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In explainable artificial intelligence, discriminative feature localization is
critical to reveal a blackbox model’s decision-making process from raw data
to prediction. In this article, we use two real datasets, the MNIST handwritten
digits and MIT-BIH Electrocardiogram (ECG) signals, to motivate key char-
acteristics of discriminative features, namely adaptiveness, predictive impor-
tance and effectiveness. Then, we develop a localization framework based
on adversarial attacks to effectively localize discriminative features. In con-
trast to existing heuristic methods, we also provide a statistically guaranteed
interpretability of the localized features by measuring a generalized partial
R?. We apply the proposed method to the MNIST dataset and the MIT-BIH
dataset with a convolutional auto-encoder. In the first, the compact image re-
gions localized by the proposed method are visually appealing. Similarly, in
the second, the identified ECG features are biologically plausible and consis-
tent with cardiac electrophysiological principles while locating subtle anoma-
lies in a QRS complex that may not be discernible by the naked eye. Overall,
the proposed method compares favorably with state-of-the-art competitors.
Accompanying this paper is a Python library dnn-locate that implements the
proposed approach.

1. Introduction. The empirical success of machine learning in real applications has pro-
found impacts on many scientific and engineering areas, including image analysis (LeCun
et al., 1989; He et al., 2016), recommender systems (Wang, Wang and Yeung, 2015), natu-
ral language processing (Hochreiter and Schmidhuber, 1997), drug discovery (Vamathevan
et al., 2019), protein structure prediction (Jumper et al., 2021; Evans et al., 2021). However,
the nature of a black-box model makes it challenging to interpret its decision-making pro-
cess. The lack of interpretability hinders transparency, trust, and understanding of scientific
discovery. To meet challenges, Explainable Al (XAI) is emerging, which includes localizing
discriminative features attributing to a model’s predictive performance, shaping or confirm-
ing human intuitions and knowledge, for instance, visual explanation on image recognition.

1.1. Motivation: DL discriminative localization in the MIT-BIH ECG dataset. Our inves-
tigation responds to the need for locating features that are most critical to a learning outcome.
The present study is motivated by the MIT-BIH ECG dataset and the MNIST dataset. Specif-
ically, the MNIST dataset serves as a benchmark for studying XAI methods (Ribeiro, Singh
and Guestrin, 2016; Lundberg and Lee, 2017), in part because the results of Localization
could be easily evaluated by human intuition. As demonstrated in Figures 3 and 7, localized
image pixels explain how a deep convolutional network differentiates digits “7” and ‘9’ on the
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MNIST data. A more substantial medical application is based on the MIT-BIH ECG dataset,
this dataset is a commonly used ECG benchmark dataset, which consists of ECG recordings
from 47 different subjects recorded at the sampling rate of 360Hz by the BIH Arrhythmia
Laboratory. Each beat is annotated into 5 different classes under the Association for the Ad-
vancement of Medical Instrumentation (AAMI) EC57 standard (Stergiou et al., 2018): "N’,
’S’,’V’,’F’, and °Q’. One random sample per class is demonstrated in Figure 1.

Fig 1: Five classes of ECG beat: {‘N’: normal, left/right bundle branch block, atrial escape,
nodal escape}, {‘S’: atrial premature, aberrant atrial premature, nodal premature, supra-
ventricular premature}, {“V’: premature ventricular contraction, ventricular escape}, {‘F’:
fusion of ventricular and normal}, {‘Q’: paced, fusion of paced and normal, unclassifiable}.
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Fig 2: A typical ECG signal with its most common waveforms, where important points and
intervals are marked.
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Broadly speaking, The existing ECG diagnosis methods in the literature can be categorized
into two: conventional machine learning (ML) and deep learning (DL) methods. Conven-
tional ML methods first extract manually-crafted features based on ECG background knowl-
edge and some signal morphological technique, including the QRS complex, T wave, R-R
interval, S-T interval (Wasimuddin et al., 2020); see Figure 2. Next, conventional classifica-
tion methods, such as support vector machines (SVMs; Cortes and Vapnik (1995)), random
forest (Breiman, 2001), and gradient boosting (Friedman, 2001), can be used to implement
ECG diagnosis under a supervised learning framework based on extracted features (Jam-
bukia, Dabhi and Prajapati, 2015). However, conventional methods strongly depend on the
quality of the manually-defined features, which are limited by existing domain knowledge.
Specifically, the manually-crafted morphological features may not be able to capture all pre-
dictive information in the original ECG signals (Bharti et al., 2021; Thygesen et al., 2007).
Moreover, it is also challenging to perfectly extract morphological features from ECG signals
due to electrical noise caused by tray magnetic fields and accessories that vibrate (Elgendi,
2013). Therefore, certain biases may be introduced during feature engineering, thus hamper-
ing the accuracy of ECG diagnosis.

Recently, deep learning has garnered considerable success in ECG diagnosis. DL differs
from conventional ML methods in directly fitting a neural network based on raw ECG sig-
nals without feature engineering to extract manual-crafted features. DL models have recently
delivered superior performance in the classification of ECG diagnosis. For instance, existing
convolutional neural networks (Attia et al., 2019; Rajpurkar et al., 2017; Ko et al., 2020)
achieved over 93% heartbeat classification accuracy. In contrast to conventional ML. meth-
ods, DL models can effectively and adaptively extract the underlying information from raw
data. Alternatively, the DL models may localize some novel discriminative features that even
ECG experts may not be aware of nor can discern. However, despite their merits, DL models
are often referred to as a blackbox, referring to the seeming mystery of their decision-making
processes. The lack of interpretable features relevant to the prediction stands out as a sig-
nificant barrier to the clinical use of their routine. Therefore, our primary goal is to develop
a localization framework to unmask unknown discriminative features of blackbox models
to help bridge the bench-to-bedside gap and explore the domain knowledge of interpreting
ECGs.

Discriminative feature localization for DL models is important but challenging. The major
difficulties include (i) discriminative features are data-dependent on an input instance. For ex-
ample, in the MNIST or ECG dataset, the location of discriminative features may differ with
inputs; see Figures 8 and 10. On this premise, classical variable selection methods based on
tabular data are unsuitable without modification; instead, it requires data-adaptive feature
selection. (ii) A reliable statistical measure supported by theory is required to quantify pre-
dictive importance of any discriminative feature. Most existing methods are heuristic and fail
to interpret the localized features. (iii) As indicated in Figure 3, the localized features should
effectively explain the discrimination of different outcomes. Hence, effectiveness and pre-
dictive importance should be simultaneously considered for selecting sensible discriminative
features.

1.2. Prior work and our contributions. Three major approaches have emerged for
discriminative feature localization, including two-stage methods, feature-importance-based
methods, and backtracking methods. Specifically, two-stage methods use a simple explain-
able model, such as a local linear model, to approximate a complex blackbox model, and then
to extract discriminative features. In particular, a method called local interpretable model-
agnostic explanations (LIME) (Ribeiro, Singh and Guestrin, 2016) approximates a classifi-
cation model by a local sparse linear model based on a kernel smoother as in Davis, Lii and
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Politis (2011), then highlights those features with positive linear coefficients. Deep-Taylor
(Montavon et al., 2017) expands and decomposes a neural network output in terms of its in-
put variables and generates a heatmap by back-propagating explanations from output to input.
Feature-importance-based methods rank each feature’s contribution by its importance based
on an approximating model in a two-stage method. For example, SHAP (SHapley Additive
exPlanations) (Lundberg and Lee, 2017) develops a kernel method integrating LIME with the
SHAP-value as the kernel weights and feature importance to quantify the contribution of fea-
tures in an approximating local linear model. The backtracking methods map the activation
layers of a neural network back to the input feature space, identifying which input patterns
contribute more to prediction. In particular, Zhou et al. (2016) uses the global average pool-
ing (GAP) together with class activation mapping (CAM) at the last layer of a convolutional
neural network (CNN). Then it backtracks discriminative regions at the previous convolu-
tional layers to the predicted scores. Gradient-CAM (Selvaraju et al., 2017) extends GAP to
a general CNN model by computing the gradient of a decision score concerning the feature
activation maps of a convolutional layer. Deconvnet (Zeiler and Fergus, 2014) and Layer-wise
Relevance Propagation (LRP) (Bach et al., 2015) perform backtracking with a deconvolution
and conservative relevance redistribution, respectively. Finally, Patternnet (Kindermans et al.,
2017) identifies discriminative features by localizing the signal and noise directions for each
neuron of a neural network.

Despite their merits, issues remain. First, a two-stage approach does not directly interpret
an original model since discriminative features are localized by a simple approximation. For
example, discriminative features generated by a linear approximation model (Ribeiro, Singh
and Guestrin, 2016; Lundberg and Lee, 2017) may be neither discriminative nor interpretable
in the original model. Second, most existing methods are heuristic. As argued in Tjoa and
Guan (2019), an intermediate backtracking process for GAP, Gradient-CAM and LRP are not
amenable to scrutiny. Moreover, Deconvnet and LRP fail to produce a theoretically correct
explanation even for a linear model (Kindermans et al., 2017). Finally, the above methods
usually provide a dense representation of discriminative features, as suggested in Figure 9,
yielding less effective interpretation.

There are three key contributions of our work in this paper:

» We propose a generalized partial R? in Definition 2.1 to quantify the degree of predic-
tive importance of discriminative features so that they can be interpreted similarly as in
classical statistical analysis.

* The proposed localization framework (5) is able to simultaneously consider both predictive
importance and effectiveness. Specifically, as illustrated in Figures 7 and 10, it provides a
flexible framework to localize discriminative features corresponding to a certain amount of
accuracy, as measured by an R2.

* Through numerical experiments in Section 5 (the MNIST dataset), the localized discrim-
inative features not only confirm the visual intuition but also are more efficient than the
other existing methods. The numerical experiments in Section 6 suggest that localized
ECG features are biologically plausible and consistent with cardiac electrophysiological
principles, while locating subtle anomalies in sinus rhythm that may not be discernible by
the naked eyes.

2. Generalized partial R? for discriminative localization. In this section, we intro-
duce generalized partial R? to quantify the degree of predictive importance of discriminative
features.
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2.1. Motivation. In a learning paradigm, a prediction function d is trained to predict an
outcome Y for a given instance X, where X = (X7, -+, X,)T is a p-dimensional continuous
feature vector. Without loss of generality, each feature component X is rescaled to [0, 1]. For
example, in the MNIST dataset, X is a gray-scale image, and Y is its associated digit label
(LeCun and Cortes, 2010). To assess the performance, a loss function L(-,-) is used, such
as the cross-entropy loss L(d(X),Y) = —1] log (softmax (d(X))), where 1y is the one-
hot encoding of Y and softmax(z) = (softmax(z)1,--- ,softmax(z),)T with softmax(z); =
exp(=i) /3, exp(2;)-

Our goal is to identify discriminative features that effectively disrupt or deteriorate the
prediction performance of a given learner d. To proceed, we highlight three distinctive char-
acteristics of discriminative features motivated from real applications, namely adaptiveness,
predictive importance, and effectiveness. As an illustrative example based on the MNIST
dataset, consider two localized feature sets in the left panel of Figure 3. The feature set re-
moved in the middle or right panel decreases the predictive accuracy of d by the same amount
from 0.986 to 0.614, which suggests that the discriminate features should contribute largely
to the predictive performance of d. Moreover, with the same amount of deterioration of per-
formance, the highlighted features in the middle panel appear more compact, which we call
more effective in the sequel, and thus more preferred as discriminative features. Furthermore,
key characteristics are also captured by the MIH-BIH data. In particular, the amplitudes and
locations of the QRS complexes (Kusumoto, 2020), as well as of P and T waves, varying
across ECG signals even of the same class, dictate that the discriminative features should be
adaptive to the input ECG signals, as shown in the right panel of Figure 3. Note that the QRS
complex corresponds to the spread of a stimulus through the ventricles and is usually the
most visually important part of an ECG tracing (Kusumoto, 2020). Moreover, ion channel
aberrations and structural abnormalities in the ventricles can affect electrical conduction in
the ventricles (Rudy, 2004), manifesting with subtle anomalies in the QRS complex in sinus
rhythm that may not be discernible by the naked eyes, yielding sparse or effective discrimi-
native features.

In summary, three distinctive characteristics of discriminative features are desired:

* Adaptiveness. Discriminative feature extraction has to be adaptive to an input instance
and a specific learner d. For example, in the MNIST/MIT-BIH dataset, the location of
discriminative features may differ with input images/signals.

* Predictive importance. The prediction accuracy of a learner d would significantly deteri-
orate without discriminative features. Alternatively, discriminative features can explain a
large proportion of its predictive performance.

e Effectiveness. Discriminative features should effectively describe the discrimination of the
outcome. Therefore, under the same predictive importance, the number/amount of local-
ized discriminative features should be as small as possible. For example, compact localized
pixels in the MNIST dataset or compact and accurate location of QRS complexes of ECG
signals in the MIT-BIH ECG dataset.

To address adaptiveness, we introduce a localizer §(x) = (01(x),- -+ ,0p(x))T : RP — RP
to produce a disruption adaptively based on an instance x to yield disrupted features xs =
x — 0(x). Without loss of generality, assume that each |0;(x)| < 1 because x; is rescaled to
be in [0, 1]. In practice, the restriction |§;(x)| < 1 is usually met by construction, for example,
in an auto-encoder in image classification, see Section 3.2 for illustration.

2.2. Generalized partial R?>. To measure the degree of predictive importance of a lo-
calizer &(-), we introduce a generalized partial B2, which mimics the partial R? in regres-
sion (Nagelkerke et al., 1991) and McFadden’s R? (McFadden et al., 1973) in classification.
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Fig 3: Examples to illustrate the concepts of adaptiveness, predictive importance, and effec-
tiveness of discriminative features on the MNIST and MIT-BIH data. Left panel. The left
represents raw images of digits 7 and 9, the middle represents images with localized pixels
(marked in red) by the proposed method, and the right represents images with localized pixels
from row 15 to 28. Here ‘loss’ and ‘acc’ denote the cross-entropy and classification accuracy
of a conventional neural network for each of the original and two disrupted dataset (by re-
moving the localized regions of all images). Right panel. The top and bottom each show two
extracted ECGs and their localized regions from class ‘S’ (blue) or ‘V’ (red) in the MIT-BIH
data. Specifically, the red/blue solid lines are the extracted ECG signals, and the highlighted
vertical blue/red bars are localized regions by the proposed method. More discussion can be
found in Sections 5 and 6.

Specifically, the main idea of the partial R? is one minus the ratio of the full-model risk to
the partial model risk. On this ground, we generalize the partial R? to blackbox models in
Definition 1.

DEFINITION 2.1 (Generalized partial R?). Given a predictive model d, we define the
generalized partial R? based on a localizer &(-) as

E(L(d(X),Y))
E(L(d(Xs),Y))

(1) R%(d,8)=1—
If R%(d, &) > r2, we say that the localized features by §(-) is 72-discriminative.

The generalized partial R? is one minus the proportion of the risk on full features X
over that of the disrupted features X5 = X — §(X). It is a natural and clear criterion to
extend the classical R2, and measure the predictive importance of the features disrupted
by a localizer. Specifically, a higher R? yields stronger predictive importance of the lo-
calized discriminative features. When d(x) does not affect the performance of d, that is,
E(L(d(Xs),Y)) =E(L(d(X),Y)), or R*(d,8) = 0, the localized features contain no in-
formation for prediction. On the other hand, 72, = maxgs R?(d,d) the largest R?> among
all possible localizers, gives an upper bound of R?. For instance, a localizer with each
d;j(x) = x; disrupts extremely by removing all features, which forces a learner d to pre-
dict without features. In general, 0 < R? < 2 indicates the percentage of performance
explained by 6.



DATA-ADAPTIVE DISCRIMINATIVE LOCALIZATION 7

3. Methods. Our main idea of identifying effective discriminative features is to seek a
localizer d(x) yielding the most effective disruption of the features to reduce the prediction
accuracy of a learner d.

3.1. A discriminative localization framework. In Figure 3, the r2-discriminative local-
izer in the right panel is ineffective, although it also affects the same amount of prediction
accuracy. Therefore, discriminative features should have an effective (or compact) represen-
tation, in addition to their contribution to a learner’s prediction accuracy.

To achieve this goal, we introduce an activity L;-regularizer J(J) to quantify the effec-
tiveness of a localizer,

() J(é):sipzwj(m)}.
j=1

The benefits of this regularizer are two folds. First, it coincides with greedy feature selection
results as indicated in Appendix A. Second, the supremum in (2) makes the localized fea-
tures more balance over an entire sample, as suggested in Section 5. Moreover, we specify
|6(x)|loc < 1 for any a, to control the magnitude of the disruption. This requirement can be
trivially satisfied, for instance, using the proposed truncated rectified linear unit (TReLU) or
Tanh as an activation function in the output layer of any deep neural network, as in Section
3.2.

Next, we define an effective r2-discriminative localizer §° as the one minimizing J (&)
among all r2-discriminative localizers. Then 8° can be regarded as an optimal localizer for
identifying discriminative features to inferpret a learner’s predictability through effective dis-
ruption.

DEFINITION 3.1 (Effective r2—discriminative). For 0 < 72 < rﬁlax, an effective 72-
discriminative localizer to d is defined as

3) 8%c  argmin J(6),

6€H,:R?(d,0)>12
where H, is a candidate collection of localizers such that sup,, ||6(x)||cc < 1, and we say
that the localized features by §°(-) is effective r2-discriminative.

As noted in Definition 3.1, 8" is a most effective localizer that minimizes the regularization
J(-) among all r2-discriminative localizers. Without loss of generality, we assume that §°
always exists' but may not be unique in the sequel. Note that in the presence of multiple
global minimizers in (3), each of them could be useful, since our goal is to estimate such an
effective r-2-discriminative localizer.

To identify an effective discriminative localizer for a learner d, we maximize R?(d,d) or
the prediction risk E (L (d(X — 6(X)),Y’)) with respect to &, under the restriction of J(8).
This leads to our proposed framework:

4) max E(L(d(X —é(X)),Y)), subject to J(8) < T,

b
where 7 > 0 is a tuning parameter to balance the objective of deteriorating the prediction
performance and magnitude of a localizer d(-). To make the constraint sensible, we let 7 < p
since supgsey,, J(8) = p. As shown in Lemma 3.2, a most effective 2-discriminative local-
izer 6° can be identified by (4).

1Otherwise, the definition can be adapted to an e-global minimizer, where the difference between its minimum
value and the global minimum is no less than or equal to €.



LEMMA 3.2. Let 60 be a global maximizer of (4), and
70 = min{r € (0,p] : R*(d, %) > r?},

then 8% is an effective r*-discriminative localizer with J(8%) = 7°.

Lemma 3.2 says that (4) recovers an effective r2-discriminative localizer defined in Def-
inition 3.1 in a similar fashion as Fisher consistency in classification (Lin, 2004; Bartlett,
Jordan and McAuliffe, 2000).

Given a training sample (x;,y;);_;, we propose an empirical risk function to estimate &Y
and 7°:

1 n
(5) max Ly(d,d)=— ZL(d(mi — é(mi)),yi), subjto, J(d)<T.

0EH, n i—1

Denote 5\7 as a maximizer of (5) for a given 7. In view of Lemma 3.2, our final estimate of

(590,7'0) is
(6) 8 is a maximizer of (5), where 7 = min{r € (0,p] : R*(d, 8,) >}

In practice, 7 € (0, p] is replaced by 7 € 7, where T is the candidate set of the tuning param-
eter 7 as some grid points for positive real numbers, and the estimated R? is evaluated based
on an independent test sample Dieg = (5, yl)?:tﬁl,

> (@) eDes L(d(®),Y)
> () eDey Lld(® — 07 (2)),y)

Taken together, we iteratively solve (5) for 7 € T from the smallest to the largest via a grid
search (Bergstra and Bengio, 2012), and it terminates once Rz(d, 0:; Diest) exceeds a pre-
specified target 2.

(7) ﬁQ(da gT? Dtest) =1-

3.2. A convolutional auto-encoder discriminative localizer. 'The proposed framework (5)
admits a general localizer, such as a deep neural network. In practice, a network architecture
incorporating data structure would be preferred (Bengio, 2012). For example, for the image-
to-image localization in the MNIST dataset, or the sequence-to-sequence localization in the
ECG dataset, convolutional auto-encoder architectures are natural options to impose a “local
smoothing” structure of the localized features. Therefore, this section illustrates the localizer
4 as a convolutional auto-encoder. It is noted that the network architecture of a discriminative
model sets a standard for designing a localizer’s architecture.

Consider a localizer of the form §(x) =  ©® 7w(x),  is an image, where © is the element-
wise product and 0 < 7r(x) < 1 represents the percentage of image features that a localizer
removes from the original feature x.

Subsequently, we implement our proposed localizer by taking an image « as input and giv-
ing output as disruption proportion 7 (x). Specifically, we build a convolutional auto-encoder
discriminative localizer based on a convolutional auto-encoder network (CAE; Masci et al.
(2011); Rumelhart, Hinton and Williams (1985)), which is composed of three components:
Encoder-CNN (E-CNN), hidden neural network (HNN), and Decoder-CNN (D-CNN), as il-
lustrated in Figure 4. Besides, on the CAE backend model, we introduce a TReLLU-softmax
activation function to control the activity L;-regularizer of the localizer. On this ground, we
consider a localizer class:

Q) H= {57(33) — 2 ©m(x) : wh(x) = TReLU(r - softmax (CAEg(x))); 6 € @},
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Fig 4: Our localization network structure based on a convolutional auto-encoder, which is
composed of three components: Encoder-CNN (E-CNN), hidden neural network (HNN), and
Decoder-CNN (D-CNN).

Encoder-CNN hidden layers Decoder-CNN

where CAEg(x) is a convolutional auto-encoder with 8 € R? denoting its parameters, @
is a parameter space of 0, and TReLu(u) = min(u,,1) is the truncated ReLU activation
function.

Note that for any § € H], the following conditions are automatically satisfied: (i)
Sup, [|6(x) |00 < 1; (ii) J(6) = sup,, |6(x)||1 < 7. Therefore, the constraints in (5) can be

removed given a function class 7}, and the optimization of (5) becomes:
1 n
9) max nZ;L(d(:c,- —x; O mh(x;)), vi),
1=

which can be solved by Gradient Descent (GD) or stochastic gradient descent (SGD; Ra-
ginsky, Rakhlin and Telgarsky (2017)). The GD solution of (9) attains a local maximizer of
(9) under some mild assumptions (Lee et al., 2016). Note that the convergence result can be
extended to SGD as in (Ge et al., 2015), and a global maximizer may be obtained by GD
or SGD with additional assumptions (Raginsky, Rakhlin and Telgarsky, 2017). Once 0 is
obtained, the estimated localizer is specified as

(10) 5, (z) = © TReLu(7 - softmax (CAE4(x))).

3.3. Interpretation uncertainty. Robustness is a general challenge to existing interpre-
tation approaches. For example, Ghorbani, Abid and Zou (2019) indicates that systematic
perturbations can lead to dramatically different interpretations without changing the label. To
distinguish the interpretability and robustness for the proposed framework, we propose an
unexplainable R? as a confidence interval for the generalized partial R? to distinguish the
prediction deterioration caused by discriminative features from model instability. In particu-
lar, given a learner d and a localizer ST, we construct a confidence interval for R?(d, ST) via
bootstrap on a test sample.

First we generate a bootstrap sample Dt(el?t by drawing B independent observations from
the test data Dis with replacement. Then the unexplainable R? for RQ(d7 ST) is obtained us-
ing the sampling distribution of the bootstrapped estimates {}ABQ (d, 37; Dt((ft) ) }le. For exam-
ple, for the MNIST dataset, we obtain a 95% confidence interval of R?(d, 57) by computing

the |.025B]-th and |.975B |-th ordered estimated 12 on the bootstrap samples, as indicated
in Figure 5. More detail can be found in Section 5.

4. Theoretical guarantee. This section indicates that the proposed framework yields
discriminative features attaining a target R? with optimal effectiveness asymptotically.

To proceed, let 62 be a global maximizer of (4) over a function class Hj, = {5 eH:
supg [|6(x)|lsc < 1}. Without loss of generality, assume that 0 < L(d(z5),Y) < U for a
sufficiently large constant U > 1, for any d € H; and « € R? (Wu and Liu, 2007). To make
the constraint sensible, we let 7 < p since supscy,, J(6) = p.
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Fig 5: Boxplot of the estimated R? of the proposed method based on 500 bootstrap samples
for the MNIST benchmark example. This example illustrates the concept of an unexplainable
R2.

Denote the Rademacher complexity for the function class Hy as x, = ER, (’Hb) =
SUPsen, M 2orey |mi (L(d(X; — 8(X5)),Y))|, and {n;}7; are i.i.d. Rademacher random
variables with n; taking the values +1 and -1 with probability 1/2 each. To make the constraint
sensible, we let 7 < p since supgc4,, J(6) = p. Theorem 4.1 gives a convergence rate for the

discrepancy between 62 and &, in terms of R? uniformly over 0 < 7 < p.

THEOREM 4.1 (Asymptotics of R?). Let 37 be a global maximizer of (5), for £y, > 8kp,
and any predictive model d, we have

2

< ne;,
P(sup FHd87) — FE(8) 2 0) < Kewp (= 7).

where K > 0 is a constant. Hence,

sup (R?(d,8%) — R%*(d,5,)) = Op(max(mn,n_lﬂ)).
0<7<p

Note that the asymptotics of the Rademacher complexity x,, for a candidate class H has
been extensively investigated in the literature (Bartlett and Mendelson, 2002; Bartlett, Bous-
quet and Mendelson, 2005). Therefore, the uniform convergence rate can be obtained for
a generic candidate class by Theorem 4.1. Moreover, the asymptotics for a fixed 7 is also
provided in Appendix C, where the rate can be further improved.

Next, we show that 3\? is an asymptotically effective r2-discriminative localizer. Note that
8- already is an r2-discriminative localizer, since R2(d, =) > r2 by the definition of 7 in (6).
Therefore, it suffices to show effectiveness, that is, that is, |.J (3?) —J(8%)| =7 — 70 250.
To proceed, we require a smoothness condition of R?(d, %) over 7 in Assumption A.
Assumption A (Smooth). Assume that R?(d,8?) is a continuous function in 7. Moreover,
there exists a constant 9 > 0 such that |7y — 75| < pif [R%(d, 62) — R*(d, 62)| < cou® for
any < fig.

THEOREM 4.2 (Oracle property). Let 6° be an effective r-discriminative localizer
in Definition 3.1 and 67 be a global maximizer of (6). Under Assumption A, for w, >
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2(8kn /o)™, we have

ana

o)

]P’(‘?— TO‘ > wn> = IP’(}J(S;.) - J(JO)‘ > wn) < K'exp < —
where K' > 0 is a universal constant. Therefore,
[7(82) = J(830)| = [7 = 7| 0,
and S? is an asymptotically effective r2-discriminative localizer.

Therefore, the proposed framework yields an effective 7-2-discriminative localizer as de-
fined in (3.1), rendering theoretical reliable discriminative features for a target R2. Moreover,
the theorems are illustrated for the proposed convolutional auto-encoder neural network (9)
in Corollary B.1, where the convergence rates are computed depending on the sample size
and the network architecture.

S. MNIST benchmark. This section examines the numerical performance and visu-
alizes discriminative features generated from the proposed localizer for the MNIST hand-
written digit dataset (LeCun and Cortes, 2010) (http://yann.lecun.com/exdb/
mnist/). All empirical results are produced in our Python library dnn-locate (https:
//github.com/statmlben/dnn-locate).

For the MNIST data, we extract 14,251 images (28 x 28 field) from the dataset with labels
“7’ and ‘9’. Our goal is to localize discriminative features for distinguishing digits ‘7” and ‘9’
with a specific generalized partial R

First, we train a decision function d as a CNN, where we regularize each parameter of the
CNN by the Li-norm with weight 0.001. Here the CNN model is optimized by the Adam al-
gorithm with an initial learning rate of 0.001, early stopping based on the validation accuracy
with patience as 10, and 20% of the training data as a validation set.

Then, a convolutional auto-encoder (CAE), as in (8) and Figure 4, is constructed as the
localizer. For training, we optimize the model by stochastic gradient descent with an initial
learning rate of 10/7 and reduce the learning rate by a factor of 0.382 (Bengio, 2012), when
the validation loss has stopped improving. Moreover, early stopping is conducted based on
validation accuracy with patience as 15 (Raskutti, Wainwright and Yu, 2014).

For the proposed method, we implement (9) based on 7 =4, 6,8,10,12, 14,18, 20, and the
relation between 7 and its corresponding estimated R2s are demonstrated in Figure 6. Note
that the estimated R? increases as the activity Li-norm of the localizer becoming large. Fur-
thermore, the discriminative features, identified by the proposed method for two illustrative
instances of “7° and ‘9’, are visualized in Figure 7. Specifically, as the estimated R? becomes
larger, the disrupted instance labeled as ‘9’ becomes more and more like “7°.

As illustrated by the boxplot (Figure 5), a 95% confidence interval [0.867, 0.882] for
the R2(d, 57) indicates some uncertainty with the fitted localizer (7 = 17), where the R? is
categorized as unexplainable if it falls inside the confidence interval.

Next, we compare the proposed method with five state-of-the-art methods by both human
visual and numerical evaluations, including deep Taylor explainer (Montavon et al., 2017),
gradient-based explainer (Selvaraju et al., 2017), Irp.z (Bach et al., 2015), deconvnet (Zeiler
and Fergus, 2014), and pattern.net (Kindermans et al., 2017). All competitors are imple-
mented by the Python library innvestigate (https://github.com/albermax/
innvestigate),andthe batch size issetas 64 for pattern.net. In particular, a heatmap
of discriminative features produced by each method is validated by a visual inspection and
by a numerical comparison based on the estimated R? given the same amount/magnitude of
feature disruption.


http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://github.com/statmlben/dnn-locate
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https://github.com/albermax/innvestigate
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Fig 6: Training and testing estimated R?s for the proposed framework in handwritten digit
dataset with 7 = 6,8, 10,12, 14, 16, 18, 20, which indicates that the R? increases as the mag-
nitude for an estimated localizer becoming large.
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Fig 7: Illustrative instances of localized discriminative features (red) by the proposed method
for *7° and ‘9’ digits (black) as well as their corresponding estimated R?s (the heatmap in
x-axis). The gray color-bar indicates gray scale of original images, and the red color-bar
indicates the proportion of removing features, that is, 7w () in (9).

5.1. Visual comparison. As displayed in Figure 7, the proposed method produces more
compact discriminative features. By comparison, the other competitors yield dense image
features spreading over the entire digits. Moreover, the proposed method gives roughly equal
attention to two images in discriminating digits 7’ from ’9’, which conforms with human
intuition. However, as depicted in 9, all competitors generate imbalanced discriminative fea-
tures that are more in one of the two images of ‘7’ and ‘9’ as shown in Figure 9. As a result,
the proposed method is more conducive for label-specific analysis.

5.2. Numerical comparison. To make a fair comparison, we conduct a pairwise com-
parison between the proposed localizer and each competitor under the same magnitude of
J(-). Specifically, we compute the value of .J(-) and the estimated R? of detected regions
by a competitor. To fairness, we chose our tuning parameter 7 to be the same as the J(-)
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Fig 8: Data-adaptive localized discriminative features (red) for the proposed method with
7 = 20 based on different ‘7’ and ‘9’ digits (black). The gray color-bar indicates gray scale
of original images, and the red color-bar indicates the proportion.
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Fig 9: Illustrative instances of localized discriminative features (red), based on five com-
petitors, for “7” and ‘9’ digits (black), and their corresponding generalized partial R?s (the
heatmap in x-axis). The gray color-bar indicates gray scale of original images, and the red
color-bar indicates importance of pixels produced by a localizer.

of the competitor. Then compare the R?s for the proposed method and the corresponding
competitor.

As indicated in Table 1, under the same magnitude J(-), the proposed localizer out-
performs all competitors in terms of R2, where the amounts of improvement are 58.47%,
147.1%, 146.5%, 308.0%, and 44.14%.

In summary, the proposed method has significant benefits. First, as illustrated in Figure 7, it
provides a flexible framework to localize desirable discriminative features to explain a certain
amount of predictive performance as measured by an R2. Second, the visual and numerical
results in Figures 7 and 9 and Table 1 suggest that the proposed method can produce compact
and effective discriminative features, which are consistent with human visual judgment.
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TABLE 1
A pairwise comparison for the proposed framework and five existing methods based on 10-fold cross validation.
Here J(-) is the activity L1 -regularizer as defined in (2), and the estimated RZ% as in .

activity Lq-norm J(+) R? (competitor in the first column) R? (our method)
deep-Taylor 11.698(.228) 0.236(.016) 0.374(.084)
gradient 26.028(.319) 0.289(.012) 0.714(.033)
Irp.z 14.689(.219) 0.256(.014) 0.631(.077)
deconvnet 27.832(.955) 0.175(.015) 0.714(.023)
pattern.net 374.709(2.762) 0.648(.006) 0.934(.001)

6. ECG data analysis. Finally, we present the results of applying our method to the
MIT-BIH Arrhythmia Electrocardiogram (ECG) dataset for heartbeat classification (Moody
and Mark, 1990). The MIT-BIH dataset consists of ECG recordings from 47 different sub-
jects recorded at the sampling rate of 360Hz by the BIH Arrhythmia Laboratory. Each
beat is annotated into 5 different classes by following the Association for the Advance-
ment of Medical Instrumentation (AAMI) EC57 standard: labeled as 'N’, ’S’, °V’, °F’,
and ’Q’. The pre-processed dataset is publicly available at ht tps: //www.kaggle.com/
shayanfazeli/heartbeat. The MIT-BIH ECG dataset has been extensively studied,
including using deep convolutional neural networks (Kachuee, Fazeli and Sarrafzadeh, 2018;
Acharya et al., 2017; Martis et al., 2013). In spite of the impressive predictive performance
obtained by the devised networks (with more than 93% classification accuracy), it is unknown
why and how the networks achieved their good performance. To advance our understanding
and possibly offering new insights, our goal is to localize discriminative signal fragments
based on the deep CNN developed in Kachuee, Fazeli and Sarrafzadeh (2018), which is one
of the state-of-the-art ECG classification methods.

For implementation, we build a localizer by using a convolutional auto-encoder structure
in Figure 4 with two convolutional layers as an encoder and two transposed convolution lay-
ers as a decoder. For training, we use the SGDW optimizer with “learning_rate=.1",
“weight_decay=1le-4", “momentum=. 9”. Besides, a reducing learning rate scheme
is used with “factor=.382" and “patience=3", and early stopping is adopted with
“patience=20". Moreover, we tune the hyperparameter 7 to achieve various R?s: 10%,
50%, 60%, 70%, 715%. Training one network takes less than half an hour on a GeForce GTX
2060Ti GPU. All the Python codes are publicly available in https://github.com/
statmlben/dnn-locate.

To demonstrate our localization results, we concentrate on the localized ECG signals un-
der the label ‘S’ (including atrial premature, aberrant atrial premature, nodal premature, and
supra-ventricular premature) and the label “V’ (including premature ventricular contraction,
and ventricular escape).

As shown in the lower panel of Figure 10, the localized regions (highlighted by the red
bars) of ECG complexes in sinus rhythm are most informative in distinguishing presence of
ventricular ectopic beats from supraventricular ectopic beats in a particular individual. The
localized regions lie in the QRS complex, which correlates with ventricular depolarization
or electrical propagation in the ventricles (Mirvis and Goldberger, 2001). Ion channel aber-
rations and structural abnormalities in the ventricles can affect electrical conduction in the
ventricles (Rudy, 2004), manifesting with subtle anomalies in the QRS complex in sinus
rhythm that may not be discernible by the naked eye but is detectable by the convolutional
auto-encoder. Of note, as the R? increases from 10% to 88%, the highlighted color bar is
progressively broader, covering a higher proportion of the QRS complex. The foregoing ob-
servations are sensible: the regions of interest resided in the QRS complex are biologically
plausible and consistent with cardiac electrophysiological principles.
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Fig 10: The proposed method reveals subtle discriminative features used by a deep convo-
lutional neural network for ECG classification on the MIT-BIH dataset. The left/right panel
highlights the localized features for a particular individual under label “V’/‘S’. Note that
the R? increases from 10% to 88% for both upper and lower panels. The medical literature
provided in Section 6 gives supporting evidence for biological plausibility of the localized
features; see more discussion in Section 6.
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As shown in the upper panel of Figure 10, similarly, the regions of interest (highlighted
by the blue bars) of ECG complexes in sinus rhythm are most informative in distinguishing
the presence of supraventricular ectopic beats from ventricular ectopic beats in a particular
individual. As in the left panel, the regions of interest lies in the QRS complex, which is
intuitive and biologically plausible as explained above.

As shown in the last three figures in the upper panel of Figure 10 for supraventricular
complexes, as the R? increases from 80% to 84% and finally 88%, the blue bar progressively
highlights the P wave of ECG complexes in sinus rhythm. This observation is consistent with
our understanding of the mechanistic underpinnings of atrial depolarization, which correlates
with the P wave. lon channel alterations and structural changes in the atria can affect electrical
conduction in the atria (Rudy, 2004), manifesting with subtle anomalies in the P wave in sinus
rhythm that may not be discernible by the naked eye but are detectable by the convolutional
auto-encoder.

Collectively, the examples above underscore the fact that the discriminative regions of
interest identified by our proposed method are biologically plausible and consistent with
cardiac electrophysiological principles while locating subtle anomalies in the P wave and
QRS complex that may not be discernible by the naked eye. By inspecting our results with an
ECG clinician (Dr. Chen in the authorship), the localized discriminative features of the ECG
are consistent with medical interpretation in ECG diagnosis.

6.1. Robustness against localization network architecture. This section examines the
robustness of the proposed framework against network architectures. We use the same imple-
mentation configuration with 7 = 0.05, and examine CAE network architectures with differ-
ent numbers of neurons, denoted as CAE64, CAE128, CAE256 and CAE512, where CAE64
is constructed as: Conv1D(64)+Conv1D(32)+Conv1DTranspose(32)+Conv1DTranspose(64),
and other CAE networks are defined likewise. Moreover, we also implement a localizer with
a multilayer perceptron (MLP) structure: MLP256, MLP512, MLP1024, and MLP2048.
For example, MLP256 is constructed as: Dense(256)+Dense(128)+Dense(64)+Dense(187),
and other MLP networks are defined likewise. As indicated in Table 2, R2s of the localized
discriminative features provided by convolutional auto-encoders are significantly higher and
more stable than those produced by MLPs. In particular, for CAE-based networks, larger
networks generally improve the performance. The localization results by the CAE networks
are illustrated in Figure 11: the localized discriminative features are fairly consistent with
different CAE-based network architectures.

TABLE 2
R2s for the proposed framework with different network architectures. Here “CAE” indicates a convolutional
auto-encoder, “MLP” indicates a multilayer perceptron, and the estimated R? is computed as in (7) based on
10-fold cross-validation.

CAE64 CAE128 CAE256 MLP512 MLP1024 MLP2048
0.816(.028) 0.872(.011)  0.872(.015) 0.141(.252) 0.156(.255) 0.133(.242)

7. Discussion. XAI methods have gained prominence in many scientific domains, for
example, medical diagnostics, which requires both interpretability and predictive accuracy.
To identify discriminative features, we quantify the quality of interpretability by a general-
ized partial R? while measuring the interpretation effectiveness by an activity L;-norm. On
this ground, we construct a localizer by disrupting the original features, and seek a localizer
yielding the most deteriorated performance of a learner while having the smallest activity
norm for minimal feature disruption. Theoretically, we show that the proposed localization
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Fig 11: The localized discriminative features of one ECG signal in the MIT-BIH dataset based
on the proposed framework with different CAE network architectures: CAE64 - CAE256.

method identifies discriminative features asymptotically. Moreover, we apply the proposed
framework to the MNIST and MIT-BIH ECG datasets to interpret a learning outcome of
a convolutional auto-encoder neural network. Numerical results suggest that the proposed
localizer compares favorably with state-of-the-art competitors in the literature while identi-
fying discriminative regions that are not only visually/biologically plausible but also concise.
Furthermore, it is of interest to know if any localized features are genuinely important, for
which hypothesis testing targeting a data-adaptive localizer would be needed as a possible
extension of our framework.
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SUPPLEMENTARY MATERIAL

Supplement to “Data-Adaptive Discriminative Feature Localization with Statistically
Guaranteed Interpretation”.
The supplementary materials consist of: Appendix A indicates that the proposed framework
incorporates greedy feature selection for a linear regression model and a piecewise linear
regression model; Appendix B provides details of assumptions and asymptotic results for the
proposed framework; Appendix C refines the asymptotic results of the proposed framework
based on a fixed 7; Appendix D provides the technical proofs.

Python package dnn-locate.
The Python package dnn-locate is available in PyPi (https://pypi.org/project/


https://pypi.org/project/dnn-locate/
https://pypi.org/project/dnn-locate/

18

dnn—-locate/). For the most recent version of the package, see https://github.
com/statmlben/dnn-locate.
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