A Feature-Driven Fixed-Ratio Lossy Compression
Framework for Real-World Scientific Datasets

Md Hasanur Rahman*, Sheng Dif, Kai Zhao!, Robert Underwood’, Guanpeng Li*, Franck Cappellof
*Computer Science Department, University of Iowa, 1A, USA
TMathematics and Computer Science Division, Argonne National Laboratory, Lemont, IL, USA
fComputer Science Department, University of Alabama at Birmingham, Birmingham, AL, USA

Abstract—Today’s scientific applications and advanced instru-
ments are producing extremely large volumes of data everyday,
so that error-controlled lossy compression has become a critical
technique to the scientific data storage and management. Ex-
isting lossy scientific data compressors, however, are designed
mainly based on error-control driven mechanism, which can-
not be efficiently applied in the fixed-ratio use-case, where a
desired compression ratio needs to be reached because of the
restricted data processing/management resources such as limited
memory/storage capacity and network bandwidth. To address
this gap, we propose a low-cost compressor-agnostic feature-
driven fixed-ratio lossy compression framework (FXRZ). The
key contributions are three-fold. (1) We perform an in-depth
analysis of the correlation between diverse data features and
compression ratios based on a wide range of application datasets,
which is a fundamental work for our framework. (2) We propose
a series of optimization strategies that can enable the framework
to reach a fairly high accuracy in identifying the expected
error configuration with very low computational cost. (3) We
comprehensively evaluate our framework using 4 state-of-the-art
error-controlled lossy compressors on 10 different snapshots and
simulation configuration-based real-world scientific datasets from
4 different applications across different domains. Our experiment
shows that FXRZ outperforms the state-of-the-art related work
by 108 x. The experiments with 4,096 cores on a supercomputer
show a performance gain of 1.18~8.71x than the related work
in overall parallel data dumping.

Index Terms—Lossy Compression, Scientific Data Manage-
ment, Machine Learning, Data Features

I. INTRODUCTION

With ever-advancing scientific research, how to efficiently
access and manage science data is critical to many today’s sci-
entific projects across different domains. In practice, scientific
application users often use dedicated libraries or data formats
such as HDF5 [1], ADIOS2 [2] and NetCDF [3] to store,
manage and transfer the scientific data for efficient post-hoc
analysis. These libraries or data formats are highly preferred
by scientific users because of the high efficiency in multi-
objective data query, management and storage/access. Multiple
database systems or drivers (such as RESTful HDF5 [4] and
HDF5 ODBC driver [5]) have also been developed to support
such scientific data formats.

Unlike the traditional data management, a grand challenge
for the science data management is its vast volume of data

Corresponding author: Sheng Di, MCS Division, Argonne National Labo-
ratory, 9700 Cass Avenue, Lemont, IL 60439, USA

to manage, store and transfer. In fact, extremely large vol-
ume of data are generated by today’s scientific applications
or instruments during their simulations or data acquisition.
For example, Cosmological simulations such as Nyx [6] can
produce hundreds of petabytes of data for each run. Such
vast amount of generated data poses a significant challenge to
store, process or transfer because of limited memory capacity,
storage space, and network/I/O bandwidth [7], [8]. Thus,
dramatically compressing such vast amount of data to better
utilize available compute resources is a key focus at today’s
scientific data management.

Significant efforts have been put in resolving the big sci-
entific data issue by data compression techniques. On the
one hand, multiple libraries/toolkits (such as H5Z filter [9]
and pNetCDF-SZ [10]) have been developed to enable the
scientific data libraries/formats (HDF5, ADIOS2) to support
transparent lossless and lossy compression for users. On the
other hand, error-bounded data compressors [11]-[13] have
been developed for scientific datasets in the past decade, as
not only can it obtain high compression ratios but also it can
provide high fidelity based on user-specified error bound.

To optimize data management, storage, or transfer perfor-
mance, an efficient ‘fixed-ratio compression mechanism’ is
critical in practice. Specifically, the systems or management
tools often need to perform the data compression with the
data size under control. For instance, users often need to
archive, store, or transfer large amount of data locally or
remotely [14], thus they need to control the compressed data
size strictly according to the limited available resources such
as memory capacity, /O bandwidth and storage capacity [15],
[16]. Existing error-bounded lossy compressors [12], [17]-
[19] offer multiple types of error controls such as absolute
error bound, relative error bound and peak signal-to-noise ratio
(PSNR) to compress data, but unfortunately cannot compress
data based on a target compression ratio required by users.
FRaZ [20] is the first attempt working on the generic fixed-
ratio lossy compression framework, but it suffers from very
high computational cost (one order of magnitude or more)
compared with the compression time, because of its expen-
sive trial-and-error based iterative search method. Thus, it is
challenging to apply FRaZ in online in-situ use-cases.

In this paper, we propose a low-cost compressor-agnostic
feature-driven fixed-ratio lossy compression framework, which
faces a series of challenges to resolve. (1) For given datasets,

we need to extract effectively data features that can exploit
diverse data characteristics such as data smoothness, data
distribution, special pattern to project data compressibility.
(2) Developing an efficient compressor-agnostic framework
is non-trivial because there are many state-of-the-art error-
controlled lossy compressors which exhibit largely different
compression qualities with each other because of their dis-
tinct design principles. It is very challenging to develop a
compressor-agnostic framework to characterize the correlation
between various data features and diverse compressors’ qual-
ities. (3) State-of-the-art lossy compressors permit to input an
error bound setting to obtain a compression ratio but not the
other way around, and different lossy compressors demonstrate
distinct compressibilities for the same dataset. Brute-force
search through the exhaustive range of error bound settings
would be very expensive, in order to obtain a compression
ratio that is very close to the target compression ratio.

To address the above challenges, we propose an efficient
compressor-agnostic Feature-driven fixed-ratio lossy com-
pression framework (called FXRZ), which can determine the
best-qualified error configuration based on a user-specified
target compression ratio, by extracting/analyzing data features
at runtime. The key contributions are three-fold:

« To the best of our knowledge, we are the first to propose a
low-cost feature-driven compressor-agnostic lossy com-
pression framework, by leveraging the correlation be-
tween the data features and lossy compressor’s quality
to efficiently estimate the qualified error configuration
setting for target compression ratios.

o We carefully investigate diverse data features and identify
their effectiveness to the projection of compression ratios.

« We propose a series of optimization strategies (e.g.,
a novel technique to adjust target compression ratio to
project the data compressibility more accurately) that
significantly improves the model accuracy based on target
compression ratio with very little computational cost.

We evaluate our proposed FXRZ framework using variety
of simulations and snapshot datasets generated by 4 real-
world scientific applications across different domains. We
perform the experiments based on multiple state-of-the-art
lossy compressors such as SZ, ZFP, FPZIP, and MGARD+ and
also compare our solution with another state-of-the-art related
work — FRaZ [20]. Experiments show that our solution has a
high accuracy (with only 8.24% estimation error on average)
in estimating the required error configuration based on a target
compression ratio. FXRZ outperforms the FRaZ by 108 x with
the comparable accuracy. On a supercomputer, the overall
parallel data dumping under FXRZ is substantially faster than
that of FRaZ [20] with a performance gain of 1.18~8.71x.

The rest of the paper is organized as follows. In Section
II, we discuss related work. In Section III, we propose and
formulate our feature-driven fixed-ratio lossy compression re-
search problem. In Section IV, we detail our lossy compression
framework FXRZ. In Section V, we present the evaluation
results with an in-depth analysis. Finally, we conclude and

envision the future work in Section VI.

II. RELATED WORK

In this section, we discuss related works in three categories.

Existing error-controlled lossy compressors. There have
been many error-controlled lossy compressors developed for
scientific datasets, such as SZ [11], [18], [21], ZFP [12],
FPZIP [19], MGARD+ [13]. Their designs are all driven by
the error-control model, so the fixed-ratio compression cannot
be carried out directly or efficiently. The key reason is that the
lossy compressors often leverage some sophisticated entropy
encoder or dictionary encoder such that the final compression
ratios are very hard to estimate accurately. SZ, for instance,
depends on Huffman encoding and dictionary encoding (Zstd
[22]). ZFP is the only lossy compressor supporting fixed-ratio
compression to the best of our knowledge. However, ZFP’s
fixed-ratio mode (a.k.a., fixed-rate) suffers from much lower
compression quality (e.g., ~2x lower compression ratio at the
same level of data distortion) compared with its fixed-accuracy
mode, which has been validated by prior studies [20].

Existing methods for compression ratio estimation. The
fixed-ratio compression problem can be transformed to the
compression ratio estimation in some sense, thus we also
investigate the related works about lossy compression ratio
estimation. In fact, if the compression ratio can be estimated
efficiently based on any given error-control value (such as
error bound), the fixed-ratio compression can be realized by a
search algorithm (such as binary search) with a searching cost
to a certain extent. Lu et al. [23] explored how to estimate
the compression ratio based on a given error bound for SZ
and ZFP in particular, by leveraging these two compressors’
characteristics summarized during their empirical studies. Tao
et al [24] developed a method to estimate the compression ratio
for SZ and ZFP based on peak signal-to-noise ratio (PSNR),
which is a more commonly used metric in the compression
community. Liang et al. [25] proposed a hybrid lossy com-
pression framework by integrating ZFP as one predictor in
the SZ compression framework, which can improve the overall
compression quality in turn. In their framework, one critical
step is selecting the better data predictor (either SZ or ZFP)
at runtime based on the estimated compression ratios for the
two compressors. All the above compression ratio estimation
methods, however, rely on the in-depth investigation of the
specific lossy compressors’ working principle. This is a serious
drawback in that they cannot be adaptive to any new lossy
compressor with emerging techniques.

Existing generic fixed-ratio lossy compression frame-
work. The only related work in this category is FRaZ [20]
— a generic fixed-ratio compression framework for scientific
datasets. FRaZ can search for the best-fit configurations based
on a given target compression ratio for any lossy compressor,
however, it suffers from very high search cost (one order of
magnitude or higher compared with compression time). The
key reason is that it needs to run the lossy compressors on the
full dataset iteratively in order to get a high estimation accu-
racy. As such, FRaZ is only suitable for the offline analysis

but not for the real-time usage. By comparison, our solution —
FXRZ is a low-cost fixed-ratio lossy compression framework,
which can obtain the required configuration without running
the lossy compressor at all. So, it can be applied to the real-
time usecases such as fixing ratio for data transfer at runtime.
The key methodology is constructing a fixed-ratio framework
by establishing the relationship between key data features and
compressors’ diverse qualities.

III. PROBLEM FORMULATION AND USE-CASES
A. Problem Formulation

Recall that any error-controlled lossy compressor is driven
by a given error bound/configuration setting but not the
other way around — cannot be executed based on a given
compression ratio. Our framework FXRZ aims to fill this
gap. Given a multi-dimensional scientific dataset D, an error-
controlled lossy compressor C (SZ, ZFP, FPZIP or MGARD+),
and a target compression ratio (denoted TCR), our framework
FXRZ extracts the key data features from the dataset D and
estimates an error bound setting Ep, under which the measured
compression ratio (denoted MCR) would be close enough to
the target compression ratio (TCR). Finally, we compare MCR
with TCR to verify the accuracy of FXRZ. Therefore, for a
given D, a C and a TCR, our research objective is to minimize
the difference between MCR and TCR - that is min(|MCR-
TCR|) — with very low performance overhead.

Such a fixed-ratio feature-driven compression framework
can benefit many scientific users in practice. In fact, each
scientific application package nowadays (such as Nyx [26],
QMCPack [27], RTM [28]) is generally serving many users
worldwide. That is, the training triggered by one user is
expected to benefit many other users in the similar domain.

B. Discussion of Use Cases

From the perspective of scientific research, data manage-
ment is composed of multiple complicated phases in the entire
data acquisition and analysis, also depending on user’s diverse
use-cases. In what follows, we describe several real-world use-
cases regarding our feature-driven low-cost framework FXRZ.

e Preserving best data quality based on restricted data
transfer bandwidth. In the materials science, the advanced
instruments such as LCLS-II [29] and APS-U [30] gener-
ate an extremely large volume of ptychography data (up
to 250 GB/s in the raw data acquisition [31]), and these
data need to be transferred to the data server through
a relatively low-bandwidth I/O or network. Accordingly,
the materials scientists have specific requirements on the
minimum compression ratios (generally 10+ [31]) for the
qualified lossy compression methods.

e Preserving best data quality based on limited storage
space. Many scientific applications such as cosmology
research [26], [32] may produce vast amount of data
(from hundreds of TBs to dozens of PBs for each run)
during the simulations. However, supercomputing users
always have limited storage spaces on a supercomputer
(e.g., 10TB for a regular user from ANL Theta [33] and

50TB for a regular user from ORNL Summit [15], [34]),
so that they have to perform a lossy compression with a
minimum compression ratio to store such a large amount
of data in practice.

o Preserving best data quality based on limited memory
capacity. Our proposed low-cost feature-driven fixed-
ratio framework can also benefit the in-memory data
processing at runtime. Quite a few scientific applications
require a fairly large memory capacity to deal with
large problem size. Quantum computing simulations, for
example, may require up to 32EB of memory [35] when
running a simulation with 61 qubits on a supercomputer.
Considering the restricted memory capacity, the users
have to compress the data in memory and reconstruct
them when needed during the simulation, in order to
avoid the out-of-memory crash.

IV. FEATURE-DRIVEN FIXED-RATIO ERROR-CONTROLLED
Lossy COMPRESSION FRAMEWORK (FXRZ)

In this section, we describe FXRZ (code is available
at https://github.com/hasanur-rahman/FXRZ). We first present
the design overview and then describe how we resolve a series
of challenges and optimize the performance.

A. Design Overview

The fundamental design idea is to explore the key data
features from the real-world scientific datasets and apply
effective augmentation technique to quickly generate ample
compression results (without running the compressor) and
then adopt an ML model to estimate the best-qualified error
configuration for a target compression ratio (at runtime).

I
[Construct Configuration Parameters] ' D'a’,‘t%‘;gts i
I ™
Auxiliary |
i oL i O informatidn |
I
| Training Data |:>[Compressor Interface} i C] (ke*§e(§2§i'gn) i
! |
e Ol O ordpary |
« i(Feature Extraction) [Data Augmentation | i @ Output |
o, 1
g 0{/.L @{} . o i j Data flow i
EE [Adjust Target Compression Ratio] | - Extraction !
bl 0-- i !l 2 Production !
E : | Training Engine] EI ,,,,,,,,,,,,, I
X eb[ML Model]::>[Inference Engine]j::) Qualified
H Configuration
"""""""""""""" Parameters

© &y |
Fig. 1: Design Architecture of Feature-driven Fixed-ratio
Lossy Compression Framework (FXRZ)

The FXRZ is composed of several key modules, as shown
in Fig. 1. The feature extraction module is developed for
extracting the feature vector, which will be used to construct
the ML model during the training stage (@) and also to decide
the best-qualified setting during the inference stage (@). The
data augmentation step is to augment the compression results
which are generated by running different lossy compressors
(@ and @). Optimization such as adjustment in target com-
pression ratio is applied in @. The training engine is the kernel

module that takes over the ML training work based on the three
parts of information: extracted feature vector (@), augmented
compression results (@) and corresponding configuration pa-
rameters (@), and optimizes the error configuration estimation
based on our dynamic target ratio adjustment method (@).
After generating the well-trained ML model (@), the inference
engine will be launched to decide the best-qualified error
configuration setting to reach the target compression ratio in
terms of the runtime-extracted feature vector (@).

We propose two levels to assess the capability of FXRZ,
based on training datasets versus runtime datasets.

o Capability Level 1: Accurate decision across different
time steps based on the same application model with the
same simulation configuration. In this situation, we focus
on the same application model with unchanged simulation
configuration. Specifically, the users train the model using
prior set of snapshot data and their corresponding lossy
compression results, and then use the trained model to
make decisions for latter snapshot data with different
time steps. A typical example is training the model using
the snapshots 1 - 30 from Hurricane Isabel simulation
[36] and test the decision accuracy based on the latter
snapshots such as 48.

« Capability Level 2: Accurate decision across different
simulation configurations within the application model.
Level 2 is very practical, in that every application model
or package (such as QMCPack [27], Nyx [26]) have mul-
tiple users with different research purposes. In general,
these users are using the same application package/model
but running the simulation with distinct configurations.
In this situation, FXRZ is expected to make accurate
decisions for a user given dataset using the model trained
by the datasets generated by other users.

In the following text, we describe our feature-driven lossy
compression framework and how we improve the decision
accuracy with a series of optimization strategies.

B. Data Augmentation based on Interpolation

We know that a ML model requires a fair amount of
samples in the training. Whereas, generating a large number
of compression result samples by running lossy compressors
is very expensive, because the training stage requires as many
different datasets and different error bound settings as possi-
ble, which would inevitably result in numerous compression
operations to execute.

To resolve this issue, we propose a data augmentation
method that can effectively expand the limited number of
compression results to reach the expected amount of training
samples for our framework. Our main observation is that the
compression ratios within similar error bound range are very
close with each other for a lossy compressor. As such, we
augment the compression result samples by leveraging linear
interpolation (or least-square method). Specifically, we first
run the specified compressor for a couple of representative
error bound settings to generate a certain number of com-

pression ratios. These results will be treated as stationary
points, based on which we can produce the more compression
ratio results by the linear interpolation method. Such an
augmented compression result curve forms an error bound
setting function of compression ratio, so that an expected error
bound can be interpolated for any given compression ratio
(on the curve) in the training stage. We further illustrate our

04 —— baryon-density baryon-density

0.35 dark-matter dark-matter

0.3 | = x- temperature - temperature
velocityX velocityX

Error Bound Setting
o
n

Error Bound Setting

0 100 200 300 400 500
Compression Ratio

20 30 40 50 60
Compression Ratio

(a) Interpolation for SZ (b) Interpolation for ZFP
Fig. 2: Illustrating Linear Interpolation of Compression Results
based on Nyx Simulation Datasets

idea by Fig. 2. To save space, we give only two examples
from two representative compressors, SZ and ZFP, for Nyx
Baryon density field dataset. The datasets and compressors
will be discussed in details in Section V-A2 and V-A3. The
points on the curves are the stationary points and the curves
represent the interpolated curves. Stationary points (measured
compression ratio, error bound) are generated by running the
respective compressor at uniformly spanned, on average, 25
different error bound settings. As aligned with our observation,
Fig. 2 shows us that compression ratios are close between
two consecutive stationary points where corresponding error
bounds are close. Hence, by leveraging the interpolated curve,
we can estimate the error bound setting for any given com-
pression ratio in the range of stationary points. For example,
with Baryon Density, we get the error bound of ~0.1 for
compression ratio 270 on SZ, and the error bound of ~0.2
for the compression ratio 33 on ZFP. It is worth noting that
ZFP’s interpolated result follows a stairwise curve, since ZFP’s
compression ratio increases piecewisely with the error bound
because of its coefficient bitplane truncation. Although the
relationship between error bound and compression ratio is not
linear [20], we find the relationship to be approximately linear
between two consecutive stationary points. In fact, the average
percentage difference between measured compression ratios
from interpolated error bounds (Y-axis) and given compression
ratios (X-axis) is only 3.04%, 3.96%, 5.48%, 4.34% for the
four respective compressors SZ, ZFP, FPZIP, MGARD+ across
all applications.

C. Feature Extraction

Without effective feature characteristics, FXRZ may suffer
from very poor accuracy. We examine eight different features
for our analysis. We describe these features and their varying
impact on data compressibility as follows.

lorenzo; j = di—1,j + di j—1 — di—1,j—1 (D

lorenzo; ;. = di—1,jk+dij—1,k+dije—1 —dim1,j-1,k

2
—di j—1,k—1— i1 k—1 T dim1,j—1,k—1
. 1 9 9 1
spline; = _Edzf‘j + I—GdH + 1—6dz+1 - 17),st 3)

« Value Range: It refers to the value range of a dataset,
indicating how much the data deviates in the dataset (or
the amplitude of the dataset).

« Mean Value: Mean value refers to the average of all the
data points in a dataset.

¢« Mean Neighbor Difference (MND): Mean neighbor
difference is obtained by first calculating the absolute
difference of current data value and the average of its
neighbor values, and then computing the mean of all the
absolute differences.

« Mean Lorenzo Difference (MLD): MLD is denoted by
the average of absolute difference between data value and
its Lorenzo prediction. Equation (1) and (2) demonstrate
how the Lorenzo prediction is performed for a data
point ((i,j) or (i,j,k)) in a 2D dataset and 3D dataset,
respectively.

o Mean Spline Difference (MSD): The MSD feature
is calculated as the mean of a specific cubic spline-
interpolation fitting error for all data points in the
dataset. Equation (3) demonstrates how the cubic spline-
interpolation fitting is calculated for a data point in a
1D dataset. Similarly, for a multi-dimensional dataset,
Equation (3) is used to calculate spline; along each
dimension separately, and obtain the average value A
across all dimensions. Finally, we consider the difference
between current data value and A as MSD value for the
current data point.

o Other features: We also explore other features including
Mean Gradient, Min Gradient, Max Gradient. Gradient
denotes the difference between current data value and its
previous data value. But gradient-based features often can
not capture smoothness of data values in a dataset. We
further give the reason and establish this claim when we
discuss the Table II.

500

N
o
s}

Compression Ratio

0 _ [T]
Nyx QMCPack RTM RTM Hurricane
Baryon BigScale SmallScale BigScale TC

Different Application Datasets

Fig. 3: Compression Ratios across Different Datasets and
Compressors under an error bound.

Investigation of Relationships between Data Features and
Compressibility: We now explain how we develop these data
features in terms of their characteristics, by analyzing the
relationships between these features and the compressibility
across different datasets. We refer to Fig. 3 and Table I to

TABLE I: Feature Values across Different Datasets

Feature Nyx Baryon =~ QMCPack RTM RTM Hurricane
Density BigScale SmallScale BigScale TC
Value Range 4.90 35.36 0.16 0.05 104.81
Mean Value 0.97 16.75 0.09 0.02 45.63
MND 0.01 0.29 1.1E-4 5.5E-5 0.67
MLD 0.31 0.30 9.2E-5 4.0E-5 31.30
MSD 8.4E-3 0.33 1.3E-4 6.1E-5 0.79

explain the relationship under a fixed error bound e. We
show five datasets from four applications because of space
limit. Other datasets show similar characteristics. In Fig. 3,
x-axis denotes the dataset, and y-axis shows corresponding
compression ratios under e with different compressors. Table I
shows the feature values across those datasets.

Value Range and Mean Value reveal the amplitude and
spreadness of data values in a dataset. By comparing Fig. 3
and Table I, RTM datasets have smaller Value Range (0.16
and 0.05) than other datasets have but show much higher
compression ratios for different compressors. Smaller Value
Range indicates that the data values in a dataset tend to be
close to each other, which makes it easier for the compressors
to compress. But only Value Range cannot always reflect
the above relationship as we can see by comparing the Nyx
and Hurricane datasets’ Value Range with compression ratios.
More specifically, although Value Range of Nyx is lower than
that of Hurricane, Nyx’s compression ratios are still lower
than those of Hurricane, which can be reasoned about with the
Mean Value feature. Mean Value of Hurricane dataset follows
its Value Range more closely than Nyx does: the ratio of Value
Range to Mean Value for Hurricane is lower than that of Nyx.
This implies that data values in Hurricane dataset are actually
closer than those in Nyx. Hence, combined effect of Value
Range and Mean Value reflects true data spreadness.

Moreover, MND and MLD reveal the spatial data smooth-
ness in a dataset. The less value of MND and MLD indicates
higher data smoothness, hence higher compression ratio be-
cause of ease of compression by compressors. By comparing
Fig. 3 and Table I, the less MND and MLD values are, the
more compressible the datasets are. As MND is based on only
neighbor data values, it can reflect the local data smoothness
well. In contrast, MLD is based on large regions of data values,
hence it can reflect the overall data smoothness in a dataset.
Hence, both features can complement each other well. Finally,
MSD feature is particularly effective in detecting the wave
textures/patterns, which are very common in many scientific
datasets [37], e.g., RTM, Hurricane, QMCPack datasets. In
Fig. 4, we show an example of such textures present in RTM
dataset. By comparing Fig. 3 and Table I, RTM datasets show
less MSD values than others. Less MSD values reflect more
smooth wave textures, hence RTM datasets shows relatively
higher compression ratios across different compressors.

We now quantify the relationship between the features
and data compressibility. We first obtain compression ra-
tios of different snapshots or simulation configurations of

/

W
© /. S;.

- 1

Fig. 4: Wave Texture in RTM simulation Data

Wave patterns

‘ Wave patterns

(a) Cross Section Vi dinal Section Visual

a dataset based on a particular compressor with the same
error bound setting. We then calculate different features for
each of those datasets with different snapshots/configurations.
Then, for each compressor, we calculate the average Pearson
Product-Moment Correlation Coefficients [38] for different
datasets across different error bounds in order to investigate
the correlation between the features and data compressibility.

We apply different error bounds on datasets, which can
obtain a high diversity of the compressibility, such that the
correlation analysis would be accurate and effective.

We show such correlations in Table II. As shown in the
Table, Value Range, Mean Value, MND, MLD, MSD are the
most correlated features. Hence, we adopt these five features
for FXRZ. Also, we can see that gradient-based features ex-
hibit the least correlation. On the one hand, the Max Gradient
is too sensitive to the data changes in space. On the other hand,
Min Gradient and Mean Gradient are too mild to indicate the
data change because the scientific data are quite smooth in
most of regions in general (as shown in Fig. 4). As such, the
gradient-based features are excluded.

TABLE II: Average Correlation Coefficent between Corre-
sponding Feature and Compression Ratio across Different
Datasets for Different Compressors

Comp. Value Avg. MND MLD MSD Mean- Min- Max-
Range Value Gradient Gradient Gradient
Sz 073 0.71 0.69 0.64 0.70 0.54 0.54 0.47
ZFp 065 061 064 064 0.65 0.47 0.54 0.50
FPZIP 060 067 077 080 0.75 0.46 0.39 0.20
MGARD+0.62 064 070 060 0.70 0.43 0.31 0.47

D. ML Model Selection

For any application dataset, we utilize 5 extracted features
and a target compression ratio as input for the ML model.
During the inference phase, the model predicts expected error
bound setting.

The Classifier models are not suitable for our framework,
because classifiers generally focus on discrete states or classes
of the results while error control configurations (FXRZ out-
puts) are often continuous values in practice. For instance,
error bound values could be any floating-point number.

We select three popular ML models to apply on our frame-
work FXRZ. For all of them, we use k-fold cross validation
to tune the hyperparameters and improve the performance.
We show the average estimation errors (defined in Formula

TABLE III: Average Estimation Error Based on Target Com-
pression Ratios with RFR, AdaBoost and SVR model

Com, Nyx Velocity-X QMCPack BigScale Spin0 RTM BigScale Snapshot-800
P~ RFR AdaBoost SVR RFR AdaBoost SVR RFR AdaBoost SVR
Sz 10.17% 31.59% 111.17% 152% 71.21% 82.89% 13.88% 28.79% 97.46%

ZFP 4.68% 20.18% 74.12% 2.59% 40.57% 40.99% 3.711% 41.61% 125.13%

5) for ML models in Table III. 1) Support Vector Regressor
(SVR) [39] is a counterpart of Support Vector Machine (SVM)
and accepts non-linearity in the data for regression analysis.
But we find SVR is not a good fit for our problem setting, in
terms of the average estimation errors as shown in Table III.
According to the table, based on three example datasats with
two representative compressors (SZ and ZFP), the SVR suffers
from very high estimation errors than the other two. The
key reason is that the bestfit error configurations are not
sometimes sufficiently separable enough to build hyperplanes
to differentiate distinct compression ratio results. 2) AdaBoost
Regressor [40] is a meta-estimation technique. As shown in
Table III, AdaBoost suffers from relatively higher average
estimation error. We find that AdaBoost suffers from high
estimation errors when target compression ratios (and their
corresponding expected error configurations) are relatively
lower. The possible reason could be those lower error con-
figurations in training data are very close to each other and
tiny changes in expected error bound settings from the lower
range might not be captured well by AdaBoost regression. So,
this is also not a good fit for our problem setting. 3) Random
Forest Regressor (RFR) [41] is a good fit to our problem
setting because it has the special ability to correct overfitting
problem by building lots of trees. As shown in Table III, RFR’s
average estimation error is lowest among three. Hence, we
adopt RFR for the analysis in FXRZ, in terms of data features
and augmented lossy compression results.

E. Optimization of Performance and Accuracy

In this section, we describe our optimization strategies
which aim to further boost the execution performance and also
improve the model accuracy.

1) Uniform Sampling for Feature Extraction: In order to
avoid scanning the full dataset to calculate the feature, we
calculate the features based on uniformly stride-K sampled
data points (shown in Fig. 5), which are selected every K data
points along each direction. In our experiments, the sampled
data take only 1.50% of total data points (stride=4 in the
sampling), which can still obtain a high accuracy for our
solution (shown in Sec V-F). On average across all datasets and
compressors, FXRZ with 1.5% sampling, and considering all
data points (100% sampling) yield average estimation errors
of 8.24%, and 6.23% respectively. As we see, 1.5% sampling
yield similar estimation error compared to 100% sampling but
make FXRZ much faster because less amount of sampling.
In fact, such a sampling method (1.5%) makes the analysis
time take only % x of the analysis time when using all data
points, which significantly speeds up the overall analysis of
our framework FXRZ.

£
-
?

[- SRR S - SRR U

(a) 2D uniform sampling (b) 3D uniform sampling

Fig. 5: 3-point Stripe Uniform Sampling

Constant block Nonconstant block

Fig. 6: Illustration of Constant/Non-constant Blocks

2) Adjusting Target Compression Ratio for Better Accuracy:
We observe that the overall compression ratio of a dataset is
often very sensitive to the area of the smooth region in space.
These smooth regions are generally very easy to compress
with extremely high compression ratios, hence they contribute
to overestimation of the true compressibility of a dataset by
not revealing accurate data density in the dataset. To achieve
that, we adjust the target compression ratio by excluding the
smooth regions without loss of generality. To this end, we
introduce a novel optimization strategy that can improve the
FXRZ accuracy in estimating error configuration, by adjusting
the target compression ratio based on the density of the data,
which we call Compressibility Adjustment (CA). Specifically,
For that, we split the whole dataset into many small blocks
(e.g., 4x4 x4 for 3D datasets in our experiment). If a block has
very small deviation (its value range is lower than a threshold),
we call it a constant block; otherwise, it is a non-constant
block. How to determine the value range threshold will be
discussed later. Fig. 6 illustrates the constant blocks and non-
constant blocks using an example dataset (Nyx Temperature
of size 512x512x512).

We explain the calculation of the adjusted compression ratio
as follows. To avoid the over-adjustment, we need to make sure
the data values within each constant block are fairly close with
each other (i.e., the value range threshold is relatively small).
Consequently, their output data size is assumed to be O after
compression without loss of generality. In other words, the
compressibility of a dataset is only determined by the non-
constant blocks. As such, the adjusted compression ratio is
calculated as Formula (4).

ACR=TCR xR “4)

where T'CR refers to the user-specified target compression
ratio, AC'R denotes the adjusted compression ratio, and R is
the percentage of the non-constant blocks. Accordingly, the
input of our ML model is AC'R instead of the T'C'R, which

will obtain much higher accuracy, to be shown later.
As shown in Table IV, 15% of average value (A=0.15) as
the threshold is the best setting to determine constant blocks.

TABLE IV: Average Estimation Error by A of 0.05, 0.10, 0.15

Nyx Baryon Density QMCPack BigScale Spin0 RTM BigScale Snapshot-800
0.05 0.10 0.15 0.05 0.10 0.15 0.05 0.10 0.15

Sz 2031% 16.76% 7.63% 2.02% 4.58% 1.52% 27.37% 15.46% 13.79%
ZFpP 21.35% 22.14% 6.95% 6.56% 6.11% 2.59% 9.06% 15.63% 3.17%

Compressor

We verify the effectiveness of our C'A design using Fig. 7
based on SZ and ZFP, by showing the accuracy of FXRZ
with and without this technique for Nyx Baryon Density.
We describe Nyx (Baryon Density) in Section V-A2. The
black curve of each sub-figure refers to the target compression
ratio (TCR). We refer measured compression ratio (MCR) as
the compression ratio obtained from running the respective
compressor with the predicted error bound setting outputted
by FXRZ. The red curve denotes MCR without CA design,
whereas the blue curve denotes MCR with CA design. The
closer the MCR to the TCR is, the more accurate our frame-
work FXRZ is. Fig. 7 shows that blue curve is very close to
or even overlaps with the black curve sometimes, whereas the
red curve is often distant from the black curve. This figure
clearly shows that our designed CA strategy is very useful to
the improvement of FXRZ accuracy.

500

450 70
2400 2
&350 g80
5300 550
‘2250 ‘240
2200 2439
2150 €20
8100 i —— Ground Truth IS / Ground Truth

50 iy e FXRZ without CA 10 t - e FXRZ without CA|
0 S FXRZ with CA 0 T e FXRZ with CA
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0 01 02_03 04 05 06 07
Error Bound Error Bound

(a) NYX Baryon Density Result (SZ) (b) NYX Baryon Density Result (ZFP)
Fig. 7: Optimization for Better Accuracy

V. PERFORMANCE EVALUATION

In this section, we describe our experimental setup and
present the performance evaluation results.

A. Experimental Settings

We describe the environment setting, datasets, testing com-
pressors and related works to be evaluated as follows.

1) Environment: We perform our experiments on the Intel
Broadwell nodes (Intel Xeon E5-2695v4) of ANL Bebop [42],
which is a supercomputer managed by Laboratory Computing
Research Centers (LCRC) at Argonne. Bebop is featured with
1000+ nodes connected with Omni-Path Fabric Interconnect
network. Each Intel Broadwell node has up to 128GB DDR4
and 36 cores. Its storage system is using General Parallel
File Systems (GPFS), which is equipped with two I/O nodes,
offering ~2GB/s /O bandwidth. This Bebop machine has
been widely used in scientific data analysis or performance
evaluation for lossy compression research such as [21], [43].

2) Datasets: We evaluate our method using multiple ap-
plication datasets generated by the real scientific applications
across different domains. Most of the datasets can be down-
loaded from the SDRBench database [44]. These datasets are
frequently used in recent studies [37], [45]-[48]. The datasets
used in our experiments satisfy following criteria: (1) training
and testing datasets are largely different from the perspective
of compression ratio and visualization; (2) they are all drawn
from real-world scientific datasets that cover various domains
such as cosmology, weather etc; (3) they conform to the two
capability levels mentioned in Section IV-A. We describe the
datasets in Table V.

TABLE V: Description of Application Datasets

App. # Fields TSteps Dim Size Domain
Nyx-1 4 6 512x512x512 12.00GB Cosmology
Nyx-2 4 1 512x512x512 2.00GB Cosmology
QMCPack-1 1 1 288x115x69x69 0.59GB Quantum Structure
QMCPack-2 2 1 480x115x69%x69 1.96GB Quantum Structure
QMCPack-3 2 1 816x115x69x69 3.33GB Quantum Structure
RTM-Small 1 7 449x449%235 1.24GB Seismic Wave
RTM-Big 1 2 849%849x235 1.26GB Seismic Wave
Hurricane 2 7 100x500%500 1.30GB Weather

As shown in the table, we glean a total of 56 different
simulation configuration and snapshot datasets from 4 scien-
tific applications across different domains. Other fields show
similar results. We perform our experiments to assess both
capability levels proposed in Section IV-A.

Capability level 1 Assessment: The Hurricane Isabel sim-
ulation dataset (shown as Hurricane in the table) is used to
assess capability level 1. We use two Hurricane Isabel fields,
QCLOUD and TC, for our experiment. For each field, we train
our framework FXRZ using the 6 time steps chosen uniformly
(5, 10, 15, 20, 25, 30) and then test the accuracy by the last
time step 48 of the corresponding fields.

Capability level 2 Assessment: We use datasets from Nyx,
RTM and QMCPack applications to assess the capability level
2. Hurricane is not included for this assessment because we
do not have multiple datasets generated by the simulation runs
with different configurations for the Hurricane Isabel. For Nyx,
we train the model by using the Nyx-1 datasets downloaded
from SDRBench database [44] and test the accuracy using
the Nyx-2 datasets downloaded from Nyx database [26], these
are generated based on different configuration settings in Nyx
simulation, which includes four critical fields: Baryon density,
Dark matter density, Temperature, and Velocity-X. For Reverse
Time Migration (RTM) application, we train the model using
7 snapshots (time step 50, 100, 200, 300, 400, 450, 500) gen-
erated by a small-scale simulation (449x449x235) and test
the model accuracy with another big-scale simulation dataset
(849%849x235). For Qmcpack, we train the model using
two small-scale datasets (QMCPACK-1 and QMCPACK-2)
of various sizes and test the model with a big-scale dataset
(QMCPACK-3). Qmcpack has two fields, SpinO and Spinl.

3) Testing Compressors: We not only evaluate our frame-
work across different applications but also across four state-

of-the-art error-bounded compressors, including SZ [18], [21],
ZFP [12], FPZIP [19] and MGARD+ [13], as described below.

e SZ: SZ is an error-bounded lossy compressor, which has
been widely tested and used in the community.

e ZFP: ZFP is another error-bounded lossy compressor,
which has also been very efficient in lossy compression
for scientific datasets. We are using the latest released
version 0.5.5 in our experiments.

o FPZIP: FPZIP is an outstanding lossy compressor sup-
porting lossy compression, which allows users to control
the data distortion by setting a precision parameter (an
integer from 1 to 32) corresponding to different numbers
of significant mantissa bits.

o MGARD+: MGARD-+ is an accelerated version of the
error-controlled lossy compressor MGARD [49].

4) Baseline: To the best of our knowledge, there is only
one existing compressor-agnostic fixed-ratio lossy compres-
sion framework, namely FRaZ [20]. FRaZ incurs very high
runtime cost because FRaZ needs to iteratively search for the
appropriate error bound setting (from the comprehensive range
of error bounds) and run the compressor with each explored
error bound setting to measure the compression ratio if this
would yield to the target compression ratio. For fairness of
comparison, the FRaZ is configured as follows: (1) for each
testing dataset, we provide FRaZ the same global search range
of error bounds (lower and upper error bounds) as we consider
for FXRZ, (2) FRaZ allows to divide the whole search range
into k bins to allow the search potentially covering as much
search space as possible (here error bound settings). We set k
to 3 to have a good balance between search coverage and max-
iterations, (3) FRaZ allows to set a max-iterations for each bin
for its search. Thus, max-iterations and number-bins together
provide us total max iterations. We evaluate FRaZ (Using
Bebop’s single node) under two different max iterations, 6
and 15, to balance its experiment time. Note that the execution
time cost by FRaZ under 15 iterations is already considerably
longer than the time cost by FXRZ. The reason is that FRaZ
needs to run the underlined compressor iteratively multiple
times to estimate the appropriate error bound setting, while our
framework FXRZ is totally compression-free. We comprehen-
sively compare FXRZ with FRaZ in different facets (such as
accuracy, performance), based on different compressors, error
bounds, and end-to-end I/O performance on Bebop.

B. Demonstration of Variability in Datasets

As mentioned previously, the datasets used in our ex-
periments exhibit different characteristics between training
datasets and testing datasets. To verify this point, we inves-
tigate the datasets from the perspective of data distribution,
visualization and standard deviation. For the sake of space,
we draw two examples from each capability level as shown in
Fig. 8 and 9. Other application datasets also exhibit distinct
data properties between training and testing datasets. Fig. 8
shows that both Hurricane QCLOUD and Nyx Baryon Density
demonstrate different data distributions between training and
test data. Fig. 9 demonstrates distinct standard deviation and

data visualization between different training and test datasets,
based on which we can also clearly observe that Hurricane
and Nyx are two largely different representative applications
with distinct natures.

— Train Data
Test Data

Train Data
— Test Data

Prob. Density Function (PDF)
Prob. Density Function (PDF)

% O 2 s o R 4 8 ‘S “$ S
Data Data

(a) Hurricane QCLOUD(Capability- (b) Nyx Baryon Density(Capability-
D 2)
Fig. 8: Distribution Examples of Train and Test Data

QCLOUD
(Standard

(b) Hurricane Test Data
(Standard Deviation 1.55)

(a) Hurricane
Train Data
Deviation 1.61)

292 2w

e % 3
ot s TR

(d) Nyx Baryon Density
Test Data (Standard Devia-
tion 0.36)

(¢) Nyx Baryon Density
Train Data (Standard Devi-
ation 0.42)

Fig. 9: Visualization of Training Data vs. Testing Data To
Exemplify Their Discrepancy

;\(, » A)| =
:;\:-_ - o v e

(b) Error Bound =0.05 (c¢) Error Bound = 0.4
(CR=154) (CR=485)

(a) Original

Fig. 10: Visualization of Baryon Density with Different Error
Bounds (Using SZ2.1)

C. Analysis of Data Distortion

In our evaluation, for each application dataset, we identify
the valid range of the compression ratios for users, which
corresponds to a very wide range of data distortions def-
initely covering the acceptable settings for users. In fact,
the reconstructed data generated after lossy decompression
may have largely different data distortion because of possible
considerably different user-specified error bounds.

450
o o
i
400
§300 5
2250 @300
£200 o
§1 50 gzoo
O1gg —— Ground Truth o100 —— Ground Truth
0 -~ Qur Result 0 - Qur Result
0 0.050.10.150.20.250.30.350.4 0 0.01 0.02 0.03 0.04 0.05
Error Bound Error Bound

(a) Nyx (Baryon Density) (b) QMCPack-3 Spin0

Fig. 11: Ilustration of Valid Compression Ratio Range for
FXRZ (using SZ)

We use an example to show the distinct reconstructed
data qualities when using different error bounds, and the
range of error bound configurations we choose for the later
accuracy analysis is very comprehensive. Fig. 10 demonstrates
the visual quality of reconstructed data by applying SZ on
Nyx(Baryon density) with a small error bound 0.05 and a
high error bound 0.4, respectively. As shown in the figure
(see zoomed region), the error bound of 0.4 suffers from a
prominently degraded visual quality compared with the error
bound of 0.05. To provide an example of practical significance,
we also analyze the distribution of halos’ locations in Nyx
Baryon Density affected by the lossy compression with various
error bounds by the Nyx analysis package [50]. Halos refer to a
cluster of particles which simulates the galaxy formation, and
this is fundamental information to more sophisticated study
in cosmology research. According to our analysis, when the
error bounds are set to 0.001, 0.05 and 0.45 respectively, the
percentages of halos mislocated from their original position are
0.46%, 10.81% and 79.17% respectively. Such a result shows
that the error bound configuration (specifically, it is from 1E-5
to 0.4 in our experiments) used in our evaluation covers a very
wide range according to Nyx user’s quality-of-interest. That
is, without loss of generality, our assessment is conducted with
comprehensive error bound settings.

Fig 11 demonstrates the valid range of compression ratios
(with SZ) for two example datasets — Nyx(Baryon Density)
and QMCPack-3(spin0), respectively. As shown in Fig. 11
(a), for example, we choose the compression ratios from 0 to
~500 for Nyx(Baryon Density), because larger ratios would
cause significant data distortions, as shown in Fig. 10(c). The
valid range of compression ratios of other datasets are chosen
similarly based on reasonable data distortion.

D. Analysis of FXRZ Training Time

We provide the training time (using Bebop’s single node)
of FXRZ across different application dataset and compres-
sors in Table VI. For each application and compressor, total
training time includes obtaining stationary points (discussed
in Section IV-B), augmenting data by interpolation and RFR
training time. As shown in Table VI, FXRZ incurs very low
training time overhead, on average, 13.59 mins. Thanks to the
linear interpolation (discussed in Section IV-B) for making
total training time very low, as we do not need to run the

compressor too many times to obtain ample training data. Note
that, training times with MGARD+ is relatively higher because
time to obtain the stationary points with MGARD+ is higher
because MGARD+ usually has higher compression time than
other compressors. Note that, this training time is a one-time
cost as we do not need to run compressors at all during the
inference phase to apply FXRZ to estimate error bound setting
for a target compression ratio.

TABLE VI: Total Training Time (in Mins) by FXRZ

Nyx-1
Baryon

14.92
22.58
31.48
11.30

Nyx-1 Dark
Matter

16.45
23.87
26.93
14.86

Nyx-1 Nyx-1
Temperature ~ Velocity-X

14.17 15.10
24.83 21.26
32.38 28.31
10.08 10.73

QMCPack-1
&2

13.83
16.88
23.39
10.57

RTM-
Small QCLOUD

543 2.79
3.04 2.27
10.44 4.75
3.98 243

Hurricane Hurricane
TC

3.14
4.90
5.53
2.34

Comp.

SZ

ZFp
MGARD+
FPZIP

E. Validation of Optimization: Adjusting TCR

We now analyze the impact of our optimization (opft), ad-
justing target compression ratio, on the estimation accuracy by
comparing the average estimation errors between opt and with-
out opt for different datasets across different compressors in
Table VII. We pick one dataset from each of four applications
because of space limit. Other datasets show similar results. We
use Formula 5 and the same set of TCRs used in Section V-F
to measure average estimation errors. In Table VII across
different datasets and compressors, the average estimation
errors with opt can be as much as 15.23% and on average
4.13% lower than those without the opt. The key reason is
that after the TCR adjustment, ACR (Section IV-E2) reveals
the true data density in a dataset to project the compressibility
better. Consequently, these results across different datasets and
compressors show the effectiveness of our opt towards more
accuracy in FXRZ.

TABLE VII: Comparison of Average Estimation Error with
and without Adjusting Target Compression Ratio Optimization

Nyx Baryon Density
With Opt ~ Without Opt

QMCPack BigScale Spin0
With Opt ~ Without Opt

RTM BigScale Snap.-800
With Opt Without Opt

Hurricane TC Snap.-48

Comp. With Opt Without Opt

Sz
ZFp

7.63% 17.14% 1.52% 2.13% 13.88% 20.88% 4.50% 10.90%

6.95% 22.18% 2.59% 5.53% 3.17% 8.37% 14.92% 8.63%

MGARD+
FPZIP

22.76% 30.15% 1.16% 2.94% 13.81% 19.23% 6.51% 9.66%

5.36% 14.56% 5.83% 6.56% 6.89% 6.83% 8.10% 3.15%

F. Accuracy Evaluation

1) Evaluation Based on Capability Level 1 and 2: We
compare the accuracy of FXRZ with the baseline FRaZ in
Fig. 12 and 13 based on different application datasets. We
determine accuracy by how close the measured compression
ratio (MCR) (obtained from FXRZ estimated error bound
setting) to the rarget compression ratio (TCR) is.

Without loss of generality, on average, we set TCRs to
25 different values uniformly (to balance the experiment
time) which are all reasonable/applicable according to their
visualization and data distortion (Section V-C). The reason-
able settings have to be tuned slightly across compressors,
because some compressor such as ZFP cannot reach too high
compression ratio as SZ does. After that, we run FXRZ and

10

FRaZ to get the estimated error configurations, based on which
we run corresponding compressors to verify the accuracy of
compression ratios.

In Fig. 12, for the sake of space, we demonstrate the
accuracy result of one testing field or snapshot dataset per
application based on both SZ and ZFP. In the figure, we
use Ground Truth to denote the TCR. We show the results
of FRaZ based on 6 and 15 iterations along with results of
our framework FXRZ in the figure. As shown in the figure,
FRaZ struggles to maintain a good accuracy for both 6 and 15
iterations compared with FXRZ in most of the situations. We
observe that with higher iterations (15 iterations), FRaZ is able
to lower the estimation error (higher accuracy accordingly)
compared with the setting of 6 iterations. The key reason is
that FRaZ adopts a trial-and-error mechanism to search for the
expected error configuration, which relies on a large number
of iterations to converge. As such, when FRaZ is given more
iterations, its performance overhead would turn dramatically
high (to be shown in Table VIII) because of its inevitably
multiple expensive runs of the underlying compressors.

On the other hand, we observe that our FXRZ exhibits a
high accuracy in most of the cases, despite projecting slight
errors with the ZFP compressor to a certain extent. This is
not the issue of FXRZ but because of ZFP’s characteristic.
Specifically, ZFP’s compression ratio increases piecewisely
with the error bound (Section IV-B), so that in some cases
there is no exact MCR (compressor derived) in correspondence
to the TCR. That is, some TCRs cannot be realized by ZFP in
practice, so that no estimation method can match that targets in
principle. This is why the FXRZ with ZFP may have slightly
lower or higher MCRs compared with target compression ratio,
as shown in the figure.

Furthermore, in Fig. 13, we show estimation error (in
percentage) between TCR and MCR for each testing snapshot
or simulation configuration dataset generated from 4 real-
world scientific applications. MCR is obtained by running
the corresponding compressor based on the model estimated
error configuration for each testing dataset. For each testing
snapshot or simulation configuration dataset, we show the
result by averaging all the estimation errors in our experiments
with a corresponding compressor. The estimation error is
calculated based on Formula (5). Fig. 13 shows that FXRZ
have very low average estimation errors in most of the cases.
On average, FXRZ exhibits only 8.24% estimation error
across all the four compressors. On the other hand, FRaZ
with 15 iterations exhibits low estimation error than that of
FRaZ with 6 iterations, which is consistent with our previous
analysis. More specifically, their estimation errors across four
compressors are 34.48% and 19.37% on average, respectively.

|TCR — MCR)|
TCR

2) Evaluation Based on Different Application Scopes:
Here we show the robustness of our FXRZ by evaluating it
across different application scopes. We perform FXRZ training
with datasets from Nyx, QMCPack, Hurricane and RTM-

(&)

FEstimationError =

600 550 400
600
£ 2 2 500 L350
T 500 @ 500 T 450 ©
o o o C 300
c < 400 < 400
.S 400 k] Sagg 9250
(7] [7] [7] 73 £
8 300 6300 2300 A %200
[o} [o} Q250 7 2450
E 200 — Ground Truth £ 200 — Ground Truth E 200 Ground Truth E — Ground Truth
o - FXRZ Result o - FXRZ Result O 450 - FXRZ Result o 100 - FXRZ Result
N 100 FraZ (6 iter.) N 100 FraZ (6 iter.) N 100 FraZ (6 iter.) N 50 FraZ (6 iter.)
@ - FraZ (15 iter.) 2 ol - FraZ (15 iter.) 2 50 - FraZ (15 iter.) 2 - FraZ (15 iter.)
0 001 002 003 004 005 0 001 002 003 004 005 0 3e-05 6e-05 9e-05 0.00012 0 002 004 006 008 01 0.12

Error Bound Error Bound

(a) Nyx Velocity-X (SZ) (b) QMCPack-3 spin0 (SZ)

Error Bound Error Bound

(c) RTM-Big 750 (SZ) (d) Hurricane QCloud (SZ)

120 140
o o
100 g120
5 &0 5100
a 2 80 7]
o 60 o 8
[} Q 60 4
E 40 —— Ground Truth E 40 vl —— Ground Truth £ 150 —— Ground Truth 530 —— Ground Truth
o - FXRZ Result o - FXRZ Result O 100 - FXRZ Result Oypp - FXRZ Result
a 20 FraZ (6 iter.) & 20 FraZ (6 iter.) & 5 FraZ (6 iter.) T FraZ (6 iter.)
N ok ~ FraZ (15 iter.) N 0 ~ FraZ (15 iter.) N o ~ FraZ (15 iter.) 0 FraZ(15iter.)
0 01 02 03 04 05 06 0 0.05 0.1 0.15 0.2 0.25 0 4e-05 8e-05 0.000120.00016 0.0002 0 0.08 0.16 024 032 04

Error Bound Error Bound

(e) Nyx Velocity-X (ZFP) (f) QMCPack-3 spin0O (ZFP)

Error Bound Error Bound

(g) RTM-Big 750 (ZFP) (h) Hurricane QCloud (ZFP)

Fig. 12: Estimation Error Comparison between FXRZ and FRaZ (with 6 and 15 iterations)

70%

FXRZ
S 60% FraZ(6 iter.)
LE 50% Fraz(15 iter.)
o 10/
= 40%
£ 30%
17}
4 20%
S
< 10%
0% .
PR ‘b (@) C)b“b
& & & $ & oF @
: +' N S
Ky DS S e S P O

Testing Application Fields/Snapshots
(a) SZ

FraZ(6 iter.)
FrazZ(15 iter.)

Testing Application Fields/Snapshots
(c) MGARD+

90% FXRZ
S 80% FraZ(6 iter.)
o 70% Fraz(15 iter.)
& 60%
® 50%
£ 40%
i 30%
9 20%
< 10%
0%
Testing Application Fields/Snapshots
() Z
o
40% FXRZ
5 35% FraZ(6 iter.)
5 30% FraZ(15 iter.)
5 25%
g 20%
& 15%
& 10%
>
< 5%

0%

Testing Application Fields/Snapshots
(d) FPZIP

Fig. 13: Average Estimation Error across Different Target Compression Ratios for FXRZ and FRaZ (with 6 and 15 iterations).
Velo. stands for Velocity-X, SO stands for Spin0, S1 stands for Spinl, QC stands for QCloud.

SmallScale. Then, we test the model with RTM-BigScale
dataset. Note that obtaining a high accuracy in such a case
is very challenging because the training datasets with various
application scopes may distract the model’s attention and the
datasets outputted by RTM-BigScale and RTM-SmallScale
have distinct precision. As shown in Fig 14, FXRZ still main-
tains low average estimation errors which are 11.49%, 6.76%,
13.66%, 19.81% while FRaZ shows 17.85%, 35.51%, 14.31%,
10.11% for SZ, ZFP, MGARD+ and FPZIP respectively. This
demonstrates that the features we exploit is fairly effective
in characterising data properties during inference phase even
when different application domains are present in training data.

11

G. Performance Evaluation

In Table VIII, we demonstrate the efficiency of our model
FXRZ by comparing the average analysis time required by
FXRZ and FRaZ (with 15 iterations) with respect to the
compression time. We obtain the compression time by running
the corresponding compressor once for each of the testing
dataset. We show the results of FRaZ based on 15 iterations
because FRaZ has a much better accuracy (low estimation
error) with 15 iterations than that with 6 iterations. We refer to
analysis time as the time required for estimating the expected
error configuration based on TCR. In our experiment, for

—— Ground Truth
- FXRZ Result
- Fraz (15 iter.)

6e-05 9e-05 0.00012
Error Bound

—— Ground Truth
- FXRZ Result
- Fraz (15 iter.)

0 3e-05 0

Error Bound
(a) RTM BigScale with SZ (b) RTM BigScale with ZFP
Fig. 14: Estimation Error across Different Application Scopes

any snapshot or simulation configuration dataset, we calculate
average analysis time by averaging all the analysis times
required for estimating error configurations based on each
of the uniformly selected 25~30 different 7CRs. Finally, we
acquire the average analysis time cost as the ratio of the
average analysis time to the compression time. For FXRZ,
analysis time mainly involves feature extraction, calculation of
percentage of non-constant blocks, and time taken by the RFR
model to predict the expected error configuration. For FRaZ,
analysis time is the search time for estimating the expected
error configuration iteratively based on a given TCR. As shown
in Table VIII, the analysis time cost by FRaZ is significantly
larger than FXRZ, as FRaZ requires expensive iterative search.
Quantitatively, on average, FRaZ can be 108 slower than
FXRZ to find the desired configuration.

TABLE VIII: Average Analysis Time Cost Relative to Com-
pression Time: FXRZ vs. FRaZ with 15 Iterations

A Test Fields/ Sz ZFpP MGARD+ FPZIP
Pp- Snapshots FXRZ FRaZ FXRZ FRaZ FXRZ FRaZ FXRZ FRaZ
Baryon Density 0.07x 5.04x 0.06x 6.27x 0.07x 13.86x 0.08x 17.31x
Nyx Dark Matter Density 0.07x 6.02x 0.08x 7.51x 0.09x 1643x 0.06x 10.75x
Y Temperature 0.07x 6.03x 0.05x 646x 0.07x 17.29x 0.11x 25.36x
Velocity-X 0.08x 553x 0.06x 598x 0.09x 23.78x 0.11x 20.84x
QMCPack BigScale Spin0 0.08x 7.72x 0.07x 7.69x 0.068x 11.42x 0.08x 22.0lx
BigScale Spinl 0.08x 7.78x 0.07x 542x 0.07x 11.51x 0.08x 17.12x
RTM BigScale Snapshot-750 0.09x 8.10x 0.68x 32.72x 0.12x 21.29x 0.13x 16.85x
BigScale Snapshot-800 0.09x 7.23x 0.71x 29.41x 0.13x 1944x 0.13x 15.79x
Hurric QCLOUD Snapshot-48 0.20x 9.14x 0.47x 15.57x 0.22x 14.09x 0.22x 14.78x
Urmieane 1o Snapshot-48 0.17x 593x 0.9x 14.84x 0.I8x 2120x 0.8x 25.72x
Average Across All Domains 0.10x 6.85x 0.24x 13.19x 0.11x 17.03x 0.12x 18.65x

H. Parallel Data Dumping Evaluation

We use Fig. 15 to demonstrate the significant performance
gains of our FXRZ compared with FRaZ, when writing the
compressed data to the parallel file system (PFS) on a super-
computer — Bebop with up to 4,096 cores. In the experiment,
we let each core process a fixed amount of Nyx simulation
data (i.e., 2GB), so the total data volume increases with the
number of cores. Our experiment follows weak scaling to
show the execution scalability: data volume increases as the
number of cores grows and the amount of data per core stays
the same. The model execution time stays constant because it
depends on the amount of data processed per core. The data
writing time increases because of the increasing total volume
of data with the number of cores. According to the figure,
larger execution scale causes longer wall-clock time (including
model execution time, compression time and data writing

4e-05 8e-05 0.000120.00016 0.0002

12

time), because of more data to process at runtime. FXRZ
significantly outperforms FRaZ (with a performance gain of
1.18~8.71x) because of its relatively very high performance
in the runtime estimation/analysis.

- model execution time - model executlon time

300 mpression time 300 mpression. time
— - dala writing time — - data writing time
@ 250 250 - . I
£ 200 B

N N N N N N N N N N
€Y 9 Z¥ &N &N €Y ¥ L¥ £Y %N
o ww o Lo o o o o o o
256 512 1024 2048 4096 256 512 1024 2048 4096
Number of Cores Number of Cores
(a) Usecase 1 with SZ (b) Usecase 1 with ZFP
| |
250 7 pceloseiionme 300 | T Ee e me
== data wrmng 1|me l — - dalawmlng time
@ 250

N N N N N N N N N N
€Y &9 Z¥ &N &N €Y ¥ LY £Y &N
o b o o ww o o o o o
256 512 1024 2048 4096 256 512 1024 2048 4096
Number of Cores Number of Cores
(c) Usecase 2 with SZ (d) Usecase 2 with ZFP
250 - rgnodeleegselgﬁt{?mnellme 250 - modgl e;sﬁg%?lon time
= data wntlng time ™ - dala wrmng 1|me I

N N N N N N N N N N
€¥ LN LW EW¥ &V €Y C§ SH W &Y
b b o b b o o wow o b
256 512 1024 2048 4096 256 512 1024 2048 4096
Number of Cores Number of Cores

(e) Usecase 3 with SZ (f) Usecase 3 with ZFP

Fig. 15: Parallel Performance Evaluation (Nyx Simulation)

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose a novel low-cost feature-driven
compressor-agnostic framework (FXRZ) to efficiently estimate
accurate error bound setting based on a target compression
ratio. We evaluate FXRZ with 10 real-world datasets from
4 different applications across different domains. The key
findings are: (1) FXRZ is fairly accurate in estimating the error
bound setting that would lead to a measured compression ratio
which is close to the target compression ratio. The estimation
error is only about 8.24%, on average. Even if training data
is from different application scopes, FXRZ can still keep a
good accuracy, (2) FXRZ always incurs considerably lower
(one or more orders of magnitude lower) execution overhead
than the baseline FRaZ does. For instance, on average, FXRZ’s
online analysis time takes only about 14% of the compression
time. Moreover, FXRZ is 108 x faster than FRaZ, (3) FXRZ
significantly outperforms FRaZ with a performance gain of
1.18~8.71x when performing a parallel data dumping on a
supercomputer (Bebop), because of its high performance in
the runtime analysis.

In the future, we plan to further improve the accuracy by
exploring other optimization strategies.

ACKNOWLEDGMENTS

tThis research was supported by the U.S. Department of Energy,
Office of Science and Office of Advanced Scientific Computing Re-
search (ASCR), under contract DE-AC02-06CH11357. This research
was also supported by the U.S. National Science Foundation under
Grants OAC-2003709 and OAC-2104023, and grant No. 2211538
and 2211539. We acknowledge the computing resources provided
on Bebop (operated by Laboratory Computing Resource Center at
Argonne National Laboratory).

[1]
[2]

[4]
[5]
[6]

[7]

[8]

[9]

[10]
[11]
[12]

[13]

[14]
[15]

[16]

[17]

(18]

[19]

REFERENCES

“HdfS. [online],” https://www.hdfgroup.org/solutions/hdf5/.

W. F. Godoy, N. Podhorszki, R. Wang, C. Atkins, G. Eisenhauer,
J. Gu, P. Davis, J. Choi, K. Germaschewski, K. Huck, A. Huebl,
M. Kim, J. Kress, T. Kurc, Q. Liu, J. Logan, K. Mehta,
G. Ostrouchov, M. Parashar, F. Poeschel, D. Pugmire, E. Suchyta,
K. Takahashi, N. Thompson, S. Tsutsumi, L. Wan, M. Wolf,
K. Wu, and S. Klasky, “Adios 2: The adaptable input output
system. a framework for high-performance data management,”
SoftwareX, vol. 12, p. 100561, 2020. [Online]. Available: https:
/Iwww.sciencedirect.com/science/article/pii/S2352711019302560

R. Rew and G. Davis, “Netcdf: an interface for scientific data access,”
IEEE computer graphics and applications, vol. 10, no. 4, pp. 76-82,
1990.

“Restful hdf5. [online],”
RESTful_HDFS.pdf.

“HdfS odbc connector — user’s guide. [online],” https://www.hdfgroup.
org/wp-content/uploads/2017/07/HDF5_ODBC_Users_Guide.pdf.

A. S. Almgren, J. B. Bell, M. J. Lijewski, Z. Luki¢, and
E. V. Andel, “Nyx: A MASSIVELY PARALLEL AMR CODE
FOR COMPUTATIONAL COSMOLOGY,” The Astrophysical Journal,
vol. 765, no. 1, p. 39, feb 2013. [Online]. Available: https:
//doi.org/10.1088/0004-637x/765/1/39

J. Gray, D. T. Liu, M. Nieto-Santisteban, A. Szalay, D. J. DeWitt, and
G. Heber, “Scientific data management in the coming decade,” Acm
Sigmod Record, vol. 34, no. 4, pp. 34-41, 2005.

M. L. Kersten, S. Idreos, S. Manegold, and E. Liarou, “The researcher’s
guide to the data deluge: Querying a scientific database in just a few
seconds,” Proceedings of the VLDB Endowment, vol. 4, no. 12, pp.
1474-1477, 2011.

“H5z dynamically loaded filters [online],” https://portal.hdfgroup.org/
display/HDF5/HDF5+Dynamically+Loaded+Filters.

“Pnetcdf-sz [online],” https://github.com/Parallel-NetCDF/PnetCDF-SZ.
SZ2.1, https://github.com/szcompressor/SZ, 2022.

P. Lindstrom, “Fixed-rate compressed floating-point arrays,” [EEE
Transactions on Visualization and Computer Graphics, vol. 20, no. 12,
pp. 2674-2683, 2014.

X. Liang, B. Whitney, J. Chen, L. Wan, Q. Liu, D. Tao, J. Kress, D. Pug-
mire, M. Wolf, N. Podhorszki, and S. Klasky, “Mgard+: Optimizing
multilevel methods for error-bounded scientific data reduction,” 2020.
Globus, https://www.globus.org/, online.

“Data storage and transfers at oak ridge leadership computing
facility (olcf),” https://docs.olcf.ornl.gov/data/index.html#
data-storage-and-transfers.

“Campaign storage purge policy has been updated (arc ncar),” https:
//arc.ucar.edu/articles/131, 2021.

S. Di and F. Cappello, “Fast error-bounded lossy HPC data compression
with SZ,” in 2016 IEEE International Parallel and Distributed Process-
ing Symposium. 1EEE, 2016, pp. 730-739.

D. Tao, S. Di, Z. Chen, and F. Cappello, “Significantly improving lossy
compression for scientific data sets based on multidimensional prediction
and error-controlled quantization,” in 2017 IEEE International Parallel
and Distributed Processing Symposium. 1EEE, 2017, pp. 1129-1139.
P. Lindstrom and M. Isenburg, “Fast and efficient compression of
floating-point data,” IEEE Transactions on Visualization and Computer
Graphics, vol. 12, no. 5, pp. 1245-1250, 2006.

https://support.hdfgroup.org/pubs/papers/

13

[20]

[21]

(22]

(23]

[24]

[25]

[26]
[27]

(28]

[29]
(30]

[31]

[32]

[33]
[34]

(35]

(36]

[37]

R. Underwood, S. Di, J. C. Calhoun, and F. Cappello, “Fraz: A generic
high-fidelity fixed-ratio lossy compression framework for scientific
floating-point data,” in 2020 [EEE International Parallel and Distributed
Processing Symposium (IPDPS), 2020, pp. 567-577.

X. Liang, S. Di, D. Tao, S. Li, S. Li, H. Guo, Z. Chen, and F. Cappello,
“Error-controlled lossy compression optimized for high compression
ratios of scientific datasets,” 2018.

Zstandard, http://facebook.github.io/zstd/, 2018, online.

T. Lu, Q. Liu, X. He, H. Luo, E. Suchyta, J. Choi, N. Podhorszki,
S. Klasky, M. Wolf, T. Liu et al, “Understanding and modeling
lossy compression schemes on HPC scientific data,” in 2018 IEEE
International Parallel and Distributed Processing Symposium. 1EEE,
2018, pp. 348-357.

D. Tao, S. Di, X. Liang, Z. Chen, and F. Cappello, “Optimizing lossy
compression rate-distortion from automatic online selection between sz
and zfp,” IEEE Transactions on Parallel and Distributed Systems, 2019.
X. Liang, S. Di, S. Li, D. Tao, B. Nicolae, Z. Chen, and
F. Cappello, “Significantly improving lossy compression quality
based on an optimized hybrid prediction model,” in Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis, ser. SC ’19. New York, NY,
USA: Association for Computing Machinery, 2019. [Online]. Available:
https://doi.org/10.1145/3295500.3356193

Nyx, https://portal.nersc.gov/project/nyx/highz/512/, 2013, online.

J. Kim, A. D. Baczewski, T. D. Beaudet, A. Benali, M. C. Bennett,
M. A. Berrill, N. S. Blunt, E. J. L. Borda, M. Casula, D. M. Ceperley,
S. Chiesa, B. K. Clark, R. C. Clay, K. T. Delaney, M. Dewing,
K. P. Esler, H. Hao, O. Heinonen, P. R. C. Kent, J. T. Krogel,
I. Kyldnpdd, Y. W. Li, M. G. Lopez, Y. Luo, F. D. Malone, R. M.
Martin, A. Mathuriya, J. McMinis, C. A. Melton, L. Mitas, M. A.
Morales, E. Neuscamman, W. D. Parker, S. D. P. Flores, N. A. Romero,
B. M. Rubenstein, J. A. R. Shea, H. Shin, L. Shulenburger, A. F.
Tillack, J. P. Townsend, N. M. Tubman, B. V. D. Goetz, J. E. Vincent,
D. C. Yang, Y. Yang, S. Zhang, and L. Zhao, “QMCPACK: an open
sourceab initioquantum monte carlo package for the electronic structure
of atoms, molecules and solids,” Journal of Physics: Condensed
Matter, vol. 30, no. 19, p. 195901, apr 2018. [Online]. Available:
https://doi.org/10.1088/1361-648x/aab9c3

H.-W. Zhou, H. Hu, Z. Zou, Y. Wo, and O. Youn, “Reverse
time migration: A prospect of seismic imaging methodology,” Earth-
Science Reviews, vol. 179, pp. 207-227, 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0012825217306256
L. C. L. S. (LCLS-II), https://Icls.slac.stanford.edu/, 2017, online.

T. E. Fornek, “Advanced photon source upgrade project preliminary
design report,” 9 2017.

F. Cappello, S. Di, S. Li, X. Liang, G. M. Ali, D. Tao, C. Yoon Hong,
X.-c. Wu, Y. Alexeev, and T. F. Chong, “Use cases of lossy compression
forfloating-point data in scientific datasets,” International Journal of
High Performance Computing Applications (IJHPCA), 2019.

S. Habib, V. Morozov, N. Frontiere, H. Finkel, A. Pope, K. Heitmann,
K. Kumaran, V. Vishwanath, T. Peterka, J. Insley et al., “HACC: extreme
scaling and performance across diverse architectures,” Communications
of the ACM, vol. 60, no. 1, pp. 97-104, 2016.

“Anl theta,” https://www.alcf.anl.gov/support-center/theta-and-thetagpu.
ORNL, “Summit supercomputer,” https://www.olcf.ornl.gov/summit/,
2022.

X.-C. Wu, S. Di, E. M. Dasgupta, F. Cappello, H. Finkel, Y. Alexeev,
and F. T. Chong, “Full-state quantum circuit simulation by using data
compression,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, ser. SC
’19. New York, NY, USA: Association for Computing Machinery,
2019. [Online]. Available: https://doi.org/10.1145/3295500.3356155
“Hurricane isabel dataset,” http://vis.computer.org/vis2004contest/data.
html, 2004.

K. Zhao, S. Di, M. Dmitriev, T.-L. D. Tonellot, Z. Chen, and F. Cappello,
“Optimizing error-bounded lossy compression for scientific data by dy-
namic spline interpolation,” in 2021 IEEE 37th International Conference
on Data Engineering (ICDE). 1EEE, 2021, pp. 1643-1654.

J. Benesty, J. Chen, Y. Huang, and I. Cohen, “Pearson correlation
coefficient,” in Noise reduction in speech processing. Springer, 2009,
pp. 1-4.

H. Drucker, C. J. Burges, L. Kaufman, A. Smola, and V. Vapnik,
“Support vector regression machines,” Advances in neural information
processing systems, vol. 9, 1996.

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(471

(48]

[49]

[50]

Y. Freund and R. E. Schapire, “A decision-theoretic generalization of
on-line learning and an application to boosting,” Journal of computer
and system sciences, vol. 55, no. 1, pp. 119-139, 1997.

L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5-32, 2001.

Bebop supercomputer, Available at https://www.lcrc.anl.gov/systems/
resources/bebop, 2021, online.

X. Liang, S. Di, D. Tao, S. Li, B. Nicolae, Z. Chen, and F. Cappello,
“Improving performance of data dumping with lossy compression for
scientific simulation,” in 2019 IEEE International Conference on Cluster
Computing (CLUSTER), 2019, pp. 1-11.

K. Zhao, S. Di, X. Lian, S. Li, D. Tao, J. Bessac, Z. Chen, and
F. Cappello, “SDRBench: Scientific data reduction benchmark for lossy
compressors,” in 2020 IEEE International Conference on Big Data (Big
Data), 2020, pp. 2716-2724.

J. Tian, S. Di, X. Yu, C. Rivera, K. Zhao, S. Jin, Y. Feng, X. Liang,
D. Tao, and F. Cappello, “Optimizing error-bounded lossy compression
for scientific data on gpus,” in 2021 IEEE International Conference on
Cluster Computing (CLUSTER). 1EEE, 2021, pp. 283-293.

S. Jin, S. Di, S. Byna, D. Tao, and F. Cappello, “Improving prediction-
based lossy compression dramatically via ratio-quality modeling,” arXiv
preprint arXiv:2111.09815, 2021.

Y. Liu, S. Di, K. Zhao, S. Jin, C. Wang, K. Chard, D. Tao, I. Foster,
and F. Cappello, “Optimizing multi-range based error-bounded lossy
compression for scientific datasets,” in 2021 IEEE 28th International
Conference on High Performance Computing, Data, and Analytics
(HiPC). IEEE, 2021, pp. 394-399.

X. Liang, S. Di, S. Li, D. Tao, B. Nicolae, Z. Chen, and F. Cappello,
“Significantly improving lossy compression quality based on an opti-
mized hybrid prediction model,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, 2019, pp. 1-26.

M. Ainsworth, O. Tugluk, B. Whitney, and S. Klasky, “Multilevel tech-
niques for compression and reduction of scientific data—the univariate
case,” Computing and Visualization in Science, vol. 19, no. 5, pp. 65-76,
Dec 2018.

“Nyx analysis package. [online],” https://amrex-astro.github.io/Nyx/.

14

	Introduction
	Related Work
	Problem Formulation and Use-cases
	Problem Formulation
	Discussion of Use Cases

	Feature-driven Fixed-ratio Error-controlled Lossy Compression Framework (FXRZ)
	Design Overview
	Data Augmentation based on Interpolation
	Feature Extraction
	ML Model Selection
	Optimization of Performance and Accuracy
	Uniform Sampling for Feature Extraction
	Adjusting Target Compression Ratio for Better Accuracy

	Performance Evaluation
	Experimental Settings
	Environment
	Datasets
	Testing Compressors
	Baseline

	Demonstration of Variability in Datasets
	Analysis of Data Distortion
	Analysis of FXRZ Training Time
	Validation of Optimization: Adjusting TCR
	Accuracy Evaluation
	Evaluation Based on Capability Level 1 and 2
	Evaluation Based on Different Application Scopes

	Performance Evaluation
	Parallel Data Dumping Evaluation

	Conclusion and Future Work
	References

