FZ-GPU: A Fast and High-Ratio Lossy Compressor for Scientific
Computing Applications on GPUs

Anonymous Author(s)

ABSTRACT

Today’s large-scale scientific applications running on high-perfor-
mance computing (HPC) systems generate vast data volumes. Thus,
data compression is becoming a critical technique to mitigate the
storage burden and data-movement cost. However, existing lossy
compressors for scientific data cannot achieve a high compression
ratio and throughput simultaneously, hindering their adoption in
many applications requiring fast compression, such as in-memory
compression. To this end, in this work, we develop a fast and high-
ratio error-bounded lossy compressor on GPUs for scientific data
(called FZ-GPU). Specifically, we first design a new compression
pipeline that consists of fully parallelized quantization, bitshuffle,
and our newly designed fast encoding. Then, we propose a series
of deep architectural optimizations for each kernel in the pipeline
to take full advantage of CUDA architectures. We propose a warp-
level optimization to avoid data conflicts for bit-wise operations
in bitshuffle, maximize shared memory utilization, and eliminate
unnecessary data movements by fusing different compression ker-
nels. Finally, we evaluate FZ-GPU on two NVIDIA GPUs (i.e., A100
and RTX A4000) using six representative scientific datasets from
SDRBench. Results on the A100 GPU show that FZ-GPU achieves
an average speedup of 4.2X over cuSZ and an average speedup of
37.0x over a multi-threaded CPU implementation of our algorithm
under the same error bound. FZ-GPU also achieves an average
speedup of 2.3X and an average compression ratio improvement of
2.0x over cuZFP under the same data distortion.

1 INTRODUCTION

Motivation. Large-scale scientific applications running on high-
performance computing (HPC) systems produce vast data for post
hoc analysis. For instance, Hardware/Hybrid Accelerated Cosmol-
ogy Code (HACC) [1, 2] may produce petabytes of data in hundreds
of snapshots when simulating 1 trillion particles. It could be very
inefficient to store such a large amount of data, especially to parallel
file systems (PFS) with relatively low I/O bandwidth [3, 4].

Data reduction is becoming an effective method to resolve the
big-data issue for scientific applications. Although traditional loss-
less data reduction methods such as data deduplication and lossless
compression can guarantee no information loss, they suffer from
limited compression ratios on scientific datasets. Specifically, dedu-
plication usually reduces the scientific data size by only 20% to
30% [5], and lossless compression achieves a compression ratio of
up to ~2:1 [6]. However, the data reduction ratios provided by these
methods are much lower than the ratios scientists desire [7].

Error-bounded lossy compressors have been studied for years to
address this issue for scientific data reduction. Not only can they
achieve very high compression ratios (e.g., over 100x) [3, 8, 9, 10],
but they can also strictly control data distortion concerning user-set
error bounds. Notably, a satisfying lossy compressor designed for
scientific data reduction should address three primary concerns

simultaneously: (1) high compression ratio, (2) high throughput,
and (3) high compression quality (data fidelity). Most of the existing
error-bounded lossy compressors (such as SZ [8, 9, 11], FPZIP [12],
ZFP [10]), however, are mainly designed for CPU architectures,
which cannot meet the high-throughput requirement. For example,
X-ray imaging data generated on advanced instruments such as
LCLS-1I laser [13] can result in a data acquisition rate of 250 GB/s
[7]. As such, high compression throughput is essential to efficiently
store large amounts of data for scientific projects.

Limitations of state-of-the-art approaches. Existing error-bounded
lossy compressors for GPUs (such as cuSZ [14], cuZFP [15], and
MGARD-GPU [16]) suffer from either low throughputs or low com-
pression ratios. Specifically, although cuZFP has slightly higher
throughput compared with cuSZ and MGARD-GPU, it supports
only the fixed-rate mode [17], which suffers much lower compres-
sion quality than the fixed-accuracy mode (a.k.a error-bounded
mode) [18], significantly limiting its adoption in practice. On the
other hand, cuSZ and MGARD-GPU can achieve much higher com-
pression ratios than cuZFP, but their compression throughputs are
relatively low. This is because both MGARD and SZ algorithms
require entropy encoding and dictionary encoding to achieve high
compression ratios due to many repeated symbols (e.g., quanti-
zation codes generated by the prediction and quantization stages
in SZ). At the same time, (1) MGARD-GPU uses DEFLATE [19]
(including Huffman entropy encoding [20] and LZ77 dictionary
encoding [21]) on the CPU, causing low throughput, and (2) cuSZ
adopts an inefficient GPU-based Huffman encoding [14].

Specifically, the Huffman encoding and most of dictionary encod-
ing algorithms contain substantial data dependencies, making them
difficult to parallelize efficiently on GPUs. For example, building a
Huffman tree before encoding has a significant data dependency,
thus, cuSZ only uses one GPU thread to do so. Moreover, it is non-
trivial to design an efficient parallel dictionary encoding because
of the intrinsic dependency in its repeated sequence search. Thus,
cuSZ leaves this part to the CPU, which incurs high time overhead,
including data transfer. Furthermore, achieving high performance
on GPUs requires maximizing the parallelism of GPU threads and
using shared memory, and mitigating issues of coherence, warp
divergence, and bank conflicts. Thus, it is challenging to develop
an efficient GPU-based error-bounded lossy compressor that simul-
taneously achieves a high compression ratio and high throughput.

Key insights and contributions. In this work, we propose a fast and
high-ratio error-bounded lossy compressor (called FZ-GPU 1) for
scientific computing applications on GPU based on the cuSZ frame-
work [14], which maximizes the overall throughput. Specifically,
we first propose to use bitshuffle [22] to rearrange the quantization
codes generated by the prediction-and-quantization step (called
“dual-quantization”) in cuSZ (will be introduced in §2.2) at the bit
level to increase the data correlation for more effective encoding.

IThe code is available at https://github.com/hipdac-lab/FZ-GPU.

We then design a new fast GPU lossless encoding method for bit-
shuffled data. We carefully design a GPU kernel to fuse bitshuffle
and encoding operations to reduce unnecessary data movements
between global and shared memories. Using the proposed bitshuffle
and encoding approach, we can eliminate the inefficient Huffman
encoding from cuSZ. Moreover, we optimize the performance of
the dual-quantization method by eliminating the outliers handling
mechanism and the data shift operation, hence improving the ef-
fectiveness of the subsequent bitshuffle operation.

The main contributions of our work are summarized as follows.

e We propose a new compression pipeline based on the cuSZ
framework, which consists of our optimized dual-quantization,
bitshuffle, and our proposed lossless encoding after bitshuffle
(to replace the slow Huffman encoding) on GPUs.

e We optimize the dual-quantization by eliminating the data-shift
and outlier-handling operations, which improves both compres-
sion throughput and bitshuffle efficiency (and thus increases
compression ratio).

e We develop a GPU bitshuffle kernel with a warp-level optimiza-
tion to avoid data conflicts in bit-wise operations. We also max-
imize the utilization of shared memory to improve the perfor-
mance of this memory-intensive kernel.

e We design a new lossless encoding method that leverages the
data characteristics after bitshuffle and the high parallelism of
GPUs. It can effectively and efficiently remove the high redun-
dancy brought by bitshuffle, thereby achieving a high compres-
sion ratio and throughput.

e We carefully fuse the bitshuffle kernel and the first phase of
the encode kernel (i.e., recording zero blocks) into a single GPU
kernel to eliminate unnecessary data movements between the
GPU’s global memory and shared memory.

e We evaluate FZ-GPU on six real-world scientific application
datasets from Scientific Data Reduction Benchmarks [23] on two
NVIDIA GPUs (i.e., A100 and RTX A4000) and compare it to
four state-of-the-art compressors. Experiments show that on
the A100 GPU, FZ-GPU significantly improves the compression
throughput by up to 11.2x over cuSZ; and compared to cuZFP,
FZ-GPU achieves an average of 2.0x higher compression ratio
at the same data distortion with an average speedup of 2.3x.

Limitations of the proposed approach. Compared to cuSZ, FZ-
GPU significantly improves the compression throughput in all cases,
while it has a slightly lower compression ratio at low error bounds.
Compared to cuSZx, FZ-GPU has much higher compression ratios
and hence higher overall data-transfer throughput, but its compres-
sion throughput is lower than cuSZx. Compared to cuZFP, FZ-GPU
has a slightly lower compression ratio and throughput at large error
bounds (e.g., over 5e-3) in some datasets.

The remaining of this paper is organized as follows. In §2, we
present the background about GPU lossy compression for scientific
data, cuSZ framework, prediction-and-quantization method, and
our problem statement. In §3, we describe the design of our pro-
posed FZ-GPU. In §4, we evaluate FZ-GPU on different scientific
datasets and compare it with other compressors. In §5, we discuss
related work on GPU-based lossy compression. In §6, we conclude
our work and discuss future work.

2 BACKGROUND AND PROBLEM STATEMENT

In this section, we introduce the background information about
GPU-based lossy compression for scientific data, the cuSZ frame-
work including dual-quantization, and our problem statement.

2.1 GPU Lossy Compression for Scientific Data

There are two main classes of data compression: lossless compres-
sion and lossy compression. Compared to lossless compression,
lossy compression can provide a much higher compression ratio by
trading an acceptable accuracy loss. Lossy compressors for image
and video have been well studied, such as JPEG [24] and MPEG
[25], but they do not achieve good performance on scientific data
because they are not designed for floating-point data.

Recently, a new generation of lossy compression for scientific
data, especially floating-point data, has been developed, such as
SZ [3, 8, 9], ZFP [10], MGARD [26], and TTHRESH [27]. Unlike
lossy compressors for images and video, these lossy compressors
provide strict error-controlling schemes, allowing users to control
the accuracy loss in reconstructed data and even in post-analysis.

Considering the boom in GPU-based HPC systems and appli-
cations, SZ, ZFP, and MGARD are starting to roll out their GPU
versions using CUDA [28] (i.e., cuSZ [14], cuZFP [15], and MGARD-
GPU [16]), which provide much higher throughputs for compres-
sion compared with their CPU versions. cuZFP (a transform-based
compressor) allows the user to specify the desired bitrate (i.e., the
average number of bits per value after compression), while cuSZ (a
prediction-based compressor) and MGARD-GPU (a multigrid-based
compressor) allow the user to specify the maximum error that can
be tolerated. cuZFP with the fixed-rate mode can provide stably
higher compression throughput, whereas cuSZ and MGARD-GPU
with the error-bounded mode tend to achieve a higher compression
ratio. In addition, there are also some optimization works based on
these compressors to improve either compression ratio or compres-
sion throughput, which will be discussed in §5.

2.2 cuSZ Framework

Since scientific data are mainly in floating-point representation,
the randomly distributed bits in the exponent and mantissa are the
major obstacle to significantly reducing the data size. This is because
a change in floating-point values causes the exponent and mantissa
representation to change from the most significant bit (MSB) to the
least significant bit (LSB); even close values can have very different
representations. In comparison, a change in integer values results in
amore canonical way. Thus, the SZ framework performs two stages
to convert the original floating-point data to integers: (1) it first
predicts the value of each data point using a prediction function
such as Lorenzo predictor [29] and generates prediction errors
(still floating-point values), which are the differences between the
predicted values and the original values, and (2) it then quantizes
the prediction errors to integers to reduce the bit randomness.
After the prediction and quantization, lossless encoding works
effectively on the integers (i.e., approximation of the prediction
errors). The lossless encoding in SZ, such as gzip [30] or Zstd
[31] includes the Huffman encoding and a dictionary encoding. In
addition, cuSZ, the GPU implementation of SZ framework, follows
a similar compression pipeline with two primary adjustments in

(kernel 1) 8.0%; 363.3 GB/s

(kernel 2)

b Huffman
codebook

(fused kernel 2) 48.3%; 196.3 GB/S

(kernel 3)
49.2%; 58.8 GB/s

(kernel 4)
21.9%; 132.3 GB/s

Huffman cTTTTTT
. ----- archive
encoding ___F__’

|
|
——— | gatheroutlierf - - - - - - - - - - - - - - - -~ .

(encoding kernels)
35.1%; 270.5 GB/s

289 GBJs ‘ N 5.2%; 551.5 GB/s
cuSz |

I

IS T /" (kernel 5) 15.8%; 183.4 GB/s

outlier
(fused kernel 1) 16.6%; 570.1 GB/s
94.8 GB/s

FZ-GPU

Figure 1: Our proposed new compression pipeline (“FZ-GPU”) versus original cuSZ’s compression pipeline. Each kernel is marked with number,
time in percentage, and throughput (in GB/s) tested based on one field from Hurricane dataset at an error bound of 1e-4.

favor of performance: (1) it performs quantization on the original
data before the prediction to remove the tight data dependency
[14], and (2) it omits the dictionary encoding stage.

2.3 Dual-Quantization Method

For the prediction and quantization stages, cuSZ uses a “dual-
quantization” method to achieve fine-grained parallelization; not
only can chunked data blocks be compressed independently, but
each data point can also be processed in parallel. Specifically, cuSZ
first splits the whole dataset into multiple chunks. Then, it performs
pre-quantization, Lorenzo prediction, and post-quantization. Note
that pre-quantization is the only lossy stage (introducing compres-
sion errors) in the entire compression pipeline.

We denote the input data as d and the user-specified error bound
as eb; the compression conducts the error-controlling process illus-
trated in Figure 2. The error-boundness (i.e., the decompressed data
error from the original is no greater than eb) can be guaranteed as

| round(d;/(2 - eb)) X (2 - eb) — d;j| < eb.

The output comprises of two parts given parameter r: quantization
code ¢ = q + r of limited numbers such that ¢ = g — r and
—r < q < r, and outlier that is out of range (—r, r). We refer readers
to the cuSZ papers [14, 32] for more details.

round to nearest

e———»f .
@ o Ireal units of 2eb

> Qe

Figure 2: An illustration of error controlling in SZ.

2.4 Problem Statement

While flourishing to achieve high data processing capabilities, GPU-
based compressors target high versatility and a wide range of usage
scenarios, such as in-memory compression [33], compression of
MPI messages [34], and reducing CPU-GPU data transfer time [35].
On the one hand, the current cuZFP only allows it to use where high
compression throughput is the priority, as its compression quality is
low compared to cuSZ under the same compression ratio. Moreover,
cuZFP does not support error-bounded mode. MGARD-GPU can

only provide very low compression throughput (will be shown
in the evaluation). On the other hand, cuSZ’s modularized design
enables us to investigate/design new compression components and
replace specific ones in the pipeline if needed. For example, the
current cuSZ is limited by its inefficient Huffman encoder?. As a
result, in this work, we mainly focus on the error-bounded lossy
compression framework cuSZ, which can provide high compression
ratios, and aim to drastically improve the compression throughput
by designing a new high-performance GPU encoding approach to
replace the Huffman encoding in the pipeline.

In this work, we assume the data to compress is generated by
scientific applications on GPUs, and then the compression would
be directly performed on the data from the GPU memory; finally,
the compressed data would be saved from GPUs to disks via CPUs.
There are several use cases that FZ-GPU targets. For example, it can
reduce storage overhead, that is, the compressed data will be saved
from the GPU to the disk through the CPU for post-analysis. It can
also reduce memory overhead, that is, the compressed data will
be held in the GPU global memory and decompressed on the GPU
directly when the reconstructed data is needed for computation.

3 DESIGN OF PROPOSED FZ-GPU

In this section, we present the design of our new GPU-based lossy
compressor FZ-GPU with a series of optimizations on top of the
existing work, including a new compression pipeline, improved
prediction-and-quantization phase, bit-regulating bitshuffle phase,
and a new fast GPU encoder that responds to the compressibility.

3.1 Overview of New Compression Pipeline

Our proposed new compression pipeline is shown in Figure 1. To
fully utilize the computing power of GPUs, we aim to design a
pipeline that maximizes parallelism while achieving high compres-
sion ratios by exploiting potential data patterns.

Inspired by cuSZ, we adopt the fully parallelized dual-quantization
method in the first stage of our compression pipeline due to three

2The Huffman encoding on the GPU includes building a large Huffman codebook and
performing coarse-grained encoding based on the Huffman tree.

3 A
] s
2 >
S)
=
IE. .]
2 T
k | o B
f=] =
5 &
o o 4
2 x byte-2 x byte-1 x byte-0
=
<
=
> .
1S bitshuffle
byte-1 byte-0

Figure 3: An illustration of bitshuffle algorithm.

reasons: (1) Its Lorenzo predictor exploits the spatial and dimen-
sional information to significantly reduce the entropy of input data
[9]. (2) It is fully parallelized, and its Lorenzo predictor is highly effi-
cient due to the O(n) time complexity. (3) Its quantization provides
an error-controlling scheme for our lossy compression pipeline.
However, the original quantization design in cuSZ sets a thresh-
old to separate regular quantization codes and outliers (see §2.3);
though it favors a higher compression ratio, the amount of memory
transaction hinders the performance, and hence it is not used in our
design. Instead, we propose to optimize dual-quantization by nei-
ther shifting quantization codes nor handling outliers. Besides, we
use the MSB to denote the sign of the data point. We will describe
the detail of the optimized dual-quantization method in §3.2.

After that, we seek a new lossless encoding method that can
provide both high throughput and high compression ratios. On the
one hand, cuSZ uses the Huffman encoding that causes irregular
memory access (i.e., the number of bits varies for each symbol).
Thus, we look for a lossless encoding with more regular memory
access. On the other hand, the Huffman encoding achieves a high
compression ratio, but it cannot handle sparse data (efficient pre-
diction generates many small prediction errors). Thus, it is critical
to identify a representation for quantization codes that can expose
as many continuous zero bits as possible.

To this end, we propose to adopt bitshuffle [22] (as illustrated
in Figure 3) before performing encoding. The advantages of using
bitshuffle are twofold: (1) It transforms the data representation to
create more space redundancy for subsequent lossless compression.
(2) It is a highly parallel process well-suited for GPU processing.
However, the bitshuffle operation is more time-consuming than
the dual-quantization operation. Thus, we propose to optimize its
performance by using warp-level functions and utilizing shared
memory. We will present bitshuffle and our optimization in §3.3.

Lastly, we propose a sparsification-style fast lossless encoding
after bitshuffle. Specifically, we partition the data into many data
blocks and then go through each data block to check if all values
are zero: if so, we use a 0-bit to record the block; otherwise, we use
a 1-bit to record it and copy this block to the output compressed
array. However, this lossless encoding process is hard to achieve
high performance on the GPU because the encoded address offsets
are unknown for different data blocks. Therefore, we need to pre-
compute the offset (i.e., the starting point of the memory address)

and encode each data block according to its offset. The detail of our
proposed lossless encoding method will be described in §3.4.

3.2 Proposed Optimized Dual-Quantization

We employ dual-quantization in the first stage of our compression
pipeline because it can significantly reduce the entropy of input data
by exploring the spatial correlation through the Lorenzo predictor
[9]. Its fine-grained parallelism with low time complexity (i.e., O(n))
further facilitates an efficient GPU implementation. Moreover, its
quantization provides an error-controlling scheme for lossy com-
pression. However, the original dual-quantization method handles
outliers by compressing them separately and shifts all quantization
codes by a radius for a higher compression ratio, which leads to
throughput degradation. Therefore, we propose an optimized dual-
quantization method for higher performance. The main differences
between the original and our optimized dual-quantization methods
are threefold: (1) we remove shift operations to formulate values
symmetrically distributed around zero, (2) we avoid separate han-
dling of outliers for high performance, and (3) we use 1 bit to handle
the sign of each quantization code instead of using 2’s complement.
We describe them in detail as follows.

First, we optimize the representation of quantization codes. Ac-
cording to our empirical analysis, although the original data type is
a float of four bytes, most data can be denoted as less than four bytes
after quantization. Thus, we propose to use two bytes to denote
the quantization code, which indirectly achieves compression by
transforming the data type. Note that the out-of-range data points
are very few compared to the whole dataset. Thus, even losing these
elements’ precision will not significantly affect the decompressed
data quality, such as peak signal-to-noise ratio (PSNR).

Next, we optimize the mechanism that handles the outliers in
the prediction. The prediction in cuSZ sets a threshold to distin-
guish outliers and normal data points. cuSZ will compress outliers
separately because the compression ratio of the Huffman encoding
in the next step depends on the entropy of the data. If the entropy
is too high, the Huffman encoding will need more bits to denote
patterns. We note that it is unnecessary to separate the outliers and
normal data points when replacing the Huffman encoding with our
proposed lossless encoder. Therefore, we propose to discard the
outliers handling in our pipeline.

Furthermore, we modify the negative numbers’ data format to
fit our encoding kernel’s design. Specifically, instead of storing the
data as a signed integer, we use an unsigned integer. We use the
corresponding positive number with the most significant bit set as
one for the negative number. This is because a negative number
is represented as two’s complement, which consists of many bits
of value one when the number is around zero. However, this is
unsuitable for our design because we want the data bytes to have
as many zeros as possible. To solve this issue, we propose to use
the first bit of unsigned int to denote the positive and negative
because the efficient prediction will keep the data in a small range
around zero, which guarantees the valid number that two bytes
can represent is more than enough for the quantization code. As
aforementioned, few data points are out of range. As a result, this
modification increases the throughput of the dual-quantization
kernel due to fewer if-else branches and easier operations.

with padding

Input

Sequence I 8 Bytes | I 8 Bytes I | 8 Bytes
Byte 0 — E E IE Izl @ IE E
Byte 1 — Izl Izl IEI Izl @ IEI
Byte 2 — Izl Izl @ Izl @ @

Byte 7 —

=]

=]
=
=]
N

o] | [e] [o]
y T

EERNERN
s |[s |[s |

Figure 4: A naive method of parallel bitshuffle [36].

Output
Sequence

3.3 Optimization of Bitshuffle on GPUs

Bitshuffle is an algorithm that re-organizes the dataset bit-wise by
gathering the n-th bits of all the bytes in eight separate chunks.
Figure 3 shows an example of bitshuffle. Bitshuffle fits our compres-
sion pipeline for two reasons: (1) it creates more spatial redundancy
for the following lossless compression, and (2) there is no data de-
pendency in bitshuffle, which means that it is highly parallelizable.
However, the bitshuffle operation is time-consuming and needs bit-
level operations. Therefore, we propose a series of optimizations to
improve its performance as follows.

The first optimization is fully leveraging the shared memory in
each thread block. Bitshuffle is a memory-intensive process that
needs to access the same memory multiple times to get different
bits of the same byte. Direct access to global memory has much
higher latency than shared memory. Therefore, we propose to use
shared memory to reduce the memory access overhead. Since we
need to put as many bits together as possible to create more spatial
redundancy at the bit level, we need to set the shared memory size
as large as possible to store more data. In our kernel design, we use
a 32-by-32 array of unsigned integers, 4 bytes per array element
(each element saves two quantization codes) to store the data. We
set the thread block size to 32-by-32, corresponding to the shared
memory size. Note that the actual size of the 2D array in shared
memory is 32-by-33 with padding to avoid bank conflicts.

After loading the data into the shared memory, we need to extract
the corresponding bits and put them together. This operation is
challenging for GPU, since writing to the same memory location by
all threads in a warp will cause data access conflicts. However, if we
perform this 1-bit operation at a time, the parallelism advantage of
GPU is much undermined; in other words, there would always be
threads waiting for others to complete. To solve this issue, we use a
warp-level vote function, i.e., __ballot_sync() (requiring uint32
data type as input), to speed up this operation. The vote function
takes the same-name variables v, of 32 threads in a warp as input

| with padding
nput
Soence 1@][o][s
ite back
@ :J:ftfcera[cy]t[%] __ballot_sync(buffer)
) read by
N\ Q D) a warp
y=0 [o] [ui32] [ui32] [ui32] [ui32] (padding)
y=1 [ui32] [ui32] [ui32] [ui32] [ui32] (padding)
y= 2 [ui32] [ui32] [ui32] [ui32] [i32] (pacding)
(padding)
y=31 o] [ui32] [ui32] [ui32] [ui32] (padding)
(B e
Output l X X | l &
Sequence | | ' Chhinko ‘ ‘

Figure 5: Our proposed scalable GPU bitshuffle method.

and outputs a 32-bit unsigned integer v;,. More specifically, v, of
thread i is used in the predicate to set i-th bit of v, with true (1) or
false (0). Therefore, we can extract certain bits of the element in the
array and use the vote function to implement the shuffle process
without sacrificing the parallelism in GPU.

Then, we need to put the bitshuffled result back into the global
memory to continue the following encoding process. The naive
way is to store the shuffled data independently in eight chunks,
as shown in Figure 4. However, the memory access of this naive
solution is non-coalesced, which would cause a significant drop in
throughput. To solve this issue, we propose another optimization,
as shown in Figure 5. We store the result locally in the same thread
block. The compression ratio will not be affected if the granularity
is coarser than the following encoder. We process the data row-wise
so that the bits in the same order are stored in the same column. We
then write back column-wise. Note that the padding design allows
us to access the data points in column-wise without bank conflict.

3.4 Proposed Fast GPU Lossless Encoder

The prior study [22] finds that (1) bitshuffle works well with LZ4
lossless encoding on scientific floating-point data. However, the
LZ4 algorithm is unsuitable for GPU architectures® due to the se-
quential nature of its search for repeated strings (similar to all
LZ-family compression algorithms such as LZ77 and LZSS), lead-
ing to relatively low throughput. To this end, we propose a new
lossless encoding method to replace the LZ4 encoder and couple
it with bitshuffle. The overview of our proposed encoding method
is presented in Figure 6. Specifically, this encoder has two phases:
the first phase is to partition the data into data blocks and then
iterate all data blocks to record whether all values in the data block

3L.Z4 from nvCOMP [37] can only achieve 6.3 GB/s on our evaluation datasets.

1

padding

Seqizszz l Block 0‘| Block 1‘| Block 2 I S l Blockln‘
Byte-flag | Flago |[Flag1 || Flag2 | ... [Flagn |
Array

N

Bit-flag Array

Encoded Data | Bit flags || Block o || Block 2 |...[Block n |

Figure 6: Our proposed fast GPU encoding method.

are zeros or not in an array, called the “bit-flag array”; the second
phase is to encode the data based on the flag array generated in the
first phase. During the encoding, if the corresponding bit flag is ‘0",
we use this zero to denote it; if the bit flag is ‘1, we copy the whole
block to our compressed data. This sparsification-style encoder
is highly suitable for bitshuffle because bitshuffle reorganizes the
representation of quantization codes at the bit level, creating many
consecutive zero bits/bytes and hence zero blocks.

However, it is non-trivial to implement this encoding method
efficiently on the GPU because the size of each data block after
compression varies. Thus, we need to compute the memory offset
(i.e., the starting point of the memory address) for every data block
before encoding it. We use the “prefix sum” to compute the memory
offsets. To implement an efficient GPU prefix sum, we need device-
level synchronization to ensure sizes for all compressed blocks
are ready. There are two approaches that can achieve this global
synchronization. The first approach is to use the “cooperative group”
API [38], however, the number of threads it can support is limited.
Another approach is to split one kernel into two since there is
an implicit synchronization when a GPU kernel exits. Thus, we
propose two phases/kernels in our encoding method. The detail of
our two optimized kernels is described as follows.

In order to take advantage of the result stored in the shared
memory in the bitshuffle kernel to save the time to read again from
global memory, we propose to fuse the bitshuffle and the first phase
of our encoding in the same kernel. Note that while the granularity
of the two processes is different, meaning that some threads in
the kernel will be idle while others are executing, it is still more
cost-effective than accessing global memory (which will be proved
in the evaluation). Once the data is ready, we allocate a buffer in the
shared memory to store the flags of each data block (Lines 13-14).
We then use fewer threads than the number of threads used in
bitshuffle to iterate over the data blocks and record a flag indicating
whether all data points in the same data block are zero (Lines 16-18).
The result will be temporarily stored as an unsigned integer (in one
byte), called the “byte-flag array” (Line 18). Finally, we convert the
byte-flag array to the bit-flag array through the bit-level operations
(Lines 20-22). Note that we also use the warp-level vote function to
generate the bit-flag array to avoid the data access conflicts (Line
22). In addition, instead of wasting the byte-flag array, we will use
it to calculate the prefix-sum for the offsets of data blocks in the
second phase. The proposed fused kernel is shown below in detail.

__shared__ uint32_t arr[32][33];

© ® N O U A W N

uint32_t buffer;

arr[Idx.y][Idx.x] =
__syncthreads();

input[offset];

buffer = arr[Idx.yJl[Idx.x];
for i in range(32):
buffer[Idx.y]l[Idx.x] =
<< i));

__ballot_sync_(buffer & (1U

output[offset] = buffer = arr[Idx.xJ[Idx.y];
uint32_t bitflagArr[8];

uint8_t byteFlagArray[256];

__shared__
__shared__

if threadIdx.x * 4 < 32:
for i in range(4):
byteFlagArray[ind] =
il[threadIdx.y]

any (smem[threadIdx.x * 4 +

)

if threadIdx.y < 8:
buffer = byteFlagArray[ind];
bitflagArr[threadIdx.y] = __ballot_sync(buffer);

writeBackToGlobalMem(byteFlagArray);
writeBackToGlobalMem(bitflagArr);

For the second phase, considering the CUB library has imple-
mented a high-performance prefix-sum, we directly call it (Line
1). Then, we can obtain the memory offset of each compressed
data block. After that, we launch our encode kernel to write the
compressed data back to the output array in the global memory
(Lines 8-9). Note that if the corresponding data block has a valid
offset?, the compressed data block will be saved; otherwise, it will
be discarded. The detail of our second kernel is shown below.

prefixSum(byteFlagArray, preSum);
__shared__ uint32_t sumArr[33];
sumArr[@] = preSum[ind]

sumArr[threadIdx.x + 1] = preSum[ind + 1]

if sumArr[threadIdx.x + 1] sumArr[threadIdx.x]:
output[offset] = inputlind]

4 EXPERIMENTAL EVALUATION

In this section, we evaluate FZ-GPU and compare it with state-of-
the-art methods under different metrics.

4.1 Experimental Setup

Platforms. We use two platforms in our evaluation: (1) One node
from an HPC cluster, which is equipped with two 64-core AMD
EPYC 7742 CPUs @2.25GHz and four NVIDIA Ampere A100 GPUs
(108 SMs, 40GB), running CentOS 7.4 and CUDA 11.4.120. (2) An
in-house workstation equipped with two 28-core Intel Xeon Gold
6238R CPUs @2.20GHz and two NVIDIA GTX A4000 GPUs (40
SMs, 16 GB), running Ubuntu 20.04.5 and CUDA 11.7.99.

Datasets. We conduct our evaluation and comparison based on
six typical real-world HPC simulation datasets from the Scientific
Data Reduction Benchmarks [23]: HACC (cosmology particle sim-
ulation) [1], CESM (climate simulation) [39], Hurricane (ISABEL

4The offset is valid if it is different from its previous offset.

Table 1: Real-world float-type datasets used in evaluation.

field data size #fields
datasets dimensions examples(s)
COSMOLOGY 1,071.75 MB 6 in total
HACC 280,953,867 XX, VX
CLIMATE 642.70 MB 70 in total
CESM 1800% 3,600 CLDICE, RELHUM
COSMOLOGY 512 MB 6 in total
NYX 512X512x512 baryon_density
CLIMATE 381.47 MB 13 in total
HURRICANE 4x100X500%500 CLDICE, QRAIN
QUANTUM CIRCUITS 601.52 MB 2 in total
QMCPACK 115X69%69%288 einspline, einspline.pre
PETROLEUM EXPLORATION 180.73 MB 16 in total (3600 snapshots)
RTM 449%449%235 snapshot 200 to 3400

weather simulation) [40], NYX (cosmology simulation) [41], QMC-
PACK (quantum Monte Carlo simulation) [42], and RTM (reverse
time migration, seismic imaging for petroleum exploration) [43],
which have been widely used in previous compression studies [14,
32, 44, 45, 46, 47, 48, 49, 50, 51, 52].

Note that to compress particle datasets such as the HACC dataset
with a minimum impact on the probability density function, prior
work [53] proposes to use point-wise relative error bound. To simply
achieve that, an existing work [4] proposes to transform the original
data using a logarithmic function and compress the log-transformed
data with the corresponding absolute error bound (computed from
the point-wise relative error bound). Thus, in this paper, we evaluate
on the log-transformed HACC dataset.

Baselines. We compare FZ-GPU with four state-of-the-art GPU
lossy compressors, including cuZFP [15], cuSZ [14], cuSZx [54],
and MGARD-GPU [16]. We exclude bitcomp [55] from the evalua-
tion as it is closed-source software with an unknown compression
algorithm. We use five typical relative error bounds (relative to the
value range), i.e., le-2, 5e-3, le-3, 5e-4, and le-4. Note that when
comparing the compression throughput, we evaluate cuSZ, cuSZx,
and MGARD-GPUunder the same error bound, while we evaluate
cuZFP under the same PSNR as ours as cuZFP does not support the
error-bounded mode.

4.2 Evaluation Metrics

Our evaluation metrics include (1) compression ratio, (2) distortion
between original and reconstructed data, (3) compression through-
put, and (4) overall throughput, which are detailed as follows.

(1) Compression ratio is one of the most commonly used metrics in
compression research. It is a factor of the original data size to
compressed data size. Higher compression ratios mean denser
information aggregation against the original data.

(2) Distortion is an important metric used to evaluate lossy com-
pression quality in general. In this work, we use PSNR to mea-
sure the distortion quality. Similar to prior work, we plot the
rate-distortion curve, which is used to compare the distortion
quality with the same bitrate (i.e., the average number of bits
per value), for a fair comparison between different compressors,
considering diverse compression modes.

(3) Compression throughput is how much data a compressor can
process in one unit of time. It is a key advantage of using a
GPU-based lossy compressor instead of a CPU-based one.

Data Distortion in PSNR (y-Axis) Corresponding to
Bitrate (z-Axis) for Five Lossy Compressors

CESM Hurricane
120
100
. X X
80 % o x‘X/
60/ 4
X k
a0 * s
12 4 6 8 0 12 4 6 8 10 12
HACC Nyx
120
100
80 G A
x,x x}‘
60 o /
10 d
12 4 6 8 10 12 14 16 1 2 4 6 8
QMCPACK RTM
120
100
X X
80 'x/ x"‘/
60 J
X x

12 4 6 8 10 12 14 16 1 2 3 4 5 6 7 8

MGARD-GPU cuZFP
cuSZ cuSZx

—x— FZ-GPU

Figure 7: Rate-distortion of five GPU lossy compressors.

(4) Overall data-transfer throughput is to measure the performance
of transferring compressed data (through network or CPU-GPU
interconnect) including compression overhead. This metric is
a composite indicator of compression ratio and speed. Higher
compression ratio and higher compression throughput, higher
overall data transfer throughput.

4.3 Evaluation of Compression Quality

First, we compare the rate-distortion curves (i.e., distortion in PSNR
versus bitrate) of the five compressors, as shown in Figure 7. Specif-
ically, we employ different experimental settings on our platform
to get the rate-distortion curves. We apply five different relative
error bounds (relative to the value range) to cuSZ, MGARD-GPU,
cuSZx, and FZ-GPU. For cuZFP, due to the fact that cuZFP does not
support the error-bounded mode, we investigate a series of bitrates
and select the bitrates with the same average PSNR as ours. Note
that on NYX and RTM, cuZFP cannot achieve a similar PSNR as
ours with the error bounds of 1e-2 and 5e-3. As shown in Figure 7,
FZ-GPU has a similar compression ratio compared to cuSZ. On
the RTM dataset with high error bounds, the compression ratio
of FZ-GPU is up to 1.1x higher than cuSZ and 1.7x higher than
cuZFP on average. Note that FZ-GPU has good stability regarding
distortion. For example, on RTM with 400 timesteps, PSNR varies
only from 86.1 dB to 87.5 dB under the relative error bound of 1le-4.
The analysis is detailed in the following sections.

Compressor Throughputs in GB/s (y-Axis) on A100 GPU for Range-Based Relative Error Bounds (z-Axis)

CESM Hurricane HACC
300 -
200 -
150 = 200 - 200 -
100 -
100 - 100 -
50 -
0- 0- 0-
le-2 5e-3 le-3 5e-4 le-4 le-2 5e-3 le-3 5e-4 le-4 le-2 5e-3 le-3 5e-4 le-4
Nyx QMCPACK RTM
900 - 300 -
200 -
150 - 200 -
100 - 100 -
100 -
50 -
0- 0- 0-
le-2 5e-3 le-3 5e-4 le-4 le-2 5e-3 le-3 5e-4 le-4 le-2 5e-3 le-3 5e-4 le-4
B MGARD-GPU [cuSZ [cuSZ-nch B cuZFP [cuSZx [FZ-GPU

Figure 8: Compression throughput of cuZFP, cuSZ, cuSZ-ncb (cuSZ with no codebook building), cuSZx, MGARD-GPU, and FZ-GPU on NVIDIA
A100. cuZFP’s throughput corresponds to FZ-GPU with the same average PSNR.

Comparison with cuSZ. Since the lossy part (i.e., dual-quantization)
of FZ-GPU is the same as cuSZ, their PSNR is the same when we
use the same error bound. Our bitrate is very close to cuSZ. In some
cases of the high error bound, FZ-GPU has a higher compression
ratio than cuSZ. For example, Figure 7 shows that FZ-GPU has a
13.9% improvement in compression ratio with an error bound of
le-2 on the RTM dataset. This is because the RTM dataset con-
tains many zero values and other values are also highly smooth.
Therefore, after we apply bitshuffle, the shuffled data is mostly zero,
resulting in a high compression ratio of our designed sparsification-
like encoding method. In comparison, cuSZ has the compression
ratio upper bounded by 32 due to the Huffman encoding. More-
over, cuSZ does not fully utilize the spatial redundancy of the RTM
dataset. In contrast, our lossless encoder guarantees that the spatial
redundancy is effectively compressed and the compression ratio is
up to 128. Thus, the smooth values on the RTM dataset make the
bitshuffled data more suitable for our lossless encoder.

Comparison with cuZFP. FZ-GPU achieves a much higher com-
pression ratio under the same average PSNR on almost all datasets
compared to cuZFP, except for some high error-bound cases on
NYX and RTM. For example, cuZFP has a compression ratio of 21.3
on NYX with the error bound of 1e-2, while FZ-GPU has a compres-
sion ratio of 14.5. This is because the two datasets under high error
bounds are very smooth (most of the quantization codes are zeros),
where cuZFP is highly effective. But cuZFP loses this advantage
quickly when the error bound is lower. That is because the lower
error bound gives the NYX and RTM datasets higher entropy (like
other datasets) after dual-quantization. The compression method
of cuZFP cannot handle such a complex dataset effectively.

Comparison with MGARD-GPU. We note that MGARD-GPU can-
not work properly on 1D datasets such as HACC and QMCPACK
due to memory issue. For example, it cannot compress HACC and
QMCPACK on A100 with the relative error bound of le-4 and

on A4000 with all the relative error bounds. As a result, the rate-
distortion curve in Figure 7 only contains 4 points for MGARD-GPU
on QMCPACK and HACC. Figure 7 shows that under the same rel-
ative error bound, MGARD-GPU has higher PSNR on all datasets
because MGARD-GPU over-preserves the data distortion. Regard-
ing rate-distortion, MGARD-GPU is similar to cuSZ and slightly
better than FZ-GPU on CESM, Hurricane, and NYX, since it uses
a multi-grid-based approach with high time complexity (a large
coefficient before O(N)) to achieve an accurate approximation. FZ-
GPU is close to MGARD-GPU on HACC, QMCPACK and RTM. For
example, FZ-GPU has a bitrate of 2.6 at the error bound of le-4,
while MGARD-GPU has a bitrate of 2.4 at the error bound of 1le-2.

Comparison with cuSZx. Under the same relative error bound, FZ-
GPU has a much higher compression ratio than cuSZx. Specifically,
FZ-GPU has an average compression ratio improvement of 2.4x and
3.6x higher compression ratio than cuSZx at most on the QMCPACK
dataset with a relative error bound of 1e-2. Although cuSZx has
higher PSNR than FZ-GPU under the same error bound, FZ-GPU
has a higher compression ratio under similar PSNR according to
the curve shown in Figure 7. This is because FZ-GPU employs the
Lorenzo predictor (to reduce the entropy of the input data) and
reduces the bitwise data redundancy, whereas cuSZx only reduces
the blockwise data redundancy.

4.4 Evaluation of Compression Throughput

Next, we evaluate the compression throughput of these three meth-
ods on A100 and A4000 GPUs, as shown in Figure 8 and Figure 9,
respectively. Specifically, we measure their kernel time and apply
five relative error bounds to cuSZ and FZ-GPU. Due to the fact that
cuZFP does not support the error-bounded mode, we investigate a
series of bitrates and select the bitrates that have the same average
PSNRs as ours. Then, we use these bitrates to get the correspond-
ing compression throughput. In some cases where cuZFP can not
achieve similar PSNR, we use fewer bars to show the valid results.

Compressor Throughputs in GB/s (y-Axis) on A4000 GPU for Range-Based Relative Error Bounds (z-Axis)

CESM Hurricane HACC
200
100 100
150
75
100 50 0
0 0 0
le-2 5e-3 le-3 5e-4 le-4 le-2 5e-3 le-3 5e-4 le-4 le-2 5e-3 le-3 5e-4 le-4
Nyx QMCPACK RTM
100
150
100
75
100
50
50
25 50
0 0 0
le-2 5e-3 le-3 5e-4 le-4 le-2 5e-3 le-3 5e-4 le-4 le-2 5e-3 le-3 5e-4 le-4

B MGARD-GPU [cuSZ [cuSZ-nch B cuZFP [cuSZx [FZ-GPU

Figure 9: Compression throughput of cuZFP, cuSZ, cuSZ-ncb (cuSZ with no codebook building), cuSZx, MGARD-GPU, and FZ-GPU on NVIDIA
GTX A4000. cuZFP’s throughput corresponds to FZ-GPU with the same average PSNR.

Figure 8 illustrates that on A100, FZ-GPU achieves a speedup of up
to 11.2X over cuSZ, and a speedup of up to 4.2x over cuZFP. On the
A4000 platform, Figure 9 shows that FZ-GPU achieves a speedup
of up to 3.6x over cuSZ, and a speedup of up to 2.0x over cuZFP.
Note that cuSZ includes all cuSZ’s kernels, while cuSZ-ncb does
not include the time to generate the Huffman codebook (as this
part can be done on the CPU).

Comparison with cuSZ. On A100, we observe that FZ-GPU has
higher throughput than cuSZ on all datasets. FZ-GPU has an av-
erage speedup of 4.2 than cuSZ overall. on the CESM dataset,
FZ-GPU achieves an even higher average speedup of 10.7X. The
performance compared with cuSZ on CESM is better than other
datasets because the Huffman codebook generating time in cuSZ
is almost the same among all datasets. For datasets like CESM, the
field size is smaller than others, and the throughput of Huffman
codebook generation is relatively lower. The result of cuSZ-ncb
also proves this; the ratio of cuSZ-ncb to FZ-GPU is around 0.5
on almost all datasets. In contrast, FZ-GPU is highly stable across
different datasets because our bitshuffle and fast encode kernels
have almost the same amount of operations for the same data size.

The result on A4000 also demonstrates that FZ-GPU has more
stability and higher throughput on different datasets compared to
cuSZ. Our throughputs are all around 70 GB/s, which is an average
2.4x higher than cuSZ. However, it is irregular that the throughput
of cuSZ on A4000 on the CESM dataset is even higher than that on
A100. This is because the CESM dataset has a relatively small data
size per field (i.e., each field is only 26 MB). This size is enough for
the A4000 to warm up but not for the A100. This phenomenon is
not as obvious on other datasets with larger field sizes as CESM.

Comparison with cuZFP. On A100, FZ-GPU has an average speed-
up of 2.3x than cuZFP. We observe that FZ-GPU achieves higher
throughput on almost every experimental setting, except for the
high error-bound cases on CESM and RTM. For example, on CESM
with the error bound of 1e-2, our throughput is 125.0 GB/s, while

the throughput of cuZFP is 197.6 GB/s. The reason is that cuZFP
employs discrete cosine transform and bit truncation, which can
be efficiently performed on the GPU by matrix operations, and
achieves high efficiency when the data is super smooth (as afore-
mentioned, RTM and CESM after pre-quantization have many zero
values with a high error bound). But this advantage of cuZFP dis-
appears quickly as the error bound becomes lower.

On A4000, FZ-GPU has an average speedup of 1.3x than cuZFP.
However, we notice that the throughput of cuZFP maintains almost
the same between A4000 and A100. This is because cuZFP is limited
by GPU memory bandwidth rather than peak performance.

Comparison with MGARD-GPU. As mentioned in §4.3, MGARD-
GPU cannot work properly on 1D datasets due to memory issues.
Moreover, although it can work on A100 in some error bounds, the
compression throughput is fairly low (e.g., 0.018 GB/s on HACC
with le-2 error bound). On both GPUs, FZ-GPU has significantly
higher throughput than MGARD-GPU, i.e., 87.0x and 45.7X on
A100 and A4000 (excluding the 1D datasets where MGARD-GPU
is extremely slow), respectively. We note that the compression
throughput of MGARD-GPU on A4000 is similar or even higher
than that on A100. For example, its throughput on CESM with the
relative error bound of 1e-2 is 0.62 GB/s on A100 and 0.67 GB/s on
A4000. This demonstrates that MGARD-GPU has poor scalability
and cannot adapt to different grades of modern GPUs.

Comparison with cuSZx. On A100, cuSZx has higher compression
throughput on all datasets. The average improvement is 1.5X. This
is because cuSZx uses a very simple compression pipeline, which
divides the input data into blocks and handles the constant blocks
and non-constant blocks separately. This makes cuSZx highly effi-
cient but also results in a fairly low compression ratio (as illustrated
in §4.3). Note that the throughput of cuSZx on QMCPACK is rel-
atively lower compared with other datasets. This is because the
QMCPACK dataset consists of many unsmooth floating data points.
Thus, non-constant blocks are much more than constant blocks. In

CESM

400 -

I
E%
%
(217

400 =

P 200 -
% 2
% %
A .\

200 -

NNNNNN\\\\N

RRAS |
NNNNNNN\N

INNNNNNNN\\\Y

Hurricane

HACC

g

>k

R
XX

400 -

O

e

XXX
SO

5

XX

200 -

TeTeTeToToTe
RRRRX

3
R

R4
o2
%
(%
&S

R4
%
'*

%
%
o

R4
R
%
R

R4
R
3
%

24202622026 % %26 % %20 % % %%

NNNNNNN\\\N

[CHHRE)
[NNNNNNNNN\N

7o

5e-3 le-3 5e-4 le-4 5e-3 le-3 5e-4 le-4 le-3 5e-4 le-4
Nyx QMCPACK ARAMCO
600 -
600 -
200 - 400 - 3
7 7 5
7 7 7] 200 - %
% a2 % % 4 % 5
‘ol
7 % o- % % 7 % o-
le-4 5e-3 le-3 5e-4 le-4 Se-4 le-4

BB pred-quant-vl
B pred-quant-v2

E==1 bitshuffle-mark-v1
B bitshuffle-mark-v2

prefix-sum-encode-v1
[prefix-sum-encode-v2

Figure 10: Performance improvements of our proposed optimizations for different compression kernels on NVIDIA A100.

contrast, FZ-GPU is highly stable over different datasets. On A4000,
cuSZx also has advantages in throughput, the improvement is the
same as that on A100, which is 1.5X on average.

Comparison with CPU implementation. We also implement our
proposed lossy compression algorithm on multi-core CPUs using
OpenMP (called “FZ-OMP”) and compare it with FZ-GPU. The eval-
uation results show that FZ-GPU with A100 has speedups of 38.8x,
42.4%, 36.3X%, 31.8%, 34.8%, and 37.6X over FZ-OMP with Intel Xeon
Gold 6238R CPUs (32 cores/threads) on HACC, CESM, NYX, Hurri-
cane, QMCPACK, and RTM, respectively. Moreover, FZ-OMP has
higher throughput than SZ-OMP due to its efficient compression
algorithm. For example, the average throughput of FZ-OMP is 1.7,
2.5%, and 2.0X higher than that of the original SZ-OMP (v.2.1.12.5)
[56] on the 3D Hurricane, NYX, and RTM datasets, respectively,
with the Intel CPUs using 32 cores/threads® (SZ-OMP only supports
3D data). This demonstrates that not only our proposed GPU perfor-
mance optimizations but also our compression algorithm contribute
to the significant performance improvement over SZ/cuSZ.

4.5 Evaluation of Proposed Optimizations

Finally, we present the evaluation of each of our optimizations in
detail. The breakdown of the performance improvement on A100 is
illustrated in Figure 10. Different bars represent different versions
of each compression kernel, detailed as follows:

(1) pred-quant-v1: The original dual-quantization kernel.

(2) pred-quant-v2: Our optimized dual-quantization kernel with-
out shifting and outlier handling.

(3) bitshuffle-mark-v1: Two separate kernels for bitshfuffle and
mark operations.

(4) bitshuffle-mark-v2: One fused kernel for both bitshfuffle and
mark operations.

Note that the performance of both FZ-OMP and SZ-OMP increases as the number of
threads increases to 32 (with up to 21.2X speedup), but it does not increase much with
more than 32 threads on some datasets due to the limited workload per core.

(5) prefix-sum-encode-v1: Our prefix-sum and fast encode kernel.
(6) prefix-sum-encode-v2: The same kernel as v1, while the en-

coding is improved due to the optimization of dual-quantization.

Figure 10 shows that the dual-quantization kernel has a speedup
of up to 1.7X because we remove the branches in the original kernel,
which is beneficial for GPU performance. More specifically, the GPU
is executed in the warp level, and different branches in the same
warp would cause the operations to be executed sequentially. The
kernel fusion of bitshuffle and bit-flag array also brings a speedup
of up to 1.1x. The kernel fusion can avoid extra access to the global
memory by directly accessing the bitshuffled data in the shared
memory. Our prefix-sum-encode kernel also has a speedup of up
to 1.9% because of dual-quantization optimization. This is because
fewer data blocks are encoded, so the encoding time is much lower
than before. In addition, on the HACC dataset, the encoding time is
not as regular as on other datasets (i.e., v1 has higher throughput
than v2). This is because the Lorenzo prediction is not very effective
on unsmoothed data like HACC, so it generates many large irregular
integers, which affects the performance of our encoding method.
In contrast, the prediction in cuSZ does not have this phenomenon
as it handles and compresses these outliers separately.

4.6 Evaluation of Overall Throughput

Besides compression throughput (Tcompr), overall throughput con-
sidering the time in moving compressed data between GPU and
CPU is also a very important metric for overall application per-
formance. Thus, we propose to use this metric to further evaluate
the efficiency of different compressors in practice. Specifically, the
overall throughput Tyyeran can be calculated as:

-1
Toverall = ((BW X CR)_l + Tc?)rlnpr) >

where BW is the memory bandwidth between GPU and CPU and
CR is the compression ratio.

GPU-CPU Data Transfer Rate in GB/s

CESM

X2

XA

XX
X

0

XX
%%
X

XX
X

%!

X
O
XXX

XXX
0% %% %% %% %%

%!

froad
NNNNNN\N
RXXXX

2%

X
%

XX
%!

100

Hurricane

QMCPACK

(y-Axis) for Range-Based Relative Error Bounds (z-Axis)

HACC

/Ci!
o

XX

XX

X>
2%

XXX
ORXXXX
%6%070%0%%%

%

\\}}\‘

NN

XXX

NANN\N|
X

0203

100 7

5e-4

le-4 le-2 5e-3

MGARD-GPU cuSZ

A,

50
le-4 le-3
cuZFP R cuSZx 1 FZ-GPU

Figure 11: Overall CPU-GPU data-transfer throughput of cuZFP, cuSZ, cuSZx, MGARD-GPU, and FZ-GPU on NVIDIA A100.

The node of our HPC cluster is equipped with 4 A100 GPUs,
which are connected to the CPU through a 32-lane PCle 4.0 inter-
connect; each GPU can leverage up to 16-lane bandwidth (i.e., 32
GB/s). Based on our benchmarking result using [57], when the 4
GPUs read/write data from/to the CPU simultaneously, the band-
width for each GPU can be as low as 11.4 GB/s (the aggregated
bandwidth is about 45 GB/s). We measure the overall data-transfer
throughputs of different compressors and show them in Figure 11.

It illustrates that FZ-GPU achieves the best overall throughput
on almost all datasets at all relative error bounds. Note that for
interconnects with effective bandwidth lower than 15 GB/s (e.g.,
networks), FZ-GPU method can maintain the best overall through-
put due to the optimal balance of compression ratio and throughput.
We leave the evaluation in node communication for future work.

5 RELATED WORK

There have been some works that optimize GPU-based lossy for
scientific data, mostly focusing on NVIDIA CUDA architectures
[28]. For example, cuSZ is the first lossy compression framework
that provides the error-bounded mode (detailed in §2.2). cuZFP is
the CUDA implementation of the ZFP algorithm [10]. It splits the
whole dataset into small blocks and compresses each block sepa-
rately by a series of steps, including transform and bit truncation.
Tian et al. [32] proposed to use run-length encoding with the Huff-
man encoding to improve the compression ratio of cuSZ for high
error-bound scenarios. Yu et al. proposed cuSZx [54] based on the
cuSZ framework that achieves very high compression throughput
by using lightweight operations such as bitwise and addition/sub-
traction operations. Chen et al. developed MGARD-GPU [16] that
optimizes data refactoring kernels for GPU accelerators to enable
efficient creation and manipulation of data in multigrid-based hier-
archical forms. Bitcomp [55] is a proprietary software developed by
NVIDIA for the lossy compression of scientific data. It has a similar
compression performance as cuSZx according to our experiments
but an unknown compression algorithm.

In addition to lossy compression on GPUs, there are also some
works on lossless compression of scientific data on GPUs. For exam-
ple, Tian et al. [46] proposed and implemented an efficient Huffman
encoding approach for modern GPU architectures to parallelize the
Huffman encoding algorithm and utilize the GPU’s high memory
bandwidth. Rivera et al. [47] bitwise a deep architectural optimiza-
tion for two Huffman decoding algorithms to take advantage of
CUDA GPU architectures. Knorr et al. [58] proposed an efficient
GPU lossless compression of scientific floating-point data on GPUs
by using integer Lorenzo transform and vertical bit packing. Masui
et al. [22] proposed a CPU vectorized compression using bitshuffle
and LZ4, and [36] is its simple GPU implementation.

6 CONCLUSION AND FUTURE WORK

In this paper, we develop a fast and high-ratio error-bounded lossy
compressor on GPUs for scientific data. Specifically, we design a
new compression pipeline that consists of dual-quantization, bit-
shuffle, and fast lossless encoding. We also propose a series of archi-
tectural optimizations for each GPU compression kernel, including
warp-level optimization for bitwise operations, maximization of
shared memory utilization, and multi-kernel fusion. Finally, we eval-
uate our proposed FZ-GPU on six representative scientific datasets
and demonstrate its high compression throughput and ratio and
hence the best overall data-transfer throughput over state-of-the-art
GPU-based lossy compressors.

In the future, we plan to (1) exploit fusing all GPU kernels into
one to improve the performance further, (2) adapt FZ-GPU to other
GPU platforms by using code translation tools such as HIPFY [59]
for AMD GPUs and SYCLomatic [60] for Intel GPUs. (3) evaluate FZ-
GPU with real-world applications requiring fast compression, such
as memory compression, and (4) integrate FZ-GPU with parallel I/O
and communication libraries to support complex data movements,
such as node-to-node communication in HPC systems.

REFERENCES

(1]

[10]

(1]

[12]

[13]
[14]

[19]
[20]
[21]
[22]

(23]

[24]
[25]

[26]

S. Habib, V. Morozov, N. Frontiere, H. Finkel, A. Pope, K. Heitmann, K. Ku-
maran, V. Vishwanath, T. Peterka,]. Insley, et al, “HACC: Extreme scaling
and performance across diverse architectures,” Communications of the ACM,
vol. 60, no. 1, pp. 97-104, 2016.

S. C. V. Vishwanath and K. Harms, Parallel i/o on mira, https://www.alcf.anl.
gov/files/Parallel I0_on_Mira_0.pdf, Online, 2019.

X. Liang, S. Di, D. Tao, S. Li, S. Li, H. Guo, Z. Chen, and F. Cappello, “Error-
controlled lossy compression optimized for high compression ratios of scien-
tific datasets,” in 2018 IEEE International Conference on Big Data, IEEE, 2018,
pp. 438-447.

X. Liang, S. Di, D. Tao, Z. Chen, and F. Cappello, “An efficient transformation
scheme for lossy data compression with point-wise relative error bound,” in
IEEE International Conference on Cluster Computing, Belfast, UK: IEEE, 2018,
pp. 179-189.

D. Meister, J. Kaiser, A. Brinkmann, T. Cortes, M. Kuhn, and J. Kunkel, “A
study on data deduplication in HPC storage systems,” in SC ’12: Proceedings
of the International Conference on High Performance Computing, Networking,
Storage and Analysis, Salt Lake City, UT, USA: IEEE, 2012, p. 7.

S. W. Son, Z. Chen, W. Hendrix, A. Agrawal, W.-k. Liao, and A. Choudhary,
“Data compression for the exascale computing era-survey,” Supercomputing
Frontiers and Innovations, vol. 1, no. 2, pp. 7688, 2014.

F. Cappello, S. Di, S. Li, X. Liang, A. M. Gok, D. Tao, C. H. Yoon, X.-C. Wu,
Y. Alexeev, and F. T. Chong, “Use cases of lossy compression for floating-point
data in scientific data sets,” The International Journal of High Performance
Computing Applications, vol. 33, no. 6, pp. 1201-1220, 2019.

S. Di and F. Cappello, “Fast error-bounded lossy HPC data compression with
SZ) in 2016 IEEE International Parallel and Distributed Processing Symposium,
Chicago, IL, USA: IEEE, 2016, pp. 730-739.

D. Tao, S. Di, Z. Chen, and F. Cappello, “Significantly improving lossy com-
pression for scientific data sets based on multidimensional prediction and
error-controlled quantization,” in 2017 IEEE International Parallel and Dis-
tributed Processing Symposium, Orlando, FL, USA: IEEE, 2017, pp. 1129-1139.
P. Lindstrom, “Fixed-rate compressed floating-point arrays,” IEEE Transactions
on Visualization and Computer Graphics, vol. 20, no. 12, pp. 2674-2683, 2014.
X. Liang, K. Zhao, S. Dj, S. Li, R. Underwood, A. M. Gok, J. Tian, J. Deng, J. C.
Calhoun, D. Tao, Z. Chen, and F. Cappello, “Sz3: A modular framework for
composing prediction-based error-bounded lossy compressors,” IEEE Transac-
tions on Big Data, pp. 1-14, 2022.

P. Lindstrom and M. Isenburg, “Fast and efficient compression of floating-
point data,” IEEE Transactions on Visualization and Computer Graphics, vol. 12,
no. 5, pp. 1245-1250, 2006.

https://Icls.slac.stanford.edu/lasers/Icls-ii, Online.

J. Tian, S. Di, K. Zhao, C. Rivera, M. H. Fulp, R. Underwood, S. Jin, X. Liang,
J. Calhoun, D. Tao, et al., “Cusz: An efficient gpu-based error-bounded lossy
compression framework for scientific data,” in Proceedings of the ACM Interna-
tional Conference on Parallel Architectures and Compilation Techniques, 2020,
pp. 3-15.

cuZFP, https://github.com/LLNL/zfp/tree/develop/src/cuda_zfp, Online, 2019.
J. Chen, L. Wan, X. Liang, B. Whitney, Q. Liu, D. Pugmire, N. Thompson, J. Y.
Choi, M. Wolf, T. Munson, 1. Foster, and S. Klasky, “Accelerating multigrid-
based hierarchical scientific data refactoring on gpus,” in 2021 IEEE Interna-
tional Parallel and Distributed Processing Symposium, IEEE, 2021, pp. 859—
868.

Compression Modes, https://zfp.readthedocs.io/en/release0.5.4/modes.html.

S. Jin, P. Grosset, C. M. Biwer, J. Pulido, J. Tian, D. Tao, and J. Ahrens, “Un-
derstanding GPU-based lossy compression for extreme-scale cosmological
simulations,” in 2020 IEEE International Parallel and Distributed Processing
Symposium, IEEE, 2020, pp. 105-115.

P. Deutsch, Rfc1951: Deflate compressed data format specification version 1.3,
1996.

D. A. Huffman, “A method for the construction of minimum-redundancy
codes,” Proceedings of the IRE, vol. 40, no. 9, pp. 1098-1101, 1952.

J. Ziv and A. Lempel, “A universal algorithm for sequential data compression,”
IEEE Transactions on information theory, vol. 23, no. 3, pp. 337-343, 1977.

K. Masui, “Bitshuffle: Filter for improving compression of typed binary data,”
Astrophysics Source Code Library, ascl-1712, 2017.

K. Zhao, S. Di, X. Lian, S. Li, D. Tao, J. Bessac, Z. Chen, and F. Cappello,
“Sdrbench: Scientific data reduction benchmark for lossy compressors,” in 2020
IEEE International Conference on Big Data, IEEE, 2020, pp. 2716-2724.

G. K. Wallace, “The JPEG still picture compression standard,” IEEE Transactions
on Consumer Electronics, vol. 38, no. 1, pp. xviii-xxxiv, 1992.

D. Le Gall, “Mpeg: A video compression standard for multimedia applications,”
Communications of the ACM, vol. 34, no. 4, pp. 46-58, 1991.

M Ainsworth, O Tugluk, B Whitney, and S Klasky, “Mgard: A multilevel
technique for compression of floating-point data,” in DRBSD-2 Workshop at
Supercomputing, 2017.

(33]

(34]

(35]

(44]

(45]

(46]

(48]

(49]

(50]

(51]

(52]

(53]

R. Ballester-Ripoll, P. Lindstrom, and R. Pajarola, “Tthresh: Tensor compres-
sion for multidimensional visual data,” IEEE transactions on visualization and
computer graphics, vol. 26, no. 9, pp. 2891-2903, 2019.

J. Sanders and E. Kandrot, CUDA by example: an introduction to general-purpose
GPU programming. Addison-Wesley Professional, 2010.

L. Ibarria, P. Lindstrom, J. Rossignac, and A. Szymczak, “Out-of-core com-
pression and decompression of large n-dimensional scalar fields,” Computer
Graphics Forum, vol. 22, no. 3, pp. 343-348, 2003.

L. P. Deutsch, GZIP file format specification version 4.3, 1996.

Zstd, https://github.com/facebook/zstd/releases, Online, 2019.

J. Tian, S. Di, X. Yu, C. Rivera, K. Zhao, S. Jin, Y. Feng, X. Liang, D. Tao, and
F. Cappello, “Optimizing error-bounded lossy compression for scientific data
on gpus,” in 2021 IEEE International Conference on Cluster Computing, IEEE,
2021, pp. 283-293,

S.Jin, C. Zhang, X. Jiang, Y. Feng, H. Guan, G. Li, S. L. Song, and D. Tao, “Comet:
A novel memory-efficient deep learning training framework by using error-
bounded lossy compression,” Proceedings of the VLDB Endowment, vol. 15,
no. 4, pp. 886-899, 2021.

Q Zhou, C Chu, N. Kumar, P. Kousha, S. M. Ghazimirsaeed, H. Subramoni,
and D. K. Panda, “Designing high-performance mpi libraries with on-the-fly
compression for modern gpu clusters,” in 2021 IEEE International Parallel and
Distributed Processing Symposium, IEEE, 2021, pp. 444-453.

K. Y. Besedin, P. S. Kostenetskiy, and S. O. Prikazchikov, “Increasing efficiency
of data transfer between main memory and intel xeon phi coprocessor or
nvidia gpus with data compression,” in International Conference on Parallel
Computing Technologies, Springer, 2015, pp. 319-323.

Jon Wright, Bslz4 decoding, https://github.com/jonwright/bslzddecoders,
Online, 2022.

Nvcomp, https://github.com/NVIDIA/nvcomp.

M Harris and K Perelygin, Cooperative groups: Flexible cuda thread program-
ming, https://developer.nvidia.com/blog/cooperative-groups/, Oct. 2017.
Community Earth System Model (CESM) Atmosphere Model, http://www.
cesm.ucar.edu/models/, Online, 2019.

Hurricane ISABEL Simulation Data, http://vis.computer.org/vis2004contest/
data.html, Online, 2019.

NYX simulation, https://amrex-astro.github.io/Nyx/, Online.

OMCPACK: many-body ab initio Quantum Monte Carlo code, http://vis.
computer.org/vis2004contest/data.html, Online, 2019.

S.Jin, S. Di, J. Tian, S. Byna, D. Tao, and F. Cappello, “Improving prediction-
based lossy compression dramatically via ratio-quality modeling,” in 2022
IEEE 38th International Conference on Data Engineering (ICDE), IEEE, 2022,
Pp. 2494-2507.

J. Wang, T. Liu, Q. Liu, X. He, H. Luo, and W. He, “Compression ratio modeling
and estimation across error bounds for lossy compression,” IEEE Transactions
on Parallel and Distributed Systems, vol. 31, no. 7, pp. 1621-1635, 2019.

T. Lu, Q. Liu, X. He, H. Luo, E. Suchyta, J. Choi, N. Podhorszki, S. Klasky, M.
Wolf, T. Liu, et al., “Understanding and modeling lossy compression schemes
on hpc scientific data,” in 2018 IEEE International Parallel and Distributed
Processing Symposium, IEEE, 2018, pp. 348-357.

J. Tian, C. Rivera, S. Di, J. Chen, X. Liang, D. Tao, and F. Cappello, “Revisiting
huffman coding: Toward extreme performance on modern gpu architectures,”
in 2021 IEEE International Parallel and Distributed Processing Symposium, IEEE,
2021, pp. 881-891.

C. Rivera, S. Di, J. Tian, X. Yu, D. Tao, and F. Cappello, “Optimizing huffman
decoding for error-bounded lossy compression on gpus,” in 2022 IEEE Inter-
national Parallel and Distributed Processing Symposium, IEEE, 2022, pp. 717
727.

T. Liu, J. Wang, Q. Liu, S. Alibhai, T. Lu, and X. He, “High-ratio lossy compres-
sion: Exploring the autoencoder to compress scientific data,” IEEE Transactions
on Big Data, 2021.

R. Underwood, S. Di, J. C. Calhoun, and F. Cappello, “Fraz: A generic high-
fidelity fixed-ratio lossy compression framework for scientific floating-point
data,” in 2020 IEEE International Parallel and Distributed Processing Symposium
(IPDPS), IEEE, 2020, pp. 567-577.

M. Barrow, Z. Wu, S. Lloyd, M. Gokhale, H. Patel, and P. Lindstrom, “Zhw:
A numerical codec for big data scientific computation,” in 2022 International
Conference on Field-Programmable Technology (ICFPT), IEEE, 2022, pp. 1-9.
R. Underwood, J. C. Calhoun, S. Di, A. Apon, and F. Cappello, “Optzcon-
fig: Efficient parallel optimization of lossy compression configuration,” IEEE
Transactions on Parallel and Distributed Systems, 2022.

J. Liu, S. Di, K. Zhao, X. Liang, Z. Chen, and F. Cappello, “Dynamic quality met-
ric oriented error bounded lossy compression for scientific datasets,” in 2022
SC22: International Conference for High Performance Computing, Networking,
Storage and Analysis (SC), IEEE Computer Society, 2022, pp. 892-906.

S. Di, D. Tao, X. Liang, and F. Cappello, “Efficient lossy compression for
scientific data based on pointwise relative error bound,” IEEE Transactions on
Parallel and Distributed Systems, vol. 30, no. 2, pp. 331-345, 2018.

[54]

[55]
[56]

X. Yu, S. Di, K. Zhao, J. Tian, D. Tao, X. Liang, and F. Cappello, “Ultrafast error-
bounded lossy compression for scientific datasets,” in Proceedings of the 31st
International Symposium on High-Performance Parallel and Distributed Com-
puting, ser. HPDC °22, Association for Computing Machinery, 2022, 159-171.
Nvcomp, https://github.com/NVIDIA/nvcomp, 2022.

Sz parallel mode with openmp, https://github.com/szcompressor/SZ/blob/
master/sz/src/sz_omp.c.

Benchmark of measuring bandwidth of multiple gpu, https://github.com/
enfiskutensykkel/multi-gpu-bwtest.

F. Knorr, P. Thoman, and T. Fahringer, “Ndzip-gpu: Efficient lossless compres-
sion of scientific floating-point data on gpus,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis,
2021, pp. 1-14.

Hipify, https://github.com/ROCm-Developer-Tools/HIPIFY.

Syclomatic, https://github.com/oneapi- src/SYCLomatic.

	Abstract
	1 Introduction
	2 Background and Problem Statement
	2.1 GPU Lossy Compression for Scientific Data
	2.2 cuSZ Framework
	2.3 Dual-Quantization Method
	2.4 Problem Statement

	3 Design of Proposed FZ-GPU
	3.1 Overview of New Compression Pipeline
	3.2 Proposed Optimized Dual-Quantization
	3.3 Optimization of Bitshuffle on GPUs
	3.4 Proposed Fast GPU Lossless Encoder

	4 Experimental Evaluation
	4.1 Experimental Setup
	4.2 Evaluation Metrics
	4.3 Evaluation of Compression Quality
	4.4 Evaluation of Compression Throughput
	4.5 Evaluation of Proposed Optimizations
	4.6 Evaluation of Overall Throughput

	5 Related Work
	6 Conclusion and Future Work

