L)

Check for
updates

Jitter-based Adaptive True Random Number Generation
Circuits for FPGAs in the Cloud

XIANG LI, PETER STANWICKS, GEORGE PROVELENGIOS, RUSSELL TESSIER, and
DANIEL HOLCOMB, University of Massachusetts Amherst, MA

In this article, we present and evaluate a true random number generator (TRNG) design that is compati-
ble with the restrictions imposed by cloud-based Field Programmable Gate Array (FPGA) providers such as
Amazon Web Services (AWS) EC2 F1. Because cloud FPGA providers disallow the ring oscillator circuits that
conventionally generate TRNG entropy, our design is oscillator-free and uses clock jitter as its entropy source.
The clock jitter is harvested with a time-to-digital converter (TDC) and a controllable delay line that is con-
tinuously tuned to compensate for process, voltage, and temperature variations. After describing the design,
we present and validate a stochastic model that conservatively quantifies its worst-case entropy. We deploy
and model the design in the cloud on 60 EC2 F1 FPGA instances to ensure sufficient randomness is captured.
TRNG entropy is further validated using NIST test suites, and experiments are performed to understand how
the TRNG responds to on-die power attacks that disturb the FPGA supply voltage in the vicinity of the TRNG.
After introducing and validating our basic TRNG design, we introduce and validate a new variant that uses
four instances of a linkable sampling module to increase the entropy per sample and improve throughput.
The new variant improves throughput by 250% at a modest 17% increase in CLB count.

CCS Concepts: » Security and privacy — Cryptography; « Hardware — Reconfigurable logic and FP-
GAs;

Additional Key Words and Phrases: Cloud FPGAs, true random number generator, entropy, stochastic model,
AWS EC2, NIST

ACM Reference format:

Xiang Li, Peter Stanwicks, George Provelengios, Russell Tessier, and Daniel Holcomb. 2023. Jitter-based Adap-
tive True Random Number Generation Circuits for FPGAs in the Cloud. ACM Trans. Reconfigurable Technol.
Syst. 16, 1, Article 3 (January 2023), 20 pages.

https://doi.org/10.1145/3487554

1 INTRODUCTION

Random numbers are fundamental to cryptographic systems and widely used for generating keys,
nonces, and initialization vectors. The quality of randomness required in these applications ne-
cessitates the use of true random number generators (TRNGs). TRNGs exploit the inherent
physical properties of the system in which they are embedded to generate statistically random and

This research was funded in part by NSF grants CNS-1749845 and CNS-1902532. The authors also gratefully acknowledge
Gradient Technologies and Amazon for their support and contributions to this work.

Authors’ address: X. Li (corresponding author), P. Stanwicks, G. Provelengios, R. Tessier, and D. Holcomb, University of Mas-
sachusetts Amherst, Amherst, MA, 01003; emails: xiang@umass.edu, pstanwicks@umass.edu, gprovelengio@umass.edu,
tessier@umass.edu, dholcomb@umass.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1936-7406/2023/01-ART3 $15.00

https://doi.org/10.1145/3487554

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 1, Article 3. Pub. date: January 2023.

https://doi.org/10.1145/3487554
mailto:permissions@acm.org
https://doi.org/10.1145/3487554
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3487554&domain=pdf&date_stamp=2023-01-18

3:2 X. Li et al.

unpredictable numbers. This characteristic makes the outputs of a TRNG unpredictable even to an
adversary that knows the current state of the circuit. Physical sources of entropy commonly used
in FPGAs by on-chip TRNGs include thermal noise and clock or oscillator jitter. The randomness
of the numbers created by TRNGs is typically evaluated using stochastic models and statistical
tests [1].

TRNGs are widely used in real-world applications with differing throughput requirements, rang-
ing from one-time pads [2] and keys for web authentication which have low throughput require-
ments to initialization vector (IV) generation for block ciphers in storage drives or internet pro-
tocol packets which can have higher throughput requirements. For example, data passed from a
host to a self-encrypting storage drive needs encryption/decryption before being read/written [3].
In this case, the throughput and quality of the TRNG affects system performance, because the la-
tency will increase if the IV generation speed can not keep up with the read/write speed of the
drive. To support applications such as these which require random numbers, several works have
studied TRNG on FPGAs [4], [5-8] in recent years.

FPGAs are increasingly being used in cloud-based systems for prototyping and acceleration,
and to support secure soft processors [9] which require a source of random numbers. Yet to pro-
tect their infrastructure from malicious voltage attacks [10], cloud providers such as AWS impose
restrictions on the types of circuits that are allowed on their FPGAs. Circuits that deviate from stan-
dard digital design flows, including logic-driven clocks and combinational loops as found in ring
oscillators (ROs), are detected during bitstream compilation and disallowed from being loaded
onto the FPGA [11]. This restriction causes difficulty in creating and characterizing jitter-based
TRNG circuits for cloud applications. Despite this unique restriction on cloud-FPGAs, TRNGs on
FPGAs must nonetheless be designed to work correctly when deployed across multiple instances,
must be supported by a stochastic model to validate the entropy claims, and should be robust
against external perturbations.

In this work, we extend our previous conference manuscript from FPT 2020 [12] to present a
TRNG design and validation procedure that is tailored around the restrictions of cloud-based FP-
GAs. Our design is able to harvest jitter without creating oscillators, applicable to multiple cloud-
FPGA instances, and adaptable to differences in clocks. The design adjusts to changing environ-
mental conditions and can be characterized without requiring ground truth delay measurements
that are commonly obtained by counting oscillations. We make several specific contributions in
this work:

— A TRNG for Virtex UltraScale+ FPGAs used in the cloud is detailed, implemented, and ana-
lyzed across numerous AWS EC2 F1 instances. The design, which is based on tunable delay
chains and a TDC that harvests entropy from clock jitter, avoids primitives such as combina-
tional loops that are common in TRNGs but disallowed by AWS and other cloud providers.

— A novel procedure is proposed for computing the min-entropy per sample using a stochas-
tic model. The model empirically relates component delays to clock jitter by least-squares
fitting. The delays that are independently computed by the model during entropy evalua-
tion strongly correlate to the delays from the FPGA’s own timing report, which supports the
validity of the delay values that are inferred by our approach.

— The robustness of our TRNG is evaluated by implementing a voltage attack against it on
F1 and showing how the TRNG adjusts in response to the attack without compromising
its ability to create random numbers. Demonstrating resilience to environmental changes is
important for a TRNG that will be used in cloud settings, and is a novel feature of the work.

— Beyond our basic TRNG design, we introduce a new approach based on linkable sampling
modules, that can be instantiated and connected together to increase the entropy per sample
without requiring additional tuning. The new variant of the TRNG improves throughput and

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 1, Article 3. Pub. date: January 2023.

Jitter-based Adaptive TRNG Circuits for FPGAs in the Cloud 3:3

min-entropy according to the stochastic model by 250% and 270% respectively at a modest
17% increase in slice count by sharing the control unit and tunable delay elements across the
linkable sample modules.

The remainder of this article is structured as follows. Section 2 provides background on previous
FPGA TRNG approaches. Section 3 describes the structure of our TRNG and modeling is discussed
in Section 4. Sections 5 and 6 evaluate and discuss the TRNG entropy, resilience, and costs. Section 7
introduces and evaluates the TRNG with a linkable sampling module. Section 8 concludes the
article.

2 BACKGROUND AND RELATED WORK

Several works on cloud security have shown the demand for TRNGs on cloud-FPGAs. Zeitouni
et al. [13] propose a scheme to protect clients’ IPs while checking rogue circuits for cloud-FPGA
vendors. Their scheme requires that the trusted shell on an FPGA has a TRNG to generate a nonce
that is sent to the client to compute a proof of authenticity. Wolfe et al. [14] perform secret sharing
Multi-Party Computation (MPC) on FPGAs in the datacenter. In the implementation of their
MPC protocol on AWS FPGAs, a random key for each party needs to be generated and shared
with one other party. The implementation of TRNGs in FPGAs has been widely studied, although
none of the prior approaches comprehensively address the unique challenge of cloud FPGAs as
well as the general TRNG requirements listed in Section 1. A large majority of these previous
implementations rely on ROs to generate high-frequency signals that exhibit significant jitter. For
example, Kohlbrenner and Gaj [15] use two ROs and a sampling circuit to measure jitter and Maiti
et al. [16] deploy up to 128 ROs to amplify uncertainty. Some TRNGs augment ROs with delay
paths to increase timing sensitivity. Like our approach, Rozic et al. [17] and Yang et al. [4] use
carry logic-based delay chains to assist with entropy extraction. These approaches do not include
tunable delays to combat environmental factors and an RO is used to excite the delays.

Several non-RO based TRNGs have been built for FPGAs, but they also have limitations that
make them inappropriate for cloud deployment. Majzoobi et al. [6] use programmable delay lines
built from lookup tables (LUTs) that can be difficult to characterize on a per-FPGA basis. Deak
et al. [18] use the jitter from an on-FPGA phase locked loop (PLL) to create a TRNG using
clock settings that are a challenge to replicate in a cloud setting. Perhaps the most similar TRNG
approach to ours [19] uses a standard clock input, tunable delay buffers, and a delay path. However,
unlike our approach, the delay path is made from a chain of LUTs that have variable logic and
routing delays across stages.

3 STRUCTURE OF PROPOSED TRNG

Figure 1 shows the top-level view of our TRNG design. It is a hardware module that serially gen-
erates 8-bit random numbers. We instantiate the TRNG module within a hardware testbench for
analysis. The design is created for AWS EC2 F1 instances, which contain Xilinx Virtex UltraScale+
VU9P FPGAs. The bitstream is generated using Amazon’s Hardware Development Kit (HDK),
and then converted to an Amazon FPGA Image (AFI) that is reused for deployment across F1
instances. Amazon provides a runtime tool to interact with the deployed design by reading and
writing 32-bit data to or from user-defined registers using AXI4 over PCle. We make the signals at
the top of Figure 1 accessible to the runtime tool only when the TRNG hardware is set to debug
mode. The debug mode allows us to control the TRNG and observe sample values from the TRNG
core, which is useful for data collection and analysis in the cloud, but would be insecure if enabled
in production.

Internally, the TRNG module gets entropy from the TRNG core and hashes it into a local entropy
pool by XOR operation. The control unit keeps a conservative estimate of the current entropy in

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 1, Article 3. Pub. date: January 2023.

3:4 X. Li et al.

AWS Interface

5
coarse_cfg fine_cfg core_output
5 5& 256}
TRNG Module
>
clk > random
rst—» & 8
Sl
stop—» o953
w
y Lofe
debug SIE(S v sample_vid
s} entropy_vld
CTRL UNIT]—*»
Fig. 1. Structure of TRNG design and interface.
coarse_cfg D—|
*
= |z-| | thermometer encoder |
b _m_
‘
© eeoe buf
BTl NI s
o
S
|| b) coarse tuning stages.
m— 256 s'__P_am le (g stag
o al” ,
clk _IZ'_ fine_cfg D—|
= | - 2 A Tlar :
reset Ctrl Unit D
D_ o _IZ'_ thermometer encoder |
stop -
®
e 5 [lal m m
ebug _1 |_
enable ¢ = H
£ eee
coarse_cfg fine_cfg :m— — 0-i2 Luts| — - 0-i2 LUTS -
(Al s .
adjustable adjustable .
— delay delay _f lf‘init= ;ilinit=
(coarse) (fine) entropy_vld 0x3080008] 0x3080008|
(a) TDC chain. (c) fine tuning stages.

Fig. 2. Components of TRNG core and control unit.

the pool by counting the number of valid samples provided to it. Once enough entropy is collected,
a signal from the control unit is asserted and the 8-bit random value in the registers can be read
out, upon which the entropy count is reset to 0. We now describe in more detail the components
of the TRNG core (Figure 2).

3.1 Carry Chain Description

The TDC in our circuit (Figure 2(a)) consists of 32 8-bit carry stages, and each output bit from the
carry chain is the data input to a D flip-flop in the same slice. The controller repeatedly generates
a single rising edge that propagates into the carry chain with an appropriate delay such that it
will be propagating through the carry chain when the next rising clock edge occurs. The number
of 1-values captured in the 256 flip-flops, i.e., the Hamming weight of the sample, is an indication

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 1, Article 3. Pub. date: January 2023.

Jitter-based Adaptive TRNG Circuits for FPGAs in the Cloud 3:5

of how far up the chain the rising edge has propagated by the time of the rising clock edge. The
Hamming weight of samples will fluctuate slightly in each trial due to clock jitter, which is our
source of randomness.

3.2 Tunable Delay Elements and Feedback Control

Our circuit uses tunable delay elements and feedback to ensure that the rising edge from the delay
line is within the TDC chain when the clock arrives. The control unit measures Hamming weight
by summing the sampled values captured in the flip-flops. Increasing the propagation delay will
cause the rising edge to reach fewer TDC stages and thereby will reduce the Hamming weight
of samples. Similarly, decreasing the delay will increase the Hamming weight. In this way, the
tunable delay circuits are the knob used for adjusting the Hamming weight. The control unit uses
the delay knob to position the rising edge in the TDC chain during clock arrival, as is required to
generate randomness.

Ideally, the Hamming weight of the samples should be centered at around 128 in a 256-stage
delay chain, which gives a maximum margin against delay changes in either direction that could
detune the circuit. The control unit adjusts the coarse-tuning and fine-tuning settings for the next
sample based on the Hamming weight of the current sample using the simple feedback scheme
of Equation (1), where (c, f) and (¢’, f’) are the current and next values of the coarse and fine
tuning settings, and HW is the Hamming weight of the current sample; note in Equation (1) that
fmia represents the middle setting for fine tuning, which in our case is 15. Furthermore, with each
sample, the control unit credits entropy to the entropy pool only when the Hamming weight is
between 30 and 225 so that samples are not counted as random if the circuit becomes detuned
and the rising edge is approaching either end of the carry chain where jitter may not be captured.
Once enough samples are collected, the control unit asserts a signal to indicate the generation of
an 8-bit random number is complete, which will be further explained in Section 3.3. During testing,
the control unit is able to configure the TRNG tuning manually using values provided through the
AWS interface, and to return the resulting samples via the same interface.

(c+1, fmiq) if 208 < HW

(¢, f+1) if158 < HW < 208
(c, f-1) if 48 < HW <98
(c=1, fniq) if HW < 48

(. f) = (1)

The coarse and fine tuning stages are implemented as follows. Each coarse tuning stage adds
or bypasses a LUT1 primitive that implements a logical buffer, as shown in Figure 2(b). Each fine-
tuning stage selects between a shorter and longer pin-to-pin delay of a LUT5, where the enabled
path through the LUT is set by the control input, as shown in Figure 2(c). The stages are controlled
using thermometer encoding, so that incrementing or decrementing their configuration settings
will change only one stage along the delay line, which helps ensure predictable control but has a
higher area cost than a binary-encoded tunable delay in which each stage has twice the delay of
the next. Figure 3 shows the Hamming weight of samples for all combinations of tuning; note that
debug mode is used to generate this plot, as it overrides the feedback of the controller, and allows
the samples from the TRNG core to be logged.

3.3 Post-processing Circuit

The 256-bit samples from the TRNG core are hashed into the 8-bit state of the entropy pool using
a simple scheme as shown in Figure 4. Each update includes a 1-bit circular shift of the 8-bit en-
tropy pool, which ensures that randomness will get distributed through the 8 bits even if always

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 1, Article 3. Pub. date: January 2023.

3:6 X. Li et al.

0 [T 11 285

225

Coarse Tuning
>

-
[¢;]

20 0
0 5 10 15 20 25 30

Fine Tuning

Fig. 3. Heatmap showing the Hamming weight of samples on a single F1 instance for all possible tuning
settings. Increasing the coarse or fine tuning reduces the Hamming weight. Sampled values indicative of a
poorly-tuned TDC, colored gray, would not cause the entropy count to be incremented.

sample[255]

random[7]

sample [2.3]
sample[15]
sample[7]

random[6]

Fig. 4. 256-bit samples are hashed into the 8-bit random signal which is the entropy pool. The hashing uses
eight XOR gates, all configured in the same manner as the one that is shown.

coming from the same position in the 256-bit sample. We have used this particular scheme for
simplicity, but it could be replaced with any number of other hash functions for the same effect. A
counter tracks the number of valid samples produced by the TRNG core, and requires that 80 valid
samples are hashed into the entropy pool before it is considered to be random, which assumes 0.1
bits of entropy per sample. The actual value of entropy per sample should exceed the assumed
entropy per sample, but the specific value of 0.1 bits is chosen somewhat arbitrarily as a conser-
vative assumption. If the entropy per sample is assumed to be higher, then the circuit will need
fewer valid samples before deciding that the TRNG has accumulated enough entropy to produce an
8-bit random output. This assumption, therefore, has an impact on the throughout of the TRNG.
Section 4 of the article will show that the actual entropy per sample exceeds this conservative
estimate by a factor of more than 2 using both a stochastic model and NIST tests.

4 MODELING OF TRNG

The randomness of the TRNG comes from the samples of the delay line in the TDC. Even if the
propagation delay of the delay line does not change across trials, the TDC can produce different
samples if it has a fine enough time resolution and its sampling clock has sufficient jitter. The time
resolution on the TDC is a consequence of the low propagation delay of the stages in the hard
carry chains of Xilinx Ultrascale+ devices. A larger clock jitter or finer time resolution will both
have the same effect of making the TDC samples more random because both changes will make

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 1, Article 3. Pub. date: January 2023.

Jitter-based Adaptive TRNG Circuits for FPGAs in the Cloud 3:7

1.0

FF position

0_probability
o o o
= o o]

o
N

T time difference:
/% 250

-30jit -20jt -Ojit n Tjit 20t 30jit

Fig. 5. TDC position in normal distribution CDF for modeling.

the jitter is relatively larger in comparison to the TDC time resolution. Accordingly, the relevant
consideration for modeling a TRNG such as ours is to quantify how the amount of jitter compares
to the time resolution of the TDC.

In our stochastic model of the TRNG, we relate the jitter to TDC time resolution without relying
on conservative timing reports or jitter estimates. We rely ion modeling only on the simplifying
assumption that the jitter is normally distributed, which is in particular consistent with the jitter
component caused by thermal noise [20, 21]. We also assume its standard deviation is invariant
with respect to the tuning settings of the delay line. From this, we calculate the time resolution of
each TDC stage in terms of the standard deviation of jitter, which we use as the unit delay in our
model. After calculating the time resolution of each stage, we use the same model to calculate a
lower bound on min-entropy per sample. The next subsection describes our modeling approach.

The bits produced by any TRNG design should be as random as the bits produced by any other,
unless one of the designs is fundamentally flawed. The stochastic model assures the randomness
by validating the claimed entropy of the source. If a source has lower entropy, its TRNG will still
produce fully random outputs, but it will require more samples from the source to accumulate the
required amount of entropy for each random output value.

4.1 Empirical Model Relating TDC Delay to Jitter

In a given trial, the flip-flop associated with each TDC stage will sample a 0 value if its clock arrives
before its rising data input from the delay line, and will sample a 1 otherwise. If the delay tuning
settings are held constant across samples, the 0-probability (1-probability) of the stage indicates
the proportion of trials in which its clock arrives before (after) its rising data input from the delay
line.

If the flip-flop of stage i samples 0 with a probability 0.159, then 15.9 percent of clock edges
arrive there before the rising data input, and 84.1 percent of clock edges arrive after. Under the
assumption that jitter is normally distributed, the observation that 15.9 percent of clock edges
arrive before the rising data input reveals that rising data input coincides with the clock being
-1.0 = 0j;; away from its mean value, because ®! (0.159) = —1.0, where ®! is the inverse CDF
of a normal distribution. This scenario is depicted graphically in Figure 5.

In these same trials, if the flip-flop of stage j samples 0 with probability 0.933, then we similarly
conclude that its rising data input coincides with its clock being +1.5 * 0j;; away from its mean
because 7! (0.933) = 1.5. If there is no clock skew between the flip-flops of i and j, then these
two findings together indicate that the time difference between the rising data inputs on i and j is
equal to 2.5 * 0j;;. If clock skew is allowed, then we generalize the claim slightly to more formally
conclude only the difference in criticality (i.e., timing slack) between the two flops is equal to
2.5 * 0jj;, although for our purposes it is actually the criticality that matters so we need not worry

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 1, Article 3. Pub. date: January 2023.

3:8 X. Li et al.

about skew. The delay or criticality difference between any two stages can therefore be estimated
from their 0-probabilities in a set of trials. Because the estimate is noisy when the associated 0-
probabilities are close to 0 or close to 1, we apply it only when the 0-probabilities indicate that
both stages are within +20;;; of their means. Note that the delay difference is being calculated in
units of ¢j;; even though the value of ¢};; is not known in absolute terms. Using this approach, two
flip-flops i and j have arrival times (denoted T; and T;) that are related as shown in Equation (2),

where P; and }3\] are their respective 0-probabilities for a particular tuning setting.
T, =T = (‘1’71(131') - ‘1’71(1/%)) Ojit- (2)

4.2 Calculating Stage Arrival Times

Given that 0-probabilities from each tuning setting will relate to the arrival times of some of the
TDC stages, and that the same stages can be related to each other by multiple different tunings,
we can solve a set of equations to obtain the arrival time T; for each stage i. The set of equations
is as described in Equation (3) where T is the n-element column vector of unknown arrival times,
A is the m-by-n matrix of coefficients in which all entries are 0 except for a single +1 and single
—1 in each row for the two stages that are related, and B is an m-by-1 column vector of the arrival
time differences, calculated as shown on the right-hand side of Equation (2). We then find the least-
squares solution to AT = B (Equation (3)) which gives stage arrival times in terms of ¢;;;. Because
the formulation deals with differences in arrival times, we adopt the convention that T, the arrival
time of the first stage, is 0; other T; values, therefore, represent the arrival time of stage i relative
to the first stage.
AT = Bo jit- (3)
Figure 6(a) shows, for one instance of the TRNG, the stage arrival times (Tp, . . ., T55) obtained
by solving Equation (3). The arrival times across the 256 stages cover a span of approximately
84 times oj;;. While the arrival time generally increases while moving up the TDC chain, note
that the trend is not smooth. Although the rising edge does propagate through the carry chains in
sequential order, the anomalies in this trend imply that it does not reach the d input of the flip-flops
in sequential order. This can occur because the delays between carry chain and flip-flop of each
stage are not uniform, and because the clock skew at the flip-flop aliases to delay in its data input;
both of these artifacts are captured in the timing report so it is instructive to compare the modeled
arrival times to the slack from the timing report. Figure 6(b) shows the same modeled arrival times
from Figure 6(a), but now plotted against the reported timing slack for the corresponding flip-
flop which accounts for all delays and clock skew. Because a span of 84 times oj;; corresponds to
slightly above 800ps of reported slack, we can estimate o;;; to be around 10ps in absolute terms per
the timing report, although the timing report itself uses a conservative delay with built-in safety
margin, so the average-case delay may be somewhat less. There is a high correlation (r = —0.997)
between the arrival times from the model and the reported slack. Given that the model was fitted to
data measured on the board, the high correlation between the two quantities supports the validity
of the model for correctly resolving on-chip delays, and hence also for capturing the difference in
criticality between stages. Now that the empirical timing model is validated, we use it as the basis
for estimating the worst-case entropy of our TRNG.

4.3 Stochastic Model for Entropy Estimation

Based on the precision of each stage in Figure 6(c), we obtain the largest timing gap (2.268 *
0jir) between any two neighboring arrival times as highlighted in Figure 6, which can be used to
estimate a lower bound on min-entropy of the samples. The worst-case min-entropy corresponds
to the sampled value that can be produced with the highest probability. This would occur when

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 1, Article 3. Pub. date: January 2023.

Jitter-based Adaptive TRNG Circuits for FPGAs in the Cloud 3:9

100 100
— 80 4 — 80 f‘
S - S
LS .f lr X .‘

2 60 e £ 2 60 S
£ a E a®
5 2 s ~
£ 40 7 £ 40 "#'
© @ o
g >, 3 g
£ 20 rd 3 20 UF"
P ¥
o o
0 : 0
0 32 64 96 128 160 192 224 256 -38 —4.0 —42 —4.4 —46
stage by index order slack [ns]
(a) Modeled arrival time vs. stage index. (b) Modeled arrival time vs. slack from timing report.
£ 2.0 <——— Largest timing gap: 2.269 oj;t
2
[0
jo2}
S 154
2]
®
o
8 1.0
=
e}
&
< 0.5 1
o
0.0
0 32 64 96 128 160 192 224 256

stage by index order

(c) Precision of each stage in TDC chain from one FPGA instance, obtained from characterization procedure.

Fig. 6. TDC characterization. The largest timing gap between any two neighboring stage arrival times is
highlighted and annotated in Figure 6(a) and (c).

the mean arrival time of the clock coincides with the center of the largest timing gap of any stage,
which we denote here as A, 4. This is illustrated in Figure 7, which depicts the clock jitter assumed
as a normal distribution. In the worst-case min-entropy, the mean of jitter is in the middle of the
two stages with A, = 2.268 * 0j;;. The shaded region represents all the clock arrival times that
would result in the same sample being produced. The probability of producing this sample would
then be the probability associated with the shaded region, which we denote as Pp,4x, and calculate
from the normal CDF as in Equation (4). The min-entropy of an outcome with probability Py, is
given by Equation (5). For the specific instance used to generate these results, the largest interval
is 2.268 #0j;; shown in Figure 6(c), which corresponds to a shaded area in Figure 7 with Py,4x of
0.743, and hence min-entropy of 0.429 bits.

A -A
-0 (252) o ()
1
entropymin = log, (P) (5)

4.4 Impact of Routing and Clock Skew on Entropy

The previous subsection explains that worst-case min-entropy is limited by the largest timing gap
among all the stages. It is therefore desirable to make all of the timing gaps uniform so that none
are unusually large. We now present further results and discussion to explain why routing makes
this objective difficult to accomplish in practice.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 1, Article 3. Pub. date: January 2023.

3:10 X. Li et al.

0.5
0.4
>
£03
o
©
Q
202
S
largest interval:
0.1 2.268 0jir
0.0
-3 -2 -1 0 1 2 3

time [xgjit]
Fig. 7. Largest share of clock arrival times that will cause TDC to sample the same value.

Figure 8(b) shows the difference in arrival time between the FF of each stage and that of the
next stage by index. Here, instead of using indices from 0 to 255 to represent the stages across all
32 CLBs as was done in Figure 6(a), we use indices 0-7 for each CLB as annotated in Figure 8(a),
and have occurrences of each index from all 32 CLBs. Figure 8(b) shows, for each stage index, the
32 differences in arrival time between that stage and the next. The differences in arrival time are
predictable for stages 0, 1, 2 and for stages 4, 5, 6. In stages 3 and 7, the arrival time difference
is inconsistent from CLB to CLB. This inconsistency occurs because Ultrascale+ uses different
clock inputs for the upper and lower halves of the CLB, which causes stages 3 and 7 to span two
different clock leaf nodes (clk1 and clk2 in Figure 8(a)); the skew between the clock leaf nodes
aliases to arrival time as discussed in Section 4.2. For the TRNG design, one must therefore be
careful to avoid large positive clock skew at these points as it can reduce worst-case entropy by
causing highly probable outcomes for certain unlucky conditions. Negative skew causes no such
problem, as can be observed in Figure 6(a), so the one-sided restriction on skew is easy to satisfy in
practice. In fact, note that the negative skew at stage 208 in Figure 6(a) can improve the quality of
the TRNG, because it causes the rising edge to be captured twice in the same sample, at different
positions in the chain. In Section 7 we build on this principle to design a TRNG that samples the
rising edge multiple times.

5 TRNG QUALITY EVALUATION

In this section, we use three different techniques to test the quality of the random numbers pro-
duced by our design. As described in the following three subsections, the results support (1) that
our design exceeds the 0.1 bits of min-entropy per trial that was assumed as a security parame-
ter; (2) that our stochastic model gives a reasonable estimate of min-entropy; and (3) the random
numbers generated pass tests for statistical randomness.

5.1 Stochastic Model Applied Across EC2 F1 Instances

The stochastic model from Section 4.3 is our primary strategy for estimating the worst-case
min-entropy for each single instance of the TRNG. To test across FPGAs, we load the same bit-
stream onto 60 different EC2 F1 instances, and on each machine apply our characterization pro-
cedure to evaluate the worst-case min-entropy. The distribution of calculated min-entropy values
(Figure 9(a)) ranges from 0.250 to 0.972. These values indicate that across all 60 instances our de-
sign exceeds, by at least a margin of 2.5X, the 0.1 bits of min-entropy per sample that was assumed.

5.2 Stochastic Model vs. NIST Entropy Assessment

Next, to check our stochastic model, we apply the NIST SP800-90B entropy assessment suite [22]
to obtain an independently calculated estimate of min-entropy. To generate data for the NIST

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 1, Article 3. Pub. date: January 2023.

Jitter-based Adaptive TRNG Circuits for FPGAs in the Cloud 3:11

~N

| s

- =) # # s
[N £ 07 S
$_5|X| s clk2 é ®
L) 3 - : !

~

il

(0]
_1@ > clkl é
A 5 —15

1 0 1 2 3 4 5 6 1
g FF stage index within CLB

(a) CLB stage indices. (b) Differences in arrival times by index.

“

i

!

Fig. 8. Across the 32 CLBs in the TDC, the difference in arrival time between one index and the next is
predictable for indices 0, 1, 2 and 4, 5, 6. Indices 3 and 7 are each followed by a stage that is on a different
clock leaf, and there the difference in arrival time is inconsistent due to clock skew. Error bars extend one
standard deviation from the mean.

20.0 ! min entropy from
model: 0.42

N
o

0.1 bit
per sample

-
w

0.1 bit

Q
2125)
e <
5 10.0 5 per sample
Q o 10 i
8 15 s

oo
=}
w

0.0 0.5 1.0 15 2.0 255 0.0 0.5 1.0 15 2.0 25
min entropy [bit] min entropy [bit]
(a) Entropy per stochastic model for 60 FPGA instances. (b) Entropy per NIST SP800-90B for 234 tunings on one instance.

Fig. 9. Min-entropy by both stochastic model and NIST SP800-90B suite exceeds 0.1 bits per sample.

assessment, we apply on one instance all tuning settings and collect 1,000,000 samples from the
TDC with each setting applied [23]. We keep the data from any settings in which the average
Hamming weight of samples is in our allowed range of 30 to 225, which corresponds to a total
of 234 tuning settings. The NIST assessment is applied separately to each of these 234 datasets,
and the distribution of results is shown as a histogram in Figure 9(b). The NIST estimate of min-
entropy for most of the tuning settings fall above the estimate of 0.429 bits per sample from
the stochastic model on this instance. Because the NIST entropy values tend to exceed our es-
timated worst-case, we gain some confidence that our stochastic model is not overestimating
entropy.

5.3 End-to-End NIST Statistical Tests

Although the evaluation of the entropy source in the prior subsections is the primary
validation for a TRNG, we also apply statistical tests to the post-processed 8-bit values produced

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 1, Article 3. Pub. date: January 2023.

3:12 X. Li et al.

Table 1. Results from Applying NIST Statistical Test Suite to 100M Generated Bits Shows
that the TRNG Outputs are Evaluated as Consistent with Being Random

Statisticaltests [C1 [C2[C3[ca]cs[Ce[C7[Cs [o] Cio[[Pvalue [% |
Frequency 10 12 6 12 11 4 11 14 4 16 0.091 98
BlockFrequency 15 | 17 | 8 7 7 7 12 9 6 12 0.163 99
CumulativeSums 13 6 10 7 10 15 13 9 9 8 0.596 99
CumulativeSums 11 8 13 | 8 12 7 15 8 11 7 0.637 98
Runs 9 8 8 8 16 6 15 | 15 7 8 0.172 98
LongestRun 9 12 8 11 16 6 9 10 11 8 0.657 98
Rank 9 12 | 13 | 10 | 12 5 11 9 13 6 0.637 100
FFT 9 12 | 12 | 15 8 5 11 10 | 12 6 0.494 100
NonOverlap. Template 8 4 7 |11 |13 9 | 15| 13 | 10 | 10 0.401 100
Overlapping Template 8 9 11 8 8 15 | 12 9 8 12 0.817 98
Universal 8 8 8 12 | 14 | 12 | 14 6 8 10 0.616 99
Approximate Entropy 18 | 10 | 12 | 6 8 14 | 6 12 | 6 8 0.109 99
Serial 5 10 8 9 11 12 10 9 16 10 0.616 99
Serial 6 8 10 | 11 6 13 | 11 10 | 12 13 0.740 100
LinearComplexity 13 | 8 4 14 | 13 7 15 9 8 9 0.249 100

by the TRNG as a further validation. The NIST Statistical Test Suite [24], which is widely used
with random number generators, applies a collection of statistical tests and for each test re-
ports whether the sequences of bits are consistent with being random. The report shows how
often the P-values from each test fall within uniformly sized bins C1 through C10, and should
tend toward being uniformly distributed when enough random data is tested. The test suite
is applied to a dataset comprising 100 sequences of 1,000,000 bits from the TRNG and the re-
sults are displayed in Table 1. The final column of the table shows the proportion of sequences
that pass the test, indicating that the sequences have statistical properties consistent with being
random.

5.4 Empirical Min-entropy with Respect to Lag

Our stochastic model provides an upper bound on the ability to predict the response of the TRNG
circuit, but the model assumes that all variation in the data is explained by temporally uncorrelated
jitter. If variation in the characterized data actually has temporal correlation due to a physical cause
like temperature or voltage, then the model may overestimate jitter. As an additional validation
of entropy, we evaluate empirically whether an attacker that knows the value of a leading sample
can predict the value of a lagging sample a few cycles later. We perform this evaluation for all
valid tuning settings, and collect a dataset of 100,000 samples for each. From each dataset, for
all Hamming weight values a and b, we find the conditional probability of observing b as the
value of the lagging sample, given that a was observed as the value of the leading sample. The
maximum conditional probability corresponds to the best lagging sample guess by the attacker,
when a leading sample has the value that most benefits the attacker. Min-entropy is calculated from
this probability, and this is the empirical lower bound on min-entropy for the tuning setting that
generated the 100,000 sample dataset. We obtain one such min-entropy for each tuning, and vary
the lag from 1 to 10 samples, and show the results in Figure 10. Across all the tuning settings, the
minimum min-entropy never drops below 0.33 bits which still surpasses our security assumption
of 0.1 bits per sample.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 1, Article 3. Pub. date: January 2023.

Jitter-based Adaptive TRNG Circuits for FPGAs in the Cloud 3:13

Mean
- mmm m Minimum

2.01
=
2
> 1.5
Q
<]
=
1 /
® 1.0
£
€

0.5 1 _-_—_--__———___-_—l

0.0 T T T T T

2 4 6 8 10
lag [sample]

Fig. 10. Distribution of min-entropy values, with annotations for mean and minimum, when guessing a
lagging sample based on the value of a leading sample. There is only a minor temporal relationship, and
min-entropy remains above 0.33 even in the worst case.

6 TRNG PERFORMANCE AND COST EVALUATIONS

Aside from the requirement of avoiding circuits such as oscillators that are disallowed in certain
clouds, the large capacity of cloud FPGAs implies that the TRNG must also be resilient to any noise,
voltage, or temperature fluctuations that are caused by high-powered circuitry around the TRNG.

6.1 Resilience to Environmental Fluctuations

We subject the TRNG design to intentional environmental disruptions to check that its feedback is
able to adapt appropriately. Specifically, we build a configurable power consumption circuit that is
next to the TRNG on the F1 instance. The power waster consists of 32 different levels of power con-
sumption that can be enabled. Each level turns on one instance of a circuit comprising four com-
binational rounds of the Advanced Encryption Standard (AES) block cipher, with additional
feed-forward paths added to increase glitching [25]. The power consumption of the circuit is mea-
sured as the average power reported by the fpga-describe-local-image command provided in the
AWS management tools. Because the reported power updates only once per minute, we perform
separate experiments to characterize the consumption of the power wasters instead of measuring
their power in real-time when using them to disturb the TRNG. The baseline power consumption
of the instance is 8W, and each enabled level of power waster consumes an additional 3W. Turning
on the power wasters can disrupt the TRNG by causing heating and voltage droop.

Figure 11 shows the power wasting circuit is toggled on and off every 1,000 samples, and each
time it is switched on an additional five of the 32 power waster instances are enabled, which
corresponds to around 15W of additional power consumption. The blue line shows the Hamming
weight of the samples when feedback is enabled, and the orange line shows the Hamming weight
when feedback is disabled. Both voltage droop and increasing temperature increase propagation
delay between the controller and the TDC, which can explain the drop in Hamming weight. The
feedback allows the TRNG to compensate for this. When the feedback is disabled, we can see by
the Hamming weight that the magnitude of power consumption has a direct relation on the delay
of the circuit. Therefore, the controller uses feedback to adapt, and is able to keep the TRNG tuned
and operating correctly.

For an end-to-end validation of the TRNG under disturbance from power wasters, we repeat the
analysis of Section 5.3. As before, the NIST test suite is applied to 100 sequences of 1,000,000 bits,

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 1, Article 3. Pub. date: January 2023.

3:14 X. Li et al.

255 -
24W 38W 53W 68W 83w 98W

225
208

-
[$)]
[e.]

©
[e5]

Hamming Weight

-~

48
30

—Feedback control enabled
No Feedback control

T | |
2000 4000 6000 8000 10000 12000
Sample Number

Fig. 11. Control loop adapts to changes in localized power consumption on the FPGA in order to keep the
TRNG tuned.

and now 32 power waster instances are running during the data collection. The power wasting
circuitry toggles between on and off with every 1,000,000 TRNG bits collected. Similar to Table 1,
the TRNG again passes the tests, which indicates that these environmental fluctuations are not
observed to compromise the TRNG quality.

6.2 Comparison to Prior Work

The distinguishing feature of our work is its suitability for, and deployment on, cloud FPGAs. As we
have described, this imposes limitations on the types of circuitry that can be used, and increases
the importance of the TRNG being robust to environmental changes. Despite these challenges,
the costs of our TRNG are found to be reasonable for a large cloud FPGA. Table 2 compares the
throughput, logic utilization, efficiency (throughput/slice), testing methods, resistance to attack,
and entropy of our TRNG to other recently published TRNGs that are implemented on Xilinx
FPGAs. Our TRNG design (Figure 1) consumes 791 LUTs (0.067% of available), 33 CARRY8s, and
559 flip-flops (0.024%) across a total of 184 slices. Among these resources, the controller logic that
configures the coarse- and fine-tuning consumes 92 LUTs and 34 flip-flops, while the remainder
of the resources are consumed by the TRNG core itself. Our design generates random numbers
at a rate of 2.43 Mbps, which is sufficient for most applications, but could be increased through
parallelization if needed.

Here we listed the entropy comparisons between our work and other works in Table 2. It is
worth noting that NIST SP800-20B does not list a minimum value of what constitutes a usable
amount of min-entropy per sample.

7 TRNG BASED ON LINKABLE SAMPLING MODULE

In this section, we extend our basic TRNG to increase entropy per sample while still retaining the
stochastic model of randomness. The key idea of the approach is to make a modular version of
the sampling chain that can be arbitrarily extended by abutment to increase entropy. We choose
to make each sampling module 64 stages in length. The new module is shown within the dashed
box of Figure 12(a); we instantiate and link four such modules to create the sampling chain for the

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 1, Article 3. Pub. date: January 2023.

Jitter-based Adaptive TRNG Circuits for FPGAs in the Cloud 3:15

Table 2. Comparison with Related TRNGs Implemented on Xilinx FPGAs

O . . Entropy validation
Throughput| Utilization | Efficiency . Analysis of .
Work FPGA type (Mbps) (slice) | (Mbps/slice) Approach Testing method attacks resisted Entropy value
Entropy type
[26] Spartan 6 100 46 217 self-timed ring | NIST SP800-22 - -
[18] Spartan 6 14.3 67 0.213 ring oscillator NIST SP800-22 - 7.99998/byte (postproc)
unknown
ENT
NIST SP800-90B
[4] Spartan 6 1.15 3 0.383 ring oscillator NISTASIIS?;)?QOB - 0.76/sample (raw)
min-entropy
. RS latches DIEHARD
27] Virtex-4 125 >80 00221 etastability | NIST SP800-22) -
—— timing non- DIEHARD B B
5] Virtex-6 50 224 0-223 uniformity NIST SP800-22
Unspecified
[6] Virtex-5 2 32 0.063 metastability | NIST SP800-22 external -
perturbations
stochastic model
[7] Spartan 6 33 27 0.122 ring oscillator AIS-31 - >0.91/bit (raw)
min-entropy
AIS-20/31
[8] Spartan 6 1.1 128 0.122 ring oscillator AIS 20/31 - 7.998265/byte (raw)
Shannon entropy
AIS-31
latched ring | NIST SP800-22
[28] Spartan 6 0.76 1 0.76 oscillator AIS-31 Voltage 7.99834/byte (raw)
Shannon entropy
AIS-31
[29] Spartan 3 6 270 0.022 ring oscillator NISTI;ISSP_qu-ZZ - 7.9946/byte (raw)
Shannon entropy
NIST SP800-22 Power and NIST SP800-90B
[30] Virtex-6 - 9 - self-timed ring | NIST SP800-90B Thermal 7.8869/samp (postproc)
AIS-31 Attacks min-entropy
NIST SP800-90B
our basic Virtex .. NIST SP800-22
TRNG [12] | UltraScale+ 243 184 0.013 clock jitter NIST SP800-90B PVT 0,37/§ample (raw)
min-entropy
TRNG w/ . NIST SP800-90B
. Virtex . NIST SP800-22
linkable UltraScale+ 6.08 216 0.028 clock jitter NIST SP800-90B PVT 1.45/_sample (raw)
modules min-entropy

TRNG. Each module has inputs for a rising data edge and a sampling clock (shown at bottom), and
then propagates those signals through parallel carry chains to the outputs at the top of the module.
In the first instance, the data input is the rising edge from the tunable delay line as in Figure 2(a),
and the clock input is attached to the 125 MHz system clock.

7.1 Timing Analysis

The simple timing diagrams shown at right in Figure 12(a) illustrate the operating principle of
the design. The matched paths taken by data and clock through the module ensure that whatever
timing difference exists between them at module input, is preserved at module output, which is
the input to the next module. Therefore, neglecting small imbalances, each module performs the
same sampling experiment with the same relative timing. Effectively, the same rising edge is being
sampled within each module. We first consider the behavior of a single module and then how the
four modules interact.

7.1.1 Single Module. The 64 stages of a sampling module span 8 rows. The sampling clock for
the 8 FFs in each CLB comes from one tap on the clock path. Relative to the d and clk module
inputs, the relative arrival time at the data and clock inputs of sampling FFs are shown in the table
of Figure 12(b). The position of the clock tap, and its routing to the sampling FFs, is fixed but not
optimized. The sampling clock has a different arrival time at each CLB, unlike the original design
where the clock tree ensures low skew. Recall from Section 4.2 that skew aliases to delay; therefore,

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 1, Article 3. Pub. date: January 2023.

3:16 X. Li et al.

B L e i L= e N (R
. - S I 2 clk__| —
| at

Arrival time [ns]

Stage || data | clock || skew

carry8 inst7

h 3

] 1

]]

.] .

. | .

P o) .

12 2 ' i+54 | 0.368 | 0.300 || -0.068
'z P clelE454) : i+48 || 0.327 | 0.332 || 0.005
] |]

'8 T : ; i+40 || 0.286 | 0.318 || 0.032
o T W == : i+32 || 0.245 | 0.296 || 0.051
=l _% H = ! i+24 || 0.204 | 0.262 || 0.058
: f I T : i+16 || 0.163 | 0.255 || 0.092
: :) _@_ E:l : 1+ . . .
! 2 'z‘d[_] o= ! i+8 || 0.122 | 0.221 || 0.099

g i

E . T : i |[0.081] 0227 || 0.146
. H o :

: el o '

(b) Arrival time relative to module inputs

(a) Linkable sampling module for TRNG.

Fig. 12. Schematic and timing of 64-stage linkable sampling module used in the TRNG.

even though the propagation delay of data through the 64 stages is reported to be 368 ps per the
timing report, the difference in skew is only 214 ps because the clock arrives later at a upper stages.
That skew is likely the reason that the empirical delay difference through 64 stages is equivalent
to around 20 X ¢j;;, which is less than was observed in the original design where the clock was
synchronous to all stages. Plotting the arrival time of each stage against reported timing slack
(Figure 13(b)), we can see that the inferred arrival times of each module are correlated to reported
slack with correlations of (0.97, 0.96, 0.97, 0.96), which are slightly lower than the correlation of
0.997 reported in Section 4.2.

7.1.2 Multiple Modules. We now consider the timing behavior of all 256-stages, comprising
four identical 64-stage modules. When the rising edge is sampled four times, it lands between two
stages in each of the four modules. The samples of each module overlap each other, which therefore
increases sensitivity and tends to reduce the bin widths as shown in Figure 13(c). The worst-case
min-entropy calculated by applying the stochastic model to Figure 13(c) is 1.152 bits, which is
2.7x larger than the min-entropy calculated for our basic TRNG design. Accordingly, we increase
our assumption of entropy from 0.1 bits per sample in the basic TRNG to 0.25 bits per sample in
the TRNG that uses four linkable sampling modules, noting that our assumption remains highly
conservative relative to worst-case entropy indicated by the model. When considering empirical
arrival time from our model against slack, the expected correlation within each module can be
observed in Figure 13(b), but there is an offset across modules. The reason is as follows. The relative
timing of data and clock is the same at the input of each module due to the matched paths, yet
timing analysis is conservative and considers adding the same delay to data and clock as making
the path more critical. To preserve the same amount of negative slack, the timing analysis would
require the added delay on the data path to be larger than the added delay on the clock path.

When the feedback control is implemented based on the total Hamming weight, there can be
unpredictable changes if one instance entirely misses a rising edge due to poor tuning, so we

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 1, Article 3. Pub. date: January 2023.

Jitter-based Adaptive TRNG Circuits for FPGAs in the Cloud 3:17

25 25
-
o, & & 2 0
.20 ;' & 7 .20 0 .’ Ol
g . - e ‘e S o -
% o e Py X, o o o
o 15 :f - I < o 15 % . {
£ ,” 2, o, £ . $:
3 10 i de% - 3 10 . " N
2 T - PR K by 2 LS P
E ‘. Je e 22 5 K b Yoy
© poss oo ‘o @ © .o’ bRy o
® 5 '# &, . 2. P o 5 ‘-i. 8. Ll &
g . e . o o~ e
0 * - - .
12 » - » - [z P (1] o -
0 - 4 * o -
” - .
0 32 64 96 128 160 192 224 256 -47 —48 -49 50 -51 -52 -53 -54
stage by index order slack [ns]
(a) Arrival time at each stage. (b) Arrival time vs. slack (correlation = 0.96, 0.97, 0.97, 0.96).
1.2 A
& 104 Largest timing gap: 1.187 gje —
X
S
g 0.8
2]
®
Q 0.6
[
(9]
=
S 044
>
K
3 0.2
0.0
0 32 64 96 128 160 192 224 256

stage by index order

(c) Bin sizes, which determine entropy.

Fig. 13. The use of four linkable sampling modules causes the samples to overlap in time (in a and b), so
that the same edge is sampled once in each of the four modules. This reduces the bin size (in ¢) compared
with the original TRNG. The largest timing gap between two neighboring stages in terms of arrival time is
highlighted and annotated in Figure 13(a) and (c).

instead control the delay based on the Hamming weight of a single 64-bit module instance, which
also simplifies the control logic. Although we use four sampling modules to keep the total number
of stages to 256, in principle an arbitrary number of sampling modules can be instantiated and
connected by abutment. If there is systematic variation between data and clock paths, then it
could perhaps eventually become difficult to use a common tuning for many instances. There are
no indications of any such problems with the four modules.

7.2 Entropy and Performance

Similar to Section 5.1 for the basic TRNG, we load the modified TRNG onto 60 EC2 instances and
apply the stochastic model to calculate the min-entropy on each instance. As shown in Figure 14(a),
the worst case min-entropy of any instance is 0.93 bits. As before, the entropy assumption is conser-
vative; the actual entropy from the model (0.93 bits/sample) is 3.72x higher than what is assumed
(0.25 bits/sample). As in Section 5.2, we also collect 1,000,000 samples from each delay tuning on
one instance, and apply the NIST SP800-90B entropy assessment to the data. The distribution in
Figure 14(b) shows the min-entropy for all tunings on this instance, all of which exceed the 1.152
bits calculated by the stochastic model for the same instance.

Our justified assumption of 0.25 bits of entropy per sample enables a 250% increase in throughput
relative to the basic TRNG from FPT’20 [12]. An 8-bit random number is now generated using
only 32 samples instead of 80. Due to the 32 extra CLBs used to route the clock through the four
instances of the linkable sampling module, the 250% increase in throughput comes at only 17%

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 1, Article 3. Pub. date: January 2023.

3:18 X. Li et al.

10 10 min entropy
from model: 1.152
8 8
@ @Q
g . 0.25 bit g . 0.25 bit
9 per sample o per sam
3 3
g 4 g 4
2 2
o) Q
0.0 0.5 1.0 15 2.0 25 0.0 05 10 15 20 25 30 35
min entropy [bit] min entropy [bit]
(a) Min-entropy of 60 instances, from stochastic model. (b) Entropy assessment of 70 tunings, on one instance.

Fig. 14. Entropy according to the stochastic model, and from NIST assessment, both show that the modified
TRNG with linkable sampling modules produces around 1-bit of entropy per sample.

resource cost. The linkable sampling modules create an attractive cost vs. performance tradeoft.
Table 2 compares the performance of our TRNGs against eleven other works. The throughput
of a linkable sampling TRNG is able to support low-throughput applications aforementioned in
Section 1. The throughput of any FPGA TRNG can be increased to accommodate high throughput
applications by adding more instances, so an important metric to consider is the efficiency, in terms
of throughput of random numbers per slice of area. We therefore, list the metric of Mbps/slice as
well in the table. Finally, we list some of the attacks that each design is claimed to resist, and
describe the entropy metrics that are provided for each. Notably, given that most FPGA TRNGs
are based on oscillators which are forbidden, the only designs in the table that can be implemented
on EC2 F1 are ours and [5, 6].

8 CONCLUSION

Cloud FPGAs are commonly used for accelerating computationally expensive cryptographic op-
erations that rely on the generation of random numbers. In this article, we introduced and evalu-
ated a TRNG design that is compatible with the design restrictions imposed by cloud-based FPGA
providers. The TRNG oscillator-free design that we impose uses a controllable delay and harvests
clock jitter as an entropy source using a circuit that is similar to a TDC. The effectiveness of the
design is supported by NIST test results and a stochastic model of the entropy source. Furthermore,
the design is shown to be able to compensate for voltage droop that may occur during a power
attack, and its entropy is not compromised in this scenario. Future work can consider further in-
creases in entropy-per-sample and the impact of advanced clocking features.

REFERENCES

[1] Juan Soto. 1999. Statistical testing of random number generators. In Proceedings of the 22nd National Information
Systems Security Conference. NIST Gaithersburg, MD, 12.

[2] Guanglou Zheng, Gengfa Fang, Rajan Shankaran, and Mehmet A. Orgun. 2015. Encryption for implantable medical
devices using modified one-time pads. IEEE Access 3 (2015), 825-836.

[3] Carlo Meijer and Bernard Van Gastel. 2019. Self-encrypting deception: Weaknesses in the encryption of solid state
drives. In Proceedings of the 2019 IEEE Symposium on Security and Privacy. IEEE, 72-87.

[4] Bohan Yang, Vladimir Rozic, Milo§ Grujic, Nele Mentens, and Ingrid Verbauwhede. 2018. ES-TRNG: A high-
throughput, low-area true random number generator based on edge sampling. IACR Transactions on Cryptographic
Hardware and Embedded Systems 2018, 3 (2018), 267-292.

[5] Xian Yang and Ray C. C. Cheung. 2014. A complementary architecture for high-speed true random number generator.
In Proceedings of the 2014 International Conference on Field-Programmable Technology. IEEE, 248-251.

[6] Mehrdad Majzoobi, Farinaz Koushanfar, and Srinivas Devadas. 2011. FPGA-based true random number generation us-
ing circuit metastability with adaptive feedback control. In Proceedings of the International Workshop on Cryptographic
Hardware and Embedded Systems. Springer, 17-32.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 1, Article 3. Pub. date: January 2023.

Jitter-based Adaptive TRNG Circuits for FPGAs in the Cloud 3:19

[7] Adriaan Peetermans, Vladimir Rozic, and Ingrid Verbauwhede. 2019. A highly-portable true random number generator
based on coherent sampling. In Proceedings of the 2019 29th International Conference on Field Programmable Logic and
Applications. IEEE, 218-224.

[8] Josep Balasch, Florent Bernard, Viktor Fischer, Milo§ Gruji¢, Marek Laban, Oto Petura, Vladimir Rozi¢, Gerard Van Bat-
tum, Ingrid Verbauwhede, Marnix Wakker, and Yang Bohan. 2018. Design and testing methodologies for true random
number generators towards industry certification. In Proceedings of the 2018 IEEE 23rd European Test Symposium. IEEE,
1-10.

[9] Lubos Gaspar, Viktor Fischer, Lilian Bossuet, and Robert Fouquet. 2011. Secure extensions of FPGA soft core processors

for symmetric key cryptography. In Proceedings of the 6th International Workshop on Reconfigurable Communication-

Centric Systems-on-Chip. IEEE, 1-8.

George Provelengios, Daniel Holcomb, and Russell Tessier. 2019. Characterizing power distribution attacks in multi-

user FPGA environments. In Proceedings of the 2019 29th International Conference on Field Programmable Logic and

Applications. 194-201.

[11] Hias Giechaskiel, Kasper Bonne Rasmussen, and Jakub Szefer. 2019. Measuring long wire leakage with ring oscillators
in cloud FPGAs. In Proceedings of the 2019 29th International Conference on Field Programmable Logic and Applications.
IEEE, 45-50.

[12] Xiang Li, Peter Stanwicks, George Provelengios, Russell Tessier, and Daniel E. Holcomb. 2020. Jitter-based adaptive
true random number generation for FPGAs in the cloud. In Proceedings of the 2020 International Conference on Field-
Programmable Technology. IEEE, 112-119. DOI : http://dx.doi.org/10.1109/ICFPT51103.2020.00024

[13] Shaza Zeitouni, Jo Vliegen, Tommaso Frassetto, Dirk Koch, Ahmad-Reza Sadeghi, and Nele Mentens. 2021. Trusted
configuration in cloud FPGAs. In Proceedings of the 2021 IEEE 29th Annual International Symposium on Field-
Programmable Custom Computing Machines. IEEE, 233-241.

[14] Pierre-Francois Wolfe, Rushi Patel, Robert Munafo, Mayank Varia, and Martin Herbordt. 2020. Secret sharing MPC
on FPGAs in the datacenter. In Proceedings of the 2020 30th International Conference on Field-Programmable Logic and
Applications. IEEE, 236-242.

[15] Paul Kohlbrenner and Kris Gaj. 2004. An embedded true random number generator for FPGAs. In Proceedings of the
2004 ACM/SIGDA 12th International Symposium on Field Programmable Gate Arrays. ACM, 71-78.

[16] Abhranil Maiti, Raghunandan Nagesh, Anand Reddy, and Patrick Schaumont. 2009. Physical unclonable function and
true random number generator: A compact and scalable implementation. In Proceedings of the 19th ACM Great Lakes
Symposium on VLSI. 425-428.

[17] Vladimir Rozic, Bohan Yang, Wim Dehaene, and Ingrid Verbauwhede. 2015. Highly efficient entropy extraction for
true random number generators on FPGAs. In Proceedings of the 2015 52nd ACM/IEEE Design Automation Conference.
IEEE, 1-6.

[18] Norbert Deak, Tamas Gyorfi, Kinga Marton, Lucia Vacariu, and Octavian Cret. 2015. Highly efficient true random
number generator in FPGA devices using phase-locked loops. In Proceedings of the 2015 20th International Conference
on Control Systems and Computer Science. IEEE, 453-458.

[19] J.-L. Danger, Sylvain Guilley, and Philippe Hoogvorst. 2009. High speed true random number generator based on open
loop structures in FPGAs. Microelectronics Journal 40, 11 (2009), 1650-1656.

[20] Takahiro J. Yamaguchi, Kiyotaka Ichiyama, Harry X. Hou, and Masahiro Ishida. 2009. A robust method for identifying
a deterministic jitter model in a total jitter distribution. In Proceedings of the 2009 International Test Conference. IEEE,
1-10.

[21] LiXu, Yan Duan, and Degang Chen. 2015. A low cost jitter separation and characterization method. In Proceedings of
the 2015 IEEE 33rd VLSI Test Symposium. IEEE, 1-5.

[22] Meltem Sonmez Turan, Elaine Barker, John Kelsey, Kerry A. McKay, Mary L. Baish, and Michael Boyle. 2018. Recom-
mendation for the entropy sources used for random bit generation. NIST Special Publication 800, 90B (2018), 102.

[23] Chris Celi. 2019. NIST SP800-90B Entropy Assessment. Retrieved from https://github.com/usnistgov/SP800-90B_
EntropyAssessment. Accessed 29 November 2020.

[24] Andrew Rukhin, Juan Soto, James Nechvatal, Miles Smid, and Elaine Barker. 2010. A Statistical Test Suite for Ran-
dom and Pseudorandom Number Generators for Cryptographic Applications. Technical Report. National Institute of
Standards and Technology.

[25] George Provelengios, Daniel Holcomb, and Russell Tessier. 2020. Power wasting circuits for cloud FPGA attacks. In
Proceedings of the International Conference on Field Programmable Logic and Applications. 231-235.

[26] Jun-Yeong Choe and Kyung-Wook Shin. 2020. A self-timed ring based TRNG with feedback structure for FPGA imple-
mentation. In Proceedings of the 2020 International Conference on Electronics, Information, and Communication. IEEE,
1-4.

[27] Hisashi Hata and Shuichi Ichikawa. 2012. FPGA implementation of metasability-based true random number generator.
IEICE Transactions on Information and Systems 95, 2 (2012), 426-436.

(10

=

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 1, Article 3. Pub. date: January 2023.

http://dx.doi.org/10.1109/ICFPT51103.2020.00024
https://github.com/usnistgov/SP800-90B_EntropyAssessment

3:20 X. Li et al.

[28] Riccardo Della Sala, Davide Bellizia, and Giuseppe Scotti. 2022. A novel ultra-compact FPGA-compatible TRNG ar-
chitecture exploiting latched ring oscillators. IEEE Transactions on Circuits and Systems II: Express Briefs 69, 3 (2022),
1672-1676.

[29] N.Nalla Anandakumar, Somitra Kumar Sanadhya, and Mohammad S. Hashmi. 2019. FPGA-based true random number
generation using programmable delays in oscillator-rings. IEEE Transactions on Circuits and Systems II: Express Briefs
67,3 (2019), 570-574.

[30] Yukui Luo, Wenhao Wang, Scott Best, Yanzhi Wang, and Xiaolin Xu. 2020. A high-performance and secure TRNG
based on chaotic cellular automata topology. IEEE Transactions on Circuits and Systems I: Regular Papers 67, 12 (2020),
4970-4983.

Received 8 September 2021; revised 11 January 2022; accepted 23 February 2022

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 1, Article 3. Pub. date: January 2023.

