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Abstract

Nonverbal communication, such as body language, fa-

cial expressions, and hand gestures, is crucial to human

communication as it conveys more information about emo-

tions and attitudes than spoken words. However, individu-

als who are blind or have low-vision (BLV) may not have

access to this method of communication, leading to asym-

metry in conversations. Developing systems to recognize

nonverbal communication cues (NVCs) for the BLV com-

munity would enhance communication and understanding

for both parties. This paper focuses on developing a mul-

timodal computer vision system to recognize and detect

NVCs. To accomplish our objective, we are collecting a

dataset focused on nonverbal communication cues. Here,

we propose a baseline model for recognizing NVCs and

present initial results on the Aff-Wild2 dataset. Our base-

line model achieved an accuracy of 68% and a F1-Score

of 64% on the Aff-Wild2 validation set, making it compara-

ble with previous state of the art results. Furthermore, we

discuss the various challenges associated with NVC recog-

nition as well as the limitations of our current work.

1. Introduction

Nonverbal communication is a fundamental part of hu-

man interaction that involves relaying information through

channels other than words, such as facial expressions, body

language, hand gestures, etc. These nonverbal communica-

tion cues (NVCs) can convey a wealth of information about

a person’s emotions, attitudes, and intentions and can even

contradict or emphasize spoken words. Nonverbal commu-

nication is a complex process that affects how people inter-

act with others and plays an essential role in building social

relationships, establishing trust, and conveying meaning in

a variety of contexts. Understanding nonverbal communica-

tion is crucial for effective communication, especially in sit-

uations where language barriers exist or in situations where

words may be unclear or misleading [29]. Although an es-

sential part of how humans interact with each other, nonver-

bal communication is largely inaccessible for those who are

blind or have low-vision (BLV).

According to the World Health Organization, 2.2 billion

people worldwide have some form of vision impairment;

217 million people have moderate to severe vision impair-

ment, and 36 million are blind [1]. Research studies show

that the BLV community may understand other people’s in-

tentions, feelings and beliefs differently than sighted peo-

ple mainly because they have limited access to the informa-

tion about others’ mental states during communication [32].

Such conversational asymmetry is contributed to by the in-

accessibility of nonverbal communication, as studies have

shown that nonverbal communication cues make up at least

55% of the emotional information conveyed during a con-

versation [13]. As such, software which can accurately clas-

sify nonverbal communication cues is a critical step towards

building accessible NVC recognition systems.

NVC recognition is a challenging task due to the large

variety of nonverbal cues with subtle differences. A non-

verbal cue can be a head nod, shrugging shoulders, or arms

folded across one’s chest. In different contexts, each of the

aforementioned cues can convey different emotions. De-

spite the large variety of nonverbal communication cues,

they can be broken down into three basic tasks: facial ex-

pression recognition (FER), body pose estimation, and hand

gesture recognition. Work combining all three tasks is rela-

tively sparse compared to studies focusing on FER for emo-

tion recognition. Additionally, FER datasets [15,26±28] are

limited to basic emotions and neglect more common NVCs

such as if the conversation partner is thinking, confused, or

agreeing with something that was said.

The challenges of accurately recognizing NVCs for emo-

tion classification include: (i) large variation in temporal

duration of actions, (ii) large intraclass variance, and (iii)

accumulating a uniform distribution of emotions conveyed

by NVCs. Specifically, nonverbal communication cues can

range from extremely short actions to very long actions. Re-

cent studies in action detection have shown that classifying

and localizing very short actions in videos is a challeng-



Figure 1. Our CCNY NVC Dataset contains two levels of annotations for ten different emotion classes along with temporal annotations

of the start and end time for all actions. The high-level label represents the emotion conveyed by nonverbal cues whereas the fine-grained

label represents the action cues themselves. The fine-grained actions are labeled for three modalities: facial expressions, head movement,

and hand movements.

Table 1. Distribution of labels in common FER datasets as a per-

centage of the total annotations where the emotions are abbrevi-

ated as follows: Neutral: Ntrl, Anger: Agr, Disgust: Dgst, Happy

Hpy, Surprised: Sprs. Instances from classes such as disgust, fear,

and sadness are relatively sparse compared to classes. Note that,

CK+ has another class that is not listed here: contempt, which is

approximately 5% of the total dataset [26].

Dataset Ntrl Agr Dgst Fear Hpy Sad Sprs.

Aff-Wild2 [15] 41 4 2 2 30 13 8

CK+ [26] ± 14 18 8 21 9 25

ing task for current methods [38]. Therefore, current meth-

ods are limited for NVC recognition, considering that some

NVCs, such as nodding, can last for less than ten seconds

and occur very frequently in conversations. In addition,

there is also a large intra-class variance as people tend to

express nonverbal communication cues differently depend-

ing on the situation [13,29]. For instance, tilting one’s head

to the side, looking to the side without tilting one’s head,

scratching one’s chin and pursing one’s lips can all be seen

as indicators of someone who is thinking. Lastly, ensur-

ing a uniform distribution of NVCs in a dataset presents a

challenge as some NVCs occur less frequently than others.

NVCs which indicate anger and sadness are not as common

in casual conversations as NVCs expressing thought, agree-

ment, or amusement. Many commonly used FER datasets,

two of which are shown in Table 1, have a great class im-

balance. Such imbalance can pose a problem not only for

network training but may also negatively impact the robust-

ness of a NVC recognition aid in real-world scenarios.

To combat the above-mentioned challenges, we first

collect a NVC dataset, which we name the CCNY NVC

Dataset, by conducting casual interviews and capturing

videos with a wide range of NVCs. During the video

recording, participants were shown videos and asked riddles

and various questions to elicit responses (e.g. amusement,

thought, confusion, and sadness, among others). A subset

of the questions is shown in Table 2 The collected videos are

labeled at two levels: a coarse emotion category related to

the NVCs and a fine-action category consisting of the NVCs

themselves. The fine-action category is labeled for multi-

ple modalities, as shown in Figure 1. We individually label

fine-grained NVCs to study whether learning fine-grained

NVCs directly can aid deep neural networks in better ex-

trapolating emotions. One example of such a framework is a

network which takes in as input the NVC cues and predicts

the high level emotion. We also label multiple modalities

as NVC cues can take the form of facial expressions, hand

movements, or body gestures. An ideal model for NVC cue

recognition would take into account the multiple modalities,

yet very few multimodal emotion datasets currently exist.

To fill this gap, we are both building the CCNY NVC

Dataset and constructing a multimodal baseline for NVC

cue and emotion recognition. We choose a 3D-ResNet [8]

as our baseline as they can easily be stacked together to

capture multimodal information as shown by Vahdani et

al. [10, 34]. To showcase the potential of our baseline, we

present initial results for the seven basic expressions classi-

fication task using the Aff-Wild2 dataset [14±22,35], which

focuses on facial expression recognition as a means of emo-

tion recognition. Our main contributions can be described

as

• A study of the challenges present in NVC recognition

as compared to FER recognition.

• An analysis of current FER datasets and their limita-

tions for NVC recognition.



• Design of a multimodal baseline model for NVC

recognition.

• Demonstrating comparable performance of our base-

line with current state-of-the-art methods on the Aff-

Wild2 dataset [14±22, 35] expression classification

task.

The rest of this paper is structured as follows: Section

2 discusses previous attempts at building an assistive aid

to recognize NVCs for the BLV community and the scope

of multimodal models for NVC recognition. Section 3 de-

scribes current datasets which have a potential for NVC

recognition and discusses their limitations to highlight how

the CCNY NVC Dataset fills a gap in the current domain.

Section 4 introduces the baseline model for NVC recog-

nition. Section 5 discusses the experimental results for a

branch of the proposed baseline on the Aff-Wild2 dataset.

2. Related Work

Facial Expression Recognition as a Means of NVC

Recognition Previous studies [2, 3, 23, 33] have focused on

facial expression recognition as a means of NVC recogni-

tion. Real-time systems using FER have been developed to

aid those who are BLV perceive NVCs in video-calls [33]

and in casual conversations [2, 23]. Specifically, Shi et

al. [33] developed an accessible video calling prototype

that detects visual conversation cues in a video call (i.e.,

attention, agreement, disagreement, happiness, thinking,

and surprise) and uses audio cues to convey them to a

user who is blind or low vision. However, this system is

impractical for other scenarios where NVC recognition is

needed (e.g., a blind user in a meeting room). Furthermore,

some users found the audio feedback to be distracting

from the conversation. With their Expression system,

Anam et al. [2] used Google Glass to record videos of

the conversation partner which were then sent to a server

which detects facial features to classify the NVC and

relays the information to the user through speech feedback.

As with [33], the speech feedback of Expression can be

distracting and obtrusive in a conversation. Additionally,

having a remote server for classification is not scalable

in real-world scenarios. VibroGlove [23] is proposed as

another assistive technology which relays facial expression

information to users through vibrations from sensors

mounted on a glove where each emotion is correlated

with a specific vibration pattern. Although less obtrusive

than audio feedback, this method is not scalable as adding

common NVC classes such as paying attention, thinking, or

confused to the seven basic emotions tested in [23] would

increase the number of vibration patterns and may prove

confusing for the user. The usability study for VibroGlove

is also limited as studies were carried out with only one

participant who was blind. Therefore, this is a large gap in

the field of assistive devices for nonverbal cue recognition.

Multimodal Action Recognition NVC recognition is a

multimodal task as a NVC can consist of a facial expression,

a head movement, body posture, hand movements or some

combination. Most previous research in the NVC domain

have not used these modalities and have relied solely on

FER recognition or micro-gesture recognition [25]. How-

ever, other modalities such as spoken words, speech signals,

heart-rate and other physiological signals [30,36] have been

used in various FER recognition tasks such as action unit

(AU) detection and expression recognition. A drawback to

such modalities in the NVC domain is that spoken words

and speech patterns may communicate different informa-

tion than NVC cues as there are many instances where ver-

bal and nonverbal communication cues may contradict each

other. Furthermore, for the BLV community, audio cues are

readily accessible and may not contribute as much to con-

versational symmetry as augmenting the conversation with

NVCs.

Multimodal studies using body poses, facial expressions,

and hand gestures can be found in the sign language recog-

nition domain as many signs, for example in American

sign language (ASL), are composed of several body move-

ments in addition to the hand gestures. Previous studies in

this domain [10, 34] have used an ensemble of 3D residual

networks, with each network corresponding to a different

modality from hand gestures, facial expressions, and head

movements. The results from each network are fused to-

gether and post-processed using a majority voting algorithm

to determine the final action class. This structure is highly

adaptable for NVC recognition as it allows for the seamless

fusion of multiple modalities.

3. NVC Datasets

3.1. Existing Datasets for Emotion Recognition

There are many datasets for FER, gesture and emotion

recognition. Here we briefly summarize several commonly

used datasets. The iMiGUE dataset [25] consists of 359

videos of press conferences with athletes participating in

the Grand Slam tournament after a match. It is the first

dataset of its kind, with labels for micro-gestures, which

the authors define as subconscious actions which reveal un-

derlying emotions. In other words, the iMiGUE dataset is

analogous to nonverbal cues for the head, hands, and body

modalities. Although iMiGUE is a spontaneous emotion

recognition dataset based on micro-gestures, the emotion

classification is binary; emotions are labeled as positive and

negative. For NVC recognition, this binary labelling is too

coarse. Many other emotional gesture datasets [6,12,31] are

made from posed actions and therefore are limited for spon-



Table 2. A subset of questions asked during nonverbal communication cue capturing.

Question Intended Emotion

What time is it when an elephant sits on a fence? Amused, Confused, Thinking

Can you tell me about what you do? Neutral

When was the last time you were really frustrated? Agitated, Upset

When was the last time you laughed so hard your stomach hurt? Happy

The more you take, the more you leave behind. What are they? Confusion, Thinking

Interviewer gave random compliments Happy

How has your day been? Neutral

Figure 2. (a) Two examples from the surprised class from the

CCNY NVC Dataset. Even though both examples are of the same

person, the surprised emotion is expressed differently in both in-

stances. (b) Two instances of the thinking class from the CCNY

NVC Dataset. Looking to the side and rubbing ones face are com-

mon nonverbal cues used to express thought [29]. Because there

are a large variety of nonverbal cues for each emotion, there is a

large intra-class variance when relating NVCs to emotional states.

taneous NVC recognition. FABO [7] is perhaps the closest

approximation for a multimodal dataset for NVC recogni-

tion as it is a bimodal dataset with annotations for facial and

body gestures. This dataset focuses on basic emotions such

as uncertainty, anger, surprise, fear, anxiety, happiness, dis-

gust, boredom, and sadness. Although FABO [7] has a more

extensive list of emotions as compared to other datasets, it

is a posed dataset and does not include annotations for very

common nonverbal communication cues such as thinking

and agreement.

On the hand, there are many FER datasets [26] which

feature labelling for seven basic expressions in both spon-

taneous and posed environments. The Aff-Wild2 dataset

[14±22, 35] is a large-scale dataset containing 548 videos

labelled for the recognition of seven basic expressions, with

an additional other category. Specifically, the emotions are

neutral, anger, disgust, fear, happiness, sadness, and sur-

prise.

Such a large scale dataset could be useful for NVC

recognition as the the large number of instances (almost

2 million annotated frames) would help learn a wide va-

riety of cues used to relate emotions. Furthermore, the

Aff-Wild2 dataset [14±22, 35] contains many real-life sit-

uations, such as when there is a large glare due to sun-

light through a window and low-lighting conditions, which

could help make a NVC recognition aid robust under differ-

ent conditions. However, the emotions for which the Aff-

Wild2 dataset is annotated are limited and more common

NVCs such as thinking, confusion, and paying attention,

are not included. As a FER dataset for emotion recogni-

tion (among other tasks), Aff-Wild2 [14±22, 35] is a large

step forward but still falls short of the requirements for

a NVC recognition dataset. Other FER datasets, such as

CK+ [26], DIFSA/DIFSA+ [27, 28], and BP4D+ [5], have

similar emotions as Aff-Wild2 or focus on action unit de-

tection instead of emotion recognition and therefore also

have limited applicability for NVC recognition. Addition-

ally, these datasets contain posed expressions which cannot

directly be used to recognize a variety of spontaneous non-

verbal cues. Currently there is no available dataset which

combines common nonverbal communication with the ba-

sic emotions found in emotion recognition datasets, whether

they be for FER or gesture recognition. Furthermore, there

is no multimodal dataset for emotion recognition that com-

bines facial expressions with hand gestures and body pose.

Such datasets do however exist for ASL recognition.

One such dataset is the ASL-HW-RGBD dataset [34],

which is proposed for the task of error recognition in ASL

gesturing. As an ASL gesture consists of both a manual

sign, or the actual hand sign, and a nonmanual sign (head

movements or facial expressions), the authors propose to

recognize errors in gesturing by matching the manual and

nonmanual signs. As such, there are multiple levels of an-



Figure 3. An overview of our baseline for NVC recognition. OpenPose [4] is employed to crop faces out from all frames in the input videos

into 134 x 134 pixel images. After preprocessing, the raw RGB frames are input into a 3D-ResNet with 34 layers and 5 convolutional

blocks in groups of 32 frames. Final predictions are made by processing the 3D-ResNet output with a fully connected layer. Our network

is adapted from [8, 10, 34]. For the Aff-Wild2 dataset, we use the provided cropped and aligned images for training.

notation, with each level relating to a different aspect of

ASL grammar. Facial expressions are annotated separately

for ASL grammar. For example, asking questions in ASL is

associated with a set of facial expressions and head move-

ments that complete the gesture. With these multilevel an-

notations, Vahdani et al. train three separate networks for

head movement recognition, facial expression recognition,

and hand gesture recognition, respectively, and combine the

output of each network to recognize errors in signing ASL

gestures. Such dataset and network architectures can be ex-

tended to the NVC recognition domain for multimodal de-

tection of cues.

3.2. CCNY NVC Dataset

Dataset Design and Annotation: The CCNY Nonverbal

Cue (NVC) Dataset is a human emotion detection dataset,

featuring 128 videos with multilevel class annotations and

temporal boundary annotations. To the best of our knowl-

edge, this dataset is the first of its kind, with videos of casual

conversations from the first-person point of view. Although

various facial expression recognition datasets exist, they do

not provide temporal boundaries as our NVC dataset does

nor do they annotate common nonverbal cues and emotions

such as thinking, paying attention and confused.

In the CCNY-NVC Dataset, NVCs are labeled at two

levels. The first level classifies the high-level emotion

represented by the NVC while the second level labels

the fine-grained action. For example, an instance of the

speaker nodding in a video is labeled as nodding at an

action level and also as ªagreement/understandingº at a

higher level. The high-level semantic NVC labels feature

10 categories: agreement/understanding, amused, happy,

confused, thinking, upset, disagreeing, dislike, exasperated,

and surprised. Our fine-grained action labels are further

Table 3. The ten classes in the current CCNY-NVC dataset.

NVC Classes

Thinking Amused

Agreement/Understanding Confused

Surprised Upset

Happy Exasperated

Dislike Disagreement

divided into multiple categories. We provide annotations

for facial expressions, gaze, head movements, and hand

gestures. We take multiple modalities into consideration

as a NVC can consist of more than just facial expressions.

As such, multimodal annotations can be used to accurately

represent the components of complex nonverbal communi-

cation cues. Table 3 lists the classes currently available in

the CCNY-NVC dataset. The dataset will be extended to

include more NVCs from more scenarios including group

conversations.

Collection Methodology: To capture a wide range of

NVCs, participants were asked an initial question to start

the conversation and the conversations were allowed to

progress naturally. At some points in the conversations, par-

ticipants were randomly asked riddles and shown videos in

order to capture uncommon NVCs such as anger or sad-

ness. All video clips of NVCs were captured on a Samsung

Galaxy Tab S7 FE 12.4º to test the portability of the device

for real-world deployment. Consent for the release of media

was obtained from all participants.

Key Challenges: Capturing a balanced NVC dataset (i.e.

with a uniform distribution of NVCs) presents a great chal-

lenge as NVC classes such as anger and sadness are not

as common as thinking, agreement/understanding, or hap-

piness in casual conversations. Furthermore, many NVCs,



such as nodding, have a very short temporal duration (< 10

seconds) leading to noisy temporal annotations. Many NVC

classes also have a large intra-class variance as shown in

Figure 2. In Figure 2(a), the top can be interpreted as gen-

uine surprise whereas, based on the facial expression, the

bottom image is a mixture of disbelief and surprise. Subtle

differences between the two instances change the meaning

of the emotion in context even though the same emotion is

being represented in both cases.

4. NVC Recognition Baseline Network

As shown in Figure 3, we propose a 3D-ResNet as the

baseline [8, 10, 34] for NVC recognition due to its ability

to effectively model spatio-temporal features in videos in a

straight-forward manner. Rather than classifying individual

frames, we believe using both spatial and temporal features

will help enhance NVC learning as the meaning of nonver-

bal cues depends heavily on context. The proposed network

has a total of 34 layers over five convolutional blocks, four

of which are 3D residual network connections. The first

blocks in the network consists of a convolutional layer with

64 kernels, batch normalization, ReLU activation, and max-

pooling layers. This block is followed by four 3D-ResNet

blocks, with 64, 128, 256, and 512 kernels, respectively.

After the last residual block, the output of the network is

processed by global average pooling and dense layers to

produce the final prediction. As input, the network takes

in groups of 32 frames to represent a clip from the video.

After testing the feasibility of our design on the facial

expression recognition task, we aim to extend the baseline

into a multimodal network as shown in Figure 4, where

each branch of the network aims to predict emotional states

based on one of the following modalities: facial expression,

hand gestures, head/body pose. We propose to crop out the

face and hands from video frames as input to the face and

hand networks, respectively. For the head/body recognition

network, we aim to input skeleton keypoints obtained from

OpenPose [4] along with the RGB frame. The outputs of

the networks would be fused together to make the final pre-

diction.

5. Experiments

5.1. Datasets and Settings

Datasets: As the CCNY NVC Dataset is in its early stages

of production, it is of a small scale and suffers from a sig-

nificant class imbalance. Therefore, for our preliminary

tests, we use the Aff-Wild2 dataset [14±22, 35]. Presented

in the Affective Behavior in-the-wild (ABAW2) competi-

tion held alongside ICCV 2021, the dataset contains 548

videos scraped from YouTube with approximately 2.8 mil-

lion annotated frames. Each frame is annotated and videos

range from 0.04 to 26.22 minutes. This dataset is split into

Figure 4. Our proposed pipeline for NVC recognition. We propose

that a multimodal network would be able to best model nonverbal

cues as they are complex actions involving different parts of they

body.

three tasks: Valence-Arousal Estimation (VAE), Seven Ba-

sic Expression Classification (EXPR) and Twelve Action

Unit Detection (AU). For our purposes, we use the EXPR

split of the dataset, which contains 248 videos for training,

70 videos for validation and 228 videos for testing. As the

dataset originates from a competition, we only had the train-

ing and validation data available. These videos are labeled

for recognition of seven basic emotions: neutral, anger, dis-

gust, fear, happiness, sadness, and surprise. Most impor-

tantly, these videos are of spontaneous behavior in the wild,

making the Aff-Wild2 dataset [14±22, 35] a close approxi-

mation for naturally occurring NVCs. Furthermore, as men-

tioned in Section 3, the Aff-Wild2 dataset [14±22, 35] con-

tains videos featuring many real-life scenarios such as low

lighting, sun glare, and a shaky camera frame. A variety of

real-world scenarios is necessary for training a robust NVC

recognition aid for the BLV community.

Implementation Details To prepare data for training, faces

from the videos must be cropped out and aligned. For our

preliminary experiments, we use the cropped and aligned

faces provided in the Aff-Wild2 dataset. Missing frames

were interpolated using neighboring frames. The original

Aff-Wild2 annotations were restructured to represent in-

stances of each emotion. The original annotations provided

labels for each frame in the video. To input into our 3D-

ResNet and adapt the dataset to the video action recogni-

tion domain, we concatenated consecutive labels belonging

to the same emotion to create action level annotations. In

other words, if frames 31 to 64 were labeled as ’Neutral’,

a new annotation was made with the starting frame, ending

frame, and expression category as ºNeutral/31/64º to re-

place the original frame-level annotations. These clips were

passed into a 3D-ResNet with 34 layers.

We trained our network with an initial learning rate of

0.001 and a batch size of 128. To combat over fitting and



Table 4. Results for our baseline method on the official validation

set of the Aff-Wild2 Expression Classification task. Our method

shows promise as it is comparable to previous state of the art re-

sults. [37] reported the best results on the validation set out of all

competing teams and came in first on the test set. [9] placed sec-

ond on the official test set.

Method F1 Score Accuracy ABAW2 Metric

Ours 64.3 68.2 65.6

Netease Fuxi Virtual Human [37] 75.7 85.6 79

CPIC-DIR2021 [9] 40.2 63 47.7

Aff-Wild2 Baseline [22] 30 50 36.6

class imbalance, we implemented weight decay as regular-

ization and used focal loss [24] and stochastic gradient de-

scent for optimization. We also implemented a weighted

sampling to combat the class imbalance alongside focal

loss [24] and ensure that the network saw a more even distri-

bution of classes in each batch. To aid our training, we used

pretrained weights for the ResNet-34 from the Kinetics [11]

dataset. Lastly, we used data augmentation techniques such

as random cropping, random horizontal flip, and random

rotation.

5.2. Evaluation Metrics

To measure the performance of our model, we report

the F1 score and total accuracy. The F1 score for emo-

tion and NVC recognition is computed on a per-frame basis,

i.e., were all frames classified correctly for a given emo-

tion class. We also report the total accuracy as the ratio

between the number of correct predictions and the number

of total predictions. To ensure a fair comparison, we calcu-

late a weighted average between the F1 score and the total

accuracy, which was the main evaluation criterion for the

ABAW2 competition [16]. The exact formulation is pre-

sented in Equation (1).

ϵtotal = 0.67× F1 + 0.33× TAcc (1)

5.3. Results

As shown in Table 4, we achieved a F1 score of 64.3 and

an accuracy of 68.2 on the Aff-Wild2 dataset. Our results

are comparable to [9, 37], which placed second and first on

the official test set, respectively. As the test set was not

available to us, we report our performance on the official

validation set and compare with the performance reported

in [9, 37] on the official validation set. Both these meth-

ods used either additional datasets, pseudo-labelling tech-

niques or prior architectures on top of which their models

were built, however, we achieve comparable results with no

additional data, pseudo-labelling, or prior models. As such,

our method shows great promise for emotion recognition.

6. Conclusion

Although many emotion recognition datasets and models
exist, they are limited in their applicability to nonverbal cue
communication, which is an essential part of how we com-
municate with each other. Such nonverbal communication
however is largely inaccessible to those in the blind or low
vision community, leading to conversational imbalance be-
tween speakers. Furthermore, current accessibility aids fall
short in terms of ease of use and scalability. To combat these
issues and work towards a practical model for nonverbal cue
recognition, we are building the CCNY NVC Dataset. Such
a task is nontrivial due to large class imbalances and noisy
labels. The CCNY NVC Dataset is a multimodal dataset
with both emotion annotations and fine-grained nonverbal
cue annotations. We also propose a multimodal baseline for
the NVC cue recognition task. As our dataset is still in pro-
duction, we present preliminary results on the AFF-Wild2
dataset; our results show promise for our proposed baseline
method. In future work, we will aim to refine our CCNY
NVC Dataset and apply our baseline model to detect non-
verbal cues and emotions. We will further develop more
advanced methods to recognize NVCs in long, untrimmed
videos by incorporating other modalities and temporal lo-
calization.
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