data distribution [55]. To overcome this limitation,

new approaches [4, 8, 20, 30, 51, 53, 55] exploit the overfit-

ting property of DNN by training an SR model for each

video chunk (i.e., a fragment of the video), and deliver-

ing the video alongside the corresponding SR models to

the clients. This trade-off between model expressive power

and the storage efficiency significantly improves the quality

of the resolution upscaled videos. However, to obtain bet-

ter overfitting quality, more video segments are expected,

which notably increase the data volume as well as system

overhead when processing the LR videos [55]. While ad-

vanced training techniques are proposed to reduce the num-

ber of SR models [30], it still requires overparameterized

SR backbones (e.g., EDSR [28]) and handcrafted modules

to ensure sufficient model capacity for the learning tasks,

which degrades the execution speed at user-end when the

device is resource-constraint.

In this work, we present a novel approach towards high-

quality and efficient video resolution upscaling via Spatial-

Temporal Data Overfitting, namely STDO, which for the

first time, utilizes the spatial-temporal information to accu-

rately divide video into chunks. Inspired by the work pro-

posed in [1, 14, 23, 46, 58] that images may have different

levels of intra- and inter-image (i.e., within one image or

between different images) information density due to var-

ied texture complexity, we argue that the unbalanced infor-

mation density within or between frames of the video uni-

versally exists, and should be properly managed for data

overfitting. Our preliminary experiment in Figure 1 shows

that the PSNR values at different locations in a video frame

forms certain pattern regarding the video content, and ex-

hibits different patterns along the timeline. Specifically, at

the server end, each frame of the video is evenly divided

into patches, and then we split all the patches into multi-

ple chunks by PSNR regarding all frames. Independent SR

models will be used to overfit the video chunks, and then de-

livered to the clients. Figure 2 demonstrates the overview of

our proposed method. By using spatial-temporal informa-

tion for data overfitting, we reduce the number of chunks

as well as the overfitting models since they are bounded

by the nature of the content, which means our method can

keep a minimum number of chunks regardless the dura-

tion of videos. In addition, since each chunk has similar

data patches, we can actually use smaller SR model without

handcrafted modules for the overfitting task, which reduces

the computation burden for devices of the end-user. Our

experimental results demonstrate that our method achieves

real-time video resolution upscaling from 270p to 1080p on

an off-the-shelf mobile phone with high PSNR.

Note that STDO encodes different video chunks with

independent SR models, we further improve it by a Joint

training technique (JSTDO) that results in one single SR

model for all chunks, which further reduces the storage

requirement. We design a novel data-aware joint training

technique, which trains a single SR model with more data

from higher information density chunks and less data from

their counterparts. The underlying rationale is consistent

with the discovery in [46, 58], that more informative data

contributes majorly to the model training. We summarize
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our contributions as follows:

• We discover the unbalanced information density within

video frames, and it universally exists and constantly

changes along the video timeline.

• By leveraging the unbalanced information density in

the video, we propose a spatial-temporal data overfit-

ting method STDO for video resolution upscaling, which

achieves outperforming video quality as well as real-time

execution speed.

• We propose an advanced data-aware joint training tech-

nique which takes different chunk information density

into consideration, and reduces the number of SR mod-

els to a single model with negligible quality degradation.

• We deploy our models on an off-the-shelf mobile phone,

and achieve real-time super-resolution performance.

2. Related Works

2.1. Single Image Super Resolution (SISR)

For SISR tasks, SRCNN [10] is the pioneer of applying

DNN to image super resolution. Then, followed by FSR-

CNN [11] and ESPCN [40], both of them make progress

in efficiency and performance. After this, with the de-

velopment of deep neural networks, more and more net-

work backbones are used for SISR tasks. For example,

VDSR [21] uses the VGG [41] network as the backbone

and adds residual learning to further improve the effective-

ness. Similarly, SRResNet [24] proposed a SR network

using ResNet [18] as a backbone. EDSR [28] removes

the batch norm in residual blocks by finding that the use

of batch norm will ignore absolute differences between im-

age pixels (or features). WDSR [57] finds that ReLU will

impede information transfer, so the growth of the the num-

ber of filters before ReLU increases the width of the feature

map. With the emergence of channel attention mechanisms

networks represented by SENet [36], various applications

of attention mechanisms poured into the area of image su-

per resolution [7, 34, 60, 61]. After witnessing the excellent

performance of transformer [12] in the field of computer vi-

sion, more and more researchers apply various vision trans-

former models into image super resolution tasks [3, 27, 32].

2.2. Video Super Resolution (VSR)

The VSR methods mainly learn from SISR frame-

work [29]. Some aforementioned works like EDSR and

WDSR are all present results on VSR. Some of the cur-

rent VSR works perform alignment to estimate the motions

between images by computing optical flow by DNNs [2,

22, 39, 42]. The Deformable convolution (DConv) [6] was

first used to deal with geometric transformation in vision

tasks because the sampling operation of CNN is fixed.

TDAN [43] applies DConv to align the input frames at

the feature level, which avoids the two-stage process used

in previous optical flow based methods. EDVR [49] uses

their proposed Pyramid, Cascading and Deformable convo-

lutions (PCD) alignment module and the temporal-spatial

attention (TSA) fusion module to further improve the ro-

bustness of alignment and take account of the visual infor-

mativeness of each frame. Other works like DNLN [48] and

D3Dnet [56] also apply Dconv in their model to achieve a

better alignment performance.

2.3. Content-Aware DNN

It is impractical to develop a DNN model to work well

on all the video from Internet. NAS [55] was the first pro-

posed video delivery framework to consider using DNN

models to overfit each video chunk to guarantee reliability

and performance. Other livestreaming and video streaming

works [4, 8, 20, 51, 53] leverage overfitting property to en-

sure excellent performance at the client end. [20] proposes a

live video ingest framework, which adds an online learning

module to the original NAS [55] framework to further en-

sure quality. NEMO [53] selects key frames to apply super-

resolution. This greatly reduces the amount of computation

on the client sides. CaFM [30] splits a long video into dif-

ferent chunks by time and design a handcrafted layer along

with a joint training technique to reduce the number of SR

models and improve performance. EMT [26] proposes to

leverage meta-tuning and challenge patches sampling tech-

nique to further reduce model size and computation cost.

SRVC [19] encodes video into content and time-varying

model streams. Our work differentiates from these works

by taking spatial information as well as temporal informa-

tion into account, which exhibits better training effects for

the overfitting tasks.

3. Proposed Method

3.1. Motivation

To tackle the limited generalization ability caused by

using only one general SR model to super-resolve various

videos, previous works [20, 30, 55] split the video by time

and train separate SR models to overfit each of the video

chunks. With more fine-grained video chunks over time,

the better overfitting quality can be obtained, which makes

these approaches essentially a trade-off between model ex-

pressive power and the storage efficiency. For a specific

video, more chunks will surely improve the overfitting qual-

ity, but it also inevitably increases the data volume as well

as system overhead when performing SR inference.

In the aforementioned methods, images are stacked ac-

cording to the timeline to form the video. However, patches

have spatial location information [37], and these patches are

fed into the neural network indiscriminately for training,
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which may cause redundancy that contradicts with over-

fitting property. As illustrated in Figure 1, when using a

general SR model to super-resolve an LR video, the values

of PSNR at different patch locations form a clear bound-

ary, and are strongly related to the content of the current

video frame (i.e., spatial information). Meanwhile, diverse

boundary patterns can be seen in different frames (i.e., tem-

poral information). This observation motivates us to use the

spatial-temporal information to accurately divide video into

chunks, which exhibits a different design space to overfit

video data. With the different levels of information density

within each patches, the key insight is to cluster patches that

has similar texture complexity across all frames, and use

one SR model to overfit each patch group. In this way, the

number of video chunks and their associated SR models are

effectively reduced, which improves the encoding efficiency

regardless the duration of videos. Meanwhile, a compact

SR model can be adopted without causing quality degrada-

tion because each SR model only overfits one specific video

content with similar texture complexity. Additionally, when

the spatial-temporal data is properly scheduled, our method

can be extended to a joint training manner which generates

a single SR model for the entire video.

3.2. Spatial-Temporal Data Overfitting

In this section, we introduce a novel spatial-temporal

data overfitting approach, STDO, which efficiently encodes

HR videos into LR videos and their corresponding SR mod-

els, and achieves outperforming super-resolution quality &

speed at user end.

Suppose the video time length is T . General method to

train an SR model would firstly divide the video into frames,

and slice each frame into multiple non-overlapping image

patches. All patches across all dimensions such as their

locations in the frame or time compose a complete video.

For a given video with the dimension W ×H , and the de-

sired patch size w × h, the patch is denoted as Pi,j,t, where

i ∈ [0, I), j ∈ [0, J), and t ∈ [0, T ). Note that I = ⌊W
w
⌋

and J = ⌊H
h
⌋ are integer numbers, then the training set for

this specific video is D = {Pn}
N
0

where N = I × J × T is

the total number of patches.

Note that D contains all patches across all dimensions.

We use a pretrained SR model f0(·) to super-resolve all

of the LR patches and compute their PSNRs with the HR

patches. As illustrated in Figure 1, we find that the dis-

tribution of the PSNR is usually not uniform, and shows a

clear boundary regarding the content of the video. We di-

vide the training set D into multiple chunks by grouping

patches with similar PSNRs, and form a set of chunks as

Ω = {D̂0, D̂1, . . . , D̂k}, in which

D̂k = {Pn|Pn ∈ D, PSNR(f0(Pn)) ∈ [λk1, λk2)}, (1)

where λ is the threshold. We set the first chunk D̂0 to

Table 1. Video super-resolution results comparison of vanilla

STDO training and using only one model from STDO trained with

the most informative chunk D̂0 and least informative chunk D̂k,

respectively. We also include the video super-resolution results

with one model trained with all data [54].

vlog-15s vlog-45s

Model Method ×2 ×3 ×4 ×2 ×3 ×4

WDSR

awDNN [54] 49.24 45.30 43.33 48.02 44.16 42.19

STDO 50.58 46.43 44.62 49.76 45.95 43.99

STDO|
D̂0

50.42 45.99 44.18 49.51 45.63 43.75

STDO|
D̂k

46.89 42.63 40.25 44.89 41.07 38.87

be group of the patches with lowest PSNRs, and we list

all chunks in ascending order, which means D̂k to be the

patches with the highest PSNRs. In this way, we sepa-

rate training data by their spatial-temporal information in

a one-shot manner, which is usually done in seconds and

can be considered negligible compared to the training pro-

cess. In this paper, we empirically divide D evenly. Finally,

we train an SR model fsrk(wk; D̂k) to overfit each video

chunk D̂k. Experimental results indicate better performance

on both video quality and execution speed. Our empirical

analysis is that by accurately identifying and grouping the

data with similar information density (i.e, texture complex-

ity) into chunks, each SR model becomes easier to ªmem-

orizeº similar data in an overfitting task, and subsequently

demands smaller SR models that can be executed in a real-

time fashion.

3.3. Data-Aware Joint Training

In Section 3.2, our method significantly reduces the

number of video chunks and overfitting SR models by effec-

tively utilizing spatial-temporal information of each patch

in the video. In this section, we extend our method by gen-

erating a single SR model for the entire video, which fur-

ther reduces the storage requirement with negligible quality

drop. From the set of chunks Ω ∈ R
k and all SR mod-

els, we demonstrate PSNR in Table 1 by using only one SR

model to super-resolve the entire video. Somehow surpris-

ingly, we find out that using the model trained with D̂0 (i.e.,

the most informative chunk) experiences a moderate qual-

ity drop, and achieves similar or higher PSNR compared to

the model trained with all patches. Meanwhile, the model

trained with D̂k has a severe quality degradation. We argue

that low PSNR patches usually contain rich features, and

contribute more to the model learning, which improves the

generalization ability to the less informative data [46, 58].

Motivated by the above observation, we propose a joint

training technique, which carefully schedules the spatial-

temporal data participated in training to train a single SR

model that overfits the entire video. Concretely, we keep

all patches for D̂0, and remove the entire D̂k. For the rest

of the chunks, we randomly sample a portion of the patches

from each chunk, while gradually decreasing the proportion
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Table 2. Comparison results of STDO with different data overfitting methods on different SR backbones.

Data game-15s inter-15s vlog-15s
Model Scale ×2 ×3 ×4 ×2 ×3 ×4 ×2 ×3 ×4

ESPCN

awDNN [54] 37.94 32.85 29.97 40.43 35.36 29.91 46.41 42.90 39.65
NAS [55] 37.58 32.71 30.59 40.62 35.42 30.43 46.53 43.01 39.98
CaFM [30] 38.07 33.14 30.96 40.71 35.54 30.47 47.02 43.20 40.16
STDO 38.61 33.57 31.30 42.65 35.63 30.63 47.11 43.25 40.73

SRCNN

awDNN [54] 36.08 31.94 29.90 40.46 33.95 28.78 46.69 42.41 39.71
NAS [55] 36.27 32.08 29.94 40.70 34.01 28.84 46.78 42.53 39.76
CaFM [30] 36.63 32.21 29.98 40.76 34.08 29.93 46.98 42.62 39.81
STDO 37.59 32.67 30.64 42.28 34.26 30.05 47.06 42.78 39.90

VDSR

awDNN [54] 41.27 35.03 32.16 44.16 35.99 30.65 48.18 43.03 41.07
NAS [55] 42.53 35.97 33.86 44.71 36.57 31.05 48.49 43.41 41.33
CaFM [30] 43.02 36.17 33.98 44.85 36.46 31.08 48.61 43.62 41.49
STDO 43.56 36.71 35.02 45.16 36.81 33.43 48.75 43.82 41.71

EDSR

awDNN [54] 42.24 35.88 33.44 43.06 37.89 34.94 48.87 44.51 42.58
NAS [55] 42.82 36.42 34.00 45.06 38.38 35.47 49.10 44.80 42.83
CaFM [30] 43.13 37.04 34.47 45.35 38.66 35.70 49.30 45.03 43.12
STDO 44.93 37.80 35.47 45.91 39.26 36.76 50.24 45.68 43.46

WDSR

awDNN [54] 43.36 37.12 34.62 44.83 39.05 35.23 49.24 45.30 43.33
NAS [55] 44.17 38.23 36.02 45.43 39.71 36.54 49.98 45.63 43.51
CaFM [30] 44.23 38.55 36.30 45.71 39.92 36.87 50.12 45.87 43.79
STDO 45.75 40.17 38.62 46.34 41.13 38.76 50.58 46.43 44.62

game-45s inter-45s vlog-45s
×2 ×3 ×4 ×2 ×3 ×4 ×2 ×3 ×4

ESPCN

awDNN [54] 35.42 30.63 28.65 38.64 31.97 28.32 45.71 41.40 39.20
NAS [55] 35.55 30.67 28.74 38.81 32.14 28.61 45.81 41.52 39.29
CaFM [30] 36.09 31.06 29.05 38.88 32.22 28.75 46.19 41.72 39.52
Ours 37.75 32.29 29.96 41.20 32.48 29.09 46.33 42.26 40.26

SRCNN

awDNN [54] 35.05 30.50 28.59 38.66 31.78 28.25 45.87 41.58 39.29
NAS [55] 35.15 30.55 28.61 38.79 31.93 28.38 45.95 41.66 39.36
CaFM [30] 35.49 30.63 28.66 38.88 32.02 28.48 46.18 41.85 39.52
STDO 36.74 31.46 29.37 41.15 32.17 28.65 46.33 41.81 39.69

VDSR

awDNN [54] 40.29 34.53 31.28 41.99 33.80 30.34 47.61 42.92 40.94
NAS [55] 41.37 34.92 32.42 42.40 34.53 31.10 47.88 43.33 41.23
CaFM [30] 41.92 35.56 33.16 42.86 34.49 30.95 48.00 43.50 41.38
STDO 42.65 36.23 33.76 43.36 35.64 31.77 48.17 43.67 41.49

EDSR

awDNN [54] 42.11 35.75 33.33 42.73 34.49 31.34 47.98 43.58 41.53
NAS [55] 43.22 36.72 34.32 43.31 35.80 32.67 48.48 44.12 42.12
CaFM [30] 43.32 37.19 34.61 43.37 35.62 32.35 48.45 44.11 42.16
STDO 45.65 39.93 37.24 44.52 38.28 35.51 49.84 45.47 43.07

WDSR

awDNN [54] 42.61 36.17 33.85 42.94 34.71 31.81 48.02 44.16 42.19
NAS [55] 43.72 37.25 34.93 43.41 36.05 33.11 48.52 44.75 42.80
CaFM [30] 43.97 37.64 35.12 43.52 36.03 32.97 48.51 44.72 42.87
STDO 45.71 40.33 37.76 44.54 38.72 36.03 49.76 45.95 43.99

of the data sampled. We train a single model by solving the

following optimization problem using the joint dataset

minimize
w

fjoint(w;Djoint)

subject to Djoint ∈ {D̂0, ρ1 ⊙ D̂1, . . . , ρk−1 ⊙ D̂k−1},∑k−1

i=0
∥ρi ⊙ D̂i∥ = µ,

(2)

where ⊙ is the sampling operation with pre-defined propor-

tion ρ, and µ is a hyper-parameter that control the size of

the joint dataset.

4. Experimental Results

In this section, we conduct extensive experiments to

prove the advantages of our proposed methods. To show the

effects of our methods, we apply our proposed STDO and

JSTDO to videos with different scenes and different time

lengths. The detailed information on video datasets and

implementations are shown in Section 4.1. In Section 4.2,

we compared our method with time-divided method using

different videos and different SR models, which show that

STDO achieves outperforming video super-resolution qual-

ity as well as using lowest computation budgets. In sec-

tion 4.3, we demonstrate the results of our single SR model

obtained by JSTDO and show that JSTDO effectively ex-

ploits heterogeneous information density among different

video chunks to achieve better training performance. In

Section 4.4, we deploy our model on an off-the-shelf mo-

bile phone to show our model can achieve real-time video

super-resolution. In Section 4.5, we show our ablation study

on key parameters used in STDO and JSTDO methods, such

as the different number of chunks, training data scheduling,
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Table 3. Computation cost for different backbones with VSD4K

video game-45s. We include the computation cost for the models

with different resolution upscaling factors.

Model Scale FLOPs CaFM [30] STDO

ESPCN

×2 0.14G 36.09 37.75

×3 0.15G 31.06 32.29

×4 0.16G 29.05 29.96

SRCNN

×2 0.64G 35.49 36.74

×3 1.45G 30.63 31.46

×4 2.58G 28.66 29.37

VDSR

×2 6.15G 41.92 42.65

×3 13.85G 35.56 36.23

×4 20.62G 33.16 33.76

EDSR

×2 3.16G 43.32 45.65

×3 3.60G 37.19 39.93

×4 4.57G 34.61 37.24

WDSR

×2 2.73G 43.97 45.71

×3 2.74G 37.64 40.33

×4 2.76G 35.12 37.76

and long video with multiple scene conversions.

4.1. Datasets and Implementation Details

In the previous video super-resolution works, most video

datasets [33, 52] for super-resolution only provide several

adjacent frames as a mini-video. Those mini-video sets are

not suitable for a network to overfit. Therefore, we adopt the

VSD4K collected in [30]. In this video dataset, there are

6 video categories including: vlog, game, interview, city,

sports, dance. Each of the category contains various video

lengths. We set the resolution for HR videos to 1080p, and

LR videos are generated by bicubic interpolation to match

different scaling factors.

We apply our approach to several popular SR mod-

els including ESPCN [40], SRCNN [10], VDSR [21],

EDSR [28], and WDSR [57]. During training, we use patch

sizes of 48×54 for scaling factor 2 and 4, and 60×64 for

scaling factor 3 to accommodate HR video size, and the

threshold value λ is set to split the patches evenly into

chunks. Regarding the hyperparameter configuration of

training the SR models, we follow the setting of [28,30,57].

We adopt Adam optimizer with β1 = 0.9, β2 = 0.009,

ϵ = 10−8 and we use L1 loss as loss function. For learning

rate, we set 10−3 for WDSR and 10−4 for other models with

decay at different training epochs. We conduct our experi-

ment on EDSR model with 16 resblocks and WDSR model

with 16 resblocks.

4.2. Compare with the State-of-the-Art Methods

In this section, we compare our method with the state-of-

the-art (SOTA) that either use general model overfitting or

Original frame STDO (ours)

JSTDO (ours) Time-divided

Figure 3. PSNR heatmaps of super-resolving an LR video with

different methods. STDO and JSTDO has similar value in the key

content zone (i.e., body), and outperform time-divided method.

time-divided model overfitting on different SR backbones.

Due to space limits, we sample three video categories from

VSD4K, and test on two different video time lengths as 15s

and 45s. Our results are shown in Table 2. We compare

with the state-of-the-art neural network-based SR video de-

livery methods, such as awDNN [54] where a video is over-

fitted by a model, NAS [55] that splits a video into multi-

ple chunks in advance and overfit each of the time-divided

chunk with independent SR model, and CaFM [30] that uses

time-divided video chunk and single SR model with hand-

crafted module to overfit videos. For our implementation

of STDO, we divide the spatial-temporal data into 2, 4, and

6 chunks respectively, and report the best results. We ad-

just batch size while training to keep the same computation

cost, and we show the comparison by computing the PSNR

of each method. It can be seen that our method can exceed

the SOTA works consistently on different backbones.

With STDO, each SR model is only overfitting one video

chunk that has similar information density, which makes it

suitable to use smaller and low capacity SR models that has

low computations. In Table 3, we demonstrate the com-

putation cost on each model. From the results, we notice

that with the relatively new model such as VDSR, EDSR,

and WDSR, when the computation drops below 3 GFLOPs,

time-divided method experiences significant quality degra-

dation, while STDO maintains its performance or even

achieves quality improvements. When using extremely

small networks such as ESPCN or SRCNN, time-divided

methods PSNR drops quickly, while STDO still achieves

0.7 ∼ 1.7 dB better performance.

4.3. Data-Aware Joint Training

In this part, we show the results of reducing the number

of SR models to a single model by data-aware joint train-

ing with the spatial-temporal data overfitting (JSTDO) in
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Figure 4. Super-resolution quality comparison with random video frame using STDO and JSTDO with baseline methods.

Table 4. Comparison between STDO and JSTDO regarding

PSNR and total number of model parameters with game-15s from

VSD4K. We compute the PSNR difference of the two methods.

Model Method #Chunks #Models #Param. PSNR

WDSR×2
STDO 4 4 4.8M 45.75

JSTDO 4 1 1.2M 45.46

∆PSNR: 0.29

WDSR×3
STDO 4 4 4.8M 40.17

JSTDO 4 1 1.2M 39.87

∆PSNR: 0.30

WDSR×4
STDO 4 4 4.8M 38.62

JSTDO 4 1 1.2M 38.14

∆PSNR: 0.48

Table 4. We conduct our experiment on the relatively lat-

est model WDSR [57] to chase a better recovering perfor-

mance. In our experiments, we use 4 chunks for WDSR im-

plementation, and compare the total number of parameters

and PSNR of STDO with those of JSTDO which only uses

one SR model with the same model architecture used by

Ours
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Figure 5. Execution speed and video quality comparison between

STDO and [30] [54] respectively using an Samsung mobile phone.

STDO. From the results, we can clearly see that JSTDO ef-

fectively reduces the overall model size from 4.8 MB to 1.2

MB, while the PSNR of JSTDO has only negligible degra-

dation compared with STDO. Please note that even with

some minor quality degradation, JSTDO still outperforms

baseline methods in both super-resolution quality and total

parameter counts.

We also plot the PSNR heatmaps when using STDO and

JSTDO for video super-resolution, and compare with the

traditional time-divided method. As showing in Figure 3,

we randomly select one frame in a vlog-15s video that is

super-resolved from 270p to 1080p (×4) by CaFM [30],

STDO, and JSTDO. The heatmaps clearly demonstrate that

our methods achieve better PSNR in the key content zone

in the frame. Meanwhile, another key observation can be

drawn: the JSTDO heatmap has similar patterns with the

one using STDO, which further proves that the joint training

technique using carefully scheduled spatial-temporal data

effectively captures the key features, while not losing the

expressive power towards the low information density data.

We also show the qualitative comparison in Figure 4.

4.4. Deployment on Mobile Devices

One of the many benefits by using STDO is that we can

use smaller (i.e., low model capacity & complexity) SR

models to perform data overfitting. The reason is that the

patches in each chunk are relatively similar, especially for

some short videos, which makes it easier for smaller models

to ªmemorizeº them. Subsequently, unlike CaFM [30], no

handcrafted modules are needed for both STDO and JSTDO

methods, which further reduces the compilation burden on

the end-user devices.

We deploy the video chunks alongside with the overfit-
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Figure 6. PSNR heatmap with different ratio of D̂0 in JSTDO. More informative data participates in joint training achieves better PSNR.

ting models of STDO on a Samsung Galaxy S21 with Snap-

dragon 888 to test execution performance. Each patch will

have a unique index to help assemble into frames. Our re-

sults are shown in Figure 5. We set the criteria for real-time

as latency less than 50 ms and FPS greater than 20 on the

mobile devices according to [59]. The result shows that our

method achieves 28 FPS when super-resolving videos from

270p to 1080p by WDSR, and it is significantly faster in

speed and better in quality than other models such as EDSR

or VDSR that are originally used in other baseline methods

[30, 53±55]. Please note that the capability of using small

scale SR models to accelerate execution speed is ensured

by the high super-resolution quality achieved by spatial-

temporal data overfitting method.

4.5. Ablation Study

▷ Different number of chunks in STDO. Previous ex-

periments have proved that STDO brings performance im-

provement when we take account of the spatial-temporal

information. In this ablation study, we vary the number

of chunks and evaluate their video super-resolution qual-

ity. We set the number of chunks with the range of 1 (i.e.,

single model overfitting) to 8, and we plot the PSNR trends

using ESPCN and WDSR in Figure 7a. We observe that ES-

PCN and WDSR demonstrate similar trends when the num-

ber of chunks increases, and better results can be obtained

when we divide video into ∼4 chunks, which consolidates

our claim that STDO uses fewer chunks compared to time-

divided methods.

▷ Data scheduling in joint training. In JSTDO, we vary

the sampling proportion by increasing patches from D̂0

while decreasing the proportion of patches in D̂k, and ad-

justing sampling proportion for other chunks accordingly to

maintain the same amount of training patches. The eval-

uation results are shown in Figure 7b, where we observe

that when more informative data participates in training, the

overall video super-resolution quality increases. Same pat-

terns can be seen in Figure 6, where the heatmaps show

relatively high PSNR in the key content zone when the SR

model is trained with more informative data.

▷ Long video with multiple scene conversions. We com-

bine the game-45s video and the vlog-45s video together

into a 90s long video which contains multiple scene conver-

1 2 3 4 5 6 7 8
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Figure 7. (a) PSNR of video game-15s on different number of

chunks, (b) Comparison of different data schedule in joint training.

sions. The STDO result of the long video trained on WDSR

is 39.92 dB with scaling factor 4, which is close to the av-

erage value of overfitting two videos (43.99 dB and 37.76

dB). Therefore, it can be proved that our design can still

maintain good performance for long videos where multiple

scene conversions exist.

5. Conclusion

In this paper, we introduce a novel spatial-temporal

data overfitting approach towards high-quality and efficient

video resolution upscaling tasks at the user end. We lever-

age the spatial-temporal information based on the content

of the video to accurately divide video into chunks, then

overfit each video chunk with an independent SR model or

use a novel joint training technique to produce a single SR

model that overfits all video chunks. We successfully keep

the number of chunks and the corresponding SR models to

a minimum, as well as obtaining high super-resolution qual-

ity with low capacity SR models. We deploy our method on

the mobile devices from the end-user and achieve real-time

video super-resolution performance.
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