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Abstract

The causal bandit problem setting is a sequential decision-making framework where actions
of interest correspond to interventions on variables in a system assumed to be governed by
a causal model. The underlying causality may be exploited when investigating actions in
the interest of optimizing the yield of the reward variable. Most existing approaches assume
prior knowledge of the underlying causal graph, which is in practice restrictive and often
unrealistic. In this paper, we develop a novel Bayesian framework for tackling causal bandit
problems that does not rely on possession of the causal graph, but rather simultaneously
learns the causal graph while exploiting causal inferences to optimize the reward. Our meth-
ods efficiently utilize joint inferences from interventional and observational data in a unified
Bayesian model constructed with intervention calculus and causal graph learning. For the
implementation of our proposed methodology in the discrete distributional setting, we derive
an approximation of the sampling variance of the backdoor adjustment estimator. In the
Gaussian setting, we characterize the interventional variance with intervention calculus and
propose a simple graphical criterion to share information between arms. We validate our
proposed methodology in an extensive empirical study, demonstrating compelling cumula-
tive regret performance against state-of-the-art standard algorithms as well as optimistic
implementations of their causal variants that assume strong prior knowledge of the causal
structure.

1 Introduction

The multi-armed bandit (MAB) problem is a well-known sequential allocation framework for experimental
investigations (Berry & Fristedt, 1985). Classically, the MAB problem formulation features an action set
A consisting of |A| = K actions, also called arms, typically corresponding to interventions. Each arm
a ∈ A defines a real-valued distribution for the reward signal, with expected reward µa. The objective of
an allocation policy is to sequentially pick arms in a manner that maintains a balance between exploration
and exploitation in the interest of identifying and obtaining the greatest reward. Maximally and effectively
utilizing all available information is imperative, especially when investigating interventions that are either
or both resource-demanding and time-consuming.

Lattimore et al. (2016) proposed the causal bandit (CB) problem setting wherein a non-trivial probabilistic
causal model is assumed to govern the distribution of the reward variable and its covariates (Pearl, 2000).
The addition of causal assumptions introduces avenues by which interventional distributions may be inferred
from observational distributions and information may be shared between arms. Most works addressing the
CB problem exploit strong assumptions as to prior knowledge of the underlying causal model to achieve
improvements over standard MAB algorithms. In this work, we develop a Bayesian CB framework that
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does not require prior knowledge of the underlying causal structure, but instead efficiently utilizes previously
available observational data and acquired interventional data to inform exploitation and guide exploration.

For illustrative purposes, we borrow and adapt the farming example described in Lattimore et al. (2016) as an
illuminating motivating example of the problem setting of interest and the surrounding challenges. Suppose
a farmer wishes to optimize the yield of a certain crop, which she knows is only dependent on temperature,
a particular soil nutrient, and moisture level. While she understands that crop yield is somehow affected
by these factors, the underlying causality governing this system of four variables (including crop yield) is
unknown to her. The farmer’s resource limitations restrict her to intervening on at most one factor in each
crop season by adjusting the temperature, controlling the soil nutrient content, or regulating moisture level.
These experimental interventions are costly to perform, and each realization of the interventional data can
only be observed once a season. Hence, it is in the farmer’s best interest to leverage her historical logs
containing observational data accrued from previous seasons where no interventions were performed, but
rather the variables were passively observed as they naturally varied from season to season. In this paper,
we propose a framework by which the farmer may aggregate and synthesize the available evidence to optimize
resource allocation to attain the highest yield.

1.1 Related Work

In its original formulation by Lattimore et al. (2016), the CB problem presupposes knowledge of the un-
derlying causal graph. Accordingly, most proposed CB algorithms require knowledge of the causal graph
structure (Lattimore et al., 2016; Lee & Bareinboim, 2018; Maiti et al., 2021; Yabe et al., 2018), and some
additionally assume certain model parameters are given (Lu et al., 2020; Nair et al., 2021). Furthermore,
many approaches are dependent on some restrictive form or class of graphs. These assumptions are restrictive
and often unrealistic in practice.

More recently, Lu et al. (2021) proposed a central node approach based on the work of Greenewald et al.
(2019) that does not assume prior knowledge of the causal graph, but rather asymptotic knowledge of the
observational distribution. Their approach is restrictive in terms of structural and distributional assump-
tions, and while it is generally reasonable to assume that observational data is much more accessible than
interventional data (Greenewald et al., 2019), the large-sample observational setting is not often realistic.
de Kroon et al. (2022) proposed an estimator using separating sets to share information between arms with-
out assuming prior knowledge of nor requiring discovery of the causal graph. Their methodology makes
no attempt to learn the causal graph, and makes use of observational data only to strengthen conditional
independence testing to identify separating sets.

Relevant to our work is intervention calculus, a set of inference rules proposed by Pearl (2000) that defines
avenues by which interventional probabilities may be estimated from observational data. In the CB setting,
Lattimore et al. (2016) and Nair et al. (2021) consider graph structures with no confounding such that the
interventional distributions are equivalent to conditional distributions, and Maiti et al. (2021) proposed a
consistent estimator for the expected reward for discrete variables using both interventional and observational
data in the presence of confounding. Our work extends the Bayesian model averaging approach proposed
by Pensar et al. (2020) wherein the possible causal effect estimates are averaged across an observational
posterior distribution of graphs.

Bayesian approaches to the MAB problem has received significant attention in the past decade. Russo &
Van Roy (2014) translated existing regret bounds of algorithms based on optimism in the face of uncertainty
to Bayesian regret bounds for posterior sampling by establishing a deep connection between the two in
their study of the Bayesian regret. In their information-theoretic analysis of Thompson sampling, Lu &
Van Roy (2019) demonstrated improved regret performance by leveraging prior information regarding the
bandit environment, which was further tightened in the form of a prior-dependent bound by Kveton et al.
(2021). Numerous developments to learn the prior have been proposed in the bandit meta-learning space
(Basu et al., 2021; Kveton et al., 2021; Wan et al., 2021; Hong et al., 2022), with many works studying the
effects of prior misspecification (Bastani et al., 2022; Peleg et al., 2022; Simchowitz et al., 2021). While
these contributions operate in the multi-task setting, seeking to learn the prior by solving many similar tasks
typically corresponding to bandit instances, our work more resembles the approach of Kaufmann et al. (2012)
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in applying Bayesian techniques to tackle a single bandit instance. In such a way, rather than an estimate
of the task prior, our proposed prior is best interpreted as encoding the prior information on the underlying
parameters of a given bandit instance based on available observational data generated within the task.

1.2 Our Contributions

We approach the CB problem from a Bayesian perspective, assuming simply that finite samples of observa-
tional data are available. Importantly, we do not assume the causal graph is known, nor are we restrictive
as to the class of graph structures. We design a novel Bayesian CB framework called Bayesian Backdoor
Bandit (BBB) that efficiently utilizes the entirety of evidence from an ensemble of observational and inter-
ventional data in a unified Bayesian model. Our proposed BBB methodology quantifies the uncertainty in
the expected reward estimates as contributed to by the reward signal and the causal model to identify po-
tentially profitable exploration, simultaneously learning the causal graph in addition to and for the purposes
of improving estimates to exploit. Through extensive numerical experiments, we validate our methodology
by demonstrating compelling empirical performance against both non-causal and causal algorithms. In par-
ticular, we show that our BBB approach is able to leverage modest samples of observational data, seamlessly
integrating causal effect estimation and structure modeling, to achieve substantially superior cumulative
regret performance compared to standard algorithms that make no use of observational information. We
similarly demonstrate competitive performance against a generously optimistic version of the causal central
node approach proposed by Lu et al. (2021) that assumes large-sample observational data. A preliminary
analysis shows that, under some assumptions on the posterior distributions in our Bayesian model, the de-
pendence of the cumulative regret of a BBB algorithm on the size of the action space can be greatly relaxed
given sufficient amount of observational data.

Additionally, in detailing the application of our methods to the discrete and Gaussian distributional settings,
we propose various developments that are of independent interest. In the discrete setting, we derive an ap-
proximation for the sampling variance of the backdoor adjustment probability estimate. In the Gaussian
setting, we characterize the interventional variance of a target variable using intervention calculus and corre-
spondingly propose an estimator, and we propose a simple graphical criterion for sharing causal information
between arms to perform intervention calculus with jointly observational and interventional data.

The remainder of the paper is arranged as follows. We first review relevant background and notation in
Section 2. Then, we develop the formulation of our proposed Bayesian backdoor adjustment prior and its
posterior update in Section 3, discussing the design of informative conditional priors given a graph and
Bayesian model averaging across graph structures. In Section 4, we develop our proposed algorithms by
applying established MAB algorithms under the BBB framework, and we discuss details regarding the
implementation of BBB in the discrete and Gaussian settings in Section 5. Finally, we provide extensive
empirical results in Section 6 and conclude with a discussion in Section 7. Appendices A through D contain
proofs, additional details and numerical results, and technical derivations.

2 Preliminaries

We consider the setting where the generative model governing a joint probability distribution P of a set of
p variables X = {X1, . . . , Xp} is a causal Bayesian network (CBN). A CBN model is defined by B = (G,ΘG)
consisting of its structure G, which takes the form of a directed acyclic graph (DAG), and its parameters
ΘG . Its DAG G = (V,E), often referred to as the underlying causal graph, is composed of a set of nodes
V = {1, . . . , p} in one-to-one correspondence with the variables, and a set of directed edges E oriented such
that there are no directed cycles. As is standard in causal literature, we may refer to a node i ∈ V and
its corresponding variable Xi ∈ X interchangeably. In our work, we assume that X is a causally sufficient
system with no unobserved confounders.

The causal implications imposed by the underlying CBN of X are expressed in the form of a structural
equation model (SEM), Xi = f(PaG

i , εi) for all i ∈ V, where PaG
i = {Xj : j → i ∈ E} is the parents of

Xi in G and εi is an exogenous noise term. Otherwise stated, each variable Xi is a function of its direct
causes in G and an independent noise variable, which defines its conditional distribution P (Xi | PaG

i , θ
G
i )
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with local parameters θG
i ∈ ΘG . The joint distribution P imposed by the CBN factorizes according to

structure G: P (X) =
∏p

i=1 P (Xi | PaG
i , θ

G
i ). Realizations from P (X) without any experimental intervention

are referred to as observational data, whereas interventional data are realizations of the SEM when the value
of one or more variables are being controlled by intervention. In our work, we consider deterministic atomic
interventions denoted do(Xj = xj) (Pearl, 1995), where a single variable is forcibly controlled to a fixed value
xj ∈ Dom(Xj). This has the effect of mutilating the causal graph by deleting the direct effects of PaG

j on
j, correspondingly modifying the SEM to Xj = xj and Xi = f(PaG

i , εi) for all i ∈ V \ j. The interventional
distribution P (X\Xj | do(Xj = xj)) is not in general equivalent to the observational conditional distribution
P (X \ Xj | Xj = xj), motivating the calculation of the interventional distribution from the observational
distribution, such as (1) below, which we refer to as interventional calculus.

The action set A consists of |A| = K arms that correspond to interventions on variables in X\Y , where Y =
Xp is the reward variable (Lattimore et al., 2016). In particular, let arm a ∈ A correspond to the intervention
do(X⟨a⟩ = xa), fixing X⟨a⟩ to some value xa ∈ Dom(X⟨a⟩), where ⟨a⟩ ∈ V is the node corresponding to the
intervened variable. The expected reward of each arm a ∈ A is given by µa := EP [Y | do(X⟨a⟩ = xa)]
where EP [·] is the expectation in P defined by CBN B, and there is some optimal arm a∗ := argmaxa∈A µa

corresponding to the optimal reward µ∗ := µa∗ . Given a horizon of time steps T , let at ∈ A be the arm
pulled by an algorithm at time step t ∈ {1, . . . , T}. The objective of the algorithm is to pull arms over T
time steps with a balance between exploring different arms and exploiting the reward signal to minimize the
expected cumulative regret E[

∑T
t=1(µ∗ − µat)].

We now describe a Bayesian approach to the general MAB problem, with some notation adapted from
Kaufmann et al. (2012). The parameters ΘA = (θa)a∈A, assumed to mutually independently define the
corresponding marginal reward distributions pθa

(y) := P [Y = y | do(X⟨a⟩ = xa)], jointly follow a modular
prior distribution Π0(ΘA) =

∏
a∈A π

0
a(θa). Typically, (π0

a)a∈A are chosen to be all equal and uninformative.
When arm at ∈ A is pulled at time step t and a realization yt ← Y | do(X⟨at⟩ = xat

) is observed, the posterior
Πt is computed by updating according to πt

at
(θat) ∝ pθat

(yt) πt−1
at

(θat), while πt
a = πt−1

a for a ̸= at. For each
arm a ∈ A, the posterior πt

a induces a posterior distribution for the expected reward µa, which is simply a
marginal or transformation of πt

a since, in general, µa is a function of θa. These posteriors are utilized by
Bayesian MAB algorithms, which we discuss and apply under our proposed framework in Section 4.

In our problem formulation, we assume possession of n0 samples of observational data D0 prior to inves-
tigating arms. We denote by D(t) the interventional data acquired by pulling arm at at time t, and by
Da[t] =

⋃
l≤t,al=aD(l) the accumulated interventional data from arm a through time t. The combined ob-

servational and interventional data accrued through time t is D[t] = D0 ∪
⋃

a∈ADa[t], which we refer to as
ensemble data.

3 Designing Informative Priors with Intervention Calculus

In this section, we detail the design of the cornerstone of BBB and what we refer to as the backdoor ad-
justment prior, an informative prior Π0 that distinguishes BBB from standard non-causal bandit algorithms
by encoding inferences from observational data and seamlessly integrating interventional data to update to
the posterior Πt. We begin by introducing the construction of conditional priors given backdoor adjustment
sets before continuing to obtain the backdoor adjustment prior by Bayesian model averaging over parent
set probabilities. We conclude by discussing the formulation and considerations of the posterior distribution
over graph structures that gives rise to the parent set probabilities.

Conditional Priors. For each arm a ∈ A, we construct conditional priors π0
a|Z(θa) using the backdoor

adjustment given sets Z ⊆ X \ X⟨a⟩ as follows. If Z satisfies the backdoor criterion relative to X⟨a⟩ and
Y (Pearl, 2000, Definition 3.3.1), then the interventional distribution Y | do(X⟨a⟩ = xa) may be expressed
in terms of the joint observational distribution of {X⟨a⟩, Y } ∪ Z via the backdoor adjustment (Pearl, 2000,
Theorem 3.3.2):

P [Y = y | do(X⟨a⟩ = xa)] =
∑

z∈Dom(Z)

P (Y = y | X⟨a⟩ = xa,Z = z)P (Z = z). (1)
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Eq. (1) provides an avenue through which an estimator for µa using observational data may be derived,
which we denote µ̂a,bda(Z) and with which we design an informative prior π0

a|Z such that the induced prior
distribution of the expected reward µa satisfies

Eπ0
a|Z

[µa] = µ̂a,bda(Z), Varπ0
a|Z

[µa] = ŜE2 [µ̂a,bda(Z)] . (2)

Here, Eπ0
a|Z

[·] and Varπ0
a|Z

[·] are respectively the expectation and variance in π0
a|Z, and ŜE2 [µ̂a,bda(Z)] is

the estimated sampling variability of the expected reward estimate µ̂a,bda(Z) in P . The matching of the
prior variance with the sampling variance of the backdoor adjustment estimator endeavors to assign the
appropriate prior effective sample size. When arm at = a is pulled at time step t ∈ {1, . . . , T} and a
realization of the reward yt ← Y | do(X⟨a⟩ = xa) is observed in D(t), the posterior πt

a|Z is computed by
updating according to πt

a|Z(θa) ∝ pθa(yt) πt−1
a|Z (θa).

Parent Set Averaging. Thus far we have taken for granted the possession of adjustment set Z, the validity
of which is dependent on the underlying causal structure G which we assume to be unknown. If Y ̸∈ PaG

⟨a⟩,
then Z = PaG

⟨a⟩ satisfies the backdoor criterion relative to X⟨a⟩ and Y , and its uncertainty is quantified by
the posterior probability P (Pa⟨a⟩ = Z | D[t]) given the ensemble data at time t. Accordingly, the posterior
of θa is determined by averaging over all possible parent sets for X⟨a⟩:

πt
a(θa) =

∑
Z⊆X\X⟨a⟩

πt
a|Z(θa)P (Pa⟨a⟩ = Z | D[t]), (3)

which is the key posterior distribution to be updated at each time step t in the Bayesian CB problem. Note
that if Y ∈ PaG

⟨a⟩, then P [Y = y | do(X⟨a⟩ = xa)] = P (Y = y) holds straightforwardly for y ∈ Dom(Y ).
Accordingly, if Y ∈ Z, we compute µ̂a,bda(Z) with the marginal distribution of Y for the design of π0

a|Z.

Structure Posterior. The parent set distribution in (3) is obtained according to a posterior distribution
of DAG structures informed by jointly observational and interventional data D[t]:

P (Pai = Z | D[t]) =
∑

G′:PaG′
i

=Z

P (G′ | D[t]). (4)

The structure posterior is given by P (G | D[t]) ∝ P (D[t] | G)P (G), where P (G) is the structure prior, and the
marginal likelihood P (D[t] | G) =

∫
P (D[t] | G,ΘG)P (ΘG | G)dΘG is obtained by integrating the likelihood

function over the support of a conjugate prior of the parameters as follows. Let m ∈ I := {1, . . . ,M} index
the M = n0 + t samples of data in D[t], and let Oi ⊆ I represent the data points for which Xi is not fixed
by intervention. We make standard assumptions for Bayesian network structure learning, namely that the
priors for the parameters of the conditional probability distributions satisfy global parameter independence,
with Π0

G(ΘA) =
∏

a∈A π
0
a|G(θa), as well as parameter modularity, with π0

a|G(θa) = π0
a|G′(θa) = π0

a|Z(θa) for
graphs G and G′ where PaG

⟨a⟩ = PaG′

⟨a⟩ = Z (see Heckerman et al. (1995) and Friedman & Koller (2003)
for details). These allow us to express the marginal likelihood as P (D[t] | G) =

∏p
i=1 P (xi[Oi] | paG

i [Oi]),
where xi[·] and paG

i [·] represent indexed samples of Xi and PaG
i in D[t], respectively. Assuming a conjugate

prior, each conditional likelihood P (xi[Oi] | paG
i [Oi]) can be calculated in closed form by integrating over

the parameters:

P (xi[Oi] | paG
i [Oi]) =

∫ [ ∏
m∈Oi

P
(
xi[m] | paG

i [m], θG
i

)]
P (θG

i )dθG
i (5)

where θG
i = θXi|PaG

i
is the parameters specifying the conditional distribution of Xi given its parents (Eaton

& Murphy, 2007).

Assuming the distribution P is faithful to G (that is, all and only the conditional independence relationships
in P are entailed by G), the posterior probability P (G | D[t]) will concentrate around the Markov equivalence
class with increasing samples of observational data n0. The equivalence class consists of the identification
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of all direct edge connections (that is, the skeleton of G) and some edge orientations called compelled edges,
but even with infinite observational data, in general, not all edge orientations are identifiable without inter-
ventional data. The effect on P (G | D[t]) of pulling arm a ∈ A and observing interventional data according
to the intervention do(X⟨a⟩ = xa) is primarily though not limited to that of clarifying the orientation of the
edges incident to X⟨a⟩ in G.

Considering that the DAG space grows super-exponentially with the number of variables (Robinson, 1977),
computation of the parent set probabilities P (Pai | D[t]) is admittedly challenging, even when the maximum
number of parents is restricted. Due to the computational complexity, it is standard to assume a structure
prior satisfying modularity, that is P (G) = Πp

i=1P (PaG
i ), so that the posterior distribution is proportional

to decomposable weights consisting of the product of local scores depending only on a node and its parents
(Friedman & Koller, 2003). This property of score decomposability is crucial for the efficient implementation
of Markov Chain Monte Carlo (MCMC) methods in which the probability distribution of features in G may
be estimated by sampling DAGs from a Markov chain with stationary distribution P (G | D[t]) (Madigan
et al., 1995; Friedman & Koller, 2003; Kuipers & Moffa, 2017; Kuipers et al., 2022). Particularly useful for
our purposes is an algorithm developed by Pensar et al. (2020) to compute the exact parent set probabilities
for a graph in time O(3pp) that also takes advantage of score decomposability. In our empirical evaluation
of BBB, we apply BBB using both exact computation of parent set posteriors as well as approximation with
MCMC sampling.

4 Bayesian Backdoor Bandit Algorithms

In this section, we apply our proposed BBB framework to several state-of-the-art MAB algorithms, namely
upper confidence bound (UCB), Thompson sampling (TS), and Bayesian UCB (Bayes-UCB). Each method
is concerned with designing and computing some criterion Ua(t) to maintain a balance between exploration
and exploitation when selecting arms according to at ∈ argmaxa∈A Ua(t). In what follows, we briefly intro-
duce these methods and discuss their application under the BBB framework. We then provide preliminary
theoretical analysis of the cumulative regret for BBB-UCB and BBB-TS.

4.1 Description of Algorithms

The general UCB family of algorithms operates under the principle of optimism in the face of uncertainty
(Lai & Robbins, 1985). Arms that have not been investigated as many times as others have more uncertain
reward estimates and thus optimistically have potential for greater reward, motivating the design of a padding
function Fa(t) for computing the selection criterion Ua(t) = µ̂a(t) + Fa(t). Intuitively, the combination of
the expected reward estimate µ̂a(t) and the uncertainty Fa(t) maintains a balance between high confidence
exploitation and potentially profitable exploration. Perhaps the most well-known and typically the default
instantiation of UCB algorithms is UCB1 (Agrawal, 1995; Auer et al., 2002) which computes the following
criterion:

Ua(t) = µ̂a(t− 1) + c
√

log(t− 1)/na(t− 1), (6)

where na(t) =
∑t

l=1 1 {al = a} denotes the number of times arm a has been pulled in t time steps. The
confidence tuning parameter c > 0, discussed in Sutton & Barto (2018), controls the desired degree of
exploration, where c =

√
2 in Auer et al. (2002). Hereafter, when discussing UCB, we refer to the policy

expressed by the criterion in (6).

In what we refer to as BBB-UCB, we estimate the expected reward with the posterior mean Eπt−1
a

[µa] with
respect to (3), and we replace 1/na(t− 1) with the posterior variance Varπt−1

a
[µa] ∼ 1/(n0 + na(t− 1)). In

particular, for each arm a ∈ A, we compute

Ua(t) = Eπt−1
a

[µa] + c
√

Varπt−1
a

[µa] log(t), (7)
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where, for outer expectation with respect to the parent set distribution Pt−1(Z) := P (Pai = Z | D[t− 1]) in
(4),

Eπt−1
a

[µa] = EPt−1

[
Eπt−1

a|Z
[µa]

]
, Varπt−1

a
[µa] = EPt−1

[
Varπt−1

a|Z
[µa]

]
+ VarPt−1

[
Eπt−1

a|Z
[µa]

]
.

The Bayesian procedures of Bayes-UCB and TS are especially amenable to straightforward application under
the BBB framework. These methods follow the Bayesian MAB formulation introduced in Section 2, typically
taking as input uninformative priors in Π0 that are equivalent for each arm. At each time step t, TS samples
the expectations from the posterior Ua(t) ← πt−1

a (µa), effectively selecting arm a ∈ A with probability
equal to the posterior probability that µa is the highest expectation (Thompson, 1933). Bayes-UCB instead
computes for each arm at time t an upper quantile of µa based on its posterior distribution induced by πt−1

a :

Ua(t) = Q

(
1− 1

t(log T )c
, πt−1

a

)
, (8)

where Q(r, ρ) is the quantile function defining Pρ(X ≤ Q(r, ρ)) = r for probability distribution ρ and random
variable X ∼ ρ, and c is a constant for computing the quantile used in the theoretical analysis of Bayes-UCB,
with c = 0 empirically preferred (Kaufmann et al., 2012). For the BBB variants of Bayes-UCB and TS, we
need simply to supply our designed backdoor adjustment prior Π0 and make appropriate Bayesian updates
to obtain the posterior Πt.

We present our proposed BBB methodology applied to Bayes-UCB, TS, and UCB in Algorithm 1.

Algorithm 1 BBB-Alg(T,A,D0, c)

Require: Horizon T , action set A, observational data D0, confidence level c
1: Compute the observational parent set posteriors (4)
2: for all a ∈ A and Z ⊆ X \X⟨a⟩ do
3: Compute π0

a|Z according to (2)
4: end for
5: for all t = 1, . . . , T do
6: for all a ∈ A do
7: Compute criterion Ua(t) according to Alg:

• Bayes-UCB: Ua(t) = Q(1− 1/(t(log T )c), πt−1
a ) as in (8)

• TS: Sample Ua(t)← πt−1
a (µa)

• UCB: Ua(t) = Eπt−1
a

[µa] + c
√

Varπt−1
a

[µa] log(t) as in (7)
8: end for
9: Pull arm at ∈ argmaxa∈A Ua(t) and observe D(t)

10: for all Z ⊆ X \X⟨a⟩ where a = at do
11: Update πt

a|Z according to πt
a|Z(θa) ∝ pθa

(yt) πt−1
a|Z (θa)

12: end for
13: Compute or update the parent set posteriors (4)
14: end for

4.2 Preliminary Regret Analysis

In this section, we provide some preliminary analysis of the Bayesian cumulative regret for BBB-UCB and
BBB-TS. We begin by defining the Bayesian cumulative regret. Given reward parameters ΘA, the (expected)
cumulative regret of a policy is defined as

RT (ΘA) = E
[

T∑
t=1

(µ∗ − µat)
∣∣∣∣ ΘA

]
,
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where the parameters ΘA are fixed. Under our Bayesian setting, we specify a prior P (G) over the DAG G
and conditional priors π0

a|Z for the parameters of the reward distribution under interventions a ∈ A, which
defines a prior Π0 over ΘA. The Bayesian regret averages the regret RT (ΘA) over the prior distribution Π0:

RB
T = EΠ0 [RT (ΘA)] =

T∑
t=1

E [µ∗ − µat
] ,

where the second expectation is with respect to the joint distribution over the parameters and the data
[G,ΘA,D[T ]]. Note that µa = µa(ΘA) is a random variable under the Bayesian setting. If RB

T = O(g(T )),
then RT (ΘA) = Op(g(T )) with respect to the prior distribution of (G,ΘA).

Without loss of generality, assume µa ∈ [−C,C] for all a ∈ A. We first analyze the BBB-UCB algorithm
(Algorithm 1). By Eq. (2) in Russo & Van Roy (2014), for the UCB sequence {at},

RB
T ≤

T∑
t=1

E[Uat
(t)− µat

] + 2C
T∑

t=1
P [µ∗ > Ua∗(t)]. (9)

The first term E[Uat
(t)−µat

] = E [E {Uat
(t)− µat

| D[t− 1]}]. Since Ua(t) in (7) is a deterministic function
of D[t− 1], we have E {Uat(t) | D[t− 1]} = Uat(t) and consequently,

E[Uat(t)− µat ] = E [Uat(t)− E(µat | D[t− 1])]

= c
√

log t E
[√

Var(µat
| D[t− 1])

]
≤ c
√

log t
√

E [Var(µat
| D[t− 1])], (10)

where the last inequality follows from Jensen’s inequality. Note that Var(µa | D[t]) = Varπt(µa) and
E(µa | D[t]) = Eπt(µa) as in (7).

We make the following assumptions on the posterior distribution p(µa | D[t]). See Appendix A for a detailed
discussion on how to verify these assumptions.
Assumption 1. Let da be the number of candidate parent sets for X⟨a⟩. For all t ≥ 1 and a ∈ A,

E [Var(µa | D[t])] ≤ c2
1

n0 + na(t) + c2
2da exp(−δana(t)),

where c1, c2 and δa are positive constants.

The Markov equivalence class of the true DAG, represented by a CPDAG, can be accurately estimated with
a large amount of observational data (n0 is large). In such cases, da ≤ 2ma is usually quite small, where ma

is the number of undirected edges connected to X⟨a⟩ in the CPDAG.

The second assumption is on the concentration of µ∗ ≡ µa∗ around its posterior mean E(µa∗ | D[t]):
Assumption 2. For all t ≥ 1,

P

{
µ∗ − E(µ∗ | D[t])√

Var(µ∗ | D[t])
> c

√
log t

∣∣∣ D[t]
}
≤ c3t

−b,

where c3 > 0 and b > 1 are constants.
Proposition 1. Under Assumptions 1 and 2, the Bayes regret of the BBB-UCB algorithm satisfies

RB
T ≤

[
c4

(√
KT +K2(n0 − 1)−

√
K2(n0 − 1)

)
+ c5

∑
a∈A

√
da

]√
log T + c6, (11)

where K = |A| and c4, c5, c6 are positive constants.

8
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Remark 1. By Proposition 1 of Russo & Van Roy (2014), the same upper bound (11) also applies to the
Bayes regret of the BBB-TS algorithm.

For any n0 ≥ 1, by concavity of
√
x,√
K2(n0 − 1) +KT −

√
K2(n0 − 1) ≤

√
KT.

Therefore, when T is large such that
∑

a

√
da = O(

√
T ), the regret RB

T = O(
√
KT log T ), which is identical

to the order of the regret of a standard MAB, e.g. Proposition 2 of Russo & Van Roy (2014). The benefit
of our backdoor adjustment prior is seen when n0 is large relative to T . If T/(n0 − 1) < M , where M is a
constant, then

√
K2(n0 − 1) +KT −

√
K2(n0 − 1) =

√
K2(n0 − 1)

[{
1 + T

K(n0 − 1)

}1/2
− 1
]

≤ T

2
√
n0 − 1

≤
√
MT

2 ,

where the first inequality is due to (1 + x)1/2 ≤ 1 + x/2 for x ≥ 0. In this case, we obtain a regret
bound RB

T = O(
√
T log T ) independent of K. This confirms the advantage of using observational data

to simultaneously estimate all rewards µa, a ∈ A through backdoor adjustment, which largely relaxes the
dependence of the regret on the number of actions.

5 Implementation Details

5.1 Nonparametric Discrete Setting

We now detail the application of our proposed construction of π0
a|Z to the setting where the conditional

probability distributions are multinomials, with each variable Xi ∈ X probabilistically attaining its states
depending on the attained state configuration of its parents PaG

i . The reward variable Y = Xp is a bi-
nary variable with Dom(Y ) = {0, 1}. If Y ̸∈ Z, µa may be estimated with observational data through
straightforward empirical estimation of (1):

µ̂a,bda(Z) = P̂ [Y = 1 | do(X⟨a⟩ = xa)] = 1
n0

∑
z

n0[1, xa, z]n0[z]
n0[xa, z] , (12)

where n0[1, xa, z] represents the number of the n0 samples of D0 in which Y = 1, X = xa, and Z = z, with
corresponding definitions for n[xa, z] and n[z].

Analysis of the sampling distribution of (12) is admittedly challenging. To design an appropriately weighted
informative prior as proposed in (2), we require some characterization of the sampling variability of µ̂a,bda(Z).
Hence, we derive an approximation of the variance of (12), ŜE2[µ̂a,bda(Z)]. We accomplish this by first re-
expressing the joint counts n0[·] as sums of elements of a multinomial random vector. The term within the
sum may then be expressed as a product and ratio of intersecting random quantities, which we approximate
through a first-order Taylor series expansion. The details of the derivation are delegated to Appendix D. It
is appropriate to acknowledge that Maiti et al. (2021) proposed a provably unbiased strategy for empirical
estimation of (1) through splitting the sample into independent partitions. However, this approach suffers
from severe loss of precision through what some may consider underutilization of the observed data. In
our experiments detailed in Appendix C.1, we find the empirical performance of (12) in our applications
to be acceptable. We additionally provide extensive empirical validation of our derived approximation,
demonstrating coverage probabilities comparable to empirical estimates of the sampling variability for modest
sample sizes.

Since the reward variable under arm a is a Bernoulli random variable with probability parameter µa =
P [Y = 1 | do(X⟨a⟩ = xa)], we assume a conjugate prior π0

a|Z = Beta(α0, β0) for θa = µa designed according

9



Published in Transactions on Machine Learning Research (01/2023)

to (2), resulting in prior hyperparameters

α0 = µ̂a,bda(Z)
(
µ̂a,bda(Z)[1− µ̂a,bda(Z)]

ŜE2 [µ̂a,bda(Z)]
− 1
)
, β0 = α0

(
1− µ̂a,bda(Z)
µ̂a,bda(Z)

)
.

5.2 Gaussian Unit Deviation Setting

In this section, we consider the setting where the causal model may be expressed as a set of Gaussian
structural equations:

Xj =
p∑

i=1
βijXi + εj , εj ∼ N(0, σ2

j ), j = 1, . . . , p. (13)

There is no intercept term, which is analogous to having prior knowledge of the observational means, and
we consider interventions xa ∈ {−1, 1}, which may be interpreted as investigating unit deviations from the
observational means. In this setting, the causal effect of X⟨a⟩ on Y is given by

ψ⟨a⟩ := EP [Y | do(X⟨a⟩ = x′ + 1)]− EP [Y | do(X⟨a⟩ = x′)]

for any x′ ∈ R, derived via a special case of (1). Note that in our problem formulation, Y | do(X⟨a⟩ = 1)
and −Y | do(X⟨a⟩ = −1) are identically distributed, so all data generated from interventions on X⟨a⟩

may be combined to estimate ψ⟨a⟩. Since µa = xaψ⟨a⟩, we focus our efforts on estimating and modeling
ψ⟨a⟩. Accordingly, in constructing our priors using intervention calculus, we design priors π0

⟨a⟩|Z for θ⟨a⟩

corresponding to estimating ψ⟨a⟩, and allow π0
a|Z to be the induced priors for θa corresponding to µa = ψ⟨a⟩xa,

detailed as follows.

If Y ̸∈ Z, then a consistent estimator of ψ⟨a⟩, denoted ψ̂⟨a⟩,bda, may be obtained with observational data by
the least squares regression

Y = ψ⟨a⟩X⟨a⟩ + γ⊤Z + e, e ∼ N(0, η2), (14)

where γ ∈ R|Z| is the coefficients of the parents Z (Maathuis et al., 2009; Pensar et al., 2020), and some
dependence on a is omitted for simplicity. Correspondingly, we express the desired interventional distribution
as Y | do(X⟨a⟩ = xa) ∼ N(ψ⟨a⟩xa, ω

2). Claiming no prior knowledge of the interventional variance, we assume
a Normal-inverse-gamma (N-Γ−1) conjugate prior π0

⟨a⟩|Z for θ⟨a⟩ = (ψ⟨a⟩, ω
2):

ψ⟨a⟩ | ω2 ∼ N
(
m0, ω

2ν−1
0
)
, ω2 ∼ Γ−1(u0, v0). (15)

Since in general, the residual variance η2 in (14) is not equivalent to ω2, we propose the following to estimate
ω2 from observational data.
Proposition 2. Suppose that X follows the causal structural equation model (SEM) in (13) with CBN B.
Let Y,X ∈ X, and denote by ψ the causal effect of X on Y . Then for any x ∈ Dom(X),

VarP [Y | do(X = x)] = VarP [Y − ψX].

Note that VarP [·] is the variance in P defined by CBN B, and the variance on the right side is with respect
to the observational distribution of X. Intuitively, subtracting by ψX negates the noise variances σ2 in (13)
propogated through and from X to Y . We include a detailed proof for Proposition 2 in Appendix A.

Thus, to estimate ω2 from D0, we propose the estimator ω̂2 =
∑

i(ỹi − ¯̃y)2/(n0 − |Z| − 2) where ỹi are
realizations of Ỹ := Y − ψ̂⟨a⟩,bda(Z)X⟨a⟩ in D0, and n0 − |Z| − 2 is the degrees of freedom resulting from
estimating ¯̃y in addition to |Z|+ 1 coefficients in (14). Accordingly, we design the prior ω2 ∼ Γ−1(u0, v0) to
have prior mean E[ω2] = v0/(u0−1) = ω̂2, resulting in hyperparameters u0 = (n0−|Z|)/2 and v0 =

∑
i(ỹi−

¯̃y)2/2. After marginalizing out ω2, ψ⟨a⟩ ∼ t2u0(m0, v0(u0ν0)−1), so we set Eπ0
⟨a⟩|Z

[ψ⟨a⟩] = m0 = ψ̂⟨a⟩,bda(Z)

and solve to obtain ν0 = v0/(u0ŜE2[ψ̂⟨a⟩,bda(Z)]).

10
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To maximally utilize the ensemble data, we further generalize the estimation of ψ⟨a⟩ via regression in (14)
to include eligible samples of intervention data. This is achieved through the following proposition, which
we prove in Appendix A. This result does not rely on any parametric assumptions for the underlying causal
model, assuming simply that X follows a general linear SEM with DAG G (Pearl, 2000).
Proposition 3. Suppose that X follows a linear SEM with CBN B = (G,ΘG), and X,Y ∈ X. Suppose that
W ∈ X \ {X,Y } does not block any directed path from X to Y in G. Then for any w ∈ R,

∂

∂x
EP [Y | do(X = x)] = ∂

∂x
EP [Y | do(X = x), do(W = w)].

Proposition 3 asserts a simple graphical criterion which, if satisfied, defines an avenue by which information
can be shared between arms. In our work, we check the graphical criterion for estimating the causal effect
of X⟨a⟩ on Y with interventional data generated from intervening on Xj as follows. Using another algorithm
proposed by Pensar et al. (2020) for computing exact ancestor posterior probabilities, we consider the
criterion satisfied at time step t if the event that Xj blocks a directed path from X⟨a⟩ to Y has low posterior
probability:

P (X⟨a⟩ ⇝ Xj ⇝ Y | D[t]) ≤ min{P (X⟨a⟩ ⇝ Xj | D[t]), P (Xj ⇝ Y | D[t])} ≤ τ (16)

where Xj ⇝ Y denotes that Xj is an ancestor of Y and the threshold is set to τ = 0.1 in our application. If
(16) holds at time step t, we combine the observational data and the data from interventions on Xj when
conducting the regression (14). While independent samples of observational and interventional data are
not guaranteed to have identically distributed errors in the regression (14), we provide extensive empirical
validation of our proposed regression with ensemble data in Appendix C.2, confirming indistinguishable
performance for the purposes of estimating ψ⟨a⟩ and its sampling variability compared to that of purely
observational data.

6 Numerical Experiments

We conducted extensive numerical experiments to empirically validate our proposed methodology. For our
main experiments, we generated random CBN models in an effort to empirically demonstrate the merits
of our proposed methodology by evaluating BBB across a broad range of scenarios. To address the com-
putational challenges of BBB, we then evaluated an implementation using MCMC to estimate parent set
probabilities and applied it to a larger realistic reference network. Comprehensive experimental details suf-
ficient for reproducing our experiments, such as CBN preparation and algorithm parameters, are provided
in Appendix B. Additional supplemental experiments independently evaluating (12) and Proposition 3 may
be found in Appendix C. The complete code and instructions for reproducing our results have been made
available at the following link:

https://github.com/jirehhuang/bcb

6.1 Random Networks

For our main experiments, we generated CBN models with p = 10 variables in the interest of representing a
diverse range of scenarios in our empirical comparisons. The structures were randomly generated, with the
reward variable designated to have |PaG

p | = 3 parents, according to a process adapted from de Kroon et al.
(2022). The conditional probability distributions of each CBN were likewise generated randomly. Atomic
interventions as described in Section 5 were allowed on all variables excluding the reward variable, with the
discrete variables assumed to be binary, resulting in |A| = 2(p− 1) = 18 actions.

We evaluated our BBB methodology against algorithms designed to optimize cumulative regret, including
popular standard MAB algorithms Bayes-UCB, TS, and UCB that do not utilize causal assumptions (see
Section 4). Additionally, we compared against what can be interpreted as a highly optimistic version of
the central node approach by Lu et al. (2021), introduced in Section 1, by presupposing knowledge of the
direct causes of the reward variable. In particular, for Bayes-UCB∗, TS∗, and UCB∗, we executed the
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respective algorithms over the reduced action set A′ = {a ∈ A : ⟨a⟩ ∈ PaG
p }. Accordingly, for the cases

where ⟨a∗⟩ ̸∈ PaG
p , we redefined the optimal intervention to a∗ = argmaxa∈A′ µa when evaluating the regret

of TS∗ and (Bayes-)UCB∗. To circumvent confounding arising from the differences in algorithm designs and
any relevant parameter tuning, we focus our comparisons within algorithm types, e.g. amongst TS, TS∗,
and BBB-TS.

Using the process described above, we generated 100 CBN models for each distributional setting. For each
CBN, we executed the competing methods 10 times but our BBB methods only 5 times due to their greater
computational expense, with T = 5000 time steps. The results presented are averaged across all simulations
for each time step, with the cumulative regret normalized by the optimal reward µ∗ to ensure that each CBN
model contributes comparably. In preference to the competing methods, we tuned for their best-performing
parameters where relevant and applied them to our BBB implementations. We computed exact parent set
probabilities in BBB using an algorithm proposed by Pensar et al. (2020) in an effort to assess our BBB
methodology in the most precise implementation of its formulation. Additional experimental details may be
found in Appendix B, and additional supporting results are provided in Appendix C.

Note that while the simulations were executed across a cluster of heterogeneous nodes, it was not difficult
to observe that the computational requirements of BBB vastly exceeded that of the considered competing
methods. The average execution time of each iteration of our discrete and Gaussian implementations of BBB
on the random networks was respectively around 4.3 and 8.2 seconds, compared to less than 0.15 seconds for
the competing methods. This includes the exact computation of parent set posteriors, computing or updating
corresponding backdoor adjustment estimates, and in the Gaussian case, ancestor posterior probabilities.
While BBB requires significantly greater computational expense, the cost must be weighed against other
considerations such as the time and resources required for additional exploration of interventions.

6.1.1 Cumulative Regret Comparisons

The empirical cumulative regret results in Figure 1 demonstrate that in both the discrete and Gaussian
settings and for all algorithms, our BBB methodology is able to reliably outperform the non-causal variants
with finite samples of observational data. The improvement increases monotonically with increasing sample
sizes of observational data (n0). While corresponding variants of Bayes-UCB and TS perform comparably,
UCB achieves substantially lower regret because the parameter c in (6) was tuned to maintain a balance
between exploration and exploitation that is most empirically preferred. In particular, UCB is able to
avoid excessive exploration by scaling its padding term with a relatively small constant, whereas Bayes-UCB
maintains a relatively high minimum exploration rate according to its formulation in (8), as does TS.

In comparison to the optimistic central node versions of the algorithms, BBB generally achieves lower
cumulative regret with n0 ≥ 800 in the discrete setting and n0 ≥ 40 in the Gaussian setting. Recall that,
in practical applications, the central node approach relies on the availability of large-sample observational
data as well as a sequence of interventions to recover the reward generating variables PaG

p . Based on our
simulation settings, this reduces the action set from |A| = 18 arms to only |A′| = 2|PaG

p | = 6 arms, and we
additionally artificially restrict a∗ ∈ A′ to evaluate the regret. Furthermore, the regret results reported for
these methods do not include the interventions required to identify PaG

p , thus representing a kind of best
case scenario for the central node approach. In contrast, our methodology derives substantial benefit from
modest amounts of observational data samples n0.

Indeed, we find that our BBB methods are able to perform competitively against the competing methods even
when the latter are given n0 time steps to explore arms before incurring regret. To compensate for the fact
that BBB utilizes n0 samples of observational data prior to investigating arms, we present the results where
the competing algorithms TS(∗) and (Bayes-)UCB(∗) are given a head start of n0 ∈ {100·2k : k = 0, 1, . . . , 5}
time steps to explore arms before incurring regret. The results for the discrete setting are shown in Figure 2.
The Gaussian results are omitted because n0 ≤ 320 is relatively small, so the head start does not offer
substantial benefit to the competing methods. In all cases, BBB still significantly outperforms the standard
algorithms TS and (Bayes-)UCB given the head start. Given sufficient samples of observational data, BBB
still performs comparably to if not better than the optimistic central node variants in terms of cumulative
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Figure 1: Average cumulative regret against T = 5000 time steps comparing Alg, Alg∗, and BBB-Alg for
Alg ∈ {Bayes-UCB,TS,UCB}. BBB methods were executed with n0 = 100 · 2k in the discrete setting and
n0 = 10 · 2k in the Gaussian setting.

regret, for which the head start is only an additional unwarranted advantage given that they already require
significantly more observational data as well as additional interventions.

6.1.2 Structure Identification

In addition to the cumulative regret performance, it is of interest to consider the structure identification
behavior of the BBB approach in our experiments. We measure the concentration of the posterior probability
across DAGs G with respect to the underlying causal graph G∗ using the edge support sum of absolute errors
(ESSAE), which is given at time t by

p∑
i=1

∑
j ̸=i

∣∣∣P (j ∈ PaG
i | D[t])− 1

{
j ∈ PaG∗

i

}∣∣∣ .
This quantity may be understood as a probabilistic version of the structural hamming distance, a common
metric in Bayesian network structure learning literature. Lower ESSAE corresponds to greater concentration
of the posterior probability around the causal graph G∗. The results are provided in Figure 3.

In the discrete results for BBB-Bayes-UCB and BBB-TS, the initial ESSAE is unsurprisingly lower for the
larger sample sizes, but the trend quickly reverses as the time steps progress. This effect is also observed
occurring in the Gaussian results, but at an accelerated pace. This behavior is perhaps best understood in
complement to the cumulative regret results in Figure 1. If P is faithful to G, then if n0 is large, the structure
prior P (G | D0) is expected to concentrate around the Markov equivalence class, which entails identification
of the skeleton and in general, partial identification of the orientations. Additionally, the conditional priors
π0

a|Z will be precise models, allowing BBB to quickly identify and select arm(s) a ∈ A with small regret
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Figure 2: Discrete average cumulative regret for Alg ∈ {Bayes-UCB,TS,UCB} with a head start of n0 ∈
{100 · 2k : k = 0, 1, . . . , 5} time steps for competing methods.
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Figure 3: Discrete (n0 = 100 · 2k) and Gaussian (n0 = 10 · 2k) results of the average ESSAE of the full graph
structure for BBB-Alg, Alg ∈ {Bayes-UCB,TS,UCB}.
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µ∗−µa, which has the effect of clarifying the orientation of edges incident to such X⟨a⟩. The policies take no
interest in determining the orientation of the remaining edges if the uncertainty does not indicate potential to
identify more profitable actions. In contrast, when n0 is small, the greater uncertainty in both the structure
prior and the conditional priors encourage the exploration of many different arms, thus incurring greater
cumulative regret. In addition to clarifying the orientation of the incident edges, selecting arm(s) a ∈ A
contributes to identifying the direct edge connections excluding those from PaG

⟨a⟩ to X⟨a⟩, as can be seen in
(5). Thus, the skeleton is recovered and more edge orientations are identified than in the case where n0 is
large, achieving lower ESSAE at the cost of greater cumulative regret. Notably, while this reversal appears
to be absent in the discrete results for BBB-UCB, in actuality it has simply not yet been realized even after
T = 5000 time steps due to the small exploration constant c in (7).

6.2 Scaling BBB With MCMC

Despite the efficiency of the algorithm proposed by Pensar et al. (2020), its scaling in p of O(3pp) means that
exact computation of the parent set posteriors is not always feasible. Pensar et al. (2020) noted that their
algorithm executed on 20 variables in about 25 minutes, which would translate to over 86 days for 5000 time
steps. While potentially justifiable depending on the context of the application such as when interventions
are particularly expensive or time-consuming, such intensive computational requirement for each time step
is likely to be limiting of the practical application of BBB on larger systems. As discussed in Section 3, the
parent set probabilities are derived from a posterior distribution of graph structures which may be estimated
by MCMC. In this section, we discuss the implementation of BBB using MCMC to estimate the structure
posterior. We provide preliminary results in the discrete setting assessing this approximation against the
exact computation of parent sets and evaluating its performance on a realistic reference network with p = 20
variables.

The posterior distribution of graph structures P (G | D[t]) may be approximated by sampling DAGs Gt from
P (G | D[t]) using MCMC and empirically estimating (4) from the sampled graphs:

P (Pai = Z | D[t]) ≈ 1
|Gt|

∑
G′∈Gt

1
{

PaG′

i = Z
}
.

Various MCMC sampling schemes for DAGs have been developed, most basic of which is the structure MCMC
sampler which accepts proposed single edge addition, deletion, or reversal steps according to a Metropolis-
Hastings probability (Madigan et al., 1995; Giudici & Castelo, 2003). With order MCMC, Friedman &
Koller (2003) reduced the search space to the topological orderings of the p nodes, significantly accelerating
convergence but retaining a degree of bias since a given DAG may belong to multiple orders. Kuipers &
Moffa (2017) addressed this issue of bias by considering the space of ordered partitions in partition MCMC,
though at the price of greater computational requirement (Suter et al., 2021).

In our simulations, we chose to use order MCMC despite the potential bias due to its computational advantage
over partition MCMC while achieving satisfactory performance. For further improvements in efficiency, we
applied the hybrid approach proposed by Kuipers et al. (2022) in which DAGs are sampled from a loosely
restricted initial search space, with built-in provisions to expand the search space. In particular, before
performing any interventions, we obtained an initial search space with the PC algorithm (Spirtes & Glymour,
1991) and sampled DAGs from P (G | D0). For subsequent iterations, we restricted the search space using the
structure posterior estimated from the immediately preceding iteration. Whenever conducting the restricted
sampling scheme, the search space was allowed to be extended as designed by Kuipers et al. (2022) to account
for false negatives in the restriction.

We first compared the cumulative regret amongst exact computation of parent set posteriors (Exact), approx-
imation by MCMC without restricting the search space at any step (MCMC), and MCMC with restricting
the search space as described (Hybrid MCMC). Each of these were executed twice on each of the 100 ran-
domly generated discrete CBNs, and the results at various time steps are shown in Figure 4. Hybrid MCMC
performed equivalently with unrestricted MCMC, enjoying significant computational reductions without ex-
hibiting any inferiority in performance. However, while (hybrid) MCMC performed comparably with exact
computation in most cases, there were significantly more extreme values in the MCMC methods. These
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Figure 4: Cumulative regret of BBB-Alg for Alg ∈ {Bayes-UCB,TS,UCB} with n0 = 3200 on the discrete
random networks from Section 6.1 for time steps t ∈ {500, 2000, 3500, 5000} comparing between computing
exact parent set posteriors and approximating with MCMC. Each boxplot represents 200 data points, with
the number of points above 60 labeled above.

may have resulted from the bias inherent to order MCMC, but given that general settings were applied and
convergence was not assessed for each iteration, another potential explanation would be insufficient itera-
tions for certain CBNs. In general, approximation of the structure posterior with MCMC appears to be an
acceptable scalable alternative to exact computation.

We then applied BBB with hybrid MCMC to CHILD, a moderately sized discrete reference network with
p = 20 nodes for diagnosing congenital heart disease (Spiegelhalter, 1992). CHILD was constructed with
domain experts and made available in a Bayesian network repository (Spiegelhalter, 1992; Scutari, 2010).
The network was preprocessed to have binary variables, and the target variable was set to LowerBodyO2, a
leaf node with two parents. All other variables were intervenable, with |A| = 38 arms, though only |A′| = 4
for the optimistic central node approach.

The cumulative regret results for 20 executions of various algorithms are presented in Figure 5. Even after
T = 5000 time steps, most methods fail to exhibit meaningful convergence in the form of the flattening
of the cumulative regret curve. This is because all but two arms have expected reward µa > 0.5, making
the optimal reward of approximately µ∗ = 0.622 difficult to distinguish without a great deal of exploration.
Unsurprisingly, the central node approach performs exceptionally well, having only four arms to investigate.
With n0 = 3200, BBB was able to adequately distinguish the arms with higher expected reward, achieving
cumulative regret competitive with the central node approach. The average execution time of each iteration
of BBB with MCMC on CHILD was around 9.4 seconds, compared to less than 0.23 seconds for the competing
methods.

7 Discussion

In this paper, we proposed the BBB framework for enhancing experimental investigations with observational
data. BBB consists of an aggregation of various strategies for estimating and modeling the parameters of
interest with jointly interventional and observational data in order to efficiently utilize all available data
to inform exploitation and exploration. Applied in our methodology but also of independent interest, we
derived a well-performing approximation for the variance of the discrete backdoor adjustment estimator, and
in the Gaussian setting, we characterized the interventional variance using the observational distribution and
proposed a simple graphical criterion for sharing information between arms. We supplied preliminary regret
analysis justifying our methodology, and empirically validated our proposed algorithms through extensive

16



Published in Transactions on Machine Learning Research (01/2023)

Alg: Bayes−UCB Alg: TS Alg: UCB

0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

0

200

400

600

A
v

e
ra

g
e

 C
u

m
u

la
ti

v
e

Alg Alg* BBB−Alg(k=5)

Alg: Bayes−UCB Alg: TS Alg: UCB

500 2000 3500 5000 500 2000 3500 5000 500 2000 3500 5000

0

250

500

750

Time Step

M
e

d
ia

n
 C

u
m

u
la

ti
v

e
 (

9
5

%
)

Alg Alg* BBB−Alg(k=5)

Figure 5: Average cumulative regret and median cumulative regret with 95% percentile intervals against
T = 5000 time steps comparing Alg, Alg∗, and BBB-Alg for Alg ∈ {Bayes-UCB,TS,UCB}, executed on
CHILD (p = 20). BBB methods were executed with n0 = 3200 using hybrid MCMC to estimate the structure
posterior.

numerical experiments against standard MAB algorithms as well as a generously optimistic version of a
recently proposed CB approach.

Although our work notably does not depend on certain restrictive assumptions made by previous work,
namely knowledge of the causal graph or large-sample observational information, our proposed methodology
nonetheless requires a causally sufficient system which may not be available in practice. In the presence
of unobserved confounders, an obvious challenge is that the variables in the parent sets that BBB uses for
backdoor adjustment may not all be observed. Since sets that satisfy the backdoor criterion are not limited
to the parent set, one approach to this setting would be to otherwise identify valid adjustment sets. Perhaps
the most obvious extension of our methodology would be to model the underlying ancestral graph instead of
the DAG. From the ancestral graph, causal effects may be estimated from observational data by identifying
valid backdoor adjustment sets based on its structure.

The challenge of scaling BBB was addressed briefly by hybrid MCMC in Section 6, but the limits of the
computational feasibility of BBB have yet to be carefully investigated or precisely articulated. Preliminary
investigations suggest that BBB can scale to well over 100 variables, but extended empirical evaluation is
necessary. A careful technical study of the posterior distributions is left as future work to complete the
theoretical analysis of the cumulative regret. Finally, it would be interesting to consider how to share
information between arms in the discrete setting as in Proposition 3 with a similarly simple graphical
criterion.
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A Proofs and Discussions

Proof of Proposition 1. Let Ta = {t ≤ T : at = a} be the time steps in which a is selected. Then by
inequality (10), Assumption 1 and the concavity of

√
x, we have

∑
t∈Ta

E[Ua(t)− µa] ≤ c
√

log T
{
c1
∑
t∈Ta

[n0 + na(t− 1)]− 1
2 + c2

√
da

∑
t∈Ta

exp
[
−δana(t− 1)

2

]}
.

Now the first summation on the right side

∑
t∈Ta

[n0 + na(t− 1)]− 1
2 =

na(T )−1∑
j=0

(n0 + j)− 1
2

≤
∫ n0+na(T )−1

n0−1
x− 1

2 dx = 2(
√

(n0 − 1) + na(T )−
√
n0 − 1).

Similar derivation shows that the second summation∑
t∈Ta

exp
[
−δana(t− 1)

2

]
≤ ca,

where ca is a constant. Therefore,∑
t∈Ta

E[Ua(t)− µa] ≤ c
[
2c1(

√
(n0 − 1) + na(T )−

√
n0 − 1) + c2ca

√
da

]√
log T .

By Cauchy-Schwartz inequality,∑
a∈A

√
(n0 − 1) + na(T ) ≤

√
K
{
K(n0 − 1) +

∑
a
na(T )

}1/2
=
√
KT +K2(n0 − 1).

Summing over actions, we arrive at

T∑
t=1

E[Ua(t)− µa] =
∑
a∈A

∑
t∈Ta

E[Ua(t)− µa]

≤

[
c4

(√
KT +K2(n0 − 1)−

√
K2(n0 − 1)

)
+ c5

∑
a∈A

√
da

]√
log T , (17)

where c4 = 2cc1 and c5 = cc2 maxa ca.

Next, we show that the second term in (9) is bounded. By the definition of Ua(t) in (7), Assumption 2
implies

P (µ∗ > Ua∗(t)) = E [P (µa∗ > Ua∗(t) | D[t− 1])] ≤ c3(t− 1)−b

for t ≥ 2, and thus,

T∑
t=1

P (µa∗ > Ua∗(t)) ≤ 1 + c3

∞∑
t=1

t−b.

Therefore, the second term is bounded by a constant c6. Accordingly, (11) follows from (17).

Discussion of Assumption 1 and Assumption 2. We now demonstrate how to verify Assumption 1 and
Assumption 2 for Proposition 1. Recall that the posterior distribution p(µa | D[t]) is defined via averaging
over possible parent set Za := PaG

⟨a⟩ ⊆ X \X⟨a⟩.
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We start with decomposing Var(µa | D[t]) by conditioning on Za,

Var(µa | D[t]) = E [Var(µa | Za,D[t]) | D[t]] + Var [E(µa | Za,D[t]) | D[t]] . (18)

Using the Gaussian setting as an example, under the conjugate prior (15), the conditional posterior p[µa |
Za,D[t]] is a t-distribution with (n0 + na(t)− |Za|) degrees of freedom and variance

Var(µa | Za,D[t]) = V t
a (Za)

n0 + na(t) ,

where V t
a (Za) = Op(1) depends on D[t]. Now the first term on the right side of (18) is expressed as

E [Var(µa | Za,D[t]) | D[t]] =
∑
Za

V t
a (Za)

n0 + na(t)P (Za | D[t]). (19)

Taking further expectation to average over D[t], we get

E
{

E [Var(µa | Za,D[t]) | D[t]]
}

= 1
n0 + na(t)E

[∑
Za

V t
a (Za)P (Za | D[t])

]
≤ c2

1
n0 + na(t) , (20)

where c2
1 is an upper bound for the expectation in the second step for all a ∈ A.

Let µt
a(Za) := E (µa | Za,D[t]) and G∗ be the true causal DAG. Then,

Var
[
µt

a(Za) | D[t]
]
≤

∑
Za ̸=PaG∗

⟨a⟩

[
µt

a(Za)− µt
a(PaG∗

⟨a⟩)
]2
P (Za | D[t])

≤ max
Za

[
µt

a(Za)− µt
a(PaG∗

⟨a⟩)
]2
P (Za ̸= PaG∗

⟨a⟩ | D[t])

≤ 4C2P (Za ̸= PaG∗

⟨a⟩ | D[t]),

where the last inequality is due to the assumption that µa ∈ [−C,C] for all a. Based on asymptotic approxi-
mation (Schwarz, 1978; Haughton, 1988), the posterior probability P (Za | D[t]) = Op(exp[−δ(Za)na(t)]) for
any Za ̸= PaG∗

⟨a⟩ when na(t) is large, where δ(Za) > 0 is a constant depending on Za. Let da be the number
of candidate parent sets for X⟨a⟩ and δa = min{δ(Za) : Za ̸= PaG∗

⟨a⟩}. Taking expectation, we arrive at

E
{

Var
[
µt

a(Za) | D[t]
]}
≤ c2

2da exp(−δana(t)), (21)

for some positive constant c2. Combining (20) and (21) leads to Assumption 1.

Put Z∗ ≡ Za∗ and na∗(t) ≡ n∗(t). To verify Assumption 2, we make use of concentration of the conditional
posterior distribution p(µ∗ | Z∗,D[t]) and concentration of E (µ∗ | Z∗,D[t]). Define two events,

Et,1 :=
{

µ∗ − E(µ∗ | Z∗,D[t])√
E [Var(µ∗ | Z∗,D[t]) | D[t]]

>
c

2
√

log t
}
,

Et,2 :=
{

E(µ∗ | Z∗,D[t])− E(µ∗ | D[t])√
Var [E(µ∗ | Z∗,D[t]) | D[t]]

>
c

2
√

log t
}
.

By (18), Var(µ∗ | D[t]) ≥ E [Var(µ∗ | Z∗,D[t]) | D[t]] and Var(µ∗ | D[t]) ≥ Var [E(µ∗ | Z∗,D[t]) | D[t]]. Then,
we have

P

{
µ∗ − E(µ∗ | D[t])√

Var(µ∗ | D[t])
> c

√
log t

∣∣∣ D[t]
}
≤ P (Et,1 | D[t]) + P (Et,2 | D[t]).
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For the first probability, we further condition on Z∗:

P (Et,1 | D[t]) =
∑
Z∗

P (Et,1 | Z∗,D[t])P (Z∗ | D[t]).

According to (19), for a fixed D[t], Var(µ∗ | Z∗,D[t]) = Op(E [Var(µ∗ | Z∗,D[t]) | D[t]]) = Op(1/[n0 +n∗(t)]).
Then for some constant c(Z∗) > 0,

P (Et,1 | Z∗,D[t]) ≤ P
{
µ∗ − E(µ∗ | Z∗,D[t])√

Var(µ∗ | Z∗,D[t])
> c(Z∗)

√
log t

∣∣∣Z∗,D[t]
}
.

Upper bounds for the right side can be established based on concentration of many common posterior
distributions. For the Gaussian setting, µ∗ | Z∗,D[t] follows a t distribution with (n0 +n∗(t)− |Z∗|) degrees
of freedom. Existing concentration inequality for t distribution with r degrees of freedom, such as

P (|tr| ≥ x) ≤ 2 exp(−x2/4) + exp(−r/16)

in Lemma 18 of Wang (2022), can be used to show that P (Et,1 | Z∗,D[t]) = O(t−b) for some b and every
candidate Z∗ and therefore P (Et,1 | D[t]) = O(t−b) for any D[t].

Note that E(µ∗ | Z∗,D[t]) = µt
a∗(Z∗) is a function of Z∗ conditioning on D[t] and thus a discrete and bounded

random variable. The second probability

P (Et,2 | D[t]) = P

{
µt

a∗(Z∗)− E(µt
a∗(Z∗) | D[t])√

Var [µt
a∗(Z∗) | D[t]]

>
c

2
√

log t
∣∣∣D[t]

}

may be shown to be O(t−b) by existing concentration inequality of a discrete bounded random variable and
the concentration of [Z∗ | D[t]] on the true parent set.

Proof of Proposition 2. Let Z be the parent set of X. Then by a special case of (1),

p(y | do(x)) =
∫
p(y | x, z)p(z)dz

=
∫
ϕ(y | ψx+ γ⊤z, σ2)ϕ(z | 0,ΣZ)dz

= ϕ(y | ψx,γ⊤ΣZγ + σ2),

where ϕ(· | µ,Σ) is the probability density function of N(µ,Σ) and ΣZ is the covariance matrix of Z. Thus,

Y | do(X = x) ∼ N(ψx,γ⊤ΣZγ + σ2).

Now representing [Y | X,Z] by a linear regression:

Y = ψX + γ⊤Z + ε,

where ε ∼ N(0, σ2) ⊥ Z ∼ N(0,ΣZ). Then we have

VarP (Y − ψX) = VarP (γ⊤Z + ε)
= γ⊤ΣZγ + σ2 = VarP (Y | do(X = x)).

Proof of Proposition 3. The result follows straightforwardly from a simple graphical argument. Let ΞG
XY

denote the distinct directed paths from X to Y in the causal graph G given the model (13), where ξ ∈ ΞG
XY

23



Published in Transactions on Machine Learning Research (01/2023)

consists of all the directed edges i→ j ∈ E on the given path from X to Y . Then the causal effect of X on
Y can be expressed as the sum of propagated direct effects along all directed paths from X to Y :

ψXY := ∂

∂x
EP [Y | do(X = x)] =

∑
ξ∈ΞG

XY

∏
i→j∈ξ

βij .

We denote the variables under the intervention do(W = w), w ∈ R as X̃, with resulting causal model

X̃j =
p∑

i=1
β̃ijX̃i + ε̃j , j = 1 . . . , p,

where

β̃ij =
{

0 if Xj = W

βij otherwise,
ε̃j =

{
w if Xj = W

εj otherwise.

The corresponding causal graph for X̃ is the mutilated graph G̃ resulting from deleting all edges into W .
The causal effect of X̃ on Ỹ is then

ψX̃Ỹ := ∂

∂x
EP [Ỹ | do(X̃ = x)] = ∂

∂x
EP [Y | do(X = x), do(W = w)] =

∑
ξ∈ΞG̃

XY

∏
i→j∈ξ

β̃ij .

Since W does not block any directed path from X to Y , the mutilated graph G̃ retains all the directed paths
from X to Y in G, so ΞG̃

XY = ΞG
XY . By the same reasoning, β̃ij = βij for all i → j ∈ ξ where ξ ∈ ΞG̃

XY .
Therefore, for any w ∈ R,

∂

∂x
EP [Y | do(X = x)] = ∂

∂x
EP [Y | do(X = x), do(W = w)].

B Experimental Details

In this section, we include details regarding the experiments discussed in Section 6.

For our random network simulations, we generated CBN models for p = 10 variables with reward variable
Y = Xp. In order to investigate interesting structures with diverse non-trivial confounding relationships,
we randomly generated graph structures using the following process adapted from de Kroon et al. (2022).
Given a fixed topological sort of the variables X1 ≺ · · · ≺ Xp where the reward variable is Y = Xp, we
sequentially considered nodes in reverse topological order: i = p − 1, . . . , 1. We uniformly sampled the
maximum out-degree of Xi, denoted di, from 1 to p − i. Then, for di times, we randomly selected Xj

from {Xj ∈ X : Xi ≺ Xj}, adding Xi → Xj to the graph only if the edge was not already present and
|PaG

j | < 3. We imposed an additional requirement that |PaG
p | = 3, randomly adding parents if necessary.

If the generated structure consisted of multiple disconnected components, we rejected the structure and
reattempted the process.

The conditional probability distributions of each CBN were likewise generated randomly. For discrete net-
works, the variables were all assumed to be binary, and the conditional probability tables were randomly
generated uniformly and normalized, and were accepted only if for every edge Xj → Xi, there is a suffi-
ciently large causal effect, with |P [Xi = xi | do(Xj = xj)] − P (Xi = xi)| ≥ 0.05 for some xi ∈ Dom(Xi)
and xj ∈ Dom(Xj). Additionally, we required the marginal probability of any single discrete level to be
at least 0.01, and that the reward signal of the optimal intervention a∗ be sufficiently large with respect to
the observational mean: µ∗ − E[Y ] ≥ 0.05. For Gaussian networks, according to the model expressed in
(13), we sampled coefficients uniformly from [−1,−0.5]∪ [0.5, 1] for Xi ∈ PaG

j and standard deviations from
[
√

0.5, 1], and we normalized the system to have unit variance. Note that in the Gaussian setting, there are
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effectively |A| = 9 actions given that interventional data on the same variable may be combined as discussed
in Section 5.2, which we implement for the competing methods as well. We found that ⟨a∗⟩ ∈ PaG

p held
for 98% of the discrete models that we randomly generated, though only for 65% of the random Gaussian
models. As discussed in Section 6, we artificially enforced ⟨a∗⟩ ∈ PaG

p when evaluating the regret of TS∗ and
(Bayes-)UCB∗.

The randomly generated networks were limited to size p = 10 in the interest of extending the scope of our
empirical investigation in other aspects, namely in representing a large number of random causal models and
executing enough repetitions and time steps to reasonably assess the expected performance. We emphasize
that this limitation is primarily due to the breadth of our simulation study, whereas in practical applications
there may not be the need for tens of thousands of executions.

The in-degree restriction of |PaG
j | ≤ 3 for all j ∈ V was largely due to the difficulty in reliably generating

random conditional probability distributions that have meaningful causal effects and reward signals, as
defined in the previous paragraph, for denser discrete networks. In general, it is not uncommon to assume
the underlying DAG structure is sparse (Kalisch & Bühlmann, 2007). Similarly, the choice of |PaG

p | = 3 was
motivated by our interest in investigating non-trivial structures that have substantive connectivity between
the reward variable and the intervened variables. Note that without sufficiently meaningful connectivity and
causal effects, our BBB methodology is actually advantaged in that the interventional distributions generally
will not be substantively different than the observational distribution, thus nullifying the need for backdoor
adjustment and correspondingly causal structure learning.

For Bayes-UCB(∗), the best quantile constant in (8) was c = 0, in agreement with the empirical recommen-
dation by Kaufmann et al. (2012). The best exploration parameter for UCB in (6) was c = 1/(2

√
2) for

UCB(∗) in the discrete setting. In the Gaussian setting, UCB and UCB∗ preferred c = 1/2 and c = 1/
√

2,
respectively, the latter of which we applied for BBB. We used standard uninformative priors for TS(∗), with
α0 = β0 = 1 for the Beta prior and m0 = 0, ν0 = 1, and u0 = v0 = 1 for the N-Γ−1 prior. For BBB,
we computed exact parent set probabilities (4) using the program1 implementing the efficient algorithm
developed by and applied in Pensar et al. (2020), restricting the maximum size of parent sets to three and
using the Bayesian Dirichlet equivalent uniform and Bayesian Gaussian equivalent scores. For the Gaussian
setting, we checked the graphical criterion in Proposition 3 according to (16) with τ = 0.1.

While we focused in Section 3 on designing the marginal posteriors according to (3), a notable difference
between our proposed Bayesian CB framework and the Bayesian MAB approach described in Section 2 is that
in our design, the posterior distribution is not modular, with the marginals (πt

a)a∈A mutually dependent on
the distribution of graph structures. However, because of software limitations and for simplicity, we sampled
the criterion Ua(t) for each arm independently in the implementation of BBB-TS in our random network
experiments (line 7 in Algorithm 1). Although preliminary results have shown the difference in empirical
performance to be negligible, a more precise implementation would first sample a DAG G from the posterior
distribution P (G | D[t]) and subsequently for each arm a ∈ A, sample Ua(t) from πt

a|PaG
⟨a⟩

, which we apply
using MCMC in our scaling experiments.

For our investigation of scaling BBB with MCMC, we used the same generated random networks as previously
described for Figure 4. For the CHILD network, we coerced all variables to binary variables, with the
extraneous discrete states removed by sequentially merging states with least marginal probability. We
averaged the conditional probability distributions imposed by merged states weighted according to their
marginal probabilities.

Order MCMC was implemented by extending the BiDAG package (Suter et al., 2021) to accommodate
computing scores with ensemble data as described in Section 3. For each iteration of BBB, the structure
posterior was estimated by conducting 104 iterations with a thinning interval of 10 and discarding the first
20% as burn-in steps. The resulting set of DAGs were used for Bayesian model averaging in BBB-(Bayes-
)UCB, and for BBB-TS one random DAG was selected. For hybrid MCMC, the search space was initially
gently restricted by executing the PC algorithm (Spirtes & Glymour, 1991) with a relatively large threshold
α = 0.1 and only investigating conditioning sets of up to size one. For subsequent iterations, the search space

1Pensar et al. (2020) provided their code under the MIT License at https://github.com/jopensar/BIDA.
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Figure 6: Median cumulative regret with 95% percentile error bars for time steps t ∈ {500, 2000, 3500, 5000}
comparing Alg, Alg∗, and BBB-Alg for Alg ∈ {Bayes-UCB,TS,UCB}. BBB methods were executed with
n0 = 100 · 2k in the discrete setting and n0 = 10 · 2k in the Gaussian setting.

was restricted to edges that appear with at least 0.05 probability in the structure posterior estimated in the
preceding iteration. Note that the hybrid approach proposed by Kuipers et al. (2022) includes provisions for
extending the search space for greater robustness in the presence of false negatives, so with each iteration
the search space may be sequentially reduced or expanded as the structure posterior is increasingly informed
by interventional data.

C Additional Results

Due to the density of information communicated in figures such as Figure 1, along with the substantial
variability arising from the randomness in graph structures, conditional probability distributions, and data,
we chose not to include error bounds of the empirical variability. To visualize the variability in the empirical
results, we provide median cumulative regret with 95% percentile error bars in Figure 6.

Furthermore, in what follows we present the results from additional experiments designed to evaluate firstly
our proposed approximation of the sampling variance of the discrete backdoor adjustment estimator (12), and
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secondly the application of Proposition 3 by way of Gaussian backdoor adjustment with jointly interventional
and observational data.

C.1 Discrete Backdoor Adjustment and Variance

In this section, we describe and present experiments evaluating the behavior of µ̂a,bda(Z) where Z = PaG
⟨a⟩

as in (12), as well as our proposed approximation of its variance, derived in detail in Appendix D. Four
variance estimation methods were investigated. In the naive approach, µ̂a,bda(Z) is treated as a conditional
proportion as is the case when |Z| = 0, and the variance is estimated as µ̂a,bda(Z)[1− µ̂a,bda(Z)]/n[xa] where
n[xa] is the number of samples of data where X⟨a⟩ = xa. The sampling approach estimates the variance
from samples from the population distribution, and the bootstrap approach conducts resampling from each
sample distribution, each with 103 repetitions.

The generation of discrete CBNs for the simulation scenarios was designed as follows. The graph structure
was generated simply by initializing a structure where there is a direct edge from the intervened node X⟨a⟩

to the reward variable Y and X⟨a⟩ has |Z| = m parents. For each parent Xj ∈ Z, an edge Xj → Y was
randomly added with 0.5 probability to create backdoor paths. Finally, conditional probability tables were
generated uniformly as described in Section 6.

For observational sample sizes n0 ∈ {100 · 2k : k = 0, 1, . . . , 5} and parent set sizes |Z| ∈ {0, 1, 2, 3}, 103

scenarios were created by randomly generating CBNs as described above and the methods were assessed
under each scenario through the following process. First, 106 datasets were generated, each with n0 samples
of observational data, and for each dataset, µ̂a,bda(Z) was computed for some arbitrary xa ∈ Dom(X⟨a⟩).
Then, for each of the four methods, the variance was estimated corresponding to the first 103 estimates of
µ̂a,bda(Z), and from those the 2 standard deviation interval coverage probability of the true µa was computed.

The estimator µ̂a,bda(Z) itself was found to be generally unbiased, with the average of the 106 estimates
deviating from the true µa by less than 2% in over 99% of the 24,000 scenarios. The coverage probability
results are shown in Figure 7, where each boxplot visualizes the coverage probability of a method across
103 scenarios randomly generated under the given simulation setting. The outliers and invalid values, which
typically corresponded to extreme scenarios, were removed. The naive approach is only correct when |Z| = 0
and performs poorly when otherwise. The general results may be summarized as Naive < Bootstrap ≈
Proposed < Sampling, though our proposed estimator appears to outperform the bootstrap approach for
larger |Z| and perform comparably with the population sampling approach for larger n0 while requiring
significantly less and nearly negligible computational expense compared to either.

C.2 Gaussian Backdoor Adjustment with Ensemble Data

In this section, we empirically validate our methodology of conducting the regression (14) with jointly
interventional and observational data to estimate ψ⟨a⟩, as discussed in Section 5.2. In particular, we compare
the coverage probability of ψ̂⟨a⟩,bda(Z) where Z = PaG

⟨a⟩ estimated using purely observational data and
ensemble data. The ensemble data was generated by allowing each data sample to be generated by one
of the possible interventions {do(Xj = xj) : Xj ∈ Z, xj ∈ {−1, 1}} or by passive observation, with equal
probability given to each of the 2|Z|+ 1 options.

For sample sizes n ∈ {10 ·2k : k = 0, 1, . . . , 5} and parent set sizes |Z| ∈ {1, 2, 3, 4}, 103 scenarios were created
by randomly generating CBNs. The network structures were generated as described in Appendix C.1, and
the parameters as in Section 6. Each data generation method was evaluated for each scenario by generating
105 datasets with n samples and estimating ψ̂⟨a⟩,bda(Z) and ŜE2[ψ̂⟨a⟩,bda(Z)] for each dataset by conducting
the regression (14). From those estimates, 95% confidence interval coverage probabilities were computed for
each scenario.

The average of the 105 estimates of ψ̂⟨a⟩,bda(Z) deviated from the true ψ⟨a⟩ by at most 0.9% across all
24,000 simulation scenarios for both data generation methods. The coverage probability results are shown
in Figure 8. Since the results did not vary across parent set sizes, each boxplot visualizes the coverage
probability of a method across the 4, 000 simulation scenarios at each sample size. It is easy to see equivalent
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Figure 7: Coverage probability per scenario using various estimators of Var[µ̂a,bda(Z)] across n0 ∈ {100 · 2k :
k = 0, 1, . . . , 5} samples of observational data and |Z| ∈ {0, 1, 2, 3} adjustment set sizes.
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Figure 8: Coverage probability per simulation scenario across sample sizes for observational and ensemble
data generating methods.

performance of the estimator computed with ensemble data compared to observational data, with consistent
coverage across all sample sizes.

D Derivation of the Discrete Backdoor Adjustment Variance Approximation

In this section, we derive the approximation of the sampling variance of (12):

µ̂a,bda(Z) = 1
n0

∑
z

n0[1, xa, z]n0[z]
n0[xa, z] .

For the entirety of this section, we assume that the expectations and variances are with respect to the discrete
probability distribution P defined by a fixed CBN B.

D.1 Introduction

For simplicity, we redefine some notation. The backdoor adjustment to estimate the interventional distribu-
tion of Y | do(X = x) with parent set Z = PaG

X with r parent configurations is given by:

P [Y = y | do(X = x)] =
∑

z
P (Y = y | X = x,Z = z)P (Z = z).

Empirically, given n samples of observational data, this quantity is estimated using counts:

P̂ [Y = y | do(X = x)] =
∑

z

n[y, x, z]
n[x, z]

n[z]
n

= 1
n

∑
z

n[y, x, z]n[z]
n[x, z] , (22)

where n[y, x, z] represents the number of samples in which Y = y, X = x, and Z = z, with corresponding
definitions for n[x, z] and n[z]. The joint probability distribution of X, Y , and Z may be lumped into a
multinomial random vector N = (N1, N1

′, N1
′′, . . . , Nr, Nr

′, Nr
′′) ∈ R3r where for i = 1, . . . , r,

Ni = n[y, x, zi], Ni
′ = n[¬y, x, zi], Ni

′′ = n[¬x, zi].
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Note that Ni +Ni
′ +Ni

′′ = n[zi], so
∑r

i=1(Ni +Ni
′ +Ni

′′) = n, so N may be thought of as a repartitioning
of the joint probability distribution of X, Y , and Z into 3r disjoint levels:

N = (N1, N1
′, N1

′′, . . . , Nr, Nr
′, Nr

′′) ∼ Multinom(n,p),
p = (p1, p1

′, p1
′′, . . . , pr, pr

′, pr
′′), where

pi = E
[
n[y, x, zi]

n

]
, pi

′ = E
[
n[¬y, x, zi]

n

]
, pi

′′ = E
[
n[¬x, zi]

n

]
for i = 1, . . . , r.

(23)

The advantage of such a representation is so that for each zi, the term within the summation may be
expressed as a function of three disjoint elements of a multinomial random vector:

1
n

r∑
i=1

n[y, x, zi]n[zi]
n[x, zi]

= 1
n

r∑
i=1

n[y, x, zi] (n[y, x, zi] + n[¬y, x, zi] + n[¬x, zi])
n[y, x, zi] + n[¬y, x, zi]

= 1
n

r∑
i=1

Ni(Ni +Ni
′ +Ni

′′)
Ni +Ni

′ .

(24)

Note that each term is not straightforward to compute. An obvious challenge is that the denominator of
each term in the summation in (24) can be zero, so there is no analytical solution for its mean, variance,
and covariance.

D.2 Taylor Series Expansion for Ratio Distribution

To circumvent this challenge, we approximate the ratio in (24) with the Taylor series approximation. We
begin by defining

Mi = Ni(Ni +Ni
′ +Ni

′′)
n2 ,

Wi = Ni +Ni
′

n
,

Qi = f(Mi,Wi) = Mi

Wi
.

This allows us to express the variance of (24) in terms of Qi:

Var
[
P̂ [Y = y | do(X = x)]

]
= Var

[
r∑

i=1
Qi

]

=
r∑
i

Var [Qi] + 2
r∑

i=1

∑
j>i

Cov [Qi, Qj ] .
(25)

By Taylor series expansion around µi = (µMi
, µWi

) = (E[Mi],E[Wi]):

Qi = f(Mi,Wi)

= f(µi) + (Mi − µMi)
∂f

∂Mi
(µi) + (Wi − µWi)

∂f

∂Wi
(µi)

+ 1
2(Mi − µMi

)2 ∂
2f

∂M2
i

(µi) + 1
2(Wi − µWi

)2 ∂
2f

∂W 2
i

(µi)

+ (Mi − µMi
)(Wi − µWi

) ∂2f

∂Mi∂Wi
(µi)

+O
(
∥(Mi,Wi)− µi∥3) ,

(26)

30



Published in Transactions on Machine Learning Research (01/2023)

where

∂f

∂Mi
(Mi,Wi) = 1

Wi
,

∂2f

∂M2
i

(Mi,Wi) = 0,

∂f

∂Wi
(Mi,Wi) = −Mi

W 2
i

,
∂2f

∂W 2
i

(Mi,Wi) = 2Mi

W 3
i

,

∂2f

∂Mi∂Wi
(Mi,Wi) = ∂2f

∂Wi∂Mi
(Mi,Wi) = 1

W 2
i

(27)

Given (26), we obtain an approximate expected value:

E[Qi] ≈ f(µi) + 1
2
∂2f

∂M2
i

(µi)Var[Mi] + 1
2
∂2f

∂W 2
i

(µi)Var[Wi] + ∂2f

∂Mi∂Wi
(µi)Cov[Mi,Wi]. (28)

For variance and covariance, we use a simpler approximation:

Qi = f(Mi,Wi) ≈ f(µi) + (Mi − µMi
) ∂f
∂Mi

(µi) + (Wi − µWi
) ∂f
∂Wi

(µi), (29)

resulting in

Var[Qi] ≈
∂f

∂Mi
(µi)2Var[Mi] + ∂f

∂Wi
(µi)2Var[Wi]

+ 2 ∂f

∂Mi
(µi)

∂f

∂Wi
(µi)Cov[Mi,Wi],

(30)

and

E[QiQj ] ≈ f(µi)f(µj)

+ ∂f

∂Mi
(µi)

∂f

∂Mj
(µj)Cov[Mi,Mj ] + ∂f

∂Mi
(µi)

∂f

∂Wj
(µj)Cov[Mi,Wj ]

+ ∂f

∂Wi
(µi)

∂f

∂Mj
(µj)Cov[Wi,Mj ] + ∂f

∂Wi
(µi)

∂f

∂Wj
(µj)Cov[Wi,Wj ],

so

Cov[Qi, Qj ] = E[QiQj ]− E[Qi]E[Qj ]

= ∂f

∂Mi
(µi)

∂f

∂Mj
(µj)Cov[Mi,Mj ] + ∂f

∂Mi
(µi)

∂f

∂Wj
(µj)Cov[Mi,Wj ]

+ ∂f

∂Wi
(µi)

∂f

∂Mj
(µj)Cov[Wi,Mj ] + ∂f

∂Wi
(µi)

∂f

∂Wj
(µj)Cov[Wi,Wj ].

(31)

In what follows, we first derive important quantities from the multinomial distribution in Appendix D.3 and
apply them to compute the quantities in (25).

D.3 Multinomial Derivations

For this subsection, in an abuse of notation, let N = (N1, . . . , Nr) ∼ Multinom(n,p) and u, v, w, x ∈
{1, . . . , r} are distinct values. It is well-known that E[Nu] = npu, Var[Nu] = npu(1−pu), and Cov(Nu, Nv) =
−npupv. Furthermore,

E[NuNv] = Cov[Nu, Nv] + E[Nu]E[Nv]
= n(n− 1)pupv,

(32)
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and the first four moments from derivating the moment generating function are:
E[Nu] = npu,

E[N2
u] = n(n − 1)p2

u + E[Nu]
= npu[1 + (n − 1)pu],

E[N3
u] = n(n − 1)[(n − 2)p3

u + 2p2
u] + E[N2

u]
= npu [1 + (n − 1)pu(3 + (n − 2)pu)] ,

E[N4
u] = n(n − 1)(n − 2)

[
(n − 3)p4

u + 3p3
u

]
+ 2n(n − 1)

[
(n − 2)p3

u + 2p2
u

]
+ E[N3

u]
= npu [1 + (n − 1)pu(7 + (n − 2)pu[6 + (n − 3)pu])] .

(33)

Define indicator random variable Ui such that Ui = 1 if the outcome for trial i is u ∈ {1, . . . , r} and Ui = 0
otherwise. Similarly define Vi for v ̸= u, Wi for w ̸= v ̸= u, and Xi for x ̸= w ̸= v ̸= u. Then Nu, Nv, Nw,
and Nx may be expressed as

Nu =
n∑

i=1
Ui, Nv =

n∑
i=1

Vi, Nw =
n∑

i=1
Wi, Nx =

n∑
i=1

Xi.

We are interested in E[N2
uN

2
v ], E[N3

uNv], E[N2
uNvNw], E[NuNvNwNx], E[N2

uNv], and E[NuNvNw].

E[N2
uN2

v ] = E

[(
n∑

i=1

Ui

)2( n∑
i=1

Vi

)2]

= E

[
n∑

i=1

n∑
j=1

n∑
k=1

n∑
l=1

UiUjVkVl

]
by distributing

=
n∑

i=1

n∑
j=1

n∑
k=1

n∑
l=1

E [UiUjVkVl] by linearity of expectation

=
n∑

i=1

n∑
j=1

∑
k ̸=i
k ̸=j

∑
l ̸=i
l ̸=j

E [UiUjVkVl] since UiVi = 0 for all i = 1, . . . , n

=
n∑

i=1

n∑
j=1

∑
k ̸=i
k ̸=j

∑
l ̸=i
l ̸=j

E [UiUj ] E [VkVl] by independence between trials

=
∑
i=j

∑
k=l
k ̸=i

E [UiUj ] E [VkVl] +
∑

i

∑
j ̸=i

∑
k ̸=i
k ̸=j

∑
l ̸=k
l ̸=i
l ̸=j

E [UiUj ] E [VkVl]

+
∑
i=j

∑
k ̸=i

∑
l ̸=k
l ̸=i

E [UiUj ] E [VkVl] +
∑
k=l

∑
i ̸=k

∑
j ̸=i
j ̸=k

E [UiUj ] E [VkVl] reexpressed

=
∑

i

∑
k=l
k ̸=i

E[U2
i ]E[V 2

k ] +
∑

i

∑
j ̸=i

∑
k ̸=i
k ̸=j

∑
l ̸=k
l ̸=i
l ̸=j

E[Ui]E[Uj ]E[Vk]E[Vl] reexpressed; independence; and

+
∑

i

∑
k ̸=i

∑
l ̸=k
l ̸=i

E[U2
i ]E[VkVl] +

∑
k

∑
i ̸=k

∑
j ̸=i
j ̸=k

E[Ui]E[Uj ]E[V 2
k ] since E[UiUj ] = E[Ui]E[Uj ], i ̸= j

= n(n − 1)pupv + n(n − 1)(n − 2)(n − 3)p2
up2

v since E[U2
i ] = E[Ui] = pu

+ n(n − 1)(n − 2)pup2
v + n(n − 1)(n − 2)p2

upv

= n(n − 1)pupv [1 + (n − 2)(pu + pv + (n − 3)pupv)] simplified.

Hence,

E[N2
uN

2
v ] = n(n− 1)pupv [1 + (n− 2)(pu + pv + (n− 3)pupv)] . (34)
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Following the same derivation strategy,

E[N3
uNv] = n(n− 1)pupv [1 + (n− 2)pu(3 + (n− 3)pu)] , (35)

E[N2
uNvNw] = n(n− 1)(n− 2)pupvpw [1 + (n− 3)pu] , (36)

E[NuNvNwNx] = n(n− 1)(n− 2)(n− 3)pupvpwpx, (37)
E[N2

uNv] = n(n− 1)pupv [1 + (n− 2)pu] , (38)
E[NuNvNw] = n(n− 1)(n− 2)pupvpw. (39)

D.4 Numerator and Denominator of Ratio

We now turn to the task of deriving expressions for Var[Mi], Var[Wi], and Cov[Mi,Wi] in order to compute
(30), and additionally for Cov[Mi,Mj ], Cov[Mi,Wj ], Cov[Wi,Mj ], and Cov[Wi,Wj ] for (31). For this
subsection, return to the notation for N expressed in (23).

The distribution of Wi = n−1(Ni + Ni
′) is most simple. By the lumping property of multinomial random

vectors,

E[Wi] = pi + pi
′,

Var[Wi] = (pi + pi
′)(1− pi − pi

′)
n

,

Cov[Wi,Wj ] = − (pi + pi
′)(pj + pj

′)
n

.

(40)

The distribution of Mi = n−2Ni(Ni +Ni
′ +Ni

′′) is more challenging. From (33) and (32), the expectation
is given by:

E[Mi] = n−2E[Ni(Ni +Ni
′ +Ni

′′)]
= n−2 (E[N2

i ] + E[NiNi
′] + E[NiNi

′′]
)

= n−2 (npi[1 + (n− 1)pi] + n(n− 1)pipi
′ + n(n− 1)pipi

′′)
= n−1pi[1 + (n− 1)(pi + pi

′ + pi
′′)].

(41)

Next, the variance is given by:

Var[Mi] = n−4Var[Ni(Ni +Ni
′ +Ni

′′)]
= n−4Var[N2

i +NiNi
′ +NiNi

′′]
= n−4(Var[N2

i ] + Var[NiNi
′] + Var[NiNi

′′]
+ 2Cov[N2

i , NiNi
′] + 2Cov[N2

i , NiNi
′′] + 2Cov[NiNi

′, NiNi
′′]
)
.

The terms in the expression above are given below. From the moments of the multinomial distribution (33):

Var[N2
i ] = E[N4

i ]− E[N2
i ]2

= npi [1 + (n− 1)pi(7 + (n− 2)pi[6 + (n− 3)pi])]− (npi[1 + (n− 1)pi])2

= npi

[
1 + (n− 1)pi(7 + (n− 2)pi[6 + (n− 3)pi])− npi(1 + (n− 1)pi)2] .

From (34) and (32):

Var[NiNi
′] = E[N2

i Ni
′2]− E[NiNi

′]2

= n(n− 1)pipi
′[1 + (n− 2)(pi + pi

′ + (n− 3)pipi
′)]− [n(n− 1)pipi

′]2

= n(n− 1)pipi
′[1 + (n− 2)(pi + pi

′ + (n− 3)pipi
′)− n(n− 1)pipi

′],
Var[NiNi

′′] = n(n− 1)pipi
′′[1 + (n− 2)(pi + pi

′′ + (n− 3)pipi
′′)− n(n− 1)pipi

′′].
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From (35), (33), and (32):

Cov[N2
i , NiNi

′] = E[N3
i Ni

′]− E[N2
i ]E[NiNi

′]
= n(n− 1)pipi

′ [1 + (n− 2)pi(3 + (n− 3)pi)]
− npi[1 + (n− 1)pi]n(n− 1)pipi

′

= n(n− 1)pipi
′ [1 + (n− 2)(3pi + (n− 3)p2

i )− npi(1 + (n− 1)pi)
]

Cov[N2
i , NiNi

′′] = n(n− 1)pipi
′′ [1 + (n− 2)(3pi + (n− 3)p2

i )− npi(1 + (n− 1)pi)
]
.

From (36) and (32):

Cov[NiNi
′, NiNi

′′] = E[N2
i Ni

′Ni
′′]− E[NiNi

′]E[NiNi
′′]

= n(n− 1)(n− 2)pipi
′pi

′′[1 + (n− 3)pi]− n(n− 1)pipi
′n(n− 1)pipi

′′

= n(n− 1)pipi
′pi

′′ [(n− 2)[1 + (n− 3)pi]− n(n− 1)pi] .

Hence, Var[Mi] is derived:

Var[Mi] = n−4(npi

[
1 + (n− 1)pi(7 + (n− 2)pi[6 + (n− 3)pi])− npi(1 + (n− 1)pi)2]

+ n(n− 1)pipi
′[1 + (n− 2)(pi + pi

′ + (n− 3)pipi
′)− n(n− 1)pipi

′]
+ n(n− 1)pipi

′′[1 + (n− 2)(pi + pi
′′ + (n− 3)pipi

′′)− n(n− 1)pipi
′′]

+ 2n(n− 1)pipi
′ [1 + (n− 2)(3pi + (n− 3)p2

i )− npi(1 + (n− 1)pi)
]

+ 2n(n− 1)pipi
′′ [1 + (n− 2)(3pi + (n− 3)p2

i )− npi(1 + (n− 1)pi)
]

+ n(n− 1)pipi
′pi

′′ [(n− 2)[1 + (n− 3)pi]− n(n− 1)pi]
)
.

(42)

Next, consider Cov[Mi,Mj ].

Cov[Mi,Mj ] = n−4Cov
[
Ni(Ni +Ni

′ +Ni
′′), Nj(Nj +Nj

′ +Nj
′′)
]

= n−4Cov
[
N2

i +NiNi
′ +NiNi

′′, N2
j +NjNj

′ +NjNj
′′]

= n−4(Cov[N2
i , N

2
j ]

+ Cov[N2
i , NjNj

′] + Cov[N2
i , NjNj

′′] + Cov[NiNi
′, N2

j ] + Cov[NiNi
′′, N2

j ]
+ Cov[NiNi

′, NjNj
′] + Cov[NiNi

′, NjNj
′′]

+ Cov[NiNi
′′, NjNj

′] + Cov[NiNi
′′, NjNj

′′]
)
.

The terms in the expression above are given below. From (34) and (33):

Cov[N2
i , N

2
j ] = E[N2

i N
2
j ]− E[N2

i ]E[N2
j ]

= n(n− 1)pipj [1 + (n− 2)(pi + pj + (n− 3)pipj)]
− npi[1 + (n− 1)pi]npj [1 + (n− 1)pj ]

= npipj [(n− 1)(1 + (n− 2)(pi + pj + (n− 3)pipj))
− n(1 + (n− 1)pi)(1 + (n− 1)pj)].

From (36), (33), and (32):

Cov[N2
i , NjNj

′] = E[N2
i NjNj

′]− E[N2
i ]E[NjNj

′]
= n(n− 1)(n− 2)pipjpj

′[1 + (n− 3)pi]− npi(1 + (n− 1)pi)n(n− 1)pjpj
′

= n(n− 1)pipjpj
′ [(n− 2)[1 + (n− 3)pi]− n(1 + (n− 1)pi)] ,

Cov[N2
i , NjNj

′′] = n(n− 1)pipjpj
′′ [(n− 2)[1 + (n− 3)pi]− n(1 + (n− 1)pi)] ,

Cov[NiNi
′, N2

j ] = n(n− 1)pjpipi
′ [(n− 2)[1 + (n− 3)pj ]− n(1 + (n− 1)pj)] ,

Cov[NiNi
′′, N2

j ] = n(n− 1)pjpipi
′′ [(n− 2)[1 + (n− 3)pj ]− n(1 + (n− 1)pj)] .
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From (37) and (32):

Cov[NiNi
′, NjNj

′] = E[NiNi
′NjNj

′]− E[NiNi
′]E[NjNj

′]
= n(n− 1)(n− 2)(n− 3)pipi

′pjpj
′ − n(n− 1)pipi

′n(n− 1)pjpj
′

= n(n− 1)pipi
′pjpj

′ [(n− 2)(n− 3)− n(n− 1)] ,
Cov[NiNi

′, NjNj
′′] = n(n− 1)pipi

′pjpj
′′ [(n− 2)(n− 3)− n(n− 1)] ,

Cov[NiNi
′′, NjNj

′] = n(n− 1)pipi
′′pjpj

′ [(n− 2)(n− 3)− n(n− 1)] ,
Cov[NiNi

′′, NjNj
′′] = n(n− 1)pipi

′′pjpj
′′ [(n− 2)(n− 3)− n(n− 1)] .

Hence, Cov[Mi,Mj ] is derived:

Cov[Mi,Mj ]
= n−4(npipj

[
(n− 1)(1 + (n− 2)(pi + pj + (n− 3)pipj))
− n(1 + (n− 1)pi)(1 + (n− 1)pj)

]
+ n(n− 1)pipjpj

′ [(n− 2)[1 + (n− 3)pi]− n(1 + (n− 1)pi)]
+ n(n− 1)pipjpj

′′ [(n− 2)[1 + (n− 3)pi]− n(1 + (n− 1)pi)]
+ n(n− 1)pjpipi

′ [(n− 2)[1 + (n− 3)pj ]− n(1 + (n− 1)pj)]
+ n(n− 1)pjpipi

′′ [(n− 2)[1 + (n− 3)pj ]− n(1 + (n− 1)pj)]
+ n(n− 1)pipi

′pjpj
′ [(n− 2)(n− 3)− n(n− 1)]

+ n(n− 1)pipi
′pjpj

′′ [(n− 2)(n− 3)− n(n− 1)]
+ n(n− 1)pipi

′′pjpj
′ [(n− 2)(n− 3)− n(n− 1)]

+ n(n− 1)pipi
′′pjpj

′′ [(n− 2)(n− 3)− n(n− 1)]
)

= n−3pipj

[
(n− 1)

(
1 + (n− 2)(pi + pj + (n− 3)pipj)
+ (pj

′ + pj
′′)[(n− 2)[1 + (n− 3)pi]− n(1 + (n− 1)pi)]

+ pjpi(pi
′ + pi

′′)[(n− 2)[1 + (n− 3)pj ]− n(1 + (n− 1)pj)]
+ (pi

′ + pi
′′)(pj

′ + pj
′′)[(n− 2)(n− 3)− n(n− 1)]

)
− n(1 + (n− 1)pi)(1 + (n− 1)pj)

]

(43)

Finally, we turn our attention to Cov[Mi,Wi], Cov[Mi,Wj ], and Cov[Wi,Mj ]. Beginning with Cov[Mi,Wi]:

Cov[Mi,Wi] = n−3Cov
[
Ni(Ni +Ni

′ +Ni
′′), Ni +Ni

′]
= n−3Cov

[
N2

i +NiNi
′ +NiNi

′′, Ni +Ni
′]

= n−3(Cov[N2
i , Ni] + Cov[N2

i , Ni
′]

+ Cov[NiNi
′, Ni] + Cov[NiNi

′, Ni
′] + Cov[NiNi

′′, Ni] + Cov[NiNi
′′, Ni

′]
)
.

The terms in the expression above are given below. From (33):

Cov[N2
i , Ni] = E[N3

i ]− E[N2
i ]E[Ni]

= npi [1 + (n− 1)pi(3 + (n− 2)pi)]− npi[1 + (n− 1)pi]npi

= npi [1 + (n− 1)pi(3 + (n− 2)pi)− npi(1 + (n− 1)pi)]
= npi [1 + pi((n− 1)[3− 2pi]− n)] .

From (38) and (33):

Cov[N2
i , Ni

′] = E[N2
i Ni

′]− E[N2
i ]E[Ni

′]
= n(n− 1)pipi

′[1 + (n− 2)pi]− npi(1 + (n− 1)pi)npj

= npipi
′ [(n− 1)(1 + (n− 2)pi)− n(1 + (n− 1)pi)] .

(44)
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From (38) and (33):
Cov[NiNi

′, Ni] = E[N2
i Ni

′]− E[NiNi
′]E[Ni]

= n(n− 1)pipi
′[1 + (n− 2)pi]− n(n− 1)pipi

′npi

= n(n− 1)pipi
′[1− 2pi],

Cov[NiNi
′, Ni

′] = n(n− 1)pi
′pi[1− 2pi

′],
Cov[NiNi

′′, Ni] = n(n− 1)pipi
′′[1− 2pi].

From (39), (32), and (33):
Cov[NiNi

′′, Ni
′] = E[NiNi

′′Ni
′]− E[NiNi

′′]E[Ni
′]

= n(n− 1)(n− 2)pipi
′′pi

′ − n(n− 1)pipi
′′npi

′

= −2n(n− 1)pipi
′′pi

′.

(45)

Hence, Cov[Mi,Wi] is derived:
Cov[Mi,Wi] = n−3(npi[1 + pi((n− 1)[3− 2pi]− n)]

+ npipi
′[(n− 1)(1 + (n− 2)pi)− n(1 + (n− 1)pi)]

+ n(n− 1)pipi
′[1− 2pi]

+ n(n− 1)pi
′pi[1− 2pi

′]
+ n(n− 1)pipi

′′[1− 2pi]
− 2n(n− 1)pipi

′′pi
′).

= n−2pi

(
1 + pi((n− 1)[3− 2pi]− n)
+ pi

′[(n− 1)(1 + (n− 2)pi)− n(1 + (n− 1)pi)]
)

+ n−2(n− 1)(pipi
′[2− 2pi − 2pi

′] + pipi
′′[1− 2pi − 2pi

′]).

(46)

Then, moving on to Cov[Mi,Wj ] and Cov[Wi,Mj ]:
Cov[Mi,Wj ] = n−3Cov

[
Ni(Ni +Ni

′ +Ni
′′), Nj +Nj

′]
= n−3Cov

[
N2

i +NiNi
′ +NiNi

′′, Nj +Nj
′]

= n−3(Cov[N2
i , Nj ] + Cov[N2

i , Nj
′]

+ Cov[NiNi
′, Nj ] + Cov[NiNi

′, Nj
′] + Cov[NiNi

′′, Nj ] + Cov[NiNi
′′, Nj

′]
)
.

The terms in the expression above are given below. From (44):
Cov[N2

i , Nj ] = npipj [(n− 1)(1 + (n− 2)pi)− n(1 + (n− 1)pi)] ,
Cov[N2

i , Nj
′] = npipj

′ [(n− 1)(1 + (n− 2)pi)− n(1 + (n− 1)pi)] .
From (45):

Cov[NiNi
′, Nj ] = −2n(n− 1)pipi

′pj ,

Cov[NiNi
′, Nj

′] = −2n(n− 1)pipi
′pj

′,

Cov[NiNi
′′, Nj ] = −2n(n− 1)pipi

′′pj ,

Cov[NiNi
′′, Nj

′] = −2n(n− 1)pipi
′′pj

′.

Hence, Cov[Mi,Wj ] and Cov[Wi,Mj ] are derived:

Cov[Mi,Wj ] = n−3[npi(pj + pj
′)[(n− 1)(1 + (n− 2)pi)− n(1 + (n− 1)pi)]

− 2n(n− 1)pi(pi
′pj + pi

′pj
′ + pi

′′pj + pi
′′pj

′)
]

= n−2pi(pj + pj
′)
[
(n− 1)(1 + (n− 2)pi − 2(pi

′ + pi
′′)(pj + pj

′))
− n(1 + (n− 1)pi)

]
,

Cov[Wi,Mj ] = n−2pj(pi + pi
′)
[
(n− 1)(1 + (n− 2)pj − 2(pj

′ + pj
′′)(pi + pi

′))
− n(1 + (n− 1)pj)

]
.

(47)
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Thus, all quantities necessary to compute (25) are derived.
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