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AbstractÐThe increasing volume and velocity of science data
necessitate the frequent movement of enormous data volumes
as part of routine research activities. As a result, limited
wide-area bandwidth often leads to bottlenecks in research
progress. However, in many cases, consuming applications (e.g.,
for analysis, visualization, and machine learning) can achieve
acceptable performance on reduced-precision data, and thus
researchers may wish to compromise on data precision to reduce
transfer and storage costs. Error-bounded lossy compression
presents a promising approach as it can significantly reduce
data volumes while preserving data integrity based on user-
specified error bounds. In this paper, we propose a novel data
transfer framework called Ocelot that integrates error-bounded
lossy compression into the Globus data transfer infrastructure.
We note four key contributions: (1) Ocelot is the first integration
of lossy compression in Globus to significantly improve scientific
data transfer performance over wide area network (WAN). (2) We
propose an effective machine-learning based lossy compression
quality estimation model that can predict the quality of error-
bounded lossy compressors, which is fundamental to ensure
that transferred data are acceptable to users. (3) We develop
optimized strategies to reduce the compression time overhead,
counter the compute-node waiting time, and improve transfer
speed for compressed files. (4) We perform evaluations using
many real-world scientific applications across different domains
and distributed Globus endpoints. Our experiments show that
Ocelot can improve dataset transfer performance substantially,
and the quality of lossy compression (time, ratio and data
distortion) can be predicted accurately for the purpose of quality
assurance.

KeywordsÐLossy Compression, Performance, Data Transfer,
Globus, WAN

I. INTRODUCTION

Large amounts of data are being produced by high per-

formance computing (HPC) simulations and advanced in-

struments such as the Advanced Photon Source (APS) [1]

and LCLS-II [2]. These data typically need to be shared

for analysis, storage, publication, and archival, and often

across multiple research institutions. However, transferring

data over a wide area network (WAN) can be time-consuming,

significantly delaying research progress. Tools like Globus [3],

[4] have been widely adopted to improve data transfer perfor-

mance; however, while transfer performance can be increased

by deploying more data transfer nodes or creating parallel data

streams, limited network bandwidth constrains transfer speeds.
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Many scientific data are collections of floating point num-

bers, and often scientific applications do not require the level

of precision encoded in those data. Thus, it is possible to

reduce the data size by compromising the precision to a

certain level. Error-bounded lossy compression exploits this

fact and offers the potential to significantly reduce data sizes.

However, optimal tuning of compression process (i.e., for per-

formance and quality) remains an open problem and thus such

methods are rarely used in data transfer solutions. Although

error-bounded lossy compression can substantially reduce the

volume of data with user-tolerable data distortion, existing

studies focus on conventional use cases such as reducing

storage space [5], lowering I/O cost [6], or reducing memory

capacity requirements [7], [8]. Li et al. [9] studied how to make

the error-bounded lossy compressor SZ resilient to soft errors

during data transfers and evaluated their approach by using a

numerical analysis/simulator, but they did not systematically

model and optimize data transfer performance with respect to

lossy compression techniques.

Modeling and optimizing the error-bounded lossy compres-

sion based data transfer over WAN is challenging in practice.

On one hand, adding compression/decompression into the

transfer services introduces new complexities (compute nodes

will be involved, compressors need to be configured, overall

transfer performance will be influenced by the compression

speed, etc.). On the other hand, it is critical for users to

understand the quality of compressed data, so that they can

precisely control the data distortion and/or meet expected

compression ratios for their use cases. However, scientific

applications are distinct from each other and lossy compressors

exhibit different characteristics/performance because of their

distinct designs. It is non-trivial to predict the compression

ratios and quality accurately.

In this paper, we propose an optimized data transfer model,

namely Ocelot, by leveraging error-bounded lossy compres-

sion techniques in data transfers. Our contributions are:

• We develop an efficient lossy compression quality pre-

diction model, which is fundamental to accurately pre-

dict the data distortion of lossy reconstructed data and

compression ratio/speed.

• We propose a novel approach for efficient wide-area

data transfer by combining the error-bounded lossy com-

pression techniques, Globus [3], [10], [11], and FuncX,

a federated-Function-As-a-Service (FaaS) platform [12].
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We also optimize the performance by developing a series

of strategies to address I/O contention, compute-node

waiting, and transfer slow-down for many small files.

• We evaluate Ocelot using several Globus endpoints and

real-world scientific applications across different do-

mains. Experiments show that applying parallel compres-

sion can significantly improve data transfer performance

over WAN (reaching 11.2× speed-up with negligible data

distortion for users).

The rest of the paper is organized as follows. In Section

II, we discuss related work. In Section III, we present the re-

search background. In Section IV, we propose the online data

transfer framework Ocelot, which integrates error-bounded

lossy compression technology with Globus. In Section V,

we describe three capabilities of Ocelot. In Sections VI and

VII, we describe how we conduct lossy compression quality

prediction and optimize data transfer performance with lossy

compression techniques, respectively. In Section VIII, we

evaluate Ocelot on real-world scientific datasets and the state-

of-the-art lossy compressor SZ with different compression

pipelines. Finally, we conclude the paper with a discussion

of future work in Section IX.

II. RELATED WORK

In this section, we discuss the related works in two facets:

the modern techniques in wide area data transfer and common

use-cases of error-bounded lossy compression.

Many systems have been developed to improve the per-

formance of large wide-area data transfers. One common

method adopted by many commercial data transfer tools, such

as FileCatalyst [13] and IBM Aspera [14], is using User

Datagram Protocol (UDP) or multiple Transmission Control

Protocol (TCP) streams. BitTorrent is a popular Peer-to-Peer

(P2P) data transfer software developed at the application level

over TCP/IP, which can be used to transfer big data files.

BitTorrent adopts a tracker/seed mechanism to allow each data

downloader to be a data uploader in a community, such that

the more the users participate, the higher the data transfer

speed. The BitTorrent technique, however, is unsuitable for big

data transfer in the science community because a stable and

secure science data-sharing service is highly required. Globus

is a research data management platform that enables high-

performance, secure, and reliable third-party data transfers.

Globus builds upon the GridFTP protocol for data movement

and adopts several optimization techniques such as paral-

lel streams [15]±[17], which can significantly improve data

transfer performance. Transferring big data files with Globus,

however, may still suffer from low performance in practice, as

performance is related to multiple sophisticated factors such

as the settings on Globus connect server (GCS) endpoints

(concurrency, pipelining, striping, etc.) [4], low quality net-

work paths, and underprovisioned data transfer nodes (DTNs).

In particular, recent studies [4] show that transferring big

data files between Argonne Leadership Computing Facility

(ALCF) and National Energy Research Scientific Computing

Center (NERSC) could be slow (only hundreds of MB/s) at

an inefficient concurrency setting.

Error-bounded lossy compression has been effective in

significantly reducing data volumes for many use cases. How-

ever, it has rarely been used in the wide area data transfer

case. Common use cases for error-bounded lossy compression

include reducing storage footprint [5], [18], [19], reducing

memory capacity requirements [7], [20], mitigating I/O costs

in supercomputers [6], and avoiding recomputation of data

[21]. Zhao et al. [5], for instance, developed an efficient

lossy compressor for molecular dynamics (MD) simulation

data based on the spatio-temporal patterns of MD datasets,

which aims to reduce the storage space as much as possible.

Wu et al. [7] explored the best-qualified error-bounded lossy

compression method for Intel-QS [22]Ða full-state quantum

circuit simulator developed by Intel, in order to significantly

lower the required memory capacity for large-scale quantum

computing simulations. Li et al. [9] proposed a resilient error-

bounded lossy compression method, which aims to protect the

data compression against potential errors such as SDCs. How-

ever, their work does not involve data transfer performance

optimization, which is instead addressed in our work.

III. RESEARCH BACKGROUND

We briefly describe the critical technical components on

which we build.

A. Error-bounded Lossy Compression

Error-bounded lossy compression has been broadly used to

significantly reduce the volumes of scientific datasets produced

by large-scale HPC applications or advanced instruments (with

a compression ratio of several hundreds or thousands [23]),

while effectively controlling data distortion based on the user-

specified error bound. In comparison with lossy compression,

lossless compression suffers from low compression ratios (≤2

in most cases [5], [24], [25]) since lossless compressors

generally depend on the exactly repeated byte stream patterns

while scientific datasets are often composed of floating-point

data values often with diverse ending mantissa bits.

There have been many error-bounded lossy compres-

sors developed. In general, there are two models for

error-bounded lossy compression: the transform-based model

and the prediction-based model. The former performs the

(near)orthogonal transform to decorrelate the raw data to

another coefficient data (such as by wavelet transform) and

then reduce the coefficient data by specific encoders such as

embedded encoding [26]. The typical examples are ZFP [26]

and SSEM [27]. The latter uses a data predictor and linear-

scale quantization to decorrelate the datasets and then uses

a variable-length encoding (such as Huffman encoding [28])

and dictionary encoding (such as LZ77 [29]) to obtain a fairly

high compression ratio. Examples include SZ [25], [30] and

MGARDx [31].

We adopt SZ3 [32] in our work for two reasons: its

modular structure, which allows us to construct many different

compression pipelines (i.e., different compressors) for different
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datasets and use cases, and the high performance [25] of its

default SZ-interp compression algorithm, which exhibits the

highest compression ratio and quality in many cases compared

with the other state-of-the-art lossy compressors including

ZFP, SZ2, and MGARDx.

B. Globus Data Transfer Infrastructure

Globus is a research data management platform that is used

to transfer, synchronize, and share large volumes of data.

Globus was launched in 2010, and has since managed the re-

liable movement of almost two exabytes of data across 40,000

endpoints distributed around the world. Globus endpoints are

widely deployed at universities, research laboratories, and on

cloud platforms (such as Amazon S3 and Google drive).

Globus adopts the GridFTP protocol [17], [33] to pro-

vide high-performance, secure, and reliable data transfer over

WAN. There are many optimization strategies in GridFTP

for improving data transfer performance, such as pipelin-

ing, parallelism, and concurrency. GridFTP pipelining avoids

blocking/waiting on transfer-commands, which can transfer

many small files very efficiently. Parallelism allows different

portions of the same file to be sent by multiple channels in

parallel. Concurrency supports transferring of different data

files through multiple channels in parallel.

C. Federated Function as A Service (FuncX)

FuncX [12] is a distributed and scalable function execution

platform. FuncX differs from traditional cloud-hosted FaaS

platforms in that it combines a centralized cloud-hosted service

with a collection of user-deployed and managed endpoints.

Users can deploy their own endpoints on their own resources

via a small Python endpoint software. They may config-

ure that endpoint to provision resources dynamically from

various backend resource providers (e.g., batch schedulers,

Kubernetes clusters, cloud instances). Users may register and

execute Python functions in a similar way to cloud-hosted

FaaS, by providing the function body and input arguments.

However, unliek centralized FaaS they must also select an

endpoint on which to execute that function. The FuncX service

relies on an OAuth-based identity and access management

platform, Globus Auth [34], to securely execute functions.

FuncX leverages containers to package function codes and

resolve dependencies on endpoints, and also enables multiple

optimization strategies to obtain the best performance in the

remote function calls, such as container warming (avoid-

ing/reducing the container instantiation cost), executor/user

batching (amortizing costs across many function requests), and

prefetching (advertising the anticipated capacity to interleave

network communication with computation).

IV. OCELOT: ONLINE DATA TRANSFER WITH

ERROR-BOUNDED LOSSY COMPRESSION

Fig. 1 presents a high-level overview of Ocelot. As shown

in the figure, Ocelot provides an ML-based quality prediction

model for users to predict the lossy compression quality (such

as data distortion and compression ratio), thus guaranteeing

the integrity/validity of the lossy reconstructed data (step 1 ).

The data then progress through five steps ( 2 - 6 ) during the

data transfer procedure from one endpoint to another over

WAN. The key difference between Ocelot and the traditional

data transfer method is that we integrate an error-bounded

lossy compression step, which is expected to significantly

reduce the data volume before transferring the data. At the

target endpoint, upon receiving of compressed data, they are

be decompressed and then written to the file system. The

detailed compression technologies have been discussed in

Section III-A. Ocelot can be used remotely without needing

to manually log in to the source or destination machine

to perform the compression/decompression task, because the

executors have been deployed on those machines beforehand.

Source End-point Target End-point

2
3

4

File

6

5

Data loading

Data transfer over WAN

Data writing

Parallel Error-bounded 
lossy compression

Parallel data 
decompression

Ocelot

Users

ML-based lossy 
quality prediction 

1 File

Fig. 1. Design overview: (1) Use the quality prediction model to obtain
an appropriate compressor setting; (2) Load data of various formats into the
compression program; (3) One or more compute nodes on the source machine
are used to compress the datasets; (4) transfer the data over WAN with Globus;
(5) One or more compute nodes on the target machine are used to decompress
the datasets; (6) The decompressed files are written into the disks on the target
machine.

figures/Ocelot-Archi+tecture.pdf

Fig. 2. System architecture: Six new modules (colored) are added to form the
Ocelot framework: (1) Data loader can load data of multiple formats including
NetCDF, HDF5 [35], binary; (2) The lossy compression quality predictor is
used to find a suitable error bound and compressor to conduct the compression;
(3) Parallel executor handles the compression/decompression tasks; (4) FuncX
service deals with remote orchestration; (5) Globus manages the data transfer;
(6) User interface offers a graphical interface that helps users submit the tasks
easily.

We present our architecture in Fig. 2 (the colored boxes

indicate the new modules we developed for Ocelot). In our

design, the user connects the Ocelot Framework through a

user interface (e.g., a command line or GUI). Upon receiving

user’s data transfer task, Ocelot starts the quality predictor via
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funcX to obtain a suitable compressor configuration by testing

a few settings very quickly with subsampling methods. funcX

allows these tasks to be executed on the remote resource on

which the data reside. Ocelot then uses funcX to initiate a

compression task on the remote endpoint. The compression

is conducted by an MPI program that loads different files

from the file systems and compresses them in parallel. Ocelot

then starts the transfer via Globus. The transfer will move

the compressed files to the target machine once the files are

ready. There is some optimization here because sometimes the

compression tasks cannot be scheduled immediately. We will

leave the detailed discussion to Section VII. We design Ocelot

to be flexible, enabling users to bypass the quality predictor

by manually providing a compressor configuration for certain

cases when they know what error bound and compressor to

use. The quality predictor module is driven by our designed

machine-learning model, which will be detailed in Section VI.

V. CRITICAL CAPABILITIES OFFERED BY OCELOT

Before diving into the technical details, we introduce three

key capabilities of our framework from a user’s perspective.

1) Selecting best-qualified lossy compression configuration

based on our proposed quality predictor.

Ocelot is able to select the most suitable lossy com-

pression configuration in terms of users’ requirements.

Based on the estimated results generated by our quality

predictor, the user can select the ªbestº compression

solution for their data. Specifically, users can view the

data distortion, compression ratio, and compression time

for different lossy compression pipelines or configura-

tions, thus guiding them in selecting/optimizing the best-

qualified setting.

2) Reducing transfer time with parallel (de)compression.

After applying the prediction model to configure com-

pression automatically, users can utilize Ocelot to re-

duce the file transfer time. Users need only to spec-

ify data paths and start the transfer. The compres-

sion/decompression will be performed automatically.

3) Remote orchestrating (de)compression and transfer.

We incorporate FuncX and Globus Transfer API into

our framework, allowing users to control the compres-

sion and transfer between endpoints on any authorized

machines. Users do not have to explicitly connect to

remote resources (e.g., via ssh) to submit batch jobs

to do compression. Instead, they just need to run our

Ocelot software on their personal computer and control

the compression, transfer, and decompression remotely.

Moreover, Ocelot allows users to collect information

about compression and transfer. The analytical data is

stored on the user’s personal computer, and can be used

to further analyze the performance with graphical tools.

VI. COMPRESSION QUALITY PREDICTION

In this section, we propose a prediction model to estimate

the lossy compression ratio, compression speed, and peak-

to-noise ratio (PSNR) [36]. In general, it is impossible for

users to predict compression quality (such as compression ratio

and data distortion level) for a particular error-bounded lossy

compressor without performing the compression on the given

dataset. This is because the effect of data prediction/transform

and coding in the compressor varies with diverse data features.

With our prediction model, users can quickly test multiple

compression settings and choose the one that best matches

their use case.

Lorenzo Prediction
Interpolation
Linear Regression

Predictor

Quantizer Quantization Bins

Data

Compressor-based Features

P0 quantization
entropy

run-length
estimator

min max value range entropy
average

lorenzo error

p0

Data-based Features

subsampling

Config-based
Features

error bound

compressor
type

Fig. 3. The features used to predict compression quality are categorized into
three types: config-based, compressor-based, and data-based features, which
are shown as colored boxes.

We train a machine learning (ML) model on masses of

sample datasets, with the aim to build a relationship between

the compression-related features and the compression quality.

The model can then be used to estimate compression quality

accurately based on the features extracted from the given

datasets at runtime.

We derive many features as input to our model, as illustrated

in Fig. 3. Identifying a set of useful features is challenging,

because (1) the extraction of each feature should have low

computation cost, and (2) the features should form an accurate

indicator of the compression quality. We consider features in

one of three categories: (1) config-level features, (2) data-based

features, and (3) compressor-level features.

Config-based features are configuration settings (includ-

ing error bound values and compression pipeline) specified

by users. Different error bounds can yield largely different

compression quality (e.g., compression ratios and compres-

sion speed). Compression quality also depends on specific

compressors each with distinct designs. The prediction-based

compressors [32], [37], for example, may adopt various pre-

dictors which may exhibit different performances. We enable

our model to recognize the characteristics of compressors by

treating the compressor-type feature as a discrete classification

variable and feeding it with profiling data.

Data-based features describe the characteristics of datasets,

which is also a key factor to distinguish the compressibility.

As shown in TABLE I, even for the same application, different

datasets can have very different properties such as min, max,

and value range. In addition, we also use byte-level informa-

tion entropy as one feature, because it reflects the ªchaos-

levelº of a dataset. The entropy is defined as

H(X) = −
∑

x∈S
p(x) log p(x) = E[− log p(X)]

where S is the set of byte values (0-255) and p denotes the
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program notifies the transfer tasks to stop and let the parallel

compression scheduler take over the remaining files. In this

way, the data transfer is not be suspended because of waiting

for nodes, and the worst-case is that all data are transferred

without compression (when the nodes are not assigned through

the whole period). In production deployments, we anticipate

that the Ocelot service could be deployed on dedicated cluster

nodes (e.g., DTNs) with the approval of system administrator

(similar to Globus service). In this case, wait time would

be only dependent on other Ocelot transfers sharing those

resources.

C. File Grouping for High Data Transfer Throughput

We propose a file grouping strategy to improve the data

transfer throughput based on our observation that the number

of files and file sizes may significantly affect the transfer speed

(as shown in TABLE II). Although the effective transfer speed

fluctuates due to network and I/O contention, we generally

see that the effective network speed decreases as the number

of files increases, when transferring the same amount of

data. This motivates us to optimize the file transfer speed by

grouping small files together.

TABLE II
FILE TRANSFER PATTERNS BETWEEN TWO SUPERCOMPUTERS: NERSC

CORI AND ARGONNE BEBOP

Total size File size # Files Speed (MB/s) Duration (s)

300GB 1M 300000 247.0 1235

300GB 10M 30000 921.1 325

300GB 100M 3000 1120.0 267

300GB 1000M 300 1060.0 281

Raw File 1 Raw File 2 Raw File N

Header 1  File1 File 2 File N1

Header 2  File N1+1 File N1+2 File N2

Header M  File K File K+1 File N

Parallel Compression

O
pt

im
iz

ed
 F

or
 T

ra
ns

fe
r

Metadata Text File

Fig. 11. Parallel compression optimization by grouping small compressed
files to achieve higher transfer speed.

Grouping small compressed files can increase a single file’s

size and reduce the number of files, and thus improve transfer

speed. As shown in Fig. 11, we compress files in parallel

and group many compressed files to achieve a better size

for transfer. We use MPI to communicate the compressed

sizes among CPU cores to determine the file offset for each

core to write. Each grouped file has a header and a body of

connected compressed data. The header contains information

about the number of compressed files in this group, the

starting offset, and the size of each file. The metadata text

file contains human-readable information about the number

of files, grouping strategy, and the original filenames that are

useful for decompression. The default strategy is to group files

by the ªworld sizeº, i.e., the available number of cores for

compression, because they run in parallel and can usually

finish the compression at a similar time. According to the

profiling test and information provided by the administrator,

we know in advance the preferred size for each file to achieve

the fastest transfer speed. Thus, the compression scheduler can

also determine the number of files to put in one group based

on the file sizes.

VIII. PERFORMANCE EVALUATION

In this section, we present our experimental testbed and

performance evaluation results of our models with an in-

depth analysis. We first evaluate the prediction precision on

individual files with different settings and then evaluate the

performance of transfer with parallel compression.

A. Experimental Settings

We collect performance data on three supercomputers: Be-

bop, NERSC Cori, and Purdue Anvil, with specs shown in

TABLE III. Each is located in different regions of the United

States and has different network conditions. The evaluation

of network transfer performance is based on the network

connecting these supercomputers. We evaluate our prediction

approaches on datasets generated by six scientific applications:

QMCPACK [44], RTM [40], Miranda [43], CESM [38],

Nyx [42], and Hurricane Isabel [45], as presented in Table IV.

TABLE III
MACHINE SPECIFICATIONS: BDWALL AND KNLALL ARE FROM BEBOP,
WHOLENODE IS FROM ANVIL, AND HASWELL IS FROM NERSC CORI

Partition # Nodes CPU Cores Memory

Bebop bdwall 664 Intel Xeon E5-2695v4 36 128GB

Bebop knlall 348 Intel Xeon Phi 7230 64 96GB

Anvil wholenode 750 Two Milan CPUs @ 2.45GHz 128 256GB

Cori haswell 2388 Intel Xeon Processor E5-2698 v3 128 128GB

The Miranda, CESM, and RTM applications contain many

files and are well-suitable for our parallel compression tasks.

Specifically, we use a fixed subset of these three applications

in our parallel compression evaluation. Miranda contains 768

files each of dimension 256×384×384; CESM contains 61

snapshots and in total 7182 files of two types of dimensions

Ð 26×1800×3600 and 1800×3600; RTM contains 3601

snapshots and each file is of dimension 449× 449× 235.

TABLE IV
BASIC APPLICATION AND DATASET INFORMATION

Application Dataset Dimensions Science

QMCPACK einspine 33120×69×69 Electronic struc-
tures

RTM 3600 Snapshots 449×449×235 Electronic

Miranda density, velocity,
diffusity,
pressure,
viscosity, etc.

256×384×384 Hydrodynamics
code for large
turbulence
simulations

CESM cloud,
temperature,
pressure, etc.

1800×3600 Climate

Nyx density, tempera-
ture, etc.

512×512×512 Cosmology

ISABEL temperature,
speed, etc.

100×500×500 Weather
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TABLE VIII
DATA TRANSFER TEST AMONG PURDUE ANVIL, ARGONNE BEBOP, AND NERSC CORI: T/SPEED(NP) IS THE TRANSFER TIME/EFFECTIVE SPEED

WITHOUT COMPRESSION; T/SPEED(CP) IS WITH COMPRESSION, WHILE EACH FILE HAS ITS OWN COMPRESSED FILE; T/SPEED(OP) IS COMPRESSION

WITH OUR FILE GROUPING OPTIMIZATION. THE CPTIME IS THE TOTAL COMPRESSION TIME BEFORE THE TRANSFER BEGINS, AND DPTIME IS THE

TOTAL DECOMPRESSION TIME AFTER THE FILES ARE TRANSFERRED. TOTAL T IS THE TOTAL TIME USING OUR SOLUTION, INCLUDING COMPRESSION,
TRANSFER, AND DECOMPRESSION TIME. GAIN IS THE PERFORMANCE IMPROVEMENT CALCULATED BY (T(NP) - TOTAL T)/ T(NP)

.
Dataset # Files Direction T(NP) Speed(NP) T(CP) Speed(CP) T(OP) Speed(OP) CPTime DPTime Total T Reduced

Anvil->Cori 446s 3.63GB/s 87s 2.55GB/s 75s 2.93GB/s 32.48s 68.7s 176.18s 60%
CESM 7182 Anvil->Bebop 1685s 960MB/s 269s 822MB/s 250s 885MB/s 32.54s 126s 408.54s 76%
1.61TB Bebop->Cori 1484s 1.09GB/s 268s 827MB/s 217s 1.02GB/s 135s 69.4s 421.4s 72%

Anvil->Cori 181s 3.76GB/s 15s 932MB/s 11s 1.27GB/s 8.99s 21.8s 41.79s 77%
RTM 3601 Anvil->Bebop 784s 870MB/s 28s 503MB/s 20s 712MB/s 9.03s 41.2s 70.23s 91%
682GB Bebop->Cori 623s 1.09GB/s 25s 544MB/s 18s 795MB/s 56s 21.9s 95.9s 85%

Anvil->Cori 35s 3.32GB/s 11s 1.22GB/s 13s 974MB/s 6.52s 3.07s 20.59s 41%
Miranda 768 Anvil->Bebop 134s 870MB/s 23s 577MB/s 30s 444MB/s 6.27s 8.89s 38.16s 72%
115GB Bebop->Cori 119s 972MB/s 19s 676MB/s 24s 553MB/s 8.83s 3.08s 30.91s 74%

time for all three applications. We notice that the effective

transfer speed drops after compression without file grouping.

This is because the files are smaller while the number of

directories and the number of files stays constant. This result

aligns with the pattern shown in TABLE II. Because large files

generally transfer faster in the network than small files, our

file grouping strategy helps counter the speed reduction for the

RTM and CESM applications. For the Miranda application, the

grouped files do not transfer faster because, after grouping,

there are only 8 files and it has not reached the number of

concurrent threads available in the Globus Transfer Service.

This result also shows that we should strategically group

files into multiple groups instead of simply connecting all

compressed files into one large file. Moreover, making all cores

write to the same file would cause I/O contention and add

overhead to the file grouping process.

IX. CONCLUSION AND FUTURE WORK

We developed a novel data transfer framework, Ocelot,

that integrates Globus transfer with transparent error-bounded

prediction-based lossy compression. We proposed a model

to predict compression ratio/time and data quality for user

defined compression settings with little overhead. Based on

our evaluation on six real-world scientific datasets, we report

the following key findings.

• Compression time/ratio and PSNR are predictable by

using various categories of features. By doing 1% sam-

pling, we can reduce the overhead required to finish the

prediction to 1.7% of compression timeÐa small cost

when compared with transfer time.

• Scientific data transfer performance can be greatly im-

proved by applying parallel compression. We use FuncX

to further control the node waiting time on supercom-

puters, and minimize the transfer time for given datasets.

More than 90% of the transfer time can be reduced by

this method.

• Network transfer speed can be significantly affected by

file size and number of files. A few large files generally

transfer faster than many small files. We can improve

transfer speed by grouping smaller compressed files, and

the transfer time can be reduced by more than 25%

because of file grouping.

• While the use of more CPU cores can improve com-

pression and decompression performance, I/O contention

can become a problem in the decompression case. It is

generally better to use more CPU cores for compression

and fewer CPU cores for decompression.

We selected features that were simple to derive and fast to

train and make predictions, but there is still room to extract

better features to improve prediction accuracy. In addition, our

model requires seeing the dataset in advance to make predic-

tions and has very limited generalization to other datasets.

Moreover, we lack effective time/ratio prediction methods for

transformer-based compressors like ZFP [26] and TTHRESH

[46]. In the future, we will look into other features, particularly

those that do not require processing of the data, to see if

we can make accurate predictions on datasets that have never

appeared in the training set. We will also investigate additional

compressor types and work to identify features that are suitable

for transformer-based compressors.
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