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Abstract

In this paper, we study an integrated hurricane relief logistics and evacuation planning (HRLEP) problem. We propose stochastic
optimization models and methods that integrate the hurricane relief item pre-positioning problem and the hurricane evacuation
planning problem, which are often treated as separate problems in the literature, by incorporating the forecast information as well
as the forecast errors (FE). Specifically, we fit historical FE data into an auto-regressive model of order one (AR-1), from which
we generate FE realizations to create evacuation demand scenarios. We compare a static decision policy based on the proposed
stochastic optimization model with a dynamic policy obtained by applying this model in a rolling-horizon (RH) procedure. We
conduct a preliminary numerical experiment based on real-world data to validate the value of stochastic optimization and the value
of the dynamic policy based on the RH procedure.
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1. Introduction

Hurricanes are among the deadliest disasters in the US. Hurricane Katrina in 2005 alone caused about 1800 deaths
and an estimated 108 billion US dollars worth of infrastructure damage [1]. Population under the threat of a hurricane
evacuates to safe shelters because of personal safety concerns, power outages, and flooding [2]. While most evacuees
shelter in hotels or resort to families and friends, around 11% evacuees from the potential affected areas, which we
refer to as demand points (DPs), are evacuated to the shelter points (SPs) [2]. In the meantime, relief items (such
as food, water, and medical kits) are shipped from distribution centers (DCs) to the SPs. Clearly, the operations of
evacuation and the relief item pre-positioning at the SPs must be coordinated to ensure the well-being of the evacuees at
the shelters. In this paper, we study an integrated hurricane relief logistics and evacuation planning (HRLEP) problem.

Evacuation is a multi-period operation, which typically starts approximately two to three days before the hurricane’s
predicted landfall time, depending on the hurricane’s severity [3]. A timely evacuation plan is crucial to ensure suffi-
cient time for the evacuation operation. Every six hours after the hurricane’s formation, the National Hurricane Center
(NHC) issues a forecast of the hurricane attributes up to the next five days including the hurricane’s projected track
(longitude, latitude) and intensity (wind speed). The projected landfall location of an impending hurricane determines
the risk zone. Inside the risk zone, the evacuation demand from the DPs, i.e., the number of evacuees, depends on
the affected population’s behaviors and the hurricane’s attributes [4], which we assume to be characterized by the
hurricane’s intensity and location. In the case of a deterministic hurricane forecast, one may perform a deterministic
demand estimation and create a deterministic optimization model for the HRLEP problem. However, the hurricane
forecast is imperfect and subject to FEs, which imposes uncertainty on the hurricane’s future attributes and hence the
demand realization. A deterministic optimization model may be insufficient to address the challenges brought by the
various sources of uncertainty in the hurricane event, and one typically resort to tools and models in optimization
under uncertainty, such as stochastic optimization.

Given a stochastic process that characterizes the uncertain hurricane attributes over time with a known probability
distribution, a fully adaptive multi-stage stochastic programming (MSSP) model can be used to create dynamic deci-
sion policies. However, MSSP models are complex and computationally expensive to solve [5]. Two-stage stochastic
programming (2SSP) models are more desirable in this situation as they are computationally less demanding. Despite
its efficiency, 2SSP models only produce static decisions that may suffer from lack of adaptability. This issue may



be partially addressed by the so-called rolling horizon (RH) approach [6]. There is an extensive set of literature on
hurricane evacuation and relief logistics operation, which are typically treated as two separate problems. For example,
the pre-positioning of emergency relief items in a logistics network has been studied both in a single-period setting
and in a dynamic multi-period setting with uncertainty in the supply and demand of relief items [7, 8]. For evacu-
ation, a dynamic forecast-driven Markov decision process model has been used to determine the evacuation timing
decisions [9]. The integrated problem of evacuation and relief logistics planning has not appeared in the literature
until recently, where the problem is studied in a single-period setting [10]. There is a lack of research that incorporates
evacuation into disaster relief logistics planning in an integrated network under a multi-stage setting.

In this paper, we aim to address this issue by studying both a static policy given by a 2SSP model and a dynamic
policy by using the 2SSP model in the RH procedure for multi-stage integrated evacuation and disaster relief logistics
planning. In this procedure, we sequentially solve a stochastic look-ahead model (SLAM) at every period, which
corresponds to a 2SSP model defined for the remaining of the planning horizon, and only implements the decisions that
apply to the current period. The remainder of the paper is structured as follows: Section 2 describes the mathematical
formulation of HRLEP problem as a 2SSP model. Section 3 presents the experimental setup, a case study, and the
corresponding results. Section 4 summarizes the paper with some concluding remarks.

2. Problem formulation
This section discusses the model formulation for the proposed 2SSP model for the HRLEP problem. We consider a
planning horizon of T periods : 7 = {1,...,T}. At any time period ' € T, we define a SLAM at ¢’ for the remaining
planning horizon of 7" = {¢',#' +1,...,T}. Let I,J,K represent the sets of DPs, SPs, and DCs, respectively, and let
S represent the set of hurricane scenarios for 2SSP model. For simplicity, we make the following assumptions in our
model: (i) The DCs and SPs can be opened at any time ¢ € 7, which is available for use immediately, and once opened,
they will stay open until the end of the planning horizon; (ii) The evacuees evacuated to an SP cannot be moved to
other SPs; (iii) We treat the relief items as a single-commodity package that contains all essential items needed by an
evacuee. The problem parameters are defined as follows:

Df op The total population (maximum potential demand for evacuation) of DP i € 1

q;/qx Capacity for the number of evacuees/relief items at SP j€J / DCk € K

cJF- / cf One-time fixed setup cost of SP j € J / DC k € K upon activation

c? Unit procurement cost of relief items at DC k € K
cfj Unit evacuation cost from DPi€/toSP j€J
cfj / c’?,j Unit transportation cost of relief items from DC k€ K or SP j € Jto SP j € J
cP Unit penalty cost for not evacuating a person needing evacuation at a period

CJG / 051 Unit cost for emergency/unused relief items shipped to/from SP j € J
MR iR Unit inventory cost of relief items in SP j € J / DC k € K per period
cﬂ-”VE Unit operating cost of SP j € J (per evacuee) per period
Ds Probability of occurrence for scenario s € S

At each period ¢/, the hurricane’s attributes in the remaining planning horizon, ¢’ +1,...,T are uncertain. To come
up with a 2SSP model, we represent the uncertain demand at periods ¢ € {t' +1,...,T} in the form of scenarios.
Each scenario s € S is a sample path that represents the evolution of a hurricane’s attributes from ¢ + 1 until T
and corresponding demand realization vector { [Dﬁ;“]ie Iy [DL]icr}, which represents the fraction of the remaining
population at i € [ to evacuate each time ¢. For simplicity, the demand realization is computed via a deterministic
mapping from the realization of the hurricane’s attributes (see Section 3.1 for details). This captures the empirical
behavior analysis results for hurricane evacuation [4].

The first-stage decisions are defined as follows:
Z/z,  Whether or not j € J/k € K is open during time period t € 7"
¢%/¢,  Inventory level of relief items at j € J/k € K at the end of period r € 7"
yi; Number of people to evacuate from i € I to j € J at time ¢/
! Number of people whose evacuation need/demand is not met at i € I at time ¢/

/e Number of evacuees at i € I/j € J at the end of period ¢/

¥, Amount of relief items procured at k € K in time period ¢/
X/, Amount of relief items shipped from k € K/j' € J\ {j} to SP j € J at time 1/



g;.' / h’]/ Amount of emergency/unused relief items shipped to/from j € J in time ¢/

The first-stage decisions can be categorized by local variables and state variables. Specifically, z’j, Zhs K’j, and /)_are
the state variables that characterize the state of the logistics system over time. All other first-stage variables are local
variables for period ¢’ only.

The second-stage decision variables are scenario-dependent, which are defined as follows:
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Yijs

kjs/ J'js
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Number of people to evacuate fromi €/to j€Jattimer € 7'\ {¢'} ins € S

Number of people whose evacuation need/demand is not met ati €  attimer € 7'\ {f'} ins € §
Number of evacuees at i € I/j € J at the end of periodt € 7' ins € §

Amount of relief items procured at k € K in time period ¢ € 7'\ {¢'} in scenario s € S

Number of relief items shipped from k € K/j € J\{j} to j€ Jattimer € T'\{{'}ins €S

Amount of emergency/unused relief items shipped to/from j € J in time r € 7"\ {'} in scenario s € §

At time ¢/, the values of the state variables from t’ — 1 ie., /'~ and 2'~!, become input parameters to the SLAM.

At = 1, we assume the initial conditions are ¢° /,z

9, V=0, Vjel, €k7zk—0, Vk € K, and ¢? = DFOP Vi€ I. The

SLAM at ¢’ is a 2SSP model that combines the first-and second-stage models defined as follows:
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The second-stage model
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Constraints similar to (1f) — (In), Vs € {' +1,..., T}, Vs € S with the first-stage variables replaced by their second-stage copies

The first two terms of the first-stage objective (1a) represent the fixed cost of opening SPs and DCs, respectively. The
third term represents the total cost of procuring relief items at DCs. The fourth and fifth terms represent the cost of
transporting relief items among SPs and from DCs to SPs. The last two terms represent the inventory holding costs of
relief items at DCs and SPs. Constraints (1b) and (1c) ensure that the DCs and SPs stay open until the end of periods
once they are decided to be open. Equations (1d), (11), and (1m) are the inventory and supply capacity constraints of the
DCs. Similarly, constraints (1e) and (1k) represent SPs’ inventory and supply capacities. Constraints (1n) and (1j) are
the balance constraints for the supply and inventory of relief items at DCs and SPs, respectively. Constraint (1f) ensures
demand satisfaction, while constraint (1g) represents the number of evacuees at DPs. Constraint (1h) represents
the number of evacuees at SPs, and constraint (1i) is the capacity constraint for the number of evacuees at SPs.
Objective (2a) is the expected value of second-stage cost from period ' + 1 until the hurricane’s landfall at 7. We
use the standard Benders decomposition method to solve 2SSP models by treating the first-stage and the second-stage
models as the master and subproblems, respectively.

2.1 The rolling horizon approach

A 2SSP model at t = 1 can only provide a static decision policy. In this model, the logistics and evacuation decisions
Vt € 7 are made at + = 1 that depend on the point forecast at # = 1 and the hurricane attributes’ possible future
realizations. Since a hurricane’s attributes and forecasts change over time, a static model fails to adapt to the dynamic
evolution of the hurricane’s information. The rolling horizon approach naturally generates a dynamic policy in an
online fashion where a SLAM is solved at every period, but only the decisions that apply to the current period are
implemented. At every period t € 77, the SLAM at ¢’ utilizes the actual realization at ¢" and the most updated forecast
available. Let X, and Y, be the state and local variables of SLAM at ¢/, and after we solve the SLAM at ¢/, we
implement an optimal solution X, and ¥, and compute the immediate cost A (X1, ¥,) for the current stage #'. The
values of the state variables X, are used as input parameters for the SLAM at ¢/ + 1 as we roll forward to the next
stage. After solving SLAM for all ¢ € T over a sample path, we compute the cumulative cost of the rolling-horizon
policy on this sample path, Zjy,, = ¥eq Z5 (X, V).

3. Experimental setup and results

In this section, we discuss our experiment setup and some preliminary computational results. We start by discussing
how we model the forecast uncertainty. Our stochastic model for the forecast error (FE) is constructed based on data
available from the NHC’s forecast verification report [11], which is released each year at the end of every hurricane
season, including both the track FE and the intensity FE. Our preliminary calculation indicates that the Pearson corre-
lation coefficient of FE between two subsequent periods is greater than 0.7, which motivates us to model the track and
intensity FE data using auto-regressive models of order 1 (AR-1). Let & represent the FE at period ¢, then according

to the AR-1 model: & = p&~1 +¢', where &' %S N(0,62), V¢ € 7\ {1} and £! is deterministic. To validate the model
assumption, we provide the Q-Q plots of historical intensity and track FE at 24 hours prior to landfall in Figures la
and 1b. The Q-Q plot supports the normality assumption of intensity FE. In contrast, the non-normal distribution of
the track FE is due to heavy tails observed. To address this, we transform the track FE data using a log transformation,
and we see that the normality assumption is supported by the Q-Q plot in Figure 1c for the transformed data.

Q-Q plot of intensity forecast error Q-Q plot of original track forecast error Q-Q plot of log-transformed track forecast error
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Figure 1: Q-Q plot of historical hurricane forecast errors at 24 hours prior to the hurricane’s landfall

We estimate parameters (p,G) in the AR-1 model using maximum likelihood estimation (MLE), as (P, O ) based
on the NHC'’s official FE data of the storms from 2017 to 2021 [11]. For a given realization of &”1 s Pmle, and o .a

mle?



realization of &' can be obtained by sampling & ~ N(0, Gmle) We thus randomly sample a number of realizations of
€',Vt € T to create an e-grid for track and intensity errors. To generate a scenario (sample path), foreacht =1,2,...,T
we randomly pick a realization of € from the " column vector of e-grid to compute &'.

bl

3.1 Case study

Our case study focuses on Hurricane Florence 2018 in South Carolina (SC), assuming the coastal line to be straight
for simplicity. We define the study region as a 200-miles area around the endpoints of the coastal line, encompassing
eight coastal SC counties with high hurricane vulnerability as the Demand Points (DPs). We represent the DPs’
locations by projecting the respective counties’ central latitudes (lats) and longitudes (longs) onto the coastal line.
The SC Emergency Management Division (SCEMD) divides the state of SC into four hurricane regions. We select
11 hurricane sub-regions with high vulnerability in the north, central, and south regions as our candidate SPs, with
their central locations and aggregated shelter capacities. Additionally, we choose 12 counties in the western hurricane
region with their central locations (lats, longs) as our DCs.

We consider a planning horizon of 10 periods, each being 12 hours long, starting at O-hour (#1) to 120-hour (717). At
t1, the hurricane’s track and intensity forecast from #, until #1; is given by NHC’s official (point) forecast. We assume
that the hurricane makes landfall deterministically at #1;. The track FE at every scenario represents the deviation
between the realized hurricane’s position and the point forecast, along the axis of the coastal line. Figure 2 presents
the locations and a set of sample hurricane tracks. We set D? OF "¢i € I to be 5% of the vulnerable population of the
respective DPs [2].

We assume that the demand at each DP at any period
is a function of the hurricane’s location and intensity.
To represent the hurricane’s track locations, we define
the x- and y- axes by the coastal line (which is assumed
to be a straight line) and its normal. A positive de-
mand for DP i € [ at a period ¢t € 7 will incur if its lo-
cation is within certain threshold values in both the x-
and y- axes, (Xpax; Ymax), from the hurricane’s location,

Hurricane scenarios and locations
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Figure 2: Location of DPs, SPs, DCs and hurricane scenar-
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3.2 Out-of-sample evaluation

The out-of-sample (OOS) evaluation for the
RH policy is straightforward. To conduct
an OOS evaluation on the static 2SSP pol-

. RH
B Static

icy for sample path s°, we first solve the
2SSP model at + = 1. Then for each period
t € {2,...,T}, we pick the recourse solution
of scenario s closest to s° among all scenar-
ios used in the 2SSP model at ¢ = 1 in terms
of the DP demand vector. Using the number
of evacuees ¥ ;s as an upper bound for the
number of evacuees on arc (i,j), we solve
a deterministic optimization problem to get
the values of other local variables.

3.3 Results
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Figure 3: OOS evaluation and sensitivity analysis on various cost fac-
tors.

We now present numerical results from our preliminary experiments. Firstly, we pick S = 50 to be the number of
scenarios to use through an in-sample stability test. Furthermore, Figure 3a presents the average OOS cost over 50



replications of both the RH and static policy for different cost factors, G4 and Py,ue;. The RH model exhibits an
average total cost that is 13% lower than the static policy, highlighting the benefits of adaptive decision making. In
contrast, the static 2SSP model is limited in its ability to evacuate beyond a certain number of evacuees as it must satisfy
demand on a sample path with the static solution obtained without the sample-path information. As ¢’ increases, the
static policy results in higher penalty costs and fewer evacuations. Moreover, the rate of change of the cost difference
for RH and static 2SSP is less for the rate of change of c© than ¢”F. This indicates that the cost of the static 2SSP
model on the evacuation side is more significant than on the relief logistics side. Thus, the static policy, when applied
to an OOS, results in higher penalty costs and fewer evacuations. In contrast, RH adapts to demand realizations in an
online fashion, leading to lower overall costs.

Figure 3b demonstrates the sensitivity analysis of a 2SSP model for different cost factors Gyar and Py, which
controls the values of ¢¥ and ¢, respectively. Specifically, the penalty cost dominates among all cost components
for smaller values of ¢/Z. As ¢PF increases, the total penalty cost decreases, and evacuation and relief supplies play
a more significant role in fulfilling demand. It is important to note that emergency costs only occur after the SPs
are activated to provide relief items to evacuees. In contrast, penalty costs can be incurred independently of all other
costs. Furthermore, emergency costs become significant only for small ¢ values but become negligible for higher c¢
values, as relief logistics are relatively less expensive in the latter case. Thus, decision-makers can utilize this trade-off
analysis to select appropriate values of ¢”¥ and ¢ based on their impact on the overall cost structure.

4. Conclusion

This paper considered the use of dynamically evolving uncertain hurricane attributes in an integrated HRLEP problem.
We modeled and solved the integrated HRLEP problem using a static 2SSP model and an online RH approach. We fit
an AR-1 model using historical FE data, from which we created evacuation demand scenarios for the 2SSP model. We
demonstrated the benefit of the RH approach over a static 2SSP model with an out-of-sample test. For future research,
we will consider the case where the hurricane’s landfall time is random, using a multi-stage SP model.
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